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Abstract

We seek scalable benchmarks for entity resolution problems. Solutions to these problems
range from trivial approaches such as string sorting to sophisticated methods such as statis-
tical relational learning. The theoretical and practical complexity of these approaches varies
widely, so one of the primary purposes of a benchmark will be to quantify the trade-off
between solution quality and runtime. We are motivated by the ubiquitous nature of entity
resolution as a fundamental problem faced by any organization that ingests large amounts
of noisy text data.

A benchmark is typically a rigid specification that provides an objective measure usable
for ranking implementations of an algorithm. For example the Top500 and HPCG500 bench-
marks rank supercomputers based on their performance of dense and sparse linear algebra
problems (respectively). These two benchmarks require participants to report FLOPS counts
attainable on various machines.

Our purpose is slightly different. Whereas the supercomputing benchmarks mentioned
above hold algorithms constant and aim to rank machines, we are primarily interested in
ranking algorithms. As mentioned above, entity resolution problems can be approached in
completely different ways. We believe that users of our benchmarks must decide what sort
of procedure to run before comparing implementations and architectures. Eventually, we
also wish to provide a mechanism for ranking machines while holding algorithmic approach
constant .

Our primary contributions are parallel algorithms for computing solution quality mea-
sures per entity. We find in some real datasets that many entities are quite easy to resolve
while others are difficult, with a heavy skew toward the former case. Therefore, measures
such as global confusion matrices, F measures, etc. do not meet our benchmarking needs.
We design methods for computing solution quality at the granularity of a single entity in
order to know when proposed solutions do well in difficult situations (perhaps justifying
extra computational), or struggling in easy situations.

We report on progress toward a viable benchmark for comparing entity resolution algo-
rithms. Our work is incomplete, but we have designed and prototyped several algorithms to
help evalute the solution quality of competing approaches to these problems. We envision a
benchmark in which the objective measure is a ratio of solution quality to runtime.
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Chapter 1

Introduction

A benchmark is typically a rigid specification of a computational procedure to be evaluated.
For example, the Top500 [13, 15] is based upon dense linear algebra in the form of LINPACK
computations [14]. The Top500 has been hugely influencial in driving the development of
High-Performance Computing (HPC) platforms. Ironically, however, these Top500 computa-
tions are generally not representative of true scientific computing workloads that run on such
machines. In response, the HPCG500 [12] benchmark was designed to perform more repre-
sentative sparse computations which stress different portions of the machine. The machine
rankings generated by these two benchmarks differ significantly.

Entity Resolution (ER) problems comprise a canonical data analysis challenge that in-
volves both textual and relational data. This problem is fundamental in several national
security contexts. Furthermore, corporations of all kinds (not just social networking com-
panies) now recognize the benefit of applying business analytics to their data. ER is a
fundamental preprocessing step for these analytics.

These incoming data will be tagged with various identifiers such as Twitter handles, email
addresses, IP addresses, usernames, etc. Slight errors or irregularities in these tags have the
potential to disrupt any downstream data analytics.

Of the many application contexts that give rise to ER problems, we focus our thinking
on two non-sensitive applications: coauthorship networks and actor/movie networks. The
benchmarks that could be based on the concepts we explore would be directly applicable to
national security data as well. In other contexts, the Linqs group at UC Santa Cruz [3] has
also studied familial networks [18] and other types of relational data.

1.1 Entity Resolution: basic concepts

For a comprehensive introduction to entity resolution, see the LINQS tutorial Entity Reso-
lution for Big Data Problems [2].

ER problems are described using a small set of basic terms. We give intuitive descriptions
of these terms here, and formalize them below in Section 2.2. A reference occurs when an
entity is mentioned or acknowledged in some context. For example, an author's name appears
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at the top of a paper, a tweet can mention a person by his/her Twitter id, and an actor is
acknowledged in the list of credits that roll at the end of a movie. An entity is the person
or object that is acknowledged or mentioned by a reference.

The reality of data collection is that references may not uniquely and unambiguously
identify the entities they are associated with. Actors use stage names, Twitter handles may
be arbitrarily named, textual names or identifiers can be misspelled, mistaken, corrupted,
altered, ambiguous or problematic in other ways.

Understanding the textual and/or relational structure in data generally means knowing
which references are associated with which entities. In its essence, obtaining this knowledge
is the ER problem.

1.2 Types of ER problem

The relationships in knowledge graphs (graphs with attributes) are events. For example,
events in coauthorship networks are co-authored papers. These group authors into one set
per paper (a hyperedge). Events in actor/movie networks are movies, which group casts
together into hyperedges.

Pujara and Getoor [24] describe three different types of entity resolution, and [2] gives
examples of each:

1. deduplication: disambiguition of entities within one knowledge graph

2. record linkage: disambiguition between multiple knowledge graphs

3. reference matching: match noisy records to clean records in a table

Our benchmarks concern problem deduplication. The ideas we discuss could be applied
to benchmarks for the other types.

1.3 Types of ER algorithm

We note two fundamental distinctions among ER algorithms:

• collective vs. not [10]

• statistical vs. not [7]
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Collective ER algorithms appeal to graph topology; non-collective ER algorithms ignore
that topology. Whether or not to introduce the complexity of collective ER in an enterprise
solution to ER problems is a good motivation for benchmarking. An organization considering
a big data solution to their ER problems would generate datasets specific to their operations
(as opposed to relying on literature) and apply benchmarking to help inform the decision.

A variety of simple graph and/or string algorithms could be applied to ER, but methods
such as [7] apply statistical inference to the problem with promising initial results. Once
more, organizations facing enterprise-level decisions would need benchmarking to decide
whether it is possible to deploy methods based on statistical inference.

1.4 Our assumptions

For this report, we assume that references or mentions are character strings, and that events
are co-occurrences of mentions (which we model as sets of strings in our benchmarks). Each
reference refers to exactly one entity. In Section 2.2 we will introduce notation formalizing
these assumptions and other foundations for our work.

1.5 Our challenge: benchmarking ER algorithms

Algorithms mentioned in Section 1.3 vary widely in nature and computational requirements.
Perhaps the simplest ER algorithm is to ignore the events and simply sort all references lex-
icographically, determining proposed entities by cutting the sorted list into groups according
to an edit distance threshold. Variants of this are known as sorted neighborhood meth-
ods [16], and some run asymptotically faster than pure comparison-based sorting. Even
naive versions that simply sort the references would be readily run on terabyte-sized or
larger datasets. However, the solution quality will most likely be low since most of the input
structure is ignored.

In contrast, collective ER algorithms that consider relational information can be ap-
proached via sophisticated statistical relational learning techniques. For example, an ER
formulation in Probabilistic Soft Logic (PSL) [4], a software capability for performing sta-
tistical inference, will exploit the event structure to make much better proposed groupings
of references into entities.

Our primary challenge is to provide a benchmarking capability so that the trade-
off between ER solution quality and computational complexity can be studied as
the complexity of the problem instance varies..
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Chapter 2

Background

2.1 The benchmarking process

Our approach to assessing the quality of ER algorithm solutions is inspired by Bhattacharya
and Getoor [11], who propose, given an ER instance with ground truth, to compute recall
scores per-entity and imprecision scores per-entity-pair. This is an important advance over
the typical aproach for ER algorithm assessment, which is to compute a single, global confu-
sion matrix [8, 10]. The jump from a global assessment to a per-entity assessment is crucial
for benchmarking. Real datasets such as the Internet Movie DataBase (IMDB) [1] have the
property that most of the entity-reference associations are trivial. For example, most actors
use only one name and that name is accurately reported in the data. However, a small
but nontrivial percentage of the entity-reference associations are quite difficult to recognize.
The ideas of Bhattacharya and Getoor [11] point us to the important and difficult parts of
the problem. With this granularity, distinctions between algorithms that might have similar
global confusion matrices can be teased out.

In order to compute their per-entity recall and imprecision measures, Bhattacharya and
Getoor [11] define four concepts that we describe and modify below: identifying attributes,
identifying relationships, ambiguous attributes, and ambiguous relationships. They also show
how to compute the probabilities of these phenomena, given a small ER instance with ground
truth.

This note primarily details our work in redefining and extending these concepts, while
retaining their original spirit, so that we can evalute ER instances with millions of entities and
events. This improved scalability is one of our primary contributions, and is a prerequisite
to large-scale ER benchmarking.

Given this framework, one natural way to globally assess the performance of a candidate
algorithm is to define and compare cumulative distribution functions (CDF) of the per-
vertex recall and imprecision measures for the ground truth and the algorithm's proposed
solution. If the recall and imprecision CDF's of the ground truth and algorithm solution
match well, that is strong evidence that the algorithm succeeds on easy portions of the
problem and struggles only where such a struggle is expected. We formalize this notion and
give an example for recall in Section 4.1. At the time of this writing, scalable computation
of imprecision remains an open problem.
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2.2 Notation

Following [11], we say that the simplest form of the entity resolution problem consists of a set
of references R = {ri}, with attributes {R.A1, R.A2, , R.Ak}. Let E = {e3} be a ground
truth set of entities, unobserved by any ER algorithm. We use E(ri) E E to denote the
mapping from references to entities. Let H = thil be a set of hyperedges representing events
or relationships between references. In this notation, each reference r3 encodes exactly one
hyperedge hk. That is, r3 encapusulates the attributes of reference j and implicitly identifies
the event in which that reference occurs.

We retain some of this notation, but find it convenient to simplify in one way and add
complexity in another. For this note we consider a reference to have a character-string
name and no other attributes. Therefore we dispense with the "Ak" notation and explicitly
represent the character string attribute. Our benchmarks will be complicated enough without
multiple attributes, and we believe that the challenge of entity resolution with a single
string attribute and relational information is sufficient to evaluate most approaches. Our
benchmarking ideas could be extended to handle multiple attributes in the future.

For the remainder of this note, let H = , 1 72_11 be a set of in events, and S =
{s0,... , Si} be a set of strings interpreted to be unique reference names. Given an event hi,
we have both hi E H and hz C S. Thus, an event is a selection of reference names associated
with some object or activity (such as the set of author names in a published paper or the
set of actor/actress names that appear in the credits of a movie). Note that we could have
defined hi to be a multiset, which would correspond, for example, to a movie with two
different roles played by actors using the same name. However, for simplicity of presentation
we assume that the set of reference names associated with an event is a simple set (as it is in
the IMDB database, even when a single actor plays multiple roles). Still following [11], we
use the notation E to represent a set of entities. The set of events H is sometimes referred
to as the cooccurrence structure.

We redefine the reference set R as follows: RCHxS. That is, if (hi, sk) E R, then
some entity used the reference name si in event hk. Note that many different events could
contain the string sk, and that these reference names could refer to different entities. We
call out the set of unique strings S in our notation because some of our algorithms described
later operate explicitly on this set.

Let Ei C 2R be the set of references used by a single entity i. Let ei E Ei be the number
of references in that set. This departs slightly from the notation of [11], which sometimes
uses e to denote a single entity. Note that there are (e2z) pairs of references associated with
entity i. We call each of these pairs an item and refer to the set of items as Tz. For example,
if Ei = {ri, r2, r3, r4},then Tz = r2), (ri, r3), (ri, r4), (r2, r3), (r2, r4, (r3, r4)}.

We also use the notation H(Ei) to denote the set of events hj associated with entity
Formally, H (Ei) = {hi : sk) E

Let P be a partitioning of R into p = partitions, denoted as follows: P = {Po, P1, • • • , Pm},
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where R = UiPi and Pi n Pi = for i j. P is therefore a hard grouping of references into
entities. Note that since there is a ground truth solution in ER problems, we do not consider
mixture models. In our benchmarking work, both ground truth and algorithm solutions take
this form. We use the notation Pg to represent the ground truth of an entity resolution
problem.

Formalizing the intuitive descripion of the benchmarking process given in Section 2.1,

1. Generate or obtain an ER instance with ground truth, which consists of:

• Ground truth: the partitioning Pg containing correct reference groupings of refer-
ences into entities.

• Algorithm input: the set R of references grouped into events.

• Expected algorithm output: a partitioning PA capturing the reference-entity asso-
ciations found by Algorithm A.

2. Assess the inherent difficulty of this instance, per-entity, by computing per-entity recall
and imprecision measures on the ground truth. See Sections 4.1 and 4.3.

3. Run a candidate algorithm on the algorithm input to obtain PA.

4. Assess the algorithm's performance compared to expectations (See Section 5.1).

We will measure differences between strings using an unweighted edit distance metric.
Let d(si, s2) be the edit distance between strings si and s2, and we assume that this distance
is an integer count of two kinds of difference: a gap and a mismatch. We weight each of
these equally, so the edit distance is the sum of the numbers of gaps and mismatches. For
example, d(si = abcde, s2 = acxe) = 2 because the b in the second position of si is a gap
in s2, and (d, x) is a mismatch in position 4 of sl. The edit distance d(si, s2) quantifies the
steps that transform s1 into s2, and it is convenient for us to think of this transformation
as a sequence of alignment steps (removing gaps) followed by a sequence of mismatch steps
(removing mismatches). After removal of gaps, but before any mismatch steps, we say that
strings are aligned. For example, in the d(si, 52), example above the single alignment step
yields aligned strings acde and acxe, and the single mismatch step convert the former into
the latter by changing d into x. We omit the description of our subquadratic algorithm to
exactly find all pairs of strings with edit distance < d, but it exists in code documentation
form.
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Chapter 3

Efficiently finding all close pairs in a
set of strings

Our benchmark entities have string attributes, and a kernel operation of the benchmarking
process we propose is to find all "close" pairs in a corpus of n strings. To produce and evaluate
benchmark instances with millions of entities, the brute force approach of comparing all
O(n2) pairs for closeness is not practical. There are efficient data analysis methods (primarily
based on clustering) to find approximate solutions. However, we need exact solutions in order
to produce effective benchmarks.

A typical clustering approach would be to embed the strings in some space (metric or
non-metric) and using clustering to find the pairs with small edit distance. For example, the
Python library NMSlib [20] has applicable methods. The computational biology literature
abounds with string alignment algorithms, most notably the classical BLAST algorithm [5].
However, this type of algorithm finds alignments of strings and does not solve our all-pairs
closeness problem.

We propose a new algorithm. Given a corpus of n strings and a threshold d, We find all
pairs of strings with edit distance at most d. It runs in time O(n log n + x), where x is the
number of pairs that have edit distances strings

The description below is informal. In future work we plan to formalize the correctness
argument and publish this algorithm with an efficient implementation. At the time of this
writing we have an inefficient Python implementation and the following description obtained
from its header comments.

Usage: AM <strings.dat> <limit> <d> <outfile>

compute on only the first <limit> strings in <strings.dat)

Example:

test.dat:

abcde

abde

abxe

ayze

abd

19



python AM test.dat 5 2 test.out

test.out:

abcde abde

abcde abxe

abcde abd

abde abxe

abde ayze

abde abd

abxe ayze

abxe abd

Description: A brute force approach would compute the edit distance between each of
the O(n2) pairs of strings. Instead we introduce the concept of "AM (Alignment/mismatch)
signatures" and use them to generate substrings that are comparable via standard sorting.
Merge steps then yield the close strings.

Given a longer string s1 and a shorter string s2 (where the lengths could be the same),
we perform a number of 'alignment' steps on each string. This generates sets of substrings of
uniform length that have characters removed. Next, we perform a series of 'mismatch' steps,
which generate further sets of substrings (one set for each element in the sets of alignment
substrings). The mismatch substrings encode potential mismatch positions. The final sets
of substrings are comparable, and any exact matches indicate that the associated original
string pairs have edit distance < d.

The AM steps for a given string pair are encoded into a signature, which is a triple.
Given s1 and s2, the signature (ai, a2, m) indicates that we will generate all substrings of
s1 that have al characters missing (call that set A1) and all substrings of s2 that have a2
characters missing (A2). Note that each substring s E A1 has length 1811 — al, and each
substring s E A2 has length 1821 — a2. Below, we will describe an algorithm to generate
signatures. Any signature produced by our algorithm will ensure that

1811 — al =1s21 — a2

Now, for each substring s E A1, we generate all substrings missing m characters. How-
ever, we append to each substring an encoding of the character positions that were dropped.
Call the resulting sets Alm and A2m. For example, suppose that string s1 = abcde E S,
d = 3, al = 1, and that m = 2. The alignment step dropping e will yield the substring
abcd E A1. We insert into Alm the ((I'd)') substrings:m 

{ ab23, ac13, ad12, bc03, bd02, cdOl}
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Suppose that the original string s1 was abcde, and was the p'th input string. We associate
the index of the original string to each element of Alm, yielding:

{(ab23, p), (ac13, p), (ad12, p), (bc03, p), (bd02, p), (cd01, p)}

Once Alm and A2m have been constructed, they are each sorted individually. A final
merge step finds, with respect to signature (ai, a2, m), all pairs of original strings in which
the edit distance can be characterized by al missing characters in s1, a2 missing characters
in s2, and at most m mismatches in the aligned substrings.

If we explore the full set of possible signatures, we encounter all pairs of strings that have
edit distance at most d. The algorithm for computing this set of signatures follows.

Let p be the difference between the lengths of two strings s1 and s2 (wlog, s1 is longer),
and let d be the maximum allowable edit distance. Note that p < d.

Suppose that to align s1 and s2, i.e., to remove characters in order to produce substrings
of equivalent length) we remove al characters from s1 and as characters from s2. Note that

1 al — ad = p.

The set of signatures Tp is all triples (ai , as, m) such that al, as, and m are integers and

al +as +m= d

As an initialization step, we compute Tp for all 0 < p < d. Next, we put all input strings into
buckets by their string length and compute, for each string length 1, where min_length(S) <=
l <= max_length(S), a set of 'responsibilities.' These are the numbers of dropped characters
required by the full set of signatures to obtain alignment substrings, subject to boundary
constraints (i.e., 1 is long enough). Specifically, the bucket of length-1 strings is considered
responsible for generating all alignment substrings required by the signatures. Note that
this computation is embarrassingly parallel (though our code at the time of this writing
implements a serial version of the algorithm).

Once We have computed all alignment substrings for each bucket, we loop through each
length 1 and compute the mismatch substrings from the alignment substrings, once more
appealing to the signatures to know the numbers of mismatches permitted.

For each pair (1,1), (1,1+1), ..., (1,1+d), we construct a sorting problem. The sets of
mismatch substrings (along with the index associating them back to original strings) are
sorted, then the two sorted lists are merged. Matching substrings indicate pairs of original
strings that have edit distance < d.

TODO: plot showing asymptotic performance vs. brute force
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Chapter 4

Computing the inherent difficulty of
entity resolution instances

Our benchmarking process features the quantification of solution quality. Only with a careful
accounting of this quality can we understand tradeoffs between cost (algorithm runtime
complexity) and benefit (usefulness of solution). Our assessment of solution quality breaks
down into the familiar notions of recall and imprecision, but in a non-traditional way: we
assess this quality per-entity, even when the problem size is in the millions of entities and
events.

4.1 Recall

In [11], Bhattacharya and Getoor propose a notion of recall given entity Ez E P. Their recall
is parameterized by level, which enables neighbors and neighbors-of-neighbors of Ei in its
cooccurrence structure H to influence E2. The recall of Ez can be interpreted as the degree
to which problem structure (in terms of both attribute similarity and relational structure)
helps identify and group together its set of references. An entity with high recall should be
easy to resolve, while one with low recall is inherently difficult to resolve.

Bhattacharya and Getoor's recall is a function with three components: an attribute
component, a relationship component, and a neighbor component. These components are
computed by counting "identifyine attributes and relationships, which are constructs that
quantify the help an ER algorithm will get, respectively, from the attributes and relationships
of an entity. These definitions are parameterized by a closeness E. In this note, we measure
closeness in terms of the simple edit distance metric defined in Section 2.2 (smaller e means
greater similarity).

Of the three components of recall, two are fundamental:

• attribute identification probability a I (Ei, 6): the probability that the reference
names of a pair of references chosen randomly from Ei (the set of references of entity
i) are &similar to each other.

• identifying relationship probability ri(Ei,e): the probability a pair of events

23



3 1 1

Figure 4.1. Bhattacharya/Getoor's concept of identify-
ing relationship probability. A pair of events is blue if two
or more entities participate in both events. The identifying
relationship probability of an entity is the fraction its neigh-
boring event pairs colored blue.

, hk) chosen randomly from H (Ei) is an identifying relationship, i.e., that there
exists an entity Ex Ei such that hk E H(Ex) and hk E H(Ex).

Figure 4.1 illustrates the concept of identifying relationship probability. For example,
H (E2) = {h1, h2, h3}. Each pair of these events is represented as a vertex, and all such
vertices are laid out in the top row of the figure. Vertices on the bottom row represent
entities, and an edge between rows indicates participation by the entity in both events of the
pair. We note that any top-row vertex with degree greater than one indicates an identifying
relationship. In the figure, such vertices are colored blue. The identifying relationship
probability of an entity (a bottom-row vertex) is the proportion of its neighborhood colored
blue.

4.2 Efficiently computing recall

We must perform three computations per-entity to compute recall:

4.2.1 Computing identifying attribute probabilities

In small ER instances, it is acceptable to compute these probabilities by brute force. Given
an entity E , simply test all pairs of attributes for closeness, and report the fraction of pairs
that are close. However, we must handle large datasets in our benchmarking work. In As
part of our LDRD project, we introduced an algorithm that will find all close pairs of a set
of n strings in time 0 (n log n + x), where x is the global number of close pairs. We use this
algorithm to compute identifying attribute probabilities.
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The all-pairs close strings problem can also be approached using inexact clustering meth-
ods. For example, the open-source Python code NMSlib [?] could be used. However, we
compute the solution exactly.

4.2.2 Computing identifying relationship probabilities

Algorithm 1 Identifying relationship probabilities

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

procedure RIPROBS(E,H, A, rr)
> E : the set of entities
> H : the set of events
> A : the largest event to consider (e.g. 0(1000) references
> rI : result: identifying relationship probabilities.

T = { a threadsafe key-value store
> In Parallel:
for (hi, hk) E H(Ei) x H(Ei) Vi :111(Ei)1

if (hi, hk) .0T then
T(hi, hk) = i

else
if x =T(hj,hk) E f0,n — 1} then

rI[x]= rI[x] + 1
rI[i] = rI[i] + 1
T(hj,hk)= n

else
rI[i] = rI[i] + 1

> In Parallel:
for Ei E E do

rI[i] =

< A do
> degree((h3,hk) is changing from 0 to 1

> we remember Entity i

> degree((hi,hk) is changing from 1 to 2
> give remembered Entity x credit

> indicate that we no longer remember

> convert from counts to probabilities

We could explicitly create the graph illustrated in Figure 4.1 and run a simple graph
algorithm to compute identifying relationship probabilities for all entities. However, this
would require two passes through the entire dataset: one to build the graph and one to read
off the identifying relationship probabilities. Instead, we introduce Algorithm 1, a parallel
algorithm that makes only one pass through the data.

We maintain a threadsafe key-value store mapping event pairs (h3,hk) to counts: the
number of entities in that event pair. We parallelize over all pairs of events within any single
entity. We accept an implausibility parameter A and exlude any entity in more than A
events. For example, if a dataset owner reasons that no entity is likely to be in more than
1000 events, A is set accordingly.

With these parameters, our runs in time 0(n02), and in practice is efficient enough to
process the entire IMDB dataset (containing more than three million entities) on a modern
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workstation with a terabyte of RAM. Our implementation uses the C++ MultiThreaded
Graph Library (MTGL) [9] and its Manhattan loop collapse feature to handle the main
loop.

4.2.3 Computing neighborhood information

Nimoy Kelley

Shatner

N(Shatner) = {Nimoy, K elley}

Figure 4.2. Blue vertices represent the set N(Ei) when
Ei is a notional version of the actor William Shatner with
81 appearances (79 episodes of the original Star Trek and
exactly two others).

Bhattacharya and Getoor [11] define the concept of an entity neighbor of Entity Ei to be
one of a small, select set of other entities with which Ei co-occurs frequently. They denote
Ei's set of entity neighbors as N(E„). Note that this is not necessarily the entire set of Ei's
neighbors in the co-occurrence structure.

For example, consider Figure 4.2. We depict a notional version of the actor William
Shatner in a small actor/movie network. Suppose that all 79 episodes of the original Star
Trek series are in the network, but it is very sparse otherwise. The only two non-Star Trek
appearances Shatner makes in this network are two-person dramas, one with X and one with
Y. We might define N(Ez) to be Shatner's two Star Trek co-stars.

Bhattacharya and Getoor [11] also use the notation pi(j) to denote the probability that
a randomly-selected co-occurence from H(Ei) contains a given E3 E N(Ei). Supposing that
Nimoy is the jth element of N(Ei) in Figure 4.2, then p= 89.

For our proposed benchmarks, we compute level-1 recall, which [11] defines to be:

IN(E01
R(Ei) = cti(Z) + (1 — cii(Z)) x rI(Ei) x E pijaz(j)

i=1

We interpret this expression as follows. If the identifying attribute probability ai(Ei) is
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Figure 4.3. Attribute ambiguity

near 1.0, then the recall for Ei is at least that high. In addition, if the identifying relationship
probability ri(Ei) is positve, recall is increased still further.

The level-k recall Rk(Ei) is similar, except that the last term involves products of
piiRk-1(Ei). We do not deal with that complication here; neighbors inform R(Ei) through
their identifying attribute probabilities. Thus, in our computations, neighbor influence is
limited to the identifying attribute probabilities of the entity neighbors of

4.3 Imprecision

In [11], Bhattacharya and Getoor propose a notion of imprecision to assess the false positive
performance of ER algorithms. Their imprecision is to be computed for all pairs of entities
(or a sampling of all pairs). We wish our benchmarking process to be computable without
sampling, so we have revised these definitions.

As in [11], the spirit of our definitions is to quantify the likelihood that the data will
cause ER algortithms to go wrong by grouping together references to different entities.

4.3.1 Computing attribute ambiguity

We first define a per-entity notion of attribute ambiguity:

• ambiguous attribute probability aA(Ei, e): the probability that a pair of references
{ri,rk} chosen randomly from all e-similar pairs involving at least one reference to Ei
has E(ri)= Ei and E(rk)=

For example, consider Figure 4.3. Entity E2 goes by the name "Wi. Smith" three times
and by the name "W. Smith" once. There are 14 pairs of e-close references involving at least
one reference to E2 . Among those, only six pairs refer entirely to that entity. This is a case
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of significant ambiguity, as the "W. Smith" references to E1 and E3 will complicate the job
of any ER algorithm.

Given a small e such as edit distance d = 2, we can compute aA(E) for all E in time
O(n log n + x) using our string n is the number of references in the dataset and x is the
number of c-close pairs of strings in the dataset.

4.3.2 Computing relational ambiguity

In [11], Bhattacharya and Getoor propose a notion of relational ambiguity that quantifies the
effect of ambiguous relationships causing relational ER algorithms to go wrong by grouping
together references to different entities. Their notion is intuitive, but requires O(n4) compu-
tation. The idea is to consider, for each pair of entities, all pairs of relationships that might
have this effect.

We seek a version of this relational ambiguity that is efficient to compute. At the time
of this writing, we have not found one. Therefore, in order to obtain a practical measure of
imprecision, we current limit ourselves to attribute ambiguity.
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Chapter 5

Evaluating entity resolution
algorithms

5.1 Actual Recall and Precision

Sections 4.1, 4.2, and 4.3 concerned evaluating a given dataset and ground truth to assess
the inherent difficulty of obtaining good ER solutions. Even if most of the entities have
strong identifying attribute and relation probabilities and not much attribute ambiguity, a
small subset might be inherently difficult to resolve. The techniques of Sections 4.1 and 4.3
are designed to help us find these difficult entities.

Suppose that we are now given a grouping P of references into entities, as found by some
ER algorithm. We wish to assess the quality of this grouping. Thanks to the computations
described in Section 4.1, we have an assessment, for every entity E, of the inherent difficulty
(at least in terms of recall) of grouping together the references of E.

We need a per-entity notion of "actuar recall and imprecision of partitioning P. We
define this below, along with a suggested method of comparing the inherent and actual
recall and imprecision. In the traditional lingo of classification algorithms, relevant items
are those pairs of references associated with a given entity in the ground truth solution, while
selected items are pairs of references grouped together by an ER algorithm. The traditional
definition of recall is the proportion of relevant items that are selected, while that of precision
is the number of selected items that are relevant.

For our per-entity actual precision, we adapt the definition of selected items for our
purposes. A pair of references (ri, rk) is selected for entity Ei iff either r3 or rk is a reference
to E2. Figure 5.1 illustrates these concepts.

• actual recall itzi (E): the proportion of pairs of references to entity E that are grouped
together by the partitioning A (an algorithm solution).

• actual precision PA (E): the proportion of items selected for E (i.e. (ri, rk) such that
at least one of the pair refers to entity E) that are relevant (i.e., both ri and rk refer
to E).
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GroundTruth
E1

1
2
3
4
5

Relevant items for E1

2 1,3 1,4 1
3 2,4 2,5
3,4 3,5

4,5

Algorithm Solution
A B

1
2 5
3 9
7 10
8

Selekted Urns Selected Items for E1

1,7 1,8 E 4,9 4,10
2,7v,7 3,8

2,8 5,9 5,10
9,10

7,8

Actual recall: ME1) = 4/10
Actual Precision: P(E1) = 4/14

Figure 5.1. Examples illustrating the definitions of actual
recall and actual precision

5.2 Benchmark evalution: comparing inherent and ac-

tual recall and precision

1.0

0.8

- 0.6

To
.g; 0.4

0.2

0 0

94% of data lives at (1.0,1.0)

200

0.0 0.2 0.4 0.6 0.8 1.0
implicit Recall

175

150

- 125

- 100

- 75

50

I- 25

Figure 5.2. Evaluating the performance of an ER algo-
rithm. Note that 94% of the problem is trivial, and our
method illustrates algorithm performance on the non-trivial
portion of the problem.

We propose to evaluate the effectiveness of ER algorithms via plots and statistics com-
paring inherent to actual recall and precision. For example, we construct an ER dataset
from the IMDB database as follows:

• Entities are actors/actresses

• Relationships are movie casts of references (strings)

• Ground truth is available: the set of references for one person

• Algorithm input: the set of movie casts
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• Algorithm output: proposed entities (groups of references)

There are roughly three million actors/actresses (entities) and a similar number of movies
or shows (events). Let us evaluate the performance of a simple ER algorithm that ignores
events and simply sorts all references lexicographically, then proposes entities by breaking
the sorted list into partitions. A partition break occurs between the ith and (i + 1)st strings
when their edit distance exceeds some small constant d (d = 2 in our example).

Figure 5.2 shows the recall results of this simple algorithm on the ER problem we derived
from the IMDB dataset. The first thing to note is that 94% of all entities have inherent recall
and precision of 1.0. Therefore, all of these entities should be easily identifiable by an ER
algorithm. Figure 5.2 confirms that even this trivial algorithm succeeds in grouping the
references of these entities with no false positives. A global measure (e.g. global confusion
matrix, F-measure, etc.) without per-entity information would indicate at least 94% success,
but this would be quite misleading.

More than 100,000 of the three million entities have some inherent difficulty. This is
the hard part of the problem, and here is where we need to evaluate ER algorithm quality.
Figure 5.2 shows at per-entity granularity how well the algorithm does in resolving each set
of references. Intuitively, a good algorithm should produce actual recall as good or better
than inherent recall. This would show up as a heat map with most of its mass at or above
the diagonal y = x. We can see that this performance is not achieved in this case because a
significant amount of mass is located below this line.

The data from this plot could be compiled into a single number such as a normalized
per-entity loss in recall. However, we defer such a definition for now in favor of the plot.
A superior algorithm would yield a plot with data much more aligned to y = x. Users of
the benchmark would then evaluate the tradeoff between any extra running time and the
resulting benefit in entity resolution for the hardest part of the problem.

5.3 Status of evaluating actual vs. inherent precision

Unfortunately, at the time of this writing our ideas regarding actual vs. inherent precision
do not yield the intuitive plots that we see when comparing recalls. This will need to be
addressed in order to enable benchmark users to assess the effects of false positives in the
hardest parts of input problems.
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Chapter 6

Probabilistic Soft Logic (PSL)

Probabilistic Soft Logic (PSL) is a statistical-relational learning (SRL) framework for defining
hinge-loss Markov random fields (HL-MRFs), a class of undirected probabilistic graphical
models that supports rich modeling of relational data. A PSL model consists of weighted
logical clauses that encode statistical dependencies and structural constraints. PSL supports
efficient maximum a posteriori (MAP) inference. The ability to perform fast, collective
inference makes it a strong tool for solving ER problems.

6.1 Extracting a sample from IMDB for PSL

The entire IMDB dataset contains 23,794,202 references, 2,562,686 movies or events, and
3,255,621 actor/actresses or entities. Because of the development and time constraints of
working with such a large dataset, we extract a smaller problem of under 1,000 references.

The relational nature of the datasets makes sampling a subproblem increasingly difficult.
A naive sampling approach such as taking the first 1,000 references in the IMDB database
may result in getting references that are disjoint. For example, if we sample an American
actor from the 1940's and a Korean actor from 2010 then they will likely have little to no
relationships between them. Thereby destroying the relational nature of the dataset.

Therefore, we begin our sampling by searching for an entity with only a couple aliases
and created the problem around that entity. Somewhat arbitrarily, we chose actor "James
A. Baffico" by the small number of aliases he has and movie appearances. He has two aliases
in the IMDB database of "Jim Baffico" and "James Baffico" . In the first alias, he goes by
a well-known nickname for "James" and in the second alias, his middle initial is left out.
Next, we extract the movies that "Baffico" is in, which is 15 titles. From those 15 titles, we
pull the entire cast of all 15. After pulling in this information surrounding "Baffico", the
problem contains 621 references, 15 movies or events, and 540 actors/actresses or entities.
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6.2 Formulating entity resolution problems with PSL

The earliest entity resolution research focused on developing specialized similarity measures
for local features such as strings and attributes [27]. More recent work in entity resolu-
tion has focused on using relationships between references to generate relational features.
These relational features introduce dependencies between co-reference decisions for differ-
ent references, resulting in a collective model that can outperform conventional approaches
[25] [17] [26]. PSL makes it easy to incorporate local and relational information into a single
model.

6.2.1 Local Information

Local features are those that can be computed for a pair of entities (or references) indepen-
dently of the co-reference decisions of other entities. Examples of local features include string
similarity of names, image similarity of photographs, and demographic similarity. One key
characteristic for a local feature is that its value does not depend on the entity resolution
decisions for other pairs of entities.

Here is a PSL rule that uses the local information of name similarity to compare two
references. If the names belonging to two different references are the similar, then there is
evidence that the references refer to the same entity.

HASNAME(Namel, Re f 1) & HASNAME(Name2, Re f 2) & SINHLAR(Namel, N ame2)

—> SAME(Refl, Ref2)

6.2.2 Collective Entity Resolution

The power of PSL comes from its ability to reason collectively, ie solve for multiple, dependent
variables at the same time. A collective rule is one that contains references to multiple
random variables. Bellow are general collective rules used in this model that are often used
for entity resolution.

Transitive equality is a rules that is commonly desired in entity resolution problems:

SAME(Refl, Re f2) & SAME(Ref2, Re f3) —> SAME(Refl, Re f3)

A sparsity rule encodes the intuition that if we find a match for one reference, we are
unlikely to find another match for that entity. This rule works well in an environment where
a reference will typically match at most one other reference.

SAME(Refl, Re f 2) —> !SAME(Re f 1, Re f 3)
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6.2.3 Domain Information

PSL is able to easily encode domain or expert information into a model. Unlike the other
rules, the ones in this section are not general to all entity resolution problems. These rules
are specific to the movie/IMDB domain.

In this rule we can encode the domain knowledge that actors will often appear alongside
the same costars in different movies. For example, a cast can persist through sequels or
actors with good chemistry will get cast together.

INMovIE(Re f 1, M oviel) & INMovIE(C oStar, Moviel)

& INMovIE(Ref2, Movie2) & INMovIE(CoStar, Movie2)

—> S AME(Re f 1, Re f 2)

In the following rule we can encode the information that each actor will only act under
one name in a single movie. Although an actor may take on multiple roles in a movie,
they will not use multiple names for themselves. Therefore if an actor entity matches one
reference from a movie, that actor will not match another reference from that same movie.

INMovIE(Re f 1, M ovie) & INMovIE(Re f 2, Movie)

& SAME(Re f 1, Re f 3)

—> !SAME(Ref2, Re f3)

6.2.4 Negative Prior

Entity resolution is typically a very sparse problem, with a low percentage of reference pairs
resolving to the same entity. Therefore, we will include a negative prior in our model.
Without any additional evidence, we believe that two references should not resolve to the
same entity.

!SAME(Re f 1, Re f 2)

6.2.5 Constraints

PSL also supports hard constraints. Here we can encode symmetry on actor references.

Same(Re f 1, Re f 2) = S ame(Re f 2, Re f 1)

6.3 Optimization of PSL Formulations

One of the main concerns with SRL approaches is scalability. Because the ground networks
produced by an SRL are polynomial in the number of references, running a collective solution
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can be difficult. For example, the transitive equality rule arbitrarily chooses three authors
from the dataset. Therefore, that rule produces (6321) 240 million ground rules. Below are
several several steps that PSL takes to be able to reason at scale.

6.3.1 Blocking

As previously mentioned, the number of potentials in a MRF can quickly grow prohibitively
large. To limit the number of potentials, blocks [22] or canopies [21] can be constructed.
Blocks and canopies use problem specific heuristics to eliminate infeasible groundings. In
PSL, blocking structures can be constructed by treating block definitions as data and in-
cluding them in the rules. In this case, potentials with components outside of the block are
trivial and removed during the grounding phase.

In this problem, we can use heuristics to decide which pairs of references we can imme-
diately throw out. Thus, we removed all candidate pairs that appeared in the same movie
together. The basis for this removal is that an actor/actress would not appear under two
different aliases in the same movie. Without this heuristic, we would have 384,400 pairs;
instead, we have 192,510 pairs.

But putting these candidate reference pairs in the CANDSAME predicate, we can rewrite
our transitive equality rule as follows:

CANDIDATESAME(Ref 1, Re f 2) & CANDIDATESAME(Ref2, Re f 3) & CANDIDATESAME(Refl, Re f 3)

SAME(Refl, Re f 2) & SAME(Ref2, Re f 3)

SAME(Refl,Ref3)

6.3.2 Results

The aforementioned PSL program generates around 130 million ground rules and completes
in 25 minutes. The server that these benchmarks were performed on was a CPU with 24
cores clocked at 2.2 GHz and 380 GB of RAM.

To put these results into context, consider two other SRL frameworks: Tuffy and Fox-
PSL. Tuffy is probably the most commonly used implementation of Markov Logic Networks
(MLNs) [23]. MLNs are similar to HL-MRFs, but are discrete. Running on the same machine
as these experiments, a Tuffy program of 2.5 million ground rules ran in about 100 minutes
[6]. FoxPSL started as a distributed implementation of PSL with some different assumptions
and additional features [19]. PSL and FoxPSL have diverged substantially. FoxPSL ran a
program of 12.5 million ground rules distributed over four machines in about 30 minutes.
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Framework Distributed? Program Size (M) Runtime (min)

Tuffy No 2.5 108
FoxPSL Yes 12.5 33
PSL No 128.8 25

Table 6.1. Performance of two popular SRL frameworks
compared to PSL.
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Chapter 7

Conclusion

Our benchmarking efforts are designed to help organizations with large data ingestion mis-
sions. DOE and its partners have such missions. At the time of this writing we have not
completed a scalable method for assessing false positives, so we do not have conclusive find-
ings regarding simple vs. sophisticated entity resolution algorithms. However, we believe
that efficient ways of computing ambiguous relationship probabilities exist. If this is correct,
then our process could be used by large organizations as follows.

First, they would generate representative samples of their data small enough to be as-
sessed by our methods, but still on the order of millions of entities and relationshps. Next,
they would use our methods to assess the inherent difficulty of their instances. Finally, they
would apply suites of candidate ER algorithms to these datasets and compare the inherent
per-entity difficulty of the problem with algorithm performance. Thus, rather than relying
on static, published results from the literature, participating organizations would make their
decisions based on their own data sources.
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