Entity Resolution In Graphs

Indrajit Bhattacharya, Lise Getoor
Department of Computer Science
University of Maryland
College Park, MD 20742, USA

{indrajit,getoory@cs.umd.edu

ABSTRACT

The goal of entity resolution is to reconcile data references
corresponding to the same real world entity. Here we intro-
duce the problem of entity resolution in graphs, where the
nodes are the references in the data and the hyper-edges rep-
resent the relations that are observed to hold between the
references. The goal then is to reconstruct a ‘cleaned’ entity
graph that captures the relations among the true underly-
ing entities from the reference graph. This is an important
first step in any graph mining process; mining an unresolved
graph will be inefficient and result in inaccurate conclusions.
We also motivate collective entity resolution in graphs where
references sharing hyper-edges are resolved jointly, as op-
posed to independent pair-wise resolution of the references.
We illustrate the problem of graph-based entity resolution in
bibliographic datasets. We discuss several interesting issues
such as multiple entity types, local and global resolution and
different kinds of graph-based evidence. We formulate the
graph-based entity resolution problem as an unsupervised
clustering task, where each cluster represents references that
map to the same entity, and the similarity measure between
two clusters incorporates the similarity of the references at-
tributes and, more interestingly, the similarity between their
relations. We explore two different measures of relational
similarity. One approach, which we call ‘edge detail sim-
ilarity’; explicitly compares the individual edges that each
cluster participates in, but is expensive to compute. A less
computationally intensive alternative is measuring ‘neigh-
borhood similarity’, which only compares the multi-set of
neighboring clusters for each cluster. We perform an ex-
tensive empirical evaluation of the two relational similarity
measures for author resolution using co-author relations in
two real bibliographic datasets. We show that both simi-
larity measures improve performance over unsupervised al-
gorithms that consider only reference attributes. We also
describe an efficient implementation and show that these
algorithms scale gracefully with increasing size of the data.

1. INTRODUCTION

In many applications, there are a variety of ways of re-
ferring to the same underlying real-world entity. For exam-
ple, “J. Doe”, “Jonathan Doe” and “Jon Doe” may all refer
to the same person. In addition, entity references may be
linked or grouped together. For example “Jonathan Doe”
may be married to “Jeanette Doe” and may have depen-
dents“James Doe”, “Jason Doe” and “Jacqueline Doe” and
“Jon Doe” may be married to “Jean Doe” and “J. Doe” may
have dependents “Jim Doe”, “Jason Doe” and “Jackie Doe”.
Given such data, we can build a graph from the entity ref-
erences, where the nodes are the entity references and edges
(or often hyper-edges) in the graph indicate links among the
references.

However, the problem is that for any real-world entity,
there may well be more than one node in the graph that
refers to that entity. In the example above, we may have
three nodes all referring to the individual “Jonathan Doe”,
two nodes referring to “Jeanette Doe”, two nodes referring
to each of “James Doe”, “Jason Doe” and “Jacqueline Doe”.
Further, because the edges are defined over entity references,
rather than entities themselves, the graph does not accu-
rately reflect the relationships between entities. For exam-
ple, until we realize that “Jon Doe” refers to the same person
as “Jonathan Doe”, we may not think that “Jon Doe” has
any children, and until we realize that “J. Doe” refers to the
same person as “Jonathan Doe”, we will not realize that he
is married.

Thus an important first step in any graph mining algo-
rithm is transforming such a reference graph, where nodes
are entity references and edges are among entity references,
into an entity graph, where nodes are the entities them-
selves and edges are among entities. Given a collection of
references to entities, we would like to a) determine the col-
lection of ‘true’ underlying entities b) correctly map the en-
tity references in the collection to these entities and c) cor-
rectly map the entity reference relationships (edges in the
reference graph) to entity relationships (edges in the entity
graph).

This problem comes up in many guises throughout com-
puter science. Examples include computer vision, where we
need to figure out when regions in two different images refer
to the same underlying object (the correspondence prob-
lem); natural language processing when we would like to
determine which noun phrases refer to the same underlying
entity (co-reference resolution); and databases, where, when
merging two databases or cleaning a database, we would like
to determine when two tuple records are referring to the

same real world object (deduplication and/or record link-
age).

Why do these ambiguities in entity references occur? Of-
ten times data may have data entry errors, such as typo-
graphical errors. Or multiple representations are possible,
such as abbreviations, alternate representations, and so on.
Or in a database, we may have different keys — one per-
son database may use social security numbers while another
uses name and address. Regardless, an exact comparison
does not suffice for resolving entity references in such cases.

In data cleaning, deduplication [18, 27] is important for
both accurate analysis, for example determining the number
of customers, and for cost-effectiveness, for example remov-
ing duplicates from mailing lists. In information integration,
determining approximate joins [9] is important for consoli-
dating information from multiple sources; most often there
will not be a unique key that can be used to join tables in
distributed databases, and we must infer when two records
from different databases, possibly with different structures,
refer to the same entity.

Traditional approaches to entity resolution and dedupli-
cation are based on approximate string matching criteria.
These work well for correcting typographical errors and other
types of noisy references, but do not make use of domain
knowledge, such as common abbreviations, synonyms or nick-
names, and do not learn mappings between values. More
sophisticated approaches can make use of domain specific
attribute similarity functions and mapping functions, and
consider the reference not just as a string, but as a more
structured object, such as a person entity which has first
name, middle name, last name, address, and so on.

More recent approaches make use of attribute similar-
ity measures, but in addition, take graph (i.e. relational)
similarity into account. For example, if we are compar-
ing two census records for ‘Jon Doe’ and ‘Jonathan Doe’,
we should be more likely to match them if they are both
married to ‘Jeannette Doe’ and they both have dependents
‘James Doe’, ‘Jason Doe’ and ‘June Doe’. In other words,
the string similarity of the attributes is taken into account,
but so too is the similarity of the people to whom the person
is related.

The problem becomes even more interesting when we do
not assume that the related entities have already been re-
solved. In fact, when the relations are among entities of
the same type, determining that two references refer to the
same individual may in turn allow us to make additional
inferences. In other words, the resolution process becomes
iterative.

As mentioned earlier, the problem may be viewed in terms
of a graph where the nodes represent the entity references
that need to be resolved and the edges correspond to the ob-
served relations among them. We will call this the reference
graph capturing relations among the entity references. Our
census example is shown in Figure 1(a). Before this graph
can be mined for potential patterns or features, it needs to
be ‘cleaned’. Many nodes in this graph are duplicates in
that they refer to the same underlying entity. The task is
to identify which references correspond to the same entity
and then consolidate them to create the entity graph. Fig-
ure 1(b) shows the entity graph after the references in the
reference graph have been resolved. First, note that even
in this simple graph, the entity graph is much smaller than
the reference graph. In addition to the reduction in graph

size that comes with resolving references, resolution is neces-
sary for discovering the true patterns in the entity graph as
well. Reference graphs are often collections of disconnected
subgraphs. Unless they are resolved, the edges involving
the same entity will be dispersed over its many references.
Models built from such a graph will be inaccurate. In the
example, the connections from the “Jeanette Doe” entity to
the “Jacqueline Doe” entity can only be seen in the resolved
entity graph.

Graph-based approaches for entity resolution take the edges
into account as well for resolving references. In the above
example, we may decide that the two “Jason Doe” references
are the same, based on the fact that there is an exact string
match and their fathers’ have similar last names (though in
general, we wouldn’t want to always do this; certainly two
“J. Doe”s don’t necessary refer to the same person). Having
done this, we may make use of the fact that both “J. Doe”
and “Jonathan Doe” have a common dependent, to merge
them.

Using the relational evidence provided in the graph has
the potential benefit that we may produce more accurate
results than if we use only attribute similarity measures.
In particular, we may be able to decrease the false positive
rate because we can set our string match threshold more
conservatively. But it has the down-side that the process
is more expensive computationally; first, as we go beyond
simply comparing attributes to comparing edges and sub-
graphs, the similarity computation becomes more expensive
and secondly, as we iterate, we must continue to update the
similarities as new resolutions are made.

In the next section, we review related work on entity res-
olution; most of the work that we describe does not take a
graph-based approach. In Section 3, we introduce another
more realistic motivating example for graph-based entity
resolution. In Section 4, we formalize the graph-based entity
resolution problem. in Section 5, we define several similarity
measures appropriate for entity resolution in graphs and in
Section 6 we describe a clustering algorithm which uses them
to perform entity resolution. In Section 7, we describe some
experimental results using the different similarity measures
on two real-world datasets.

2. RELATED WORK

There has been a large body of work on deduplication,
record linkage, and co-reference resolution. Here we review
some of the main work, but the review is not exhaustive.
For a nice summary report, see [40].

2.1 String Similarity

The traditional approach to entity resolution looks at tex-
tual similarity in the descriptions of the entities. For exam-
ple, whether or not two citations refer to the same paper
depends on the similarity measure such as edit distance be-
tween the two citation strings. There has been extensive
work on defining approximate string similarity measures [27,
29, 11, 8] that may be used for unsupervised entity resolu-
tion. The other approach is to use adaptive supervised al-
gorithms that learn string similarity measures from labeled
data [36, 6, 12, 39]. One of the difficulties in using a super-
vised method for resolution is constructing a good training
set that includes a representative collection of positive and
negative examples. One approach which avoids the prob-
lem of training set construction is active learning [37, 39],

Jonathan Doe

James Doe

Jacqueline Doe

(a)

James Doe

Jaqueline Doe

Jonathan Doe

(b)

Figure 1: Example of (a) a reference graph for simple example given in the text and (b) the resolved entity

graph.

where the user is asked to label ambiguous examples by the
learner.

2.2 Theoretical Bounds

Cohen et al. [10] studies the theoretical problem of ‘hard-
ening a soft database’ that has many co-referent entries.
Hardening refers to the task of figuring out which pairs of
soft identifiers refer to the same real world object. Given the
likelihood of being co-referent for each soft pair and a prob-
ability distribution of possible hard databases, hardening
is defined as the optimization problem of finding the most
likely hard model given the soft facts. A cost is associated
with each hard tuple that is added to the database and for
each co-reference decision made. They show that this opti-
mization problem is NP-hard even under strong restrictions.
They propose a greedy agglomerative clustering approach
for an approximate solution. This algorithm’s complexity is
linear in the number of entries in the soft database.

2.3 Efficiency

Given that solving the entity resolution problem optimally
is computationally expensive, an important focus is on effi-
ciency issues in data cleaning, where the goal is to come up
with inexpensive algorithms for finding approximate solu-
tions to the problem. The key mechanisms for doing this
involve computing the matches efficiently and employing
techniques commonly called ‘blocking’ to quickly find po-
tential duplicates and eliminate non-duplicates from con-
sideration [18, 28, 25, 19]. The merge/purge problem was
posed by Hernandez and Stolfo [18] with efficient schemes to
retrieve potential duplicates without resorting to quadratic
complexity. They use a ‘sorted neighborhood method’ where
an appropriate key is chosen for matching. Records are
then sorted or grouped according to that key and poten-
tial matches are identified using a sliding window technique.
However, some keys may be badly distorted so that their
matches cannot be spanned by the window and such cases
will not be retrieved. The solution proposed is a multi-pass
method over different keys and then merging the results us-
ing transitive closure. Monge and Elkan [28] combine the
union find algorithm with a priority queue lookup to find
connected components in an undirected graph. McCallum
et al. [25] propose the use of canopies to first partition the
data into overlapping clusters using a cheap distance met-

ric and then use a more accurate and expensive distance
metric for those data pairs that lie within the same canopy.
Gravano et al. [17] propose a sampling approach to quickly
compute cosine similarity between tuples for fast text-joins
within an SQL framework. Chaudhuri et al. [8] use an error
tolerant index for data warehousing applications for prob-
abilistically looking up a small set of candidate reference
tuples for matching against an incoming tuple. This is con-
sidered ‘probabilistically safe’ since the closest tuples in the
database will be retrieved with high probability. This is also
efficient since only a small number of matches needs to be
performed.

2.4 Probabilistic Modeling

The groundwork for posing entity resolution as a proba-
bilistic classification problem was done by Fellegi and Sunter
[14], who extend the ideas of Newcombe [31] for labeling
pairs of records from two different files to be merged as
“match” or “non-match” on the basis of agreement among
their different fields. They estimate the conditional proba-
bilities of these field agreement values given that the pair is
really from the match class or the non-match class. They
show that if the agreement values for the different fields
are conditionally independent given the class, then these
probabilities can be estimated in an unsupervised fashion.
Winkler [41] builds upon this work for cases when the condi-
tional independence assumption cannot be made and uses a
generalized expectation maximization algorithm for estimat-
ing parameters to separate matches and non-matches. More
recently, hierarchical graphical models have been proposed
[35] that use a separate match variable for each attribute
and an overall match variable that depends on all of these
lower level matches.

2.5 Graph-based Approaches

Approaches that take into account relational structure of
the entities for data integration have been proposed [21, 1,
13, 30, 4, 20]. Ananthakrishna et al. [1] introduce relational
deduplication in data warehouse applications where there
is a dimensional hierarchy over the relations. They aug-
ment the string similarity measure between two tuples with
the similarity between their foreign key relations across the
hierarchy which they call children sets. To avoid compari-
son between all pairs of tuples in a relation, they propose a

grouping strategy that makes uses of the relational hierarchy
as well.

Kalashnikov et al. [21] enhance feature-based similarity
between an ambiguous reference and the many entity choices
for it with relationship analysis between the entities, like af-
filiation and co-authorship. They propose a ‘content attrac-
tion principle’ hypothesizing that an ambiguous reference
will be more strongly connected via such relationships to its
true entity compared to other entity choices for it. They
translate this principle to a set of non-linear equations that
relate all the connection strengths in the entity graph and
those between a reference and its choice entities. A solution
to this nonlinear optimization problem yields the connec-
tion strengths and the strongest connection determines the
entity choice for each reference.

Neville et al. [30] explore different graph partition schemes
for clustering in graphs where the edge weights reflect at-
tribute similarity between nodes. By varying the edge weights
and edge existence probabilities conditioned on the clus-
ter labels, they compare algorithms that consider only at-
tributes and those that combine attribute and relational ev-
idence. They report that spectral techniques for partition-
ing [38] work better that other min-cut and k-clustering ap-
proaches but combining attribute and relational information
proves detrimental for clustering.

The SUBDUE system proposed by Jonyer et al. (see [20]
and Chapter 8 of this book) is a scheme for conceptual
clustering of structured data. In addition to partitioning
the data, conceptual clustering also summarizes the clusters
with conceptual descriptions of objects contained in them.
SUBDUE generates a hierarchical conceptual clustering by
discovering substructres in the data using the minimum de-
scription length principle. This helps to compress the graph
and represent conceptual structure as well.

Doan et al. [13] explore a profiler-based approach for tying
up disjoint attributes for sanity checks using domain knowl-
edge. For example, on merging two objects, (9, John Smith)
and (John Smith, 120k) from two tables with schemas (age,
name) and (name, salary), we get a person whose age is 9
years and whose salary is 120K. This would be deemed an
unlikely match by a profiler.

In earlier work of our own [4], we propose different mea-
sures for relational similarity in graphs and show how this
can be combined with attribute similarity for improved en-
tity resolution in collaboration graphs. We also relate the

problem of graph-based entity resolution to discovering groups

of collaborating entities in graphs [3] and suggest that the
two tasks may be performed jointly so that a better solution
for one of these tasks leads to improvements in the other as
well.

2.6 Probabilistic Inference In Graphs

Probabilistic models that take into account interaction
between different entity resolution decisions have been pro-
posed for named entity recognition in natural language pro-
cessing and for citation matching. McCallum et al. [24]
use conditional random fields for noun coreference and use
clique templates with tied parameters to capture repeated
relational structure. They do not directly model explicit
links among entities.

Li et al. [23] address the problem of disambiguating “en-
tity mentions”, potentially of multiple types, in the context

of unstructured textual documents. They propose a prob-
abilistic generative model that captures a joint distribution
over pairs of entities in terms of co-mentions in documents.
In addition, they include an appearance model that trans-
forms mentions from the original form. They evaluate a
discriminative pairwise classifier for the same task which is
shown to perform well. However, they show both empirically
and theoretically that direct clustering over the pairwise de-
cisions can hurt performance for the mention matching task
when the number of entity clusters is more than two.

Parag et al. [32] use the idea of merging evidence to allow
the flow of reasoning between different pair-wise decisions
over multiple entity types. They are able to achieve sig-
nificant benefit from generalizing the mapping of attribute
matches to multiple references, for example being able to
generalize from one match of the venue “Proc. of SIGMOD”
with “Proceedings of the International Conference on Man-
agement of Data” to other instances.

Pasula et al. [33] propose a generic probabilistic relational
model framework for the citation matching problem. Be-
cause of the intractability of performing exact probabilistic
inference, they propose sampling algorithms for reasoning
over the unknown set of entities. Milch et al. [26] propose
a more general approach to the identity uncertainty prob-
lem. They present a formal generative language for defining
probability distribution over worlds with unknown objects
and identity uncertainty. This can be seen as a probability
distribution over first order model structures with varying
number of objects. They show that the inference problem
is decidable for a large class of these models and propose a
rejection sampling algorithm for estimating probabilities.

In other work of our own [5], we have adapted the La-
tent Dirichlet Allocation model for documents and topics
and extended it to propose a generative group model for
joint entity resolution. Instead of performing a pair-wise
comparison task, we use a latent group variable for each
reference, which is inferred from observed collaborative pat-
terns among references in addition to attribute similarity to
predict the entity label for each reference.

2.7 Tools

A number of frameworks and tools have been developed.
Galhardas et al. [15] propose a framework for declarative
data cleaning by extending SQL with specialized operators
for matching, clustering and merging. The WHIRL system
[9] integrates a logical query language for doing ‘soft’ text
joins in databases with efficient query processing. Potter’s
Wheel [34], Active Atlas [39] and D-Dupe [7] are some other
data cleaning frameworks that involve user interaction.

2.8 Application Domains

Data cleaning and reference disambiguation approaches
have been applied and evaluated in a number of domains.
The earliest application is on medical data [31]. Census data
is an area where detection of duplicates poses a significant
challenge and Winkler [41] has successfully applied his re-
search and other baselines to this domain. A great deal
of work has been done making use of bibliographic data
[19, 22, 25, 37, 33, 4]. Almost without exception, the focus
has been on the matching of citations. Work in coreference
resolution and disambiguating entity mentions in natural
language processing [24, 23] has been applied to text cor-

pora and newswire articles like the TREC corpus. For de-
tailed evaluation of algorithm performance, researchers have
also resorted to synthetic [4, 30] and semi-synthetic [1, 8]
datasets where various features of the data can be varied in
a controlled fashion.

2.9 Evaluation Metrics

As has been pointed out by Sarawagi et al. [37], choice of a
good evaluation metric is an issue for entity resolution tasks.
Mostly, resolution has been evaluated as a pair-wise classifi-
cation problem. Accuracy may not be the best metric to use
since datasets tend to be highly skewed in their distribution
over duplicate and non-duplicate pairs; often less than 1% of
all pairs are duplicates. In such a scenario, a trivial classifier
that labels all pairs as non-duplicates would have 99% accu-
racy. Though accuracy has been used by some researchers
[41, 27, 8, 30], most have used precision over the duplicate
prediction and recall over the entire set of duplicates. Ob-
serve that a classifier that indiscriminately labels all pairs as
non-duplicates will have high precision but zero recall. The
two measures are usually combined into one number by tak-
ing their harmonic mean. This is the so-called F1 measure.
Another option that has been explored is weighted accuracy
but this may report high accuracy values even when preci-
sion is poor. Cohen et al. [11] rank all candidate pairs by
distance and evaluate the ranking. In addition to the max-
imum F1 measure of the ranking, they consider the non-
interpolated average precision and interpolated precision at
specific recall levels.

Some other approaches to this problem have posed it as
a clustering task, where references that correspond to the
same entity are associated with the same cluster. Perfor-
mance measures that evaluate the qualities of the clusters
generated compared to the true clusters are more relevant
in such cases. Monge and Elkan [28] use a notion of cluster
purity for evaluation. Each of the generated clusters may
either match a true cluster, be a subset of a true cluster or
include references from more than one cluster. They treat
the first two cases as pure clusters while the third category of
clusters is deemed impure. They use the number of pure and
impure clusters generated as the evaluation metric. We have
proposed an alternative evaluation metric for this clustering
task where we measure the diversity of each constructed
cluster of entity references in terms of the number of refer-
ences to different real entities that it contains [4] and the
dispersion of each entity over the number of different clus-
ters. We show that dispersion-diversity plots capture the
quality of the clusters directly and can be used to evaluate
the trade-off in a fashion similar to precision-recall curves.

3. MOTIVATING EXAMPLE FOR GRAPH-
BASED ENTITY RESOLUTION

Throughout the rest of this chapter, we will motivate the
problem of entity resolution in graphs using an illustrative
entity resolution task from the bibliographic domain. Con-
sider the problem of trying to construct a database of papers,
authors and citations, from a collection of paper references,
perhaps collected by crawling the web. A well-known exam-
ple of such a system is CiteSeer [16], an autonomous citation
indexing engine. CiteSeer is an important resource for CS
researchers, and makes searching for electronic versions of
papers easier. However as anyone who has used CiteSeer

can attest, there are often multiple references to the same
paper, citations are not always resolved and authors are not
always correctly identified [37, 33].

3.1 An Example

The most commonly studied bibliographic entity resolu-
tion task is resolving paper citations. Consider the following
example from [37]:

e R. Agrawal, R. Srikant. Fast algorithms for mining as-
soctation rules in large databases. In VLDB-94, 1994.

e Rakesh Agrawal and Ramakrishnan Srikant. Fast Al-
gorithms for Mining Association Rules. In Proc. of
the 20th Int’l Conference on Very Large Databases,
Santiago, Chile, September 1994.

These very different strings are citations of the same paper
and clearly string edit distance alone will not work. How-
ever, if we extract the different fields or attributes of the
paper, we may have better luck. Sometimes, paper resolu-
tion can be done based simply on the title. We can use one
of the many existing methods for string matching, perhaps
even tuned to the task of title matching. However, there is
additional relational information, in terms of the venue, the
authors of the paper, and the citations made by the paper;
this additional information may provide further evidence to
the fact that two references are the same.

3.2 Issues in Graph-based Entity Resolution

3.2.1 Multi-Type Entity Resolution

In the above example and in the earlier census example,
we had one type of entity (e.g. papers, people) and we were
trying to resolve them. We refer to this as single-type en-
tity resolution. But note that while the above two citation
strings are used to motivate the paper resolution problem,
it is more interesting to see that they present an illustra-
tive example of multi-type entity resolution, the problem of
resolving entity references when there are different types of
entities to be resolved. The citations refer to papers, but in
addition to the paper title, they contain references to other
types of entities, which themselves may be ambiguous. In
particular, the strings refer to author and venue entities in
addition to paper entities. This brings up a scenario where
multiple types of entities need to be resolved simultaneously.
Assuming that the strings have been correctly parsed to sep-
arate out the different fields — which is a difficult problem
by itself — the first citation string mentions ‘R. Agrawal’
and ‘R. Srikant’ as the authors and ‘VLDB-94, 1994’ as
the venue, while the second has ‘Rakesh Agrawal’ and ‘Ra-
makrishnan Srikant’ as the authors and ‘Proc. of the 20th
Int’l Conference on Very Large Databases, Santiago, Chile,
September 1994’ as the venue reference. Not all of these
pairs are easy to disambiguate individually. While it may
not be too difficult to resolve ‘R. Srikant’ and ‘Ramakrish-
nan Srikant’, ‘Agrawal’ is an extremely common Indian last
name and it is certainly not obvious that ‘R. Agrawal’ refers
to the same author entity as ‘Rakesh Agrawal’. As for the
venue references, unless one knows that for two resolved pa-
pers their venues must be the same, it is very difficult, if
not impossible, to resolve the two venue references without
specialized domain knowledge.

3.2.2 Collective Entity Resolution

For our example, it is not hard to observe the depen-
dence among the different resolution decisions across mul-
tiple classes. We can make the resolution decisions depend
on each other in cases where they are related. When the
resolution decisions are made collectively, they can be much
easier to make. In the citation domain the relevant entities
are papers, authors and venues and the relevant relationships
are write and published in, i.e. Authors write papers, which
get published in venues. An author is a co-author of an-
other author if they write the same paper. We can use these
relations to make one resolution decision lead to another.
We may begin by resolving ‘R. Srikant’ and ‘Ramakrishnan
Srikant’, of which we are most confident. This may lead us
to believe ‘R. Agrawal’ and ‘Rakesh Agrawal’ are the same
author, since they are co-authors with the resolved author
entity ‘Srikant’. Now we can go back to the paper citations
which, in addition to having very similar titles, have now
been determined to be written by the same author entities.
This makes us more confident that the two paper references
map to the same paper entity. Following the same thread,
two identical papers citations must have identical venue ci-
tations. So we may resolve the apparently disparate venue
references.

3.2.3 Graph-based Evidence for Entity Resolution

It is now easier to see how graphs help in representing
these dependencies. The reference graph has nodes for each
entity reference. If the references correspond to multiple
entity classes, then we have multiple node types. Edges
represent the relations that hold between the references. We
may also have more than one type of edge to represent the
different types of relations that exist. The co-author relation
illustrates the need for hyper-edges that may involve more
than two references. Since all observed authors of a paper
are co-authors, this relation is naturally captured as a hyper-
edge that spans all the author references from a paper. Note
that this may alternatively be captured using a quadratic
number of binary edges but this leads to a dramatic increase
in the graph size.

3.2.4 Local Versus Global Resolution

When we resolve two references, such as the resolution
of two venue strings ‘Proc. of the 20th Int’l Conference
on Very Large Databases, Santiago, Chile, September 1994’
and ‘VLDB-94, 1994’, we should probably resolve all other
occurrences of these venue references. In other words, once
we have decided the two references are the same, we should
also resolve any other venue references that exactly match
these two references. We call this type of resolution global
resolution. For certain entity references it makes the most
sense, and can speed things up significantly. However, it
may not always be appropriate. In the case of names for
example, ‘R. Agrawal’ may refer to the ‘Rakesh Agrawal’
entity in one case, while some other instance of 'R. Agrawal’
might refer to a different entity 'Rajeev Agrawal’. We refer
to this latter resolution strategy as local resolution.

3.2.5 Additional Sources of Relational Evidence

Other bibliographic relations can also potentially be used
when available. Papers are cited by other papers and two
papers are co-cited if they are cited by the same paper entity.
If two similar paper references are co-cited by the same pa-

per entity, that may serve as additional evidence that they
are the same. However, graph-based evidence may also be
negative in some cases. For example, two paper references
that are cited by the same paper entity are unlikely to be
duplicates, as are two author references that are co-authors
of the same paper entity.

3.3 Author Resolution in Graphs

Within the context of entity resolution in bibliographic
data, we first look at the problem of resolving author refer-
ences in graphs leveraging co-author relationships. Suppose
that we have two different papers, and we are trying to deter-
mine if there are any authors in common between them. We
can do a string similarity match between the author names,
but often references to the same person vary significantly.
The most common difference is the variety of ways in which
the first name and middle name are specified. For an au-
thor entity “Jeffrey David Ullman”, we may see references
“J. D. Ullman”, “Jeff Ullman”, “Ullman, J. D.”, and so on.
For the most part, these types of transformations can be
handled by specialized code that checks for common name
presentation transforms. However, we are still presented
with the dilemma of determining whether a first name or
middle name is the same as some initial; while the case of
matching “J. D. Ullman” and “Jeffrey D. Ullman” seems
quite obvious, for common names such as “J. Smith” or “X.
Wang” the problem is more difficult. Existing systems take
name frequency into account and will give unusual names
higher matching scores. But this still leaves the problem
of determining whether a reference to “J. Smith” refers to
“James Smith” or “Jessica Smith”.

As mentioned before, additional context information can
be used in the form of coauthor relationships. If the coau-
thors of “J. Smith” for these two papers are the same, then
we should take this into account, and give the two refer-
ences a higher matching score. But in order to do this we
must have already determined that the other two author
references refer to the same individual; thus it becomes a
chicken and egg problem.

Counsider the example shown in Figure 2(a), where we have
four paper references, each with a title and author refer-
ences. In order to resolve these references, we may begin
by examining the author references to see which ones we
consider to be the same. In the first step, we might decide
that all of the Aho references refer to the same author entity
because Aho is an unusual last name. This corresponds to
resolving all of the Aho references into a single entity. How-
ever, suppose based on name information alone, we are not
quite sure that the Ullman references are to the same au-
thor, and we are certainly not sure about the Johnson refer-
ences, since Johnson is a very common name. But, deciding
that the Aho references correspond to the same entity gives
us additional information for the Ullman references. We
know that the references share a common co-author. Now
with higher confidence we can consolidate the Ullman refer-
ences. Based solely on the Aho entity consolidation, we do
not have enough evidence to consolidate the Johnson refer-
ences. However, after making the Ullman consolidations, we
may decide that having two co-authors in common is enough
evidence to tip the balance, and that all the Johnson refer-
ences correspond to the same Johnson entity. Figure 2(b)
shows the final result after all the author references have
been correctly resolved, where references to the same entity

ﬁ’l: Code generation for machin%
with multi-register operations

Alfred V Aho Qeffrey D Ulimal

- /

/PS: Optimal partial-match \
retrieval when fields are sub-expressions
independently specified

@ Alfred V Aho Jeffrey D Ullman
8)

(2)

P2: The universality of
database languages

P4: Code generation for
expressions with common

(F P2: The universality of
database languages

@@ &
o

P1: Code generation for machines
with multi-register operations

Alfred V Aho

P3: Optimal partial-match
retrieval when fields are
independently specified

@@ &>

ﬁ: Code generation for
expressions with common
sub-expressions

Alfred V Aho Jeffrey D Ullman
_

(b)

Figure 2: (a) An example author/paper resolution problem. Each box represents a paper reference (in this
case unique) and each oval represents an author reference. (b) The resolved entities corresponding to the

example author/paper resolution problem.

Alfred V Aho Jeffrey D Ullman

Alfred V Aho

(a)

Jeffrey D Ullman

N4
Alfred V Aho -
Y

(b)

Figure 3: (a) The reference graph and (b) the entity graph for the author resolution example.

are shaded accordingly.

As illustrated in the above example, the problem of graph-
based author resolution is likely to be an iterative process:
as we identify co-author/collaborator relationships among
author entities, this will allow us to identify additional po-
tential co-references. We can continue in this fashion until
all of the entities have been resolved. Figure 3(a) shows the
reference graph for this example and Figure 3(b) shows the
resulting entity graph.

4. GRAPH-BASED ENTITY RESOLUTION:
PROBLEM FORMULATION

In the graph-based entity resolution problem, we have a
reference graph — a graph over some collection of references
to entities — and from this graph we would like to identify
the (unique, minimal) collection of individuals or entities
to which they should be mapped, and the induced entity
graph. In other words, we would like to find a many-to-
one mapping from references to entities. Figure 3(a) shows
the reference graph for the author resolution example and
Figure 3(b) shows the resulting entity graph.

In what follows, lower case characters e and r denote en-
tities and references and qualified upper case letters like e. A

and r.E denote attributes of the variables, and we will use
e.a and r.e to denote particular values of variables (short-
hand for e.A = a). In the single entity resolution problem,
we are given a set of references R = {r;}, where each refer-
ence r has its attributes r.A. The references correspond to
entities £ = {e;} so that each reference r has a hidden entity
label r.E. Each entity e also has its own attributes e.A, but
the entities are not directly observed. What we observe are
the attributes r.A of individual references. We can imag-
ine r.A to be generated by some distortion process from the
attributes of the corresponding entity r.E. Obviously, the
entity labels of the references are not observed. The prob-
lem is to recover the hidden set of entities £ = {e;} and the
entity labels 7. E of individual references given the observed
attributes of the references.

We use relational information among references to help
us in collective entity resolution. We will assume that the
references are observed, not individually, but as members of
hyper-edges. We are given a set of hyper-edges # = {h;}
and the membership of a reference in a hyper-edge is cap-
tured by its hyper-edge label r.H. In general, it is possible
for a reference to belong to multiple hyper-edges and all of
our approaches can be extended to handle this. However

in this chapter, we will consider a simpler scenario where
each reference occurs in a single hyper-edge. If reference r
occurs in hyper-edge h, then ».H = h. Note that unlike
the entity labels, we know the association of hyper-edges
and references. The hyper-edges can help us make better
predictions if we assume that they are indicative of associa-
tive patterns among the entities. In other words, the entity
labels of references that occur in the same hyper-edge are
related to each other. Now the resolution decisions are not
independent. Instead of finding the entity labels for each
reference individually, our task is to predict the entity la-
bels of the references collectively, where the entity label r.E
of any reference r is directly influenced by the choice of en-
tity label r'.E for another reference r’ if they are associated
with the same hyper-edge, i.e., ».H =r'.H.

To make this more concrete, consider our earlier example.
Figure 4(a) shows the references and hyper-edges. Each ob-
served author name corresponds to a reference, so there are
ten references 1 through r10. In this case, the attributes are
the names themselves, so for example, r1.4 is “Alfred Aho”,
re.A is “S.C. Johnson” and rs.A is “Jeffrey Ullman”. The
set of true entities £ is {e1, e2,e3} as shown in Figure 4(b),
where e1.A = “Alfred V. Aho”, e2.A = “S.C. Johnson” and
e3.A = “Jeffrey D. Ullman”. Clearly, r1, r4, 76 and rg cor-
respond to “Alfred V. Aho”, so that r1.E = r4.E = r6.E =
rg.E = ey. Similarly, r3.E = r5.E = r7.E = r19.E = e» and
ro.E = r9.E = e3. There are also the hyper-edges, which
correspond to each set of authors for a paper. There are
four papers, so that H = {h1, h2, hs,ha}. The references
r1 through r3 are associated with hyper-edge h1, since they
are the observed author references in the first paper. This is
represented as r1.H = re.H = r3.H = hi;. We may similarly
capture the hyper-edge associations of the other references.
The problem here is to figure out from the attributes r.A
and the hyper-edge labels r.h of the references that there
are three distinct entities such that ri,7r4,76 and rs cor-
respond to one entity, r3, 75,77 and rip correspond to the
second and r2 and rg correspond to the third. Here we have
introduced the notation assuming that all references corre-
spond to the same class of entities. It may be extended to
handle multiple entity classes and multiple types of hyper-
edges between references. In the rest of this chapter, we will
use the term edge as a substitute for hyper-edge. It will be
understood that an edge may involve more than two nodes
unless explicitly stated otherwise.

4.1 Entity Resolution as a Clustering Problem

Alternatively, the task of collective entity resolution may
be viewed as a graph-based clustering problem where the
goal is to cluster the references so that those that have iden-
tical entity labels are in the same cluster. One approach to
finding this mapping is to use a greedy agglomerative clus-
tering approach. At any stage of the clustering algorithm,
the set of entity clusters reflect our current beliefs about the
underlying entities. In other words, each constructed en-
tity cluster should correspond to one underlying entity and
all references in that cluster should be to that entity. To
start off, each reference belongs to a separate cluster and
at each step the pair of clusters (or entities) that are most
likely to refer to the same entity are merged. The key to
the success of a clustering algorithm is the similarity mea-
sure that is employed. In graph-based clustering for entity
resolution, we want to use a similarity measure that takes

into account the similarity in the attributes of the refer-
ences in the two clusters as well as the relational similarity.
In addition, the measure should take into account the re-
lated resolution decisions that have been made previously.
Accordingly, similarity measures are extended to consider
both reference attributes and edge-based patterns.

The attribute similarity component of the similarity mea-
sure takes into account the similarity of the attributes r.A
of the references in the two clusters. In the author resolu-
tion case, it measures the similarity between two observed
reference names. In addition, the graph-based similarity
component takes into account the similarity of the relations
that the two entities or clusters participate in. Each cluster
is associated with a set references and through these refer-
ences, the cluster is associated with a set of edges to other
references. But what is it about these other references that
we want to consider? We want to look not at their attributes
but at the resolution decisions that have been taken on them.
Specifically, we want to look at the entity cluster labels of
these references, or which clusters they currently belong to.
To illustrate this using our example from Figure 2, suppose
we have already resolved the ‘Aho’ and ‘Ullman’ references
in clusters c¢1 and c2 respectively and we are looking at the
current similarity of the two ‘Johnson’s which are yet to be
resolved and still belong to separate entity clusters, say csa
having r3 and csp having r9. The two clusters are associated
with one edge each, hi and h4 respectively. We want to fac-
tor into the similarity measure not the names of the other
references in the two edges, but the fact that both of them
are associated with the same resolved entity clusters ¢; and
c2, which is what makes them similar.

An issue that is brought out by the above discussion is
the dynamic nature of the graph-based similarity compo-
nent. Initially, when all references belong to distinct entity
clusters, the two ‘Johnson’ clusters will not be considered
similar enough. But their graph-based similarity goes up in
stages as first the ‘Aho’ references and then the ‘Ullman’
references are resolved. In the following section, we describe
an iterative clustering algorithm that leverages this dynamic
nature of graph-based similarity.

S. SIMILARITY MEASURES FOR ENTITY
RESOLUTION

In this section, we define the similarity measure between
two entity clusters as a weighted combination of the at-
tribute similarity and graph-based similarity between them
and highlight the computational and other algorithmic is-
sues that are involved.

For two entity clusters ¢; and c¢;, their similarity may be
defined as

sim(ci,¢j) = (1 — @) X sitmaer(ci, ¢j) + @ X simgrapn(ci, ¢j)
0<a<l

where simqz¢r () is the similarity of the attributes and simgrqpn ()

is the graph-based similarity between the two entity clusters
and they are linearly combined with weights @ and 1 —a. In
the following two subsections, we discuss the two similarity
components in detail.

5.1 Attribute Similarity

We assume the existence of some basic similarity measure
that takes two reference attributes and returns a value be-

(a)

Figure 4: (a) A more abstract representation of the reference graph for the author resolution example; the
r’s are references and the h’s are hyper-edges. (b) An abstract representation for the entity graph for the
author resolution example; the e’s are entities, the references they correspond to are listed, and the h’s are

hyper-edges.

tween 0 and 1 that indicates the degree of similarity between
them. A higher value indicates greater similarity between
the attributes. We are not making any other assumptions
about the attribute similarity measure. Any measure that
satisfies these assumptions can be used. This is particu-
larly helpful since such similarity measures are often tuned
for specific domains and may be available as library func-
tions. Depending on the domain, it is possible to adapt a
different attribute measure and tie it in with our algorithm
seamlessly.

However, we need simqztr() to define the similarity of at-
tributes between two entity clusters. Each entity cluster is
a collection of references with their own attributes. So we
need to use the similarity measure that takes two attributes
to define the similarity between two clusters of attributes.
This is similar to finding the aggregate distance between
two clusters given a pairwise distance measure. Many ap-
proaches like single link, average link and complete link have
been proposed [2] where some aggregation operation is used
to combine the pair-wise distances between the two clusters.
The duplicate relation is typically transitive: if references r;
are r; are duplicates, then all other duplicates of r; will also
be duplicates of r;. So the single link measure that takes
the minimum pair-wise distance (or the maximum pairwise
similarity) between two clusters is the most relevant for our
purposes.

The first issue with a cluster linkage metric is that it is
computationally intensive. The number of attribute similar-
ity computations involved in finding the similarity between
two clusters is quadratic in the average number of refer-
ences in each cluster. So pair-wise comparison is a prob-
lem for larger clusters. Further, as clusters merge and new
references are added to a cluster, similarities need to be re-
computed. This repeated similarity computation adds to
the complexity. There are a number of ways this prob-
lem may be addressed. First, updating the cluster simi-
larities is not computationally challenging when using the
single link metric. They may be incrementally modified
as clusters merge. Specifically, when two clusters ¢; and
c;j are merged to create a new cluster c¢;;, the similarity
to a third cluster ¢, may be updated as simatsr(Cij, cr) =
maz(siMater (Ci, Ck), SiMattr(¢j, cr)). Secondly, when we are
dealing with attributes like names, though a cluster may

contain hundreds of references, there will be very few dis-
tinct names. So for two clusters ¢; and c¢j, computing at-
tribute similarity involves |distinct(c;)| X |distinct(c;| sim-
ilarity computations, rather than |¢;| x |¢;| computations,
where distinct(c) is the number of unique reference attribute
values in cluster ¢. Finally, if we have some way of finding an
‘average’ attribute value for each of the clusters, the problem
is much simpler.

This last point also touches on the issue of the semantics
of the attribute similarity in the case where we are cluster-
ing in order to perform entity resolution. By design, each
cluster corresponds to one resolved entity e. This entity
may have been referred to using many different attributes,
as is evident from the attributes r.A of the references be-
longing to that cluster. But if we assume this attribute to
be single valued, then there really is one true value of the
entity attribute e.A. For instance, the reference attributes
may have been ‘A. Aho’, ‘Alfred V. Aho’, ‘A.V Aho’ and
so on, but the true entity attribute is ‘Alfred V. Aho’. We
may define this representative cluster attribute as the most
likely one given the reference attributes in that cluster. So,
when computing the attribute similarity of the two entity
clusters, it makes more sense to look at the similarity of the
two representative attributes for the clusters, rather than
considering all of the attributes in each cluster. This makes
a difference in situations where we have detected differences
which may be due to typographical errors in reference at-
tributes within an entity cluster but have still been able to
resolve them correctly. When computing similarity values
for this entity cluster we possibly do not want these noisy
reference attributes to play a role.

5.2 Graph-based Similarity

Next, we address the graph-based similarity measure be-
tween two entity clusters considering the entities that they
are related to via the observed edges. There are many pos-
sible ways to define this similarity. We explore some possi-
bilities here and focus on relevant issues.

5.2.1 Edge Detail Similarity

Just as in the case of the attributes, each entity clus-
ter is associated with a set of edges to which the refer-
ences contained in it belong. Recall that each reference
r is associated with an observed hyper-edge r.H. Then

the edge set c.H for an entity cluster ¢ may be defined as
c¢H ={h|r.H =h, r € c}. To ground this in terms of our
example in Figure 4, after we have resolved all the entities
so that cluster c¢; refers to the ‘Aho’ entity, cluster ¢ to the
‘Ullman’ entity and cluster cs to the ‘Johnson’ entity, then
the edge set for the ‘Aho’ cluster is ¢1.H = {h1, h2, hs, ha}
having the edges corresponding to the four papers written
by ‘Aho’. The edge set c2.H for ‘Ullman’ is identical while
that for ‘Johnson’ is c3.H = {h1, ha}.

We define a similarity measure for a pair of edges, so that
given this pair-wise similarity measure, we can again use a
linkage metric like single link to measure the relational sim-
ilarity between two clusters. First we define a pairwise sim-
ilarity measure between two hyper-edges. We have already
noted that what we want to consider for relational similarity
are the cluster labels of the references in each edge, and not
their attributes. So for an edge, we consider the multi-set
of entity labels, one for each reference associated with it.!
We will employ the commonly-used Jaccard similarity mea-
sure over these multi-sets of entity labels. Specifically, let
label(h;) be the set of entity labels for an edge h. Then for
a pair of edges h; and h;, we define their similarity as

[label(hi)) label (h;)]

sim(hi hi) = obet(he) Ulabel(hy)|

Given this pairwise similarity measure for edges, we can use
an aggregation operation like max to calculate the graph-
based similarity between two entity clusters as follows:

81Mgraph (Cis ¢j) = Ma (n;,ny){sim(hi, hj)}
h; € Ci.H,hj € Cj.H

This we will call the edge detail similarity between two clus-
ters since it explicitly considers every edge associated with
each entity cluster. Observe that computing the similarity
between two edges is linear in the average number of refer-
ences in an edge, while computing the edge detail similarity
of two clusters is quadratic in the average number of edges
associated with each cluster. An issue with using max as
the aggregation function is that a high similarity between
a single pair of edges may not always be a strong evidence
for determining duplicates in domains where the edges can
be noisy as well. In the absence of noise however, it is very
likely that two authors with similar names are duplicates if
both are observed to write just one paper with the same set
of collaborating authors. Another advanage of using max,
as compared with other functions like avg, is that it allows
cluster similarities to be updated efficiently when related
clusters merge.

5.2.2 Neighborhood Similarity

Clearly, an issue with edge detail similarity is the compu-
tational complexity. The solutions discussed in the context
of attribute similarity cannot be extended for edges. It is not
trivial to incrementally update edge detail similarity when
clusters merge. Also, the reduction due to repeating entity
patterns in edges is not expected to be as significant as for
attributes.

A second and more pertinent issue is whether the detailed
pair-wise similarity computation for edges is really necessary

!Though in general we can have a multi-set of entity labels
for an edge, all the labels are likely to be distinct when the
edges represent co-authorship relations.

for the task at hand. While it may make sense for some ap-
plications, it may not be necessary to look at the structure
of each edge separately for the task of graph-based entity
resolution. Using a more concrete example, for two author
entities e; and e} to be considered similar, it is not nec-
essary for both of them to co-author a paper with entities
e2, e3 and ey together. Instead, if e; participates in an edge
{e1,e2,e3,e4} and e} participates in three separate edges
{el,e2}, {e1,e3} and {e},eas}, then that also should count
as significant graph-based evidence for their being the same
author entity (if they have similar attributes as well). In
other words, whether or not two entity clusters with sim-
ilar attributes have the same edge structures, if they have
the same neighbor clusters to which they have edges, that is
sufficient graph-based evidence for bibliographic entity res-
olution.

We will now formalize the notion of neighborhood clusters
for an entity cluster. Recall that we have defined label(l) as
the multi-set of entity labels for an edge h and for an entity
cluster ¢, c.H is the set of edges associated with it. Then
we can formally define the neighborhood multi-set ¢.N for ¢
as follows:

c.N = Jlabel(hi)hi € c.H
m

where J,, is the multi-set union operator. Intuitively, we
collapse the edge structure and just look at how many times
¢ has participated in the same edge with another entity clus-
ter. Note that we do not include ¢ itself among its neighbors.
Returning to our example from Figure 2, once the entities
have been resolved and clusters c1, ¢2 and c¢3 correspond to
entities ‘Aho’, ‘Ullman’ and ‘Johnson’ respectively, the la-
bels of the edges for cluster ¢1 are {c1,c2,c3} for h1, {c1,c2}
for hy, {c1,c2} for hs and {c1, c2, cs} for hs. Then the neigh-
borhood multi-set ¢;.V is the collection of all cluster labels
occurring in these four edges: ¢1.N = {c2,¢2, ¢2,¢2,¢3,c3}.
Now, for the graph-based similarity measure between two
entity clusters, we take the Jaccard similarity between their
neighborhood multi-sets.

_ |Ci.NﬂCj.N|

simgrapn(ci, ¢j) = m
;. -

We will call this the neighborhood similarity between the
two entity clusters. Computing and updating neighborhood
similarity is significantly cheaper computationally compared
to the edge detail similarity. It is linear in the average num-
ber of neighbors per entity. Note that the neighborhood of
an entity cluster has a natural interpretation for author en-
tities and collaborator relationships. The neighborhood is
the multi-set of collaborators for an author entity. Also, by
avoiding looking at individual links, neighborhood similarity
is less susceptible to noisy edges than edge detail similarity.

Observe that when all edges are binary, the similarity
measure between two edges becomes boolean, as does the
edge detail similarity between two clusters. Also, the edges
can be mapped directly to the neighborhood set. Accord-
ingly using the edge detail similarity is not appropriate any
more and neighborhood similarity is sufficient.

5.3 Negative Evidence from Graphs

So far, we have considered graph structure as additional
evidence for two author references actually referring to the
same underlying author entity. However, graph-based ev-

idence can be negative as well. A ‘soft’ aspect of nega-
tive evidence is directly captured by the combined similar-
ity measure. Imagine two references with identical names.
If we only consider attributes, their similarity would be very
high. However, if they do not have any similarity in their
edge structures, then we are less inclined to believe that
they correspond to the same entity. This is reflected by the
drop in the their overall similarity when the graph-based
similarity measure is factored in as well.

We may also imagine stronger graph-based constraints for
clustering. In many relational domains, there is the con-
straint that no two references appearing in the same edge
can be duplicates of each other. To take a real bibliographic
example, if a paper is observed to be co-authored by ‘M.
Faloutsos’, ‘P. Faloutsos’ and ‘C. Faloutsos’ then probably
these references correspond to distinct author entities. We
have such constraints for every edge that has more than one
reference. This can be taken into account by the graph-
based similarity measure. The similarity between two clus-
ter pairs is zero if merging them violates any relational con-
straint.

6. GRAPH-BASED CLUSTERING FOR EN-
TITY RESOLUTION

Given the similarity measure for a pair of entity clusters,
we can use a greedy agglomerative clustering algorithm that
finds the closest cluster pair at each step and merges them.
Here we discuss several implementation and performance
issues regarding graph-based clustering algorithms for entity
resolution (GBC-ER).

6.1 Blocking to find Potential Resolution Can-
didates

Initially, each reference belongs to a distinct entity cluster
and the algorithm iteratively looks to find the closest pair
of clusters. Unless the datasets are small, it is impracti-
cal to consider all possible pairs as potential candidates for
merging. Apart from the scaling issue, most pairs checked
by an O(n?) approach will be rejected since usually about
1% of all pairs are true duplicates. Blocking techniques are
usually employed to rule out pairs which are certain to be
non-duplicates. Bucketing algorithms may be used to cre-
ate groups of similar reference attributes and only references
within the same bucket are considered as potential dupli-
cates.

The algorithm inserts all of these potential duplicate pairs
into a priority queue considering their similarities. Then
it iteratively picks the pair with the highest similarity and
merges them. The algorithm terminates when the similarity
for the closest pair falls below a threshold.

6.2 Graph-based Bootstrapping for Entity Clus-

ters

The graph-based clustering algorithm begins with each
reference assigned to a separate entity cluster. So to start
with, the clusters are disconnected and there is no graph-
based evidence to make use of between clusters. As a result,
all initial merges occur based solely on attribute similarity,
but we want to do this in a relatively conservative fashion.
One option is to assign the same initial cluster to any two
references that have attributes v1 and v2, where either v is
identical to w2, or v1 is an initialed form of vs. For exam-

ple, we may merge ‘Alfred Aho’ references with other ‘Alfred
Aho’ references or with ‘A. Aho’ references. However, for do-
mains where last names repeat very frequently, like Chinese,
Japanese or Indian names, this can affect precision quite ad-
versely. For the case of such common last names?, the same
author label can be assigned to pairs only when they have
document co-authors with identical names as well. For ex-
ample, two ‘X. Wang’ references will be merged when they
are co-authors with Y. Li’. (We will also merge the ‘Y. Li’
references.) This should improve bootstrap precision signif-
icantly under the assumption that while it may be common
for different authors to have the same (initialed) name, it is
extremely unlikely that they will collaborate with the same
author, or with two other authors with identical names.

In addition to using a secondary source for determining
common names, a data-driven approach may also be em-
ployed. A [last name, first initial] combination in the data
is ambiguous, if there exist multiple first names with that
initial for the last name. For example, though ‘Zabrinsky’
is not a common last name, ‘K. Zabrinsky’ will be consid-
ered ambiguous if ‘Ken Zabrinsky’ and ‘Karen Zabrinsky’
occur as author references in the data. Ambiguous refer-
ences or references with common last names are not boot-
strapped in the absence of relational evidence in the form of
co-authorships, as described above.

6.3 Finding the Closest Entity Clusters

Once potential duplicate entity clusters have been iden-
tified and clusters have been bootstrapped, the algorithm
iterates over the following steps. At each step, it identifies
the currently closest pair of clusters (c;,c;) from the can-
didate set and merges them to create a new cluster c;;. It
removes from the candidate set all pairs that involve either
¢; or ¢; and inserts relevant pairs for ¢;;. It also updates
the similarity measures for the ‘related’ cluster pairs. All
of these tasks need to be performed efficiently to make the
algorithm scalable.

For efficient extraction of the closest pairs and updating of
the similarities, an indexed max-heap data structure can be
used. In addition to the actual similarity value, each entry in
the max-heap maintains pointers to the two clusters whose
similarity it corresponds to. Also, each cluster ¢; indexes all
the entries in the max-heap that stores similarities between
¢; and some other cluster ¢;. The maximum similarity entry
can be extracted from the heap in O(1) time. For each entry
whose similarity changed because of the merge operation,
the heap can be updated in O(log n) steps, where n is the
number of entries in the heap. The requirement therefore
is to be able to efficiently locate the entries affected by the
merge. First, the set includes all entries that involve ¢; or
¢j. These are easily retrieved by the indexes maintained
by ¢; and ¢; and then one of the entries is replaced by c;;
and similarities are recomputed. The other set of entries
whose similarities are affected are those that are related to
¢; or ¢; as neighbors. These may be retrieved efficiently
as well if each cluster maintains indexes to its neighbors.
For the initial set of clusters, the neighbors are those that
correspond to references in the same edge. As clusters are
merged, the new cluster inherits the neighbors from both of
its parents. It also inherits the heap indexes from its two
parents.

2A list of common last names is available at
http://en.wikipedia.org/wiki/List_of_most_popular_family names

6.4 Evaluation Measures

Most approaches to entity resolution have viewed the prob-
lem as a pairwise classification task. However, the duplicate
relation semantically defines an equivalence partitioning on
the references and our approach is to find clusters of dupli-
cate references. From this perspective, it would be prefer-
able to evaluate the clusters directly instead of an evaluation
of the implied binary duplicate predictions.

Given the author entity label I; € L for each reference in
the evaluation, if the resolution is perfect, then each gen-
erated cluster will exactly correspond to one author entity.
When this is not the case, we may imagine two different
scenarios — either a cluster includes references that have
different entity labels, or it fails to capture all references
that have a particular entity label.

The first measure is defined over generated clusters ¢; € C.
Ideally, each cluster should be homogeneous — all references
in an cluster should have the same entity label. The greater
the number of references to different entities in a cluster, the
worse the quality of the cluster. Rather than naively count-
ing the different entity labels in a cluster, we can measure
the entropy of the distribution over entity labels in a clus-
ter. This we call cluster diversity. As an example, suppose
there are ten references in a generated entity cluster; five
of them correspond to one entity, three to a second entity
and the remaining two to a third entity. Then the probabil-
ity distribution over entity labels for the references in this
cluster is (0.5,0.3,0.2). In general, if this distribution be
(p1,p2,...,pr), then the entropy is defined as >, —pi log p.
Note that the entropy is 0 when all references have the same
real entity label and the label distribution is (1.0). The en-
tropy is highest for a uniform distribution. Also, a uniform
distribution over £ + 1 labels has higher entropy than that
over k labels. The weighted average of the diversity of clus-
ters as considered as the first quality measure, where the
entropy of each cluster is weighted by the number of refer-
ences in it. To be more precise, the combined diversity over
a clustering C is:

Div(C) = Z %div(ci)

c;€C

where N is the total number of references, and div(c;) is the
entropy of the entity label distribution in cluster ¢;.
However, just minimizing the cluster diversity is not enough

since zero diversity can be achieved by assigning each ref-
erence to a distinct cluster. Obviously this is not a good
clustering since references that correspond to the same en-
tity are dispersed over many different clusters. So a second
measure of cluster quality is entity dispersion defined over
each entity label I;. Here for each entity, we consider the
distribution over different cluster labels assigned to the ref-
erences for that entity. As for cluster diversity, the entropy
is measured for the distribution over cluster labels for each
entity. We look at the weighted average of the entity dis-
persions, where the weight of an entity label is the number
of references that have that label:

Disp(C) =Y | %disp(li),
;€L

where disp(l;) is entropy of the cluster label distribution for
the references having entity label [;.
Note that lower values are preferred for dispersion and

diversity. A perfect clustering will have zero cluster diversity
and zero entity dispersion. This is practically not achievable
in most cases and a decrease in one will usually mean an
increase in the other. We can plot the dispersion-diversity
curve for each set of generated clusters. This shows the
value of diversity achieved for any value of dispersion. Also,
we can observe how the dispersion and diversity change as
clusters are merged iteratively.

7. EXPERIMENTAL EVALUATION

To illustrate the power of graph-based entity resolution,
we present evaluations on two citation datasets from differ-
ent research areas and compare an implementation of the
graph-based entity resolution algorithm (GBC-ER) with
others based solely on attributes.

The first of the citation datasets is the CiteSeer dataset
containing citations to papers from four different areas in
machine learning, originally created by Giles et al.[16]. This
has 2,892 references to 1,165 authors, contained in 1,504 doc-
uments. The second dataset is significantly larger; arXiv
(HEP) contains papers from high energy physics used in
KDD Cup 2003%. This has 58,515 references to 9,200 au-
thors, contained in 29,555 papers. The authors for both
datasets have been hand-labeled.*

To evaluate the algorithms, we measure the performance
of the algorithms for detecting duplicates in terms of the
traditional precision, recall and F1 on pairwise duplicate
decisions in addition to our proposed dispersion-diversity
measure for clusters. It is practically infeasible to consider
all pairs, particularly for HEP, so a ‘blocking’ approach is
employed to extract the potential duplicates. This approach
retains ~99% of the true duplicates for both datasets. The
number of potential duplicate pairs of author references after
blocking is 13,667 for CiteSeer and 1,534,661 for HEP.

As our baseline (ATTR), we compare with the hybrid
Soft TF-IDF measure [11] that has been shown to outper-
form other unsupervised approaches for text-based entity
resolution. Essentially, it augments the TF-IDF similarity
for matching token sets with approximate token matching
using a secondary string similarity measure. Jaro-Winkler
is reported to be the best secondary similarity measure for
SoftTF-IDF. We also experiment with the Jaro and the
Scaled Levenstein measures. However, directly using an
off-the-shelf string similarity measure for matching names
results in very poor recall. From domain knowledge about
names, we know that first and middle names may be initialed
or dropped. A black-box string similarity measure would
unfairly penalize such cases. To deal with this, ATTR
uses string similarity only for last names and retained first
and middle names. In addition, it uses drop probabilities
PDropF and ppropum for dropped first and middle names, ini-
tial probabilities prr and par for correct initials and prr,
and pwmr, for incorrect initials. The probabilities we used
are 0.75,0.001 and 0.001 for correctly initialing, incorrectly
initialing and dropping the first name, while the values for
the middle name are 0.25,0.7 and 0.002. We arrived at these
values by observing the true values in the datasets and then

3http://www.cs.cornell.edu/projects/kddcup/index.html
*We would like to thank Aron Culotta and Andrew McCal-
lum for providing the author labels for the CiteSeer dataset
and David Jensen for providing the author labels for the
HEP dataset. We performed additional cleaning for both.

hand-tuning them for performance. Our observation is that
baseline resolution performance does not vary significantly
as these values are varied over reasonable ranges.

ATTR only reports pairwise match decisions. Since the
duplicate relation is transitive, we also evaluate ATTR¥*
which removes inconsistencies in the pairwise match deci-
sions in ATTR by taking a transitive closure. Note that
this issue does not arise with GBC-ER,; it does not make
pairwise decisions. All of these unsupervised approaches
ATTR, ATTR* and GBC-ER need a similarity thresh-
old for deciding duplicates. We consider the best F'1 that
can be achieved over all thresholds.

Table 1: Performance of ATTR, ATTR* and GBC
using neighborhood and edge detail similarity in
terms of F1 using various secondary similarity mea-
sures with Soft TF-IDF. The measures compared are
Scaled Levenstein (SL), Jaro (JA), and Jaro Winkler
(IW).

CiteSeer HEP
SL JA JW SL JA JW
ATTR 0.980 0.981 0.980 | 0.976 0.976 0.972
ATTR* 0.989 0.991 0.990 | 0.971 0.968 0.965
GBC(Nbr) 0.994 0.994 0.994 | 0979 0.981 0.981
GBC(Edge) | 0.995 0.995 0.995 | 0.982 0.983 0.982

Table 2: Best F1 and corresponding precision and
recall for ATTR, ATTR* and GBC-ER with neigh-
borhood and edge detail similarity for CiteSeer and
HEP datasets.

CiteSeer HEP
P R F1 P R F1
ATTR 0.990 0.971 0.981 0.987 0.965 0.976
ATTR* 0.992 0.988 0.991 | 0.976 0.965 0.971
GBC(Nbr) 0.998 0.991 0.994 | 0.990 0.972 0.981
GBC(Edge) | 0.997 0.993 0.995 | 0.992 0.974 0.983

Table 1 records F1 achieved by the four algorithms with
various string similarity measures coupled with Soft TF-IDF
while Table 2 shows the best F1 and the corresponding pre-
cision and recall for the four algorithms for each dataset
over all secondary similarity measures. The recall includes
blocking, so that the highest recall achievable is 0.993 for
CiteSeer and 0.991 for HEP.

The best baseline performance is with Jaro as secondary
string similarity for CiteSeer and Scaled Levenstein for HEP.
It is also worth noting that a baseline without initial and
drop probabilities scores below 0.5 F1 using Jaro and Jaro-
Winkler for both datasets. It is higher with Scaled Leven-
stein (0.7) but still significantly below the augmented base-
line. Transitive closure affects the baseline differently in the
two datasets. While it adversely affects precision for HEP
reducing the F1 measure as a result, it improves recall for
CiteSeer and thereby improves F1 as well.

GBC-ER outperforms both forms of the baseline for both
datasets. Also, for each secondary similarity measure GBC-
ER with neighborhood similarity outperforms the baselines
with that measure and is in turn outperformed by GBC-ER

using edge detail similarity. For CiteSeer, GBC-ER gets
close to the highest possible recall with very high accuracy.
Improvement over the baseline is greater for HEP. While the
improvement may not appear large in terms of F1, note that
GBC-ER reduces error rate over the baseline by 44% for
CiteSeer (from 0.009 to 0.005) and by 29% for HEP (from
0.024 to 0.017). Also, HEP has more than 64,6000 true
duplicate pairs, so that a 1% improvement in F1 translates
to more than 6,400 correct pairs.

Looking more closely at the resolution decisions from Cite-
Seer, we were able to identify some interesting combinations
of decisions by GBC-ER that would be difficult or impos-
sible for an attribute-only model. There are instances in
the dataset where reference pairs are very similar but cor-
respond to different author entities. Examples include (liu
J, lu j) and (chang ¢, chiang ¢). GBC-ER correctly pre-
dicts that these are not duplicates. At the same time, there
are other pairs that are not any more similar in terms of
attributes than the examples above and yet are duplicates.
These are also correctly predicted by GBC-ER. using the
same similarity threshold by leveraging common collabora-
tion patterns. The following are examples: (john m f, john
m st), (reisbech c, reisbeck c k), (shortliffe e h, shortcliffe e
h), (tawaratumida s, tawaratsumida sukoya), (elliott g, elliot
g l), (mahedevan s, mahadevan sridhar), (livezey b, livezy b),
(brajinik g, brajnik g), (kaelbing 1 p, kaelbling leslie pack),
(littmann michael 1, littman m), (sondergaard h, sndergaard
h) and (dubnick cezary, dubnicki c). An example of a par-
ticularly pathological case is (minton s, minton andrew b),
which is the result of a parse error. The attribute-only base-
lines cannot make the right prediction for both these sets of
examples simultaneously, whatever the decision threshold,
since they consider names alone.

Figures 5 and 6 show how performance varies for GBC-
ER for the two datasets with varying combination weight «
for attribute and graph-based similarity. Recall that when «
is 0, the similarity is based only on attributes and when a is
1 it is wholly graph-based. The plots show that GBC-ER
with both neighborhood and edge detail similarity outper-
form the baselines over all values of @. Note that GBC-ER
takes advantage of graph-based bootstrapping in these ex-
periments which explains why it is better than the baseline
even when « is 0. The best performance for CiteSeer is
around 0.5 while for HEP performance peaks around 0.1
and then trails off. It can also be observed that edge de-
tail similarity is more stable in performance over varying
a than neighborhood similarity. Significantly, once clusters
have been bootstrapped using attribute and graph-based ev-
idence, GBC-ER outperforms the baselines even when « is
1, which means that attributes are being overlooked alto-
gether and clusters are merged using graph-based evidence
alone.

The first row of plots in Figure 5 use single link criterion
for attribute similarity while those in the second measure
similarity between representative cluster attributes. The
differences in the two plots are observable for low values
of a when attribute similarity plays a more dominant role.
It can be seen that the single link approach performs better
than the cluster representative approach for all secondary
similarity measures. The curves become identical for higher
values of @ when attributes matter less. A similar trend was
observed for HEP as well.

Figure 7 shows performance of GBC-ER without using

graph-based bootstrapping. When « is 0, GBC-ER is iden-
tical to ATTR* which is verified by the results. As a in-
creases from 0, performance improves over the baseline and
then drops again. For HEP, performance falls sharply with
higher o with neighborhood similarity. Edge detail similar-
ity however still performs surprisingly well. Even when « is
1, it does better than the baseline for CiteSeer and is able
to achieve close to 0.9 F1 for HEP. This suggests that edge
detail is a reliable indicator of identity even without con-
sidering attributes. It should however be noted that these
results include blocking, which uses attributes to find poten-
tial duplicates. This suggests that given people with similar
names, it is possible to identify duplicates with a high degree
of reliability using edge detail similarity alone.

Figure 8 shows the precision recall characteristics for the
four algorithms with Jaro as secondary similarity. Plot (a)
shows that all algorithms perform well for CiteSeer. Plot
(b) concentrates on the region of difference between the al-
gorithms. Still the curves for edge detail and neighborhood
similarity are almost identical, as is the case for HEP in
plot (c). But they consistently remain over the baselines for
both datasets. Observe that ATTR* dominates ATTR
for CiteSeer but the roles reverse for HEP. Note that GBC-
ER starts above 90% recall. This is by virtue of graph-
based bootstrapping. The corresponding precision is high
as well validating the effectiveness of our graph-based boot-
strapping scheme. The characteristics with other secondary
similarity measures are similar.

Figure 9 illustrates how dispersion-diversity measures may
be used. We show the results only for HEP with Jaro
similarity. Other plots are similar. Recall that while val-
ues closer to 1 are preferred for precision and recall, val-
ues closer to 0 are better for dispersion and diversity so
that points on the dispersion-diversity curves in plot (a)
that are closer to (0,0) indicate better performance. Plot
(a) shows that dispersion-diversity curves are very similar
to precision-recall curves but they evaluate the clusters di-
rectly. Note that since ATTR makes pair-wise decisions
and does not generate clusters of duplicate references, it
cannot be evaluated using this approach. Plots (b-d) plots
diversity and dispersion against number of clusters. Again,
observe how graph-based bootstrapping significantly lowers
the initial number of clusters for GBC-ER thereby starting
off with much lower dispersion. The initial number of clus-
ters is lowered by 83% for HEP and by 58% for CiteSeer.
That it is accurate can be inferred from the significantly
lower diversity at the same number of clusters compared to
ATTR*. The number of real author entities for HEP is
8967, which is shown using a vertical line in plots (b-d).
Plot (b) highlights the difference in dispersion between the
three algorithms and we can see that GBC-ER improves
dispersion over AT'TR* at the correct number of entity clus-
ters and that edge detail performs better than neighborhood
similarity.

Finally, we look at the execution times of the algorithms.
All experiments were run on a 1.1GHz Dell PowerEdge 2500
Pentium III server. Table 3 records the execution times in
CPU seconds of the baselines and different versions of GBC-
ER on the CiteSeer and HEP datasets. GBC-ER. expect-
edly takes more time than the baselines. But it is quite fast
for CiteSeer taking only twice as much time as ATTR*.
It takes longer for HEP; about 7 times as long compared
to the baseline. While using edge detail is more expensive

Table 3: Execution time of GBC-ER, ATTR and
ATTR* in CPU seconds for CiteSeer and HEP

datasets.

CiteSeer | HEP
ATTR 1.88 162.13
ATTR* 2.30 217.37
GBC(Nbr w/ Single Link) 3.14 | 543.83
GBC(Edge w/ Single Link) 3.18 690.44
GBC(Nbr w/ Cluster Rep.) 3.65 402.68
GBC(Edge w/ Cluster Rep.) 3.75 583.58

than neighborhood similarity, it does not take significantly
longer for either dataset. The complexity of edge detail de-
pends on a number of factors. It grows quadratically with
the average number of edges per entity and linearly with
the average number of references in each edge. While the
average edge size is the same for both datasets, the aver-
age number of edges per entity is 2.5 for CiteSeer and 6.36
for HEP which explains the difference in execution times.
In contrast, complexity of neighborhood similarity is linear
in the average number of neighbors per entity, which is 2.15
for CiteSeer and 4.5 for HEP. Separately, we expected single
link clustering to be more expensive than using representa-
tive attributes for clusters. While this is true for HEP, the
trend reverses for CiteSeer. This may be explained by tak-
ing into account the added overhead of updating the clus-
ter representative every time new references are added to a
cluster. Since CiteSeer only has an average of 2.5 references
per entity, the cost of a naive updation scheme for cluster
representatives overshadows the small gain in computing at-
tribute similarity for clusters.

Execution time

1200 :
—— ATTR*
GBC (Nbr) with Bootstrap .
1000 GBC (Nbr) w/o Bootstrap A
~= GBC (Edge) with Bootstrap e
—_ -=-- GBC (Edge) w/o Bootstrap
4] 800 [|
o) .
£ 600 F 1
z
S 400 o]
200
o Laa
0 10 20 30 40 50 60

Number of References (in Thousands)

Figure 10: Execution time for ATTR* and GBC-ER
with neighborhood and edge detail similarity over
varying number of references in synthetic datasets.

To see how the algorithms scale with increasing number of
references in the dataset, we used a synthetic generator for
ambiguous data. We preserved features of the real datasets
wherever possible, like the average number of references and
edges per entity, the degree of neighborhood for each entity
and the average number of references per edge. The execu-

tion times of ATTR* and different versions of GBC-ER
are plotted in Figure 10 against varying number of references
in the dataset. We would like to stress that the execution
time depends on other factors as well like the number of
potential duplicate pairs in the data, which we were not
able to control directly. So these numbers should not be
compared with the execution times on the real datasets but
instead should serve only for a comparative study of the dif-
ferent algorithms. The curves confirm that GBC-ER takes
longer than the baseline but they also show that the trend
is roughly linear in the number of references for all versions
of it. The plots also show the significant speedup that is
achieved with graph-based bootstrapping in addition to the
performance benefits that it provides.

8. CONCLUSION

In this chapter, we have seen how graph-based entity reso-
lution may be posed as a clustering problem that augments a
general category of attribute similarity measures with graph-
based similarity among the entities to be resolved. We
looked at two different similarity measures based on graphs
and a graph-based clustering algorithm (GBC-ER) that
shows performance improvements over attribute-based en-
tity resolution in two real citation datasets. The combined

similarity measure allows a smooth transition from an attribute-

only measure at one extreme to one that is based just on
graph-based similarity at the other. Depending on the re-
liability of the attributes or the relations in the application
domain or the particular dataset, it is possible to attach
higher weights to either of them.

The graph-based similarity measures are intended to cap-
ture the dependencies between resolution decisions. They do
so by looking at the current entity labels of related entities.
We presented two different graph-based similarity measures
that consider relations between entities at different levels of
detail. Edge-detail similarity explicitly considers each edge
in which an entity participates. Neighborhood similarity re-
duces the computational complexity involved by collapsing
the edge structure and just looking at the set of neighbor-
hood entities for each entity cluster. The execution times
for the similarity measures depends on the graph structure
in the data. In general, edge detail takes more time than
neighborhood similarity, but is a more reliable indicator of
identity. Even without considering attributes at all in the
similarity measure, edge detail is able to achieve high ac-
curacy in determining duplicates. In fact, in one of our
datasets, even without using attributes at all, it does bet-
ter than attribute-only baselines. This suggests that in do-
mains where attributes are extremely unreliable or perhaps
unavailable, it may still be possible to discover identity going
by the graph patterns alone.

We consider two different options for measuring attribute
similarity between entity clusters. The first is the single link-
age criterion that looks at all pairwise attribute similarities
between two clusters and chooses the highest one. This re-
duces to transitive closure over pairwise attribute decisions
that is appropriate for entity resolution. This measure is
expected to be computationally intensive and therefore we
propose an alternative measure that constructs the represen-
tative attribute for each entity cluster and then measures
similarities between these representatives only. However,
our experiments show that the single linkage measure per-
forms better in practice. Also, unless the representatives are

recomputed quickly as clusters expand, this approach does
not come with significant improvements in execution time
either.

We evaluate a graph-based bootstrapping approach for
initializing the entity clusters quickly and accurately. Ex-
perimental results show that bootstrapping reduces the ini-
tial number of clusters by 83% on our larger dataset with-
out significantly compromising on precision. We show that
graph-based bootstrapping also improves performance by
uncovering patterns quickly that the graph-based similar-
ity measures can leverage.

Since GBC-ER considers relational similarities which are
expensive to compute and updates similarities iteratively, it
is expectedly more costly than performing attribute similar-
ity. However, our experiments on synthetic data show that
both graph-based similarity measures scale gracefully over
increasing number of references in the dataset. Also, the
added cost clearly reaps bigger benefits, as shown by the
performance plots. Database cleaning is not an operation
that is likely to performed very frequently and the increased
computation time is not expected to be too critical. There
may of course be situations where this approach is not likely
to prove advantageous, for example where distinctive cliques
do not exist for the entities or if references for each edge
appear randomly. There the user has the choice of falling
back on traditional attribute similarity or setting « to assign
lower weights for graph-based similarity.

In summary, entity resolution is an area that has been
attracting growing attention to address the influx of struc-
tured and semi-structured data from a multitude of hetero-
geneous sources. Accurate resolution is important for a vari-
ety of reasons ranging from cost-effectiveness and reduction
in data volume to accurate analysis for critical applications.
In the case of graph data, it is especially important to look
at entity resolution from a graph-based perspective. We
have found graph-based entity resolution to be a powerful
and promising approach that combines attribute similarity
with relational evidence and shows improved performance
over traditional approaches.

9. ACKNOWLEDGEMENT

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0308030 and
0438866.

10. REFERENCES

[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti.
Eliminating fuzzy duplicates in data warehouses. In
Proceedings of the 28th International Conference on
Very Large Databases (VLDB-2002), Hong Kong,
China, 2002.

[2] P. Berkhin. Survey of clustering data mining
techniques. Technical report, Accrue Software, 2002.

[3] L. Bhattacharya and L. Getoor. Deduplication and
group detection using links. In Proceedings of the 10th
ACM SIGKDD Workshop on Link Analysis and
Group Detection (LinkKDD-04), August 2004.

[4] I. Bhattacharya and L. Getoor. Iterative record
linkage for cleaning and integration. In Proceedings of
the SIGMOD 2004 Workshop on Research Issues on
Data Mining and Knowledge Discovery, June 2004.

[5] I. Bhattacharya and L. Getoor. A latent dirichlet
model for entity resolution. Technical report,
University of Maryland, College Park, 2005.

[6] M. Bilenko and R. J. Mooney. Adaptive duplicate
detection using learnable string similarity measures. In
Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD-2008), Washington, DC, 2003.

[7] M. Bilgic, L. Licamele, L. Getoor, and
B. Shneiderman. D-dupe: An interactive tool for
entity resolution in social networks. In The 13th
Interantional Symposium on Graph Drawing (Poster),
Limerick, Ireland, September 2005.

[8] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani.
Robust and efficient fuzzy match for online data
cleaning. In Proceedings of the 2003 ACM SIGMOD
international conference on on Management of data,
pages 313-324, San Diego, CA, 2003.

[9] W. Cohen. Data integration using similarity joins and
a word-based information representation language.
ACM Transactions on Information Systems,
18:288-321, 2000.

[10] W. W. Cohen, H. Kautz, and D. McAllester.
Hardening soft information sources. In Proceedings of
the Sizth International Conference on Knowledge
Discovery and Data Mining (KDD-2000), pages
255-259, Boston, MA, August 2000.

[11] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A
comparison of string distance metrics for
name-matching tasks. In Proceedings of the
IJCAI-2008 Workshop on Information Integration on
the Web, pages 73-78, Acapulco, Mexico, Aug. 2003.

[12] W. W. Cohen and J. Richman. Learning to match and
cluster large high-dimensional data sets for data
integration. In Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2002), Edmonton,
Alberta, 2002.

[13] A. Doan, Y. Lu, Y. Lee, and J. Han. Object matching
for data integration: A profile-based approach. In
Proceedings of the IJCAI Workshop on Information
Integration on the W eb, Acapulco, MX, August 2003.

[14] I. P. Fellegi and A. B. Sunter. A theory for record
linkage. Journal of the American Statistical
Association, 64:1183-1210, 1969.

[15] D. Florescu, D. Florescuand, E. Simon, and
D. Shasha. An extensible framework for data cleaning.
In ICDE ’00: Proceedings of the 16th International
Conference on Data Engine ering, page 312. IEEE
Computer Society, 2000.

[16] C. L. Giles, K. Bollacker, and S. Lawrence. CiteSeer:
An automatic citation indexing system. In Proceedings
of the Third ACM Conference on Digital Libraries,
pages 89-98, Pittsburgh, PA, June 23-26 1998.

[17] L. Gravano, P. Ipeirotis, N. Koudas, and
D. Srivastava. Text joins for data cleansing and
integration in an rdbms. In 19th IEEE International
Conference on Data Engineering, 2003.

[18] M. A. Hernéndez and S. J. Stolfo. The merge/purge
problem for large databases. In Proceedings of the
1995 ACM SIGMOD International Conference on
Management of Data (SIGMOD-95), pages 127-138,

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

27]

28]

[29]

[30]

[31]

32]

[33]

San Jose, CA, May 1995.

J. A. Hylton. Identifying and merging related
bibliographic records. Master’s thesis, Department of
Electrical Engineering and Computer Science, MIT,
1996.

I. Jonyer, L. B. Holder, and D. J. Cook. Graph-based
hierarchical conceptual clustering. Journal of Machine
Learning Research, 2(1-2):19-43, 2001.

D. V. Kalashnikov, S. Mehrotra, and Z. Chen.
Exploiting relationships for domain-independent data
cleaning. In SIAM International Conference on Data
Mining (SIAM SDM), Newport Beach, CA, USA,
April 21-23 2005.

S. Lawrence, K. Bollacker, and C. L. Giles.
Autonomous citation matching. In Proceedings of the
Third International Conference on Autonomous
Agents, New York, NY, May 1999. ACM Press.

X. Li, P. Morie, and D. Roth. Semantic integration in
text: From ambiguous names to identifiable entities.
Al Magazine. Special Issue on Semantic Integration,
2005. to appear.

A. McCallum and B. Wellner. Conditional models of
identity uncertainty with application to noun
coreference. In NIPS, 2004.

A. K. McCallum, K. Nigam, and L. Ungar. Efficient
clustering of high-dimensional data sets with
application to reference matching. In Proceedings of
the Sizth International Conference On Knowledge
Discovery and Data Mining (KDD-2000), pages
169-178, Boston, MA, Aug. 2000.

B. Milch, B. Marthi, D. Sontag, S. Russell, D. L. Ong,
and A. Kolobov. Blog: Probabilistic models with
unknown objects. In Proc. IJCAI 2005.

A. E. Monge and C. P. Elkan. The field matching
problem: Algorithms and applications. In Proceedings
of the Second International Conference on Knowledge
Discovery and Data Mining (KDD-96), pages
267-270, Portland, OR, August 1996.

A. E. Monge and C. P. Elkan. An efficient
domain-independent algorithm for detecting
approximately duplicate database records. In
Proceedings of the SIGMOD 1997 Workshop on
Research Issues on Data Mining and Knowledge
Discovery, pages 23-29, Tuscon, AZ, May 1997.

G. Navarro. A guided tour to approximate string
matching. ACM Computing Surveys, 33(1):31-88,
2001.

J. Neville, M. Adler, and D. Jensen. Clustering
relational data using attribute and link information.
In Proceedings of the Text Mining and Link Analysis
Workshop, Eighteenth International Joint Conference
on Artificial Intelligence, 2003.

H. Newcombe, J. Kennedy, S. Axford, and A. James.
Automatic linkage of vital records. Science,
130:954-959, 1959.

Parag and P. Domingos. Multi-relational record
linkage. In Proceedings of 3rd Workshop on
Multi-Relational Data Mining at ACM SI GKDD,
Seattle, WA, August 2004.

H. Pasula, B. Marthi, B. Milch, S. Russell, and

I. Shpitser. Identity uncertainty and citation
matching. In Advances in Neural Information

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Processing Systems 15. MIT Press, 2003.

V. Raman and J. M. Hellerstein. Potter’s wheel: An
interactive data cleaning system. In Proc. VLDB,
2001.

P. Ravikumar and W. W. Cohen. A hierarchical
graphical model for record linkage. In UAI 2004,
Banff, CA, July 2004.

E. Ristad and P. Yianilos. Learning string edit
distance. IEEE Transactions on PAMI, 20(5):522-532,
1998.

S. Sarawagi and A. Bhamidipaty. Interactive
deduplication using active learning. In Proceedings of
the Eighth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining
(KDD-2002), Edmonton, Alberta, 2002.

J. Shi and J. Malik. Normalized cuts and image
segmentation. IEEFE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888-905, 2000.

S. Tejada, C. A. Knoblock, and S. Minton. Learning
object identification rules for information integration.
Information Systems Journal, 26(8):635—656, 2001.
W. E. Winkler. The state of record linkage and
current research problems. Technical report,
Statistical Research Division, U.S. Census Bureau,
Washington, DC, 1999.

W. E. Winkler. Methods for record linkage and
Bayesian networks. Technical report, Statistical
Research Division, U.S. Census Bureau, Washington,
DC, 2002.

Varying alpha: Jaro for CiteSeer Varying alpha: Jaro for CiteSeer w/ Cl. Rep.

0.996 ‘ ‘ ‘ ‘ 0.996 —— : ‘
0.994 1 0.994 1
0.992 ¢ X 0.992 | Sr— X
- 0.99 1 — 0.99 1
[T [T
g 0.988 1 g 0.988 1
9 0986 - GBC-ER (Nbr) 1 9 0986 - GBC-ER (Nbr) 1
0.984 | —e— E‘?‘IQRER (Edge) | 0.984 | —e— E‘?‘IQRER (Edge)
0.982 - -~ ATTR* i 0.982 - -~ ATTR* i
0.98 I~ : 0.98 -
0
alpha
(a) (b)
Varying alpha: Jaro Winkler for CiteSeer Varying alpha: Jaro Winkler for CiteSeer w/ Cl. Rep.
0.996 w pS ps ps 0.996 ps ps
0.994 M 0.994 |]
0.992 ¢ k) 0.992 | k)
0.99 1 0.99 | i
L 0988] L 0988]
g ome Taem, | B oo T BEE,
0.984 | . GBCER (Edge) 0.984 | To. GBCER (Edge)
0.982 -~ ATTR* 1 0.982 -~ ATTR* 1
0.978 : : : : 0.978
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
alpha alpha
(c) (d)
Varying alpha: Scaled Levenstein for CiteSeer Varying alpha: Scaled Lev. for CiteSeer w/ Cl. Rep.
0.996 0.996
0.994 0.994
0.992 0.992
— 0.99 — 0.99
L L
% 0988 1 % 0988 1
8 0.986 - GBC-ER (Nbr) 1 8 0.986 - GBC-ER (Nbr) 1
0.984 | 75, GBCER (Edge) 0.984 | . GBCER(Edge)
0.982 | e ATTRY] 0.982 | e ATTRY]
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
alpha alpha
(e) (f)

Figure 5: Best F1 measures achieved by GBC-ER with neighborhood and edge detail similarities over varying
combination weight o for CiteSeer. Plots (a,c,e) use single link for attribute similarity with Jaro, Jaro-Winkler
and Scaled Levenstein respectively as secondary similarity while plots (b,d,f) use representative attributes
for clusters with the same three secondary similarity measures.

Varying alpha: Jaro for HEP

0.985 T T T T 0.985 T T T T
5 0975 0975
2 —*- GBC-ER (Nbr) 2
—-e— GBC-ER (Edge)
0.97 wun ATTR 0.97 —— GBC-ER (Nbr)
ATTR* -e— GBC-ER (Edge)
e ATTR
0.965 |-)))) 0.965 |- ATTR”
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
alpha alpha

(a)

Figure 6: The best F1 measures achieved by GBC-ER with neighborhood and edge detail similarities over
varying combination weight o for HEP. Plots (a-c) are with Jaro, Jaro-Winkler and Scaled Levenstein re-

Varying alpha: Jaro Winkler for HEP

(b)

spectively as secondary similarity for attributes.

Varying alpha: Sc. Lev. for CiteSeer w/o BootStrap

best F1

Varying alpha: Scaled Levenstein for HEP

0.985 T T

0.975 -

0.97 —— GBGC-ER (Nbr)
-e- GBC-ER (Edge)
. ATTR

0.965 . . ATTR*

0 0.2 0.4 0.6 0.8 1

alpha

(c)

Varying alpha: Sc. Lev. for HEP w/o BootStrap

1 1
0.98 0.95
0.96 0.9
0.94 0.85
L 092 L 08
3 0.9 3 075
o] o]
) 7
0.88 — GBC-ER (Nbr) 0 — GBC-ER (Nbr)
0.86 1 -e- GBC-ER (Edge) | 0.65 1 -e- GBC-ER (Edge) \]
0.84 | « ATTR 0.6 I s ATTR
44444444 ATTR* A e ATTR® £
0.82 : : : : 0.55 : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
alpha alpha

Figure 7: The effect of not using bootstrapping for initializing

HEP using Scaled Levenstein as

secondary similarity.

the entity clusters for (a) CiteSeer and (b)

0.9

0.8

Recall

0.7

0.6

0.5

Precision vs Recall: Jaro for CiteSeer

Precision vs Recall: Jaro for CiteSeer (Zoomed)

1]
0.95 | .
| 09t 1
A _ 0851 i
]
3 0.8 - i
o
1 0.75 +]
— GBC-ER (Nbr) | 0.7 1 — GBC-ER (Nbr)
«wu. GBC-ER (Edge) === GBC-ER (Edge)
— ATTR 0.65 r — ATTR
‘ ‘ L e ATTR* os Ll ‘ ‘ . ATTR* ‘
0.95 0.9 0.85 0.8 0.75 0.7 T 1 0995 099 0985 0.98 0.975 0.97 0.965 0.96
Precision Precision
(a) (b)
Precision vs Recall: Jaro for HEP
1 F
09 - i
— 08¢} i
[+
[$]
(¢}
o
0.7 + i
06 b | — GBC-ER (Nbr) |
: -« GBC-ER (Edge)
— ATTR
—————— ATTR*
0.5 L L L L L
1 0.95 0.9 0.85 0.8 0.75 0.7
Precision
(c)

Figure 8: Precision-recall characteristics for (a-b) CiteSeer and (c¢) HEP using Jaro similarity. Plot (b)
highlights the difference between the algorithms from plot (a).

0.4
0.35

03 |

0.25
0.2
0.15
0.1
0.05

Diversity

Dispersion vs Diversity: Jaro for HEP

— GBC-ER (Nbr)
GBC-ER (Edge)
ATTR*

)

1.4

1.2 1 0.8 06 04 0.2
Dispersion

(a)

Dispersion vs No. of Entity Clusters: Jaro for HEP

25

2

1.5

Dispersion

1

0.5

— GBC-ER (Nbr)
GBC-ER (Edge
ATTR*

~

-

Figure 9: Performance measure using dispersion and diversity for HEP with Jaro similarity. The plots show

0 L L L L
60000 50000 40000 30000 20000

10000
Number of Entity Clusters

(c)

Diversity

Dispersion

Diversity vs No. of Entity Clusters: Jaro for HEP

0.8

0.7 r

0.6
0.5
0.4
0.3
0.2
0.1

0

GBC-ER (Nbr)
GBC-ER (Edge)
ATTR*

4

60000 50000 40000 30000 20000

10000
Number of Entity Clusters

(b)

Disp. vs #Entity Clusters: Jaro for HEP (Zoomed)

0.1
0.08
0.06
0.04
0.02

0
-0.02

%

— GBC-ER (Nbr)
GBC-ER (Edge)
ATTR*

)

10000 9000 8000 7000 6000 5000 4000

Number of Entity Clusters

(d)

(a) dispersion against diversity, (b) diversity and (c-d) dispersion over changing number of entity clusters.

