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ABSTRACT

Clustering is a fundamental problem in data mining. Tradi-
tionally, clustering is done based on the similarity of the at-
tribute values of the entities to be clustered. More recently,
there has been greater interest in clustering relational and
structured data. Often times this data is best described as a
graph, in which there are both entities, described by a collec-
tion of attributes, and links between entities, representing
the relations between them. Clustering in these scenarios
becomes more complex, as we should also take into account
the similarity of the entity links when we are clustering. We
propose novel distance measures for clustering linked data,
and show how they can be used to solve two important data
mining tasks, entity deduplication and group discovery.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—clustering; H.2.8 [Database Man-
agement]: Database Applications—Data Mining

General Terms

algorithms, performance

Keywords

deduplication, group detection, distance measure, clustering

1. INTRODUCTION

Recently there has been a surge of interest in mining rela-
tional and semi-structured data [1, 26, 25, 2, 3, 16]. There
has been a great deal of work on link-based classification
[8, 38, 41, 33, 27|, and less work on link-based clustering
[46, 32, 28]. Here, we propose novel distance measures for
link-based clustering algorithms. We show how they can
be used to solve two important data mining tasks: entity
deduplication and group detection.

In data cleaning, deduplication [22, 36] is important for
both accurate analysis, for example determining the number
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of customers, and for cost-effectiveness, for example remov-
ing duplicates from direct mailing list. In information in-
tegration, determining approximate joins [10] is important
for consolidating information from multiple sources; most
often there will not be a unique key that can be used to
join tables in distributed databases, and we must infer when
two records from different databases, possibly with differ-
ent structures, refer to the same entity. Traditional ap-
proaches to duplicate detection are based on approximate
string matching criteria, in some cases augmented with do-
main specific rules. More recently, there have been adaptive
approaches which make use of multiple attributes and use
labeled data [45, 6, 4, 9].

The problem of identifying groups of similar entities in
the presence of linked environments has been studied in the
areas of social sciences, bibliometry, criminal intelligence,
hypertext connectivity and document information retrieval.
But deduplication and group detection have mostly been
dealt with separately and as unrelated problems. We argue
that the two problems occur together for most real world ap-
plications and this calls for a unified framework for address-
ing them. For instance, Goldberg and Senator [21] discuss
the importance of ‘consolidation’ and ‘linking’ in the con-
text of large real databases, highlighting the related nature
of the two problems.

Not only do the two problems co-occur, we observe that
the issue of measuring distances between sets of links comes
up for both tasks when working with link data. We propose
different distance measures for sets of links tailored for the
two problems.

The traditional approach to deduplication is to consider
distance between the observed attributes of the entities. We
augment this approach to consider distances between the
entity relations or links. In an earlier workshop paper [5],
we have proposed two different measures of link distance
for deduplication. The first is the link detail distance that
considers all the information in the relations involving that
observation. This is useful but computationally expensive,
S0 we propose as a more tractable alternative the link sum-
mary distance. Our experiments show that when the dis-
tance measure is augmented to consider either of the link dis-
tances, it leads to significant improvements in performance.

The second task is detecting groups of similar entities from
link data. This a problem that is relevant in many different
domains. As an example, we may be looking to group au-
thors by their research interests from the author lists of aca-
demic papers in a database. Here the names of the authors
of a particular paper would constitute a link. Considering



real-world scenarios where such links are observed, we argue
that the entities in each link are very likely to come from
the same group of entities. When this assumption holds for
the observed link data, we can cluster the links to discover
the hidden groups. Once we have the links clustered into
groups, the mapping of entities to groups follows naturally
from it.

Since we focus on clustering the links, a distance measure
between sets of links again becomes relevant. We propose
a distance measure for this task based on a clearly defined
generative probabilistic model. It measures the change in
probability of the observed data with regard to the gener-
ative model that occurs on merging two clusters. This we
call the probabilistic distance between two link sets. We
also motivate the use of the link summary distance as an ef-
ficient approximation of the probabilistic distance. We eval-
uate and compare the two distance measures for the task of
group detection over varying data characteristics.

We show that link-based clustering can be used to solve
both the tasks of entity deduplication and group detection.
The two tasks are quite related and any framework for group
detection from links arising in real-world applications must
also account for uncertainty in the identity of the entities
themselves. We propose a single generative model for the
two tasks and use it as motivation for our link-based clus-
tering algorithm.

2. RELATED WORK

Deduplication: There has been a large body of work on
deduplication, record linkage, and co-reference detection.’
Here we review some of the main work, but the review is
not exhaustive. For summary reports on deduplication and
record linkage, see [49].

Within the statistics community, the earliest work was
done by Newcombe [39], who describes methods for limiting
the number of comparisons required. Fellegi and Sunter [18]
define a statistical framework for record linkage, classifying
pairs as a “match” or a “non-match”, based on certain com-
puted features of the pairs. They describe how to estimate
the parameters of their model and use it for classification.
More recently, Winkler [48] builds upon the work by Fellegi
and Sunter and uses a probabilistic approach with a latent
match variable which is estimated using the EM algorithm.

There has been extensive work on defining approximate
string matching algorithms [36, 37, 11] and adaptive al-
gorithms that learn string similarity measures [44, 6, 12]
and use active learning [45]. An important focus is on effi-
cient data cleaning; examples include Hernandez and Stolfo
[22] and Monge and Elkan [36]. Another related area deals
with identity uncertainty [43], object identification [47] and
co-reference resolution in natural language processing. Co-
reference resolution [35] is typically done with unstructured
text; here our focus is on structured data.

One of the domains commonly used as a testbed is the
bibliographic citation domain, which we use as motivation.
However as we will see, we focus on deduplicating authors
rather than papers. The work most closely related to our
deduplication approach is that of Chaudhuri et al. [9, 4].

!The term deduplication is used more commonly within
the database community, record linkage is the term used
by statisticians and co-reference resolution is the term used
more commonly by the AI and natural language processing
community.

They also make use of join information to aid in deduplica-
tion; a key difference is that they assume that the secondary
tables are themselves duplicate-free. Ananthakrishna et. al.
[4] use co-occurrence in dimensional hierarchies to identify
duplicates. Specifically, to resolve whether two entities are
duplicates, they check for co-occurrence in the children sets
of the entities. We work in a more general setting where
there is no hierarchy within the links/tuples and we use the
link in its entirety to check for co-occurrences. As a result,
instead of the easier problem of having to match sets, we
are faced with the problem of matching sets of sets. Also,
we use an iterative framework for our algorithm, motivated
by our recursive definition of duplicates.

Group Detection: Work on detecting related groups
of entities from link information also spreads over many dif-
ferent areas. Extensive work has been done in the area of
document information retrieval, where the task is to clus-
ter documents with regard to content. Each document is
observed as a bag of words, and documents having simi-
lar distributions over words are considered similar. Spectral
clustering approaches [40] aim to identify lower dimensional
sub-spaces (eigen vectors) from the term document matrix
and cluster documents with similar components along these
sub-spaces. Another approach involves probabilistic mod-
eling of the semantic space of documents with latent vari-
ables [23, 7]. Each document is modeled as a mixture of
‘topics’ or meaningful word distributions. It is not clear if
complex ‘group mixture’ models are required for explaining
co-authorship relations in bibliographic domains, but these
are directions for future research.

Equally important and interesting is the domain of the
internet and hypertext connectivity. Most of the research
in this area is driven by the pioneering ranking algorithms
of Page and Brin [42] and Kleinberg [29]. The basic idea
is again to identify the principal eigen vectors for different
forms of the connectivity matrix of all pages and this is done
with an iterative algorithm. The idea of hubs and author-
ities has been extended to identify web communities [19].
The concept has also been augmented to have a probabilistic
interpretation [13] and combined with document topic mod-
els to propose a unified model for documents and hypertexts
[14]. The hypertext domain is inherently directional, which
distinguishes it from our motivation. Also, our focus is to
use the links for identifying similarities among entities and
not ranking them with regard to importance or relevance.

Several researchers have made use of entity relationships
for iteratively classifying or categorizing entities [38, 41, 33].
Taskar et al [46] have extended the framework of probabilis-
tic relational models to propose a joint model for classifica-
tion and clustering for relational data.

Recently, work has been done in probabilistic modeling
of stochastic links given groups of entities [32, 30, 31]. Our
generative model for links is most similar to that of Kubica
et al [32]. Their model however does not consider uncer-
tainty in the identity of entities. Also, while they look to
learn the generative model directly using stochastic gradient
ascent techniques, ours is a clustering approach that uses the
probability of the observed links given the generative model
to define a distance measure between clusters. This is simi-
lar in flavor to information theoretic distance measures that
have previously been used for clustering [15].



3. DEDUPLICATION: PAPER AND AUTHOR

RESOLUTION

Consider the problem of trying to construct a database
of papers, authors and citations, from a collection of pa-
per references, perhaps collected by crawling the web. A
well-known example of such a system is CiteSeer [20], an
autonomous citation indexing engine. CiteSeer is an im-
portant resource for CS researchers, and makes searching
for electronic versions of papers easier. However, as anyone
who has used CiteSeer can attest, there are often multiple
references to the same paper; citations are not always re-
solved and authors are not always correctly identified [45,
43].

In the context of our motivating example, there are several
potential references that must be resolved. The first is the
paper resolution problem; this is the most commonly stud-
ied bibliographic deduplication task. Sometimes, the paper
resolution can be done based simply on the title. We can
use one of the many existing methods for string matching,
perhaps even tuned to the task of title matching. There is
additional relational information, in terms of the venue, the
authors of the paper, and the citations made by the paper;
this additional information may help add evidence to the
fact that two references are the same. This type of entity
resolution has been the focus of much of the work in citation
matching [24, 34, 43, 45].

A more novel example of deduplication is the case of au-
thor resolution. Suppose that we have two different papers,
and we are trying to determine if there are any authors in
common between them. We can also do a string similarity
match between the author names, but often references to
the same person vary significantly. The most common dif-
ference is the variety of ways in which the first name and
middle name are specified. For an author entity “Jeffrey
David Ullman”, we may see references “J. D. Ullman”, “Jeff
Ullman”, “Ullman, J. D.”, and so on. For the most part,
these types of transformations can be handled by specialized
code that checks for common name presentation transforms.
However, we are still presented with the dilemma of deter-
mining whether a first name or middle name is the same
as some initial; while the case of matching “J. D. Ullman”
and “Jeffrey D. Ullman” seems quite obvious, for common
names such as “J. Smith” and “X. Wang” the problem is
more difficult. Existing systems take name frequency into
account and will give unusual names higher matching scores.
But this still leaves the problem of determining when two
references to “J. Smith” refer to the same individual.

We propose to make use of additional context information
in the form of coauthor relationships. If the coauthors of “J.
Smith” for these two papers are the same, then we should
take this into account, and give the two references a higher
matching score. But in order to do this we must have already
determined that the other two author references refer to the
same individual; thus it becomes a chicken and egg problem.

Consider the example shown in Figure 1, where we have
four paper references, each with a title and author refer-
ences. Figure 2 shows the final result after all the author
references have been correctly resolved. We begin by exam-
ining the author references to see which ones we consider
to be the same. In the first step, we might decide that all
of the Aho references refer to the same individual, because
Aho is an unusual last name. This corresponds to identifying
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Figure 1: An example author/paper resolution
problem. Each box represents a paper reference (in
this case unique) and each oval represents an author
reference.

Figure 2: The deduplicated author entities corre-
sponding to the example author/paper resolution
problem.

r1,74,76 and rg as duplicates. However, based on this name
information alone, we are not quite sure whether the Ullman
references (73, rs, r7 and r19) are to the same individual, and
we are certainly not sure about the Johnson references (r2
and rg). But, having decided that the Aho references are
the same gives us additional information for the Ullman ref-
erences. With high-confidence we consolidate the rs and 77
Ullman references; we may also consolidate the other Ull-
man references, although we may not be as certain that this
is correct. And, at this stage, based solely on the Aho entity
consolidation, we may not have enough evidence to consol-
idate the Johnson references. However, after having made
the Ullman consolidations, we may decide that having two
common coauthors for the two references is enough evidence
to tip the balance, and we decide that they refer to the same
Johnson.

Thus the problem of author resolution is likely to be an
iterative process; as we identify common authors, this will
allow us to identify additional potential co-references. We
can continue in this fashion until all of the entities have been
resolved.

3.1 Deduplication of Entities: Formulation

In the deduplication problem, we have some collection of
references to entities and from this set of references we would
like to identify the (unique, minimal) collection of individ-



uals or entities to which they should be mapped. In other
words, we would like to find a many-to-one mapping from
references to entities. But apriori we do not know the set of
entities.

Formally, we have a collection of references R = {ri,r2,...,rn}.

Each reference r corresponds to a unique entity, E(r) €
{e1,e2,...,ex} and conversely R(e) = {r;|E(r;) = e}. The
references are members of links L = {l1,ls,...,ln}. Bach
link is a collection of references and a reference appears in
only one link. In our citation example, each observed author
name is a reference, the list of author names for a paper form
a link and the hidden entities are the true authors. Given R
and L, our task is to correctly determine both the entities
(including the number of entities k) and the mapping from
references to entities.

Not surprisingly, we do this by clustering references that
are similar to each other. The key to the success of this clus-
tering algorithm is the similarity measure (or, equivalently,
the distance measure). We define a distance measure that
takes into account both the attributes of the entities and the
links between them.

The attribute similarity of two references measures the
similarity of the attributes of two references. For references
r; and r;, it measures the similarity between two author
names. If there are other attributes known, such as the
author’s institutions, then these can be factored in as well.
There has been significant work on computing attribute sim-
ilarity, several packages, such as [17], that implement this are
available, so we assume that this measure is given.

In addition, to compute the similarity of the relationships
that two entities participate in, we must compare their links.
But if we simply compare whether the references are the
same, then we will not find any overlap — references are
derived from the authors and, as we defined them, each ref-
erence is distinct. We are looking for common authors in
the links, but these are the entities that we do not know.

Instead, we compare two links by considering the refer-
ences that are currently known/believed to be duplicates.
So clearly, this notion of similarity is bound to the cur-
rent set of duplicates and will change as more references
are deduplicated. In the following section, we describe a
distance measure that leverages this dynamic nature of the
similarity.

3.2 Link Distances for Deduplication

Our aim is to construct the relation dup(r;, r;) over the set
of references given to us. This relation is symmetric and also
reflexive, meaning that every reference is its own duplicate.
Our definition of duplicates is based on a distance measure
between references. We define

dup(ri,r;) = true if d(ri,r;) <t

for a given threshold ¢ and false otherwise. This distance
measure is a weighted combination of the attribute distance
of the references as well as distance between their links. We
define the distance measure in the following subsection. The
definition of duplicates is recursive in that the distance be-
tween references is tied to the current set of duplicates.

The distance between two references is defined as
d(ri,rj) = (1 = @) X dater(ri, 75) + @ X diink (L(r3), L(r5))

where datr() is the distance between the attributes, diink()

is the distance measure between link sets of references and
a is a weighting of the two distances.

Now we define the link sets of references and the distance
between them. For a reference r, L(r) is all the links that r
or its duplicates occur in. L(r) = {l|r’ € I and dup(r,r')}.
There may be many possible ways to define distance between
sets of sets. We build the definition of distance between link
sets on the basic notion of distance between two links of
references. The similarity of two links is defined as the ratio
of the number of duplicates they share and the length of the
longer link. Formally, for two links I; and I,

(11, 1) = {(r1,m2)|dup(ri,r2),m1 € l1,72 € 12}
’ maz(|l1], |I2])

stm

The distance is then d(l1,l2) =1 — sim(l1,l2). Now we take
the distance of a link [ from a link set L to be the shortest
distance from [ to some link I in L. d(l, L) = minycrd(l, ).
Finally, for the distance between two link sets L; and L,
we find the mean distance of links in L; to Ly and of links
in Ly to L1 and take their average. This we choose to call
the link detail distance between two references.

We can now see the recursion in the definition of dupli-
cates and appreciate the need for an iterative algorithm. As
new duplicates are discovered, the distances between link
sets of references are going to change, potentially leading
to the discovery of more duplicates. We represent the cur-
rent sets of duplicates as clusters. We associate with each
cluster the set of links that its references occur in. This
is the link set of the cluster. Formally, for a cluster cg,
L(ck) = {l(r:)|r:i € cr}. Also, with each cluster, we main-
tain a representative attribute value of all its references.?
Once we have these two features for a cluster, we can eas-
ily extend the definition of distance between references to
the distance between clusters. At each step, the algorithm
re-evaluates the distances between clusters and merges the
‘nearest’ cluster-pair to represent the same entity. The iter-
ations continue until there are no more candidates worthy
of merging.

We may imagine the link detail distance as comparing
the co-authors of all papers that two observed authors have
written to determine if they are the same author. It is com-
putationally expensive since it involves pairwise comparison
of members of the link sets in the two clusters. An approx-
imate alternative that is computationally more tractable is
to maintain and compare link summaries. The link sum-
mary ls,m of a reference is the set of all unique references in
its link set. In terms of our example, it is the list of dedu-
plicated collaborators for an observed author. Defining in
terms of the cluster, it is the set of all cluster labels in the
link set of the cluster. lsum(ck) = {ciles € lj,l; € L(ck)}-
Since the link summary is a set of cluster labels of refer-
ences, our definition of distance between two links carries
over to distance between link summaries. This we call the
link summary distance djsum between two clusters. If the
references in the summaries are kept sorted by their cluster
labels, this distance is computable in time that is linear in
the link summary lengths. Finally, we define the summary
distance between two clusters ¢; and c; as a weighted combi-

2For numeric attribute values, we use the mean. For ordinals
or string attributes, we can use domain specific knowledge to
decide the representative value or use the mode or medoid.



nation of the distance dq» of the representative attributes
and the link summary distance djsym.

d(ci,cj) = (1 — @) X daser(ciy ¢5) + @ X disum(ciy cj)

4. GROUP DETECTION FROM LINKS

For most real world scenarios, the entities in a link are not
random selections. It will be observed that there are distinct
patterns in the observed relations and that a particular en-
tity is more likely to co-occur in a link with a specific subset
of all entities rather than a random one. This behavior or
pattern can be better explained if we assume that the en-
tities belong to groups or cliques and that the entities in
any observed link come from the same group in most cases.
We can allow each entity to belong to multiple groups at
the same time. For the bibliographic domain, for example,
we can imagine the entities in a group to be authors with a
common research interest who collaborate. An author can
have multiple research interests but all authors of any paper
share a common interest. We would like to discover these
groups given our link data.

4.1 Group Detection: Formulation

Any algorithm that directly clusters the entities must al-
low overlap among the clusters, so that an entity can belong
to multiple groups. Most clustering algorithms do not have
this feature. However, we can make use of the fact that the
entities in a link come from the same group. Instead of clus-
tering the entities, we can cluster the links, so that links that
come from the same group are clustered together. Here we
are looking for a partition of the links into clusters and any
clustering algorithm with an appropriately defined distance
measure should work. Each link cluster will now represent a
group that we are interested in and an assignment of entities
to groups follows naturally. Each cluster/group ¢; has a set
of links L(q;). The set of entities assigned to the group will
be E(q;) = {ele € L(g;)}. Note that we are not constraining
any entity to belong to a single group. An entity that oc-
curs in two different links /; and l> that have different group
labels ¢1 and ¢ will be assigned to both groups ¢q1 and g¢o.

The key to the clustering will again be an appropriate dis-
tance measure. Each cluster or group is associated with its
own set of links. Two clusters are similar if their link sets
are similar. In the following subsection we propose link dis-
tances that are appropriate for the task of detecting groups
of entities.

4.2 Link Distances for Group Detection

Our primary distance measure between clusters of links
for the task of group detection is motivated by the unified
generative model. It considers the change in probability of
the observed data given the model that would occur if the
two clusters were merged into one. The model structure M
includes the set of groups @ and the set of entities E. The
model parameters include the priors P(q) over the groups gq
and the conditional probabilities P(e|q) for an entity e be-
longing to a group g. The model generates each link by first
selecting a group according to the priors and then sampling
entities from the group according to the conditional proba-
bilities. The joint log-probability of the observed link data

L = {l;} given a model M can then be written as

log P(L|M) =) " log P(I|M)
leL

=YY log P(q)P(lg, M)

I q€Q

=3 S 1og P(g) + 3.5 log P(llg, M)
l q ! q

A link of size k is formed by sampling k distinct entities
from a group. If the group has n elements this can be done
in (}) ways, assuming that all entities in a group are equally
likely to get chosen. The probability of a link coming from
a group can now be written as P(l|q) = 1/(‘|‘;‘|).

As we merge two different groups g1 and ¢» to a single
group qi,2, the model structure is changed. The new group
will now own all the links from ¢; and ¢» and its entities
will be the union of the entity sets E(q1) and E(g2). The
likelihood of the observed data is different given the new
model M’. However the change is local in that only the
generation probabilities of the links belonging to g1 or ¢
will be affected. If L, represents the set of affected links,
then the change in log-probability can be expressed as

drp(q,q2) = Y _ (log P(q1) + log P(ga) — log P(q1,5))
IEL,

+(log P(llq1) + log P(l|g2) — log P(I|q1,2))

For the way that we have defined P(l|q), the probability is
lower when the group contains more entities and in general
the log-probability will always be adversely affected by the
merge. We can imagine this as the cost of the merge oper-
ation. If we further assume uniform priors over the groups
for both M and M’, then we can use

drr(gi,q5) = Y log P(llg;) + log P(l|g;) — log P(l|:,;)
IEL,

for comparing different merge options, since the part of drp
involving the priors over groups will be the same for all pairs
of groups (¢i,q;). A lower dpp will be preferred since, of
the possible models that have the same number of groups,
it is desirable to select the one that has better likelihood
for generating the observed links. This is the first distance
measure that we explore for clustering links into groups and
we will call it the log-probability distance or the LP distance
between link clusters.

Since we have defined the probability of a link of size k
being generated from a group of size n as the probability
of choosing a k-set from n items, the greater the number
of entities in a group, the smaller will be the probability
for a given link. In that light, when choosing two groups
to merge, we are more inclined to select a pair that has a
large number of entities in common. The larger the overlap
in the entity set, the lower will be number of entities in the
merged group. Consequently, the generation probabilities
of the links from the two old clusters will be less adversely
affected when the overlap is large. So, as an alternative
to log-probability distance, we are tempted to define the
distances between groups directly in terms of the overlap in
their entity sets. But the entity sets are nothing but the link
summaries of the groups and the distance measure that we
want to use is the link summary distance between the groups!
This is the second distance measure that we will evaluate for



the group detection task. We must remember that the link
summary distance will again be an approximation. But it
will be computationally cheaper since we are not explicitly
calculating the generation probability of each link in a group,
but instead comparing just the link summaries or entity sets.

5. CLUSTERING ALGORITHMS

We have now defined the distance measures to be used
and evaluated for tasks of clustering the references into en-
tities and the entities/links into groups. In the next two
subsections, we elaborate the steps of the two clustering al-
gorithms.

5.1 [Iterative Deduplication

Recall that we use a combined distance measure for refer-
ences that takes into account the attribute distance as well
as the link distance of references. The link distance considers
the current duplicates shared between two links and evolves
as new duplicates are detected. Accordingly, we need an
iterative algorithm. If each reference is in a different cluster
at the beginning, the distance between all link summaries
will be 1, since there are no known duplicates. Thus, in or-
der to jump-start our clustering algorithm, we start off by
merging together references that ‘obviously’ correspond to
the same entity, or, in other words, are separated by negli-
gible attribute distance. Once the initial clusters have been
so formed, we choose the candidate cluster-pairs that are
likely to be the same entity. The candidate set is chosen
using a distance threshold. At each iterative step, the algo-
rithm re-evaluates distances for the candidates, selects the
closest pair according to the distance measure, merges the
clusters and updates the representative attributes and link
summaries. This procedure continues until the candidate
set is exhausted.

5.2 Clustering for Group Detection

For the task of clustering links into groups, we select the
candidate pairs of clusters whose distances are less than a
threshold and merge them. We use the link summary dis-
tance for choosing the candidate pairs since it is cheaper
to compute. For link summary clustering, we merge all
candidate pairs. However for LP clustering, since we are
choosing the candidates using a cheaper measure, we select
them with a high link summary threshold, to make sure that
we do not miss any potential candidates. We observe that
LP distances of the closest pairs of clusters increase mono-
tonically. So we continue merging pairs of groups from the
liberally chosen candidate set till the distance between the
closest pair goes above a selected LP distance threshold.

6. EXPERIMENTAL EVALUATION

A difficulty with evaluating record linkage performance
is the lack of gold standard for real-world data sets. Here
we report a systematic evaluation of our algorithms on syn-
thetic data, where we can model associations among au-
thors, quantify the amount of noise and evaluate the recall-
precision profiles for our algorithms.

6.1 Data Generator

Since one of our goals is to evaluate the importance of co-
occurrence information for deduplication, we use a unified
data generator for both tasks that incorporates structure in

the author domain by mimicking a real-life scenario where
authors affiliated with a research group or a department in
a university co-author papers. It creates groups of entities,
where an entity belongs to a group with some probability.
Since any author can be associated with multiple research
groups or have multiple research interests, we allow an en-
tity to belong to multiple groups. Each entity has fixed
attribute values, corresponding to the true identity of the
author. However, when it appears as an author name in
any paper, it is likely to look different, which is why author
identification is difficult. We mimic this phenomenon by
probabilistically adding noise to the author identity when
generating the author information for any particular paper.

The parameters for the generator include the number of
links, groups and authors, the degree of overlap between the
groups and the mean size of the groups and the links. The
degree of overlap controls the extent to which entities belong
to multiple groups. Two other parameters control the noise
in the attribute values of the references in each link — the
error probability pe,r and standard deviation oepr.

Each link [/ in our dataset is generated independently.
First, a preference group g is selected according to the prior
probabilities of the groups. Then the number of authors for
the link is chosen from a normal distribution. Each refer-
ence r is chosen by selecting an author a from the group ¢
according their probabilities of belonging to ¢. An author is
not repeated in a link. Each reference also has a small prob-
ability of being selected from any random group ¢’ different
from g¢. This is the data that we use to evaluate our group
detection algorithm. For the purposes of entity identifica-
tion from references, we add noise to the entity attributes.
The attribute values of the reference r, as they appears in
the link, are generated by modifying the attributes of a with
probability perr, the magnitude of modification being de-
termined by oe,r. While this procedure does not exactly
capture the actual generative process for author-names in
a paper, we believe ours is a simple and reasonable model
that considers relationships among authors.

6.2 Evaluation Measure

We evaluate our algorithm by measuring the quality of the
clusters generated. We use two measures of cluster quality
— dispersion and diversity. For the task of deduplication,
entity dispersion reflects the number of different clusters that
references corresponding to the same entity are spread over.
Lower dispersion is better; a perfect deduplication has dis-
persion 1. Cluster diversity quantifies the number of dis-
tinct entities that have been put in the same cluster. Lower
diversity is also preferable; a perfect clustering has diver-
sity 1. For the task of group detection using clustering,
we similarly measure group dispersion over clusters and the
cluster diversity in terms of group labels of links included
in the same cluster. For both tasks, there is an inherent
tradeoff between improving diversity and dispersion; an im-
provement in one will usually adversely affect the other. We
consider the weighted average of the dispersion over entities
or groups and of the diversity over clusters as a measure of
performance.

6.3 Deduplication Results

We compare the entity dispersion and cluster diversity
achieved using link summary clustering against those using
attribute clustering for varying data characteristics and al-
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Figure 3: Deduplication: Dispersion-diversity plots for mixing weight and candidate selection threshold

gorithm parameters. The two algorithm parameters are the
mixing weight o and the candidate selection threshold ;.
The data parameters that we experiment with are the er-
ror probability per» and standard deviation e, the mean
group Size ¢mean and the mean link size lyeqn. As default
values, we choose 1000 entities, 5000 links with l,nean = 4,
100 groups with gmean = 10 and minimal overlap between
groups, error parameters pe,r = 0.1 and gerr = 0.03.

The dispersion-diversity plots in Figure 3 show how the
performance of the two algorithms varies with o and ;.
Each point on the plots is for a different value of a or
ts. Naturally, a low threshold leads to more clusters and
higher entity dispersion. As the threshold is increased, the
number of clusters decreases leading to lower dispersion but
higher cluster diversity. The a-plot for attribute cluster-
ing is a single point as the algorithm does not involve a
mixing weight. We simply show the best result achiev-
able by varying the threshold parameter. The plots show
that the best (dispersion, diversity) combination achievable
with link summary clustering is much better than attribute
clustering.

We have extensively evaluated performance with varying
data generator characteristics. We refer the reader to [5]
for the detailed plots. The conclusions that we draw are
that the gains with link clustering are more when the mean
size of the links is larger, the groups of authors are more
in number and smaller in size and the error probability and
standard deviation are higher for the attribute values.

In Figure 4, we compare deduplication using link detail
distance and link summary distance against that using at-
tribute distance alone. We recall that link detail distance
uses all the information in the links in a cluster for measuring
distances while link summary distance is a computationally
more tractable but approximate alternative that considers
a summary representation of the links. While both of them
do significantly better than attribute clustering, link detail
clustering expectedly shows bigger improvements.

Figure 5 shows the execution times of link summary clus-
tering and attribute clustering for increasing number of ref-
erences. The plots show that link summary clustering scales
gracefully with increasing data size. It is expectedly more

costly than performing attribute similarity and for our datasets

it takes roughly twice the time. However, the added cost
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Figure 5: Deduplication: Execution times of at-
tribute clustering and link summary clustering for
varying data sizes

clearly reaps bigger benefits, as shown by the performance
plots. Database cleaning is not an operation that is likely
to be performed very frequently and the increased compu-
tation time is not expected to be too critical. There may
of course be situations where this approach is not likely to
prove advantageous, for example where distinctive groups
do not exist for the entities or if references for each link ap-
pear randomly. There the user has the choice of falling back
on traditional attribute similarity or choosing « to set a low
weight for link distances.

6.4 Group Detection Results

Figure 6 shows the dispersion-diversity plots of our group

detection task using the two distance measures — log-probability

distance and link summary distance — as the data genera-
tor parameters are varied. Each curve shows the dispersion
and diversity for different values of the threshold that de-
termines termination of the algorithm — the candidate se-
lection threshold for link summary distance and the merge
distance threshold for log-probability distance. The param-
eters that we investigate are the size and number of groups
for the same number of authors, the degree of overlap among
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summary clustering

the groups in terms of the entities that they share and mean
size of each link. We use as default 1000 entities, distributed
over 20 groups with a mean size of 50 and reasonable over-
lap among groups, and a mean link size of 4. The plots
show that log-probability distance generally performs bet-
ter than link summary distance. However, the differences in
performance shrink considerably as the size of the links in-
creases and the entities are distributed over a larger number
of groups thereby making each group smaller in size. The
plots also expectedly show that groups are better identifi-
able when the links are larger, the groups are smaller and
more in number and there is less overlap among the groups.

Figure 7 shows the execution times of link clustering using
log-probability distance and summary distance for varying
number of links in the dataset. For the comparisons, candi-
dates are selected with the same threshold for both distance
measures and the algorithms are terminated when the cor-
rect number of clusters (which is assumed to be known for
this experiment) is reached. Note that the execution times
shown are not averaged over multiple runs on datasets of
the same size and are only intended to show the difference
in running times for the two distance measures for the same
clustering task. The conclusion is that while log-probability
distance generally produces superior groups, it does so at
the cost of significantly more execution time.

7. CONCLUSION

In this paper, we have proposed novel distance measures
that take into account entity relationships for the purpose of
clustering similar entities in linked environments. We show
how these measures can be useful for the important data
mining tasks of data deduplication and group detection. We
argue that the two problems are quite related and use a
unified generative model for link-data to evaluate our ap-
proaches. We present comparisons of the different distance
measures for varying data characteristics that highlight the
tradeoffs involved and results that show significant improve-
ments over algorithms based just on entity attributes.
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