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ABSTRACT

In many applications, there are a variety of ways of refer-
ring to the same underlying entity. Given a collection of
references to entities, we would like to determine the set of
true underlying entities and map the references to these enti-
ties. The references may be to entities of different types and
more than one type of entity may need to be resolved at the
same time. We propose similarity measures for clustering
references taking into account the different relations that
are observed among the typed references. We pose typed
entity resolution in relational data as a clustering problem
and present experimental results on real data showing im-
provements over attribute-based models when relations are
leveraged.

1. INTRODUCTION

In many applications, there are a variety of ways of re-
ferring to the same underlying entity. Given a collection
of references to entities, we would like to a) determine the
collection of ‘true’ underlying entities and b) correctly map
the entity references in the collection to these entities. This
problem comes up in many guises throughout computer sci-
ence. Examples include computer vision, where we need to
figure out when regions in two different images refer to the
same underlying object (the correspondence problem); nat-
ural language processing when we would like to determine
which noun phrases refer to the same underlying entity (co-
reference resolution); and databases, where, when merging
two databases or cleaning a database, we would like to de-
termine when two tuple records are referring to the same
real world object (deduplication and/or record linkage).

Deduplication is important in data cleaning for both ac-
curate analysis and for cost-effectiveness. In information
integration, determining approximate joins is necessary for
consolidating information from multiple sources; most often
there will not be a unique key that can be used to join
tables in distributed databases, and we must infer when
two records from different databases, possibly with differ-
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ent schemas, refer to the same entity.

Often times data may have errors, for example typograph-
ical errors, or multiple representations, such as abbrevia-
tions, so an exact comparison does not suffice for resolving
duplicates in such cases. Traditional approaches to entity
resolution are based on approximate string matching crite-
ria. More recent approaches also take relational similarity
into account. For example, if we are comparing two census
records for ‘Jon Doe’ and ‘Jonathan Doe’, they are more
likely to be the same individual if they are both married to
‘Jeannette Doe’. In other words, the string similarity of the
attributes is taken into account, but so too is the similarity
of the people to whom the person is related.

The problem becomes more interesting when we do not
assume that the related entities have already been resolved.
In fact, determining that two records refer to the same indi-
vidual may in turn allow us to make additional inferences. In
other words, the resolution process becomes iterative. Many
domains involve multiple types of entities, many of which
may be potentially ambiguous. The problem then involves
resolving multiple types of entities at the same time using
the different relations that are observed among them.

The entity resolution problem has generated considerable
interest in the machine learning literature recently [24, 16,
23, 15] and some of these approaches resolve multiple types
of entities[24, 23, 15]. In this paper, we pose typed entity
resolution in relational data as a clustering problem. We
propose similarity measures that consider relations between
entities of multiple types in addition to their attributes. We
also present preliminary experimental results on two real
citation datasets that demonstrate the advantages of rela-
tional entity resolution over attribute-only baselines.

2. RELATED WORK

There has been a large body of work on deduplication,
record linkage, and co-reference resolution. Here we review
some of the main work, but the review is not exhaustive.
For a nice summary report, see Winkler [29].

The traditional approach to entity resolution looks at tex-
tual similarity in the descriptions of the entities. There has
been extensive work on defining approximate string similar-
ity measures [19, 21, 7, 6] that may be used for unsupervised
entity resolution. The other approach is to use adaptive
supervised algorithms that learn string similarity measures
from labeled data [26, 5, 8, 28].

The problem is known to be hard computationally. So
an important focus is on efficiency issues in data cleaning,
where the goal is to come up with inexpensive algorithms



for finding approximate solutions to the problem. The key
mechanisms for doing this involve computing the matches ef-
ficiently and employing techniques commonly called ‘block-
ing’ to quickly find potential duplicates [13, 20, 17].

The groundwork for posing record linkage as probabilistic
classification problem was done by Fellegi and Sunter [11],
who labeling pairs of records from two different files to be
merged as “match” or “non-match” on the basis of agree-
ment among their different fields. Winkler [30] and more
recently Ravikumar et al [25] have built upon this work.

Approaches that take relational features into account for
data integration have been proposed [1, 3, 14, 9]. Anan-
thakrishna et al [1] introduce relational deduplication in
data warehouse applications where there is a dimensional
hierarchy over the relations. Kalashnikov et al [14] en-
hance feature-based similarity between an ambiguous ref-
erence and the many entity choices for it with relation-
ship analysis between the entities, like affiliation and co-
authorship. Bhattacharya and Getoor [3] propose different
measures for relational similarity and show how this can be
combined with attribute similarity for improved author res-
olution in synthetic collaboration graphs. Dong et al [9]
resolve enitites of multiple types by propagating relational
evidences in a dependency graph. They adopt a pair-wise
reconciliation approach so that the graph has nodes for all
potential duplicate pairs and all pairs of similar attributes.
Further, they have a unique node in the graph for each at-
tribute value pair, thereby resorting to ‘global’ resolution
which we discuss in Section 3.3. Emde and Wettschereck
[10] and Neville et al [22] have proposed similarity measures
for relational data but not in the context of entity resolution.

Probabilistic models that take into account interaction
between different entity resolution decisions have been pro-
posed for named entity recognition in natural language pro-
cessing and for citation matching. McCallum et al [16] use
conditional random fields for noun coreference and use clique
templates with tied parameters to capture repeated rela-
tional structure. Li et al [15] address the problem of disam-
biguating “entity mentions”, potentially of multiple types,
in the context of unstructured textual documents. They pro-
pose a probabilistic generative model that captures a joint
distribution over pairs of entities in terms of co-mentions in
documents. Parag et al [23] use the idea of merging evidence
to allow the flow of reasoning between different pair-wise de-
cisions over multiple entity types. Pasula et al[24] propose
a generic probabilistic relational model framework for pos-
ing the citation matching problem. They resort to sampling
algorithms for reasoning over the unknown set of entities.
Milch et al [18] present a formal generative language for
defining probability distribution over worlds with unknown
objects and identity uncertainty. Bhattacharya and Getoor
[4] propose a generative group model for joint entity resolu-
tion. Instead of performing a pair-wise comparison task, we
use a latent group variable for each reference to predict the
entity label.

3. A MOTIVATING EXAMPLE

We will now motivate the problem of relational entity res-
olution and highlight the different issues that come up using
an illustrative example from the bibliographic domain. Con-
sider the problem of trying to construct a database of papers,
authors and citations, from a collection of paper references,
perhaps collected by crawling the web, like CiteSeer [12].

Such systems often have multiple references to the same pa-
per, citations are not always resolved and authors are not
always correctly identified [27, 24].

The most commonly studied bibliographic entity resolu-
tion task is resolving paper citations. Consider the following
example from [27]:

e R. Agrawal, R. Srikant. Fast algorithms for mining as-
soctation rules in large databases. In VLDB-94, 1994.

e Rakesh Agrawal and Ramakrishnan Srikant. Fast Al-
gorithms for Mining Association Rules. In Proc. of
the 20th Int’l Conference on Very Large Databases,
Santiago, Chile, September 1994.

These very different strings are citations of the same paper
and clearly string edit distance will not work. Sometimes,
paper resolution can be done based simply on the title. We
can use one of the many existing methods for string match-
ing, perhaps even tuned to the task of title matching. How-
ever, there is additional relational information, in terms of
the venue, the authors of the paper, and the citations made
by the paper; this additional information may provide fur-
ther evidence to the fact that two references are the same.
This type of entity resolution has been the focus of much of
the work in citation matching [17, 24, 27].

3.1 Multiple Entity Resolution

While the above two citation strings were used to mo-
tivate the paper citation problem, it is more interesting to
note that they present an illustrative example of multi-entity
resolution. To elaborate, the strings refer to papers, but
in addition to the paper title, contain references to other
kinds of entities, which themselves may be ambiguous. This
brings up a scenario where multiple types of entities need
to be resolved simultaneously. In particular, the strings re-
fer to author and venue entities in addition to paper enti-
ties. Assuming that the strings have been correctly parsed
to separate out the different references — which is a diffi-
cult problem by itself — the first citation string mentions
‘R. Agrawal’ and ‘R. Srikant’ as the authors and ‘VLDB-94,
1994’ as the venue, while the second has ‘Rakesh Agrawal’
and ‘Ramakrishnan Srikant’ as the authors and ‘Proc. of
the 20th Int’l Conference on Very Large Databases, Santi-
ago, Chile, September 1994’ as the venue reference. Not all
of these pairs are easy to disambiguate individually. While it
may not be too difficult to resolve ‘R. Srikant’ and ‘Ramakr-
ishnan Srikant’, ‘Agrawal’ is an extremely common Indian
last name and it is certainly not obvious that ‘R. Agrawal’
refers to the same author entity as ‘Rakesh Agrawal’. As for
the venue references, it is very difficult, if not impossible, to
resolve the two venue references without specialized domain
knowledge.

3.2 Joint Resolution Using Entity Relations

For our example, it is not hard to observe the depen-
dence among the different resolution decisions across mul-
tiple types. We can make the resolution decisions depend
on each other in cases were they are related. Significantly,
when the resolution decisions are made collectively, they can
be much easier to make. Let us illustrate the relations for the
citation domain, where the relevant entities are papers, au-
thors and venues. Authors write papers, which get published
in venues. An author is a collaborator of another author if
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Figure 1: (a) Example citations parsed into observed author, paper title and venue strings. (b) The corre-
sponding author, paper and venue references with the resolved entities.

they write the same paper. We may use these relations to
make one resolution decision lead to another. We may be-
gin by resolving ‘R. Srikant’ and ‘Ramakrishnan Srikant’, of
which we are most confident. This may lead us to believe ‘R.
Agrawal’ and ‘Rakesh Agrawal’ are the same author, since
they collaborate with the resolved author entity ‘Srikant’.
Now we can go back to the paper citations which, in addi-
tion to having very similar titles, have now been determined
to be written by the same author entities. This makes us
more confident that the two paper references map to the
same paper entity. Following the same thread, two identical
papers citations must have identical venue citations. So we
may resolve the apparently disparate venue references.

Similar dependencies between pairwise resolution decisions
in the presence of relations among references can be cap-
tured by the relational markov network model for entity
resolution proposed by Parag et al [23]. Note that joint res-
olution can be performed even when the observed data is
not relational. Different pairwise decisions can still be made
to depend on each other using two main ideas. The first
uses tied parameters for repeating features over pairs of ref-
erences and their resolution decisions. The second source of
dependence is via overlaps between pairs of references. Two
different decisions involving the same reference are depen-
dent and this dependence can flow over ‘chains’ of overlap-
ping pairs. This flavor of joint resolution was introduced by
McCallum et al [16]. As we have illustrated using our exam-
ple, other relations between references, when available in the
data, can be taken into account to introduce and leverage
more resolution dependencies.

3.3 Local And Global Resolution

It has been noted [23, 9] that some resolution decisions
may be ‘exported’ to apply in other cases as well. For exam-
ple, the local resolution made in the case of the two venue
strings ‘Proc. of the 20th Int’l Conference on Very Large
Databases, Santiago, Chile, September 1994’ and ‘VLDB-
94, 1994’ in the context of our example papers may be ex-
tended for another set of papers that have the same venues
to resolve them. This we will call global resolution for some
attribute values for an entity type. However, it may not al-

ways be appropriate to export local resolutions. In case of
names for example, while ‘R. Agrawal’ refers to the ‘Rakesh
Agrawal’ entity in this case, some other instance of it might
refer to a different ‘Rajeev Agrawal’.

3.4 Positive And Negative Relational Evidence

Apart from the ones illustrated in our example, other bib-
liographic relations can also potentially be used as additional
evidence when available. Papers are cited by other papers
and two papers are co-cited if they are cited by the same
paper entity. If two similar paper references are co-cited
by the same paper entity, that may serve as additional evi-
dence that they are the same. However, relational evidence
may also be negative in some cases. For example, two paper
references that are cited by the same paper entity are un-
likely to be duplicates, as are two author references that are
co-authors of the same paper entity.

4. PROBLEM FORMULATION

In the relational entity resolution problem, we have some
collection of references to entities and from this set of ref-
erences we would like to identify the (unique, minimal) col-
lection of individuals or entities to which they should be
mapped. In what follows, we will use lower case characters
e and r to denote entities and references. We will use quali-
fied upper case letters like e.A and r.E to denote variables,
and we will use e.a and r.e to denote values of variables
(short-hand for e.A = a).

We are given a set of references R = {r;}, where each ref-
erence r has its attributes r.A. The references are typed. We
are given the possible types 7 = {¢;} in the domain and the
type r.T for each reference is also observed. The references
correspond to entities £ = {e;} so that each reference r has
its hidden entity label r.E. Note that a reference and its
corresponding entity are necessarily of the same type. Each
entity e also has its own attributes e.A, but the entities are
not directly observed. What we observe are the attributes
r.A of individual references. We can imagine r.A to be gen-
erated by some distortion process from the attributes of the
corresponding entity r.E. Obviously, the entity labels of the
references are not observed. Our problem is to recover the



hidden set of entities £ = {e;} and the entity labels r.E
of individual references given the observed attributes and
types of the references.

We will consider relational information between references
to help us in collective entity resolution. We will assume
that the references are observed, not individually, but as
members of hyper-edges. We are given a set of hyper-edges
‘H = {h;} and the membership of a reference in a hyper-edge
is captured by its hyper-edge label r.H. If reference r occurs
in hyper-edge h, then r.H = h. Note that unlike the entity
labels, we know the association of hyper-edges and refer-
ences. Any hyper-edge may relate references of arbitrary
types. The hyper-edges can help us make better predictions
if we assume that they are indicative of associative patterns
among the entities. In other words, the entity labels of ref-
erences that occur in the same hyper-edge are related to
each other. Now the resolution decisions are not indepen-
dent. Instead of finding the entity labels for each reference
individually, our task is to predict the entity labels of the
references collectively, where the entity label r.E of any ref-
erence r is directly influenced by the choice of entity label
r’.E for another reference r’ if they are associated with the
same hyper-edge, ie. r.H = r'.H.

To make this more concrete, consider the earlier example
shown in Figure 1(a) and the corresponding references re-
solved into entities in Figure 1(b). We have a total of eight
references with four in each citation. In citation C1, r; and
ro are author references with attributes r1.A =‘R. Agrawal’
and r2.A =‘R. Srikant’ and types r1.T = r».T =‘author’.
Reference r3 is of type paper, so that r3.T =‘paper’ and
r3.A =‘Fast Algorithms for Mining Association Rules’. The
fourth reference ry4 is a venue with r4.7 =‘venue’ and r4.A =
‘VLDB-94’. Similarly, citation C4 has four references; rs
and re of type ‘author’; r7 of type ‘paper’ and rs of type
‘venue’.

The set of underlying entities € is {e1,e2,es,e4}, where
e1 and e, are the author entities with names e;.A =‘Rakesh
Agrawal’ and e;.A =‘Ramakrishnan Srikant’, es is a paper
with title es.A =‘Fast Algorithms for Mining Association
Rules in Large Databases’ and e4 is a conference venue with
name e4.A =‘20th International Conference on Very Large
Data Bases, 1994’. Clearly, author references r; and r5 cor-
respond to author entity e1 so that r1.E = r5.E = e, while
ro and re correspond to author entity es so that re.F =
re.EE = ez. Also, paper references r3 and r7 correspond to
entity es and venue references r4 and rsg to entity es.

We also have the hyper-edges, which correspond to cita-
tions. Here we have two citations, so that % = {h1,h2}.
The references 1 through r4 are associated with hyper-edge
h1, since they are all obtained from citation C1. This rela-
tion is represented as r1.H = ro.H = r3.H = r4.H = h;.
We similarly associate the other four references with hyper-
edge ho. In rest of this paper, we will use the term edge as
a substitute for hyper-edge. It will be understood that an
edge may involve more than two references.

S. RESOLUTION BY CLUSTERING

The task of collective entity resolution may be rephrased
as a relational clustering problem where the goal is to clus-
ter the references so that those that correspond to the same
entity end up in the same cluster. We may imagine a greedy
agglomerative clustering algorithm, where at any stage the
current set C = {c;} of entity clusters reflects our current

belief about the underlying entities. In other words, each
entity cluster corresponds to one reconstructed entity and
all references in a cluster correspond to the same entity. For
our running example, we would like the algorithm to find
four clusters, one for each underlying entity. Membership of
references in the constructed clusters are represented using
a cluster label r.C for each reference. All references that are
members of a cluster need to be of the same type, which
is also the type ¢.T for the cluster. To start off, each ref-
erence belongs to a separate cluster and at each step the
pair of clusters (or entities) that have the highest evidence
for being the same entity are merged. The key to the suc-
cess of a clustering algorithm is the distance measure (or
alternatively, the similarity measure) that is employed. The
similarity measure takes into account the similarity in the
attributes of the references in the two clusters. In addition,
we want the similarity measure to incorporate the idea of
joint or collective resolution. The measure should take into
account the related resolution decisions that have been made
previously. Accordingly, the similarity measure needs to be
extended to consider both reference attributes and relational
patterns.

The attribute similarity component of the similarity mea-
sure looks at the similarity of the attributes r.A of the ref-
erences in the two clusters. In our case, it measures the
similarity between two observed reference names. In addi-
tion, we have the relational similarity component that looks
at the similarity of the relations that the two entities or clus-
ters participate in. Each cluster is associated with a set of
edges to other references that we want to take into account.
For the other references, we want look not at their attribute
values but at the resolution decisions that have been taken
on them. Specifically, we want to look at the cluster labels
r.C of these references. To illustrate this using our exam-
ple from Figure 1, suppose we have already resolved the
‘Agrawal’ and ‘Srikant’ references in clusters ¢; and ¢z re-
spectively. Consider the current similarity of the two paper
references which are yet to be resolved and still belong to
separate entity clusters, say cs, having r3 and c3, having
r7. The two clusters are associated with one edge each, h;
and hs respectively. We want to factor into the similarity
measure the fact that the two edges are associated with the
same resolved clusters ¢1 and c¢2, which is what makes the
clusters cs, and csp similar.

An issue that is brought out by the above discussion is
the dynamic nature of the relational similarity component.
Initially, when all references belong to distinct clusters, the
two paper clusters will not be considered similar enough.
But their relational similarity goes up in stages as first the
‘Srikant’ references and then the ‘Agrawal’ references are
resolved. In the following sections, we describe an iterative
clustering algorithm that leverages this dynamic nature of
relational similarity.

6. SIMILARITY MEASURES

In this section, we formally define the similarity measure
between two entity clusters as a weighted combination of the
attribute similarity and relational similarity between them
and highlight the computational and other algorithmic is-
sues that are involved.

For two entity clusters ¢; and c;, their similarity may be



defined as

sim(ci,cj) = (1 — @) X sitmaser(ci, cj)+ @ X simpe(ci,cj)
0<a<l1

where simqit,() is the similarity of the attributes and simei()
is the relational similarity between the two entity clusters
and they are linearly combined with weights o and 1 —a. In
the following two subsections, we discuss the two similarity
components in detail.

6.1 Attribute Similarity

We assume the existence some basic similarity measure
that takes two reference attributes and returns a value be-
tween 0 and 1 that indicates the degree of similarity between
them. A higher value indicates greater similarity between
the attributes. We are not making any other assumptions
about the attribute similarity measure. Any measure that
satisfies these assumptions can be used in our scheme. We
may potentially use different attribute similarity measures
for different clusters pairs depending on their types.

However, simqy () defines the similarity of attributes be-
tween two entity clusters. Each entity cluster is a collection
of references with their own attributes. So we need to use
the similarity measure that takes two attributes to define the
similarity between two clusters of attributes. This is similar
to finding the aggregate distance between two clusters given
a pairwise distance measure. Many approaches have been
proposed for aggregating over pair-wise distances between
the two clusters [2]. The duplicate relation is typically tran-
sitive: if references r; are r; are duplicates, then all other
duplicates of r; will also be duplicates of r;. So the single
link measure that takes the minimum pair-wise distance (or
the maximum pairwise similarity) between two clusters is
the most relevant for our purposes. Computing single link
similarity is quadratic in the average number of distinct at-
tribute values in a cluster. A more efficient alternative to
pairwise comparison might be to maintain a representative
attribute for each entity cluster, which is the most likely
attribute value for the underlying entity given the observed
attributes of all references in that cluster. Then the at-
tribute similarity for a cluster pair is the similarity of their
representative attributes.

6.2 Relational Similarity

Next, we address the relational similarity measure be-
tween two entity clusters considering the clusters that they
are related to via the observed edges. There are many pos-
sible ways to define this similarity. We explore some possi-
bilities here and focus on some issues that are of relevance.

6.2.1 Edge Detail Similarity

Each entity cluster is associated with a set of edges that
the references contained in it belong to. Recall that each
reference r is associated with an observed hyper-edge r.H.
Then the edge set ¢.H for an entity cluster ¢ may be de-
fined as c¢.H = {h | r.H = h Ar.C = c}. To ground this in
terms of our example in Figure 1, after we have resolved the
‘Agrawal’ references so that cluster ¢; contains references rq
and 75, then the edge set for the cluster is ¢c1.H = {h1, ha}
having the edges corresponding to the two citations involv-
ing ‘Agrawal’. We will now define a similarity measure for a
pair of edges, so that given this pair-wise similarity measure,

we can again use a linkage metric like single link to measure
the relational similarity between two clusters.

Let us first define a pairwise similarity measure between
two hyper-edges. We have already noted that what we want
to consider for relational similarity are the the cluster labels
of the references in each edge, and not their attributes. So
for an edge, we consider the multi-set of cluster labels, one
for each reference associated with it. However, the refer-
ences and accordingly the cluster labels in a hyper-edge can
be of multiple types. To look at the clusters of each type
separately, we define a type projection for an edge as the set
of cluster labels from it that are of a particular type. For
example, the ‘author projection’ for edge h; in our exam-
ple has the two author clusters ¢; and c;. Formally, for a
hyper-edge h and a type t, the projection II;(h) is defined
as

ILi(h) ={c|r.C=cAr.H=hAcT =t}

To check two edges for similarity, we will consider their pro-
jections for each type separately. A common measure for
set similarity is the Jaccard similarity. For two sets A and

B, their Jaccard similarity is defined as Jaccard(A,B) =
[AN B|
AUBI- _
particular type ¢ is

stmy(hi, hj) = Jaccard(Ily(h;), i (hj))

Then the similarity of two edges h; and h; for a

The overall similarity for the edges may then be obtained
by using some appropriate aggregation operation ¥ over all

types:
sim(hi, hj) = Zt[simt (hi, h]‘ )]

The aggregation operation could be a max or a weighted
combination over the types.

Given this pairwise similarity measure for edges, we can
use an aggregation operation like maz to calculate the rela-
tional similarity between two entity clusters as follows:

simyei(ci,cj) = maxn, n){sim(hi, hy)}
h; € ¢;.H, hj € Cj.H

This we will call the edge detail similarity between two clus-
ters since it explicitly considers every edge associated with
each cluster. Observe that computing the similarity between
two edges is linear in the average number of references in an
edge, while computing the edge detail similarity of two clus-
ters is quadratic in the average number of edges associated
with each cluster.

6.2.2 Neighborhood Similarity

Clearly, an issue with edge detail similarity is the compu-
tational complexity. Also, it is not trivial to incrementally
update edge detail similarity when clusters merge. A second
and probably more pertinent issue is whether the detailed
pair-wise similarity computation for edges is really neces-
sary for the task at hand. While it may make sense for
some other applications, it may not be necessary to look at
the structure of each edge separately for the task of rela-
tional entity resolution. Using a more concrete example, for
two author entities e; and e} to be considered similar, it is
not necessary for both of them to co-author a paper with
entities ez, e3 and e4 together. Instead, if e; participates in
an edge {e1,e2,es,es} and e participates in three separate



edges {el,e2}, {el,es} and {e},es}, then that also should
count as significant relational evidence for their being the
same author entity (if they have similar attributes as well).
In other words, whether or not two entity clusters with sim-
ilar attributes have the same edge structures, if they have
the same neighbor clusters to which they have edges, that is
sufficient relational evidence for bibliographic entity resolu-
tion.

We will now formalize the notion of neighborhood for a
cluster. Recall that we have defined II;(h)) as the typed
projection of cluster labels for an edge h. Also, for an entity
cluster ¢, c.H is the set of edges associated with it. Then
we can formally define the typed neighborhood N¢(c) for ¢
as follows:

Niy(e) = |J(h), hecH

Note that [J,,, is the multi-set union operator and the neigh-
borhood is also a multi-set in general. Intuitively, we col-
lapse the edge structure and for each type just look at how
many times c¢ has participated in the same edge with a clus-
ter of that particular type. Going back to our example
from Figure 1, suppose the ‘Agrawal’ and ‘Srikant’ refer-
ences have been resolved into author clusters ¢i; and ¢z but
the other references are still dispersed over paper clusters
c3, and c3, and venue clusters cs, and c4p. Then the au-
thor neighborhoods for the paper clusters c3, and cs3, are
identical: Nguthor(c3a) = Nauthor(css) = {c1,c2}. But their
venue neighborhoods are different: Nyenue(c3a) = {40} and
Nyenue (CSb) = {c4b}-

Now, for the relational similarity measure between two
entity clusters for a particular type, we take the Jaccard
similarity between their neighborhoods of that type. Note
that Jaccard similarity can be naturally extended for multi-
sets. Finally, for the overall similarity between clusters we
can aggregate over all types as before:

stmyei(ci, ¢j) = Be[Jaccard(Ne(cs), Ne(cj))]

We will call this the neighborhood similarity between two
clusters. Computing and updating neighborhood similar-
ity is significantly cheaper computationally compared to the
edge detail similarity. It is linear in the average number of
neighbors per entity.

6.3 Handling Negative Relational Evidence

So far, we have considered relational structure as addi-
tional evidence for two author references actually referring
to the same underlying author entity. However, relational
evidence can be negative as well. A ‘soft’ aspect of nega-
tive evidence is directly captured by the combined similar-
ity measure. Imagine two references with identical names.
If we only consider attributes, their similarity would be very
high. However, if they do not have any similarity in their
edge structures, then we are less inclined to believe that they
correspond to the same entity. This is reflected by the drop
in the their overall similarity when the relational similarity
measure is factored in as well.

We may also imagine stronger relational constraints for
clustering. In many relational domains, there is the con-
straint that no two references appearing in the same edge
can be duplicates of each other. In our example, no mat-
ter how similar the names ‘R. Srikant’ and ‘R. Agrawal’ are
deemed to be by the attribute similarity measure that is

employed, they cannot be the same entity since they are
co-authors. We have such constraints for every edge that
has more than one reference. This can be taken into ac-
count by the relational similarity measure. The similarity
between two cluster pairs is zero if merging them violates
any relational constraint.

7. IMPLEMENTATION

Given the similarity measure for a pair of clusters, we can
use a greedy agglomerative clustering algorithm that finds
the closest cluster pair at each step and merges them. Here
we discuss several implementation and performance issues
regarding our relational clustering algorithms for entity res-
olution (RC-ER).

The algorithm inserts all candidate duplicate pairs —
identified using a ‘blocking’ approach — into a priority queue
considering their similarities. Then it iteratively picks the
pair with the highest similarity and merges them. The al-
gorithm terminates when the similarity for the closest pair
falls below a threshold.

The relational clustering algorithm begins with each refer-
ence assigned to a separate entity cluster. So to start with,
the clusters are disconnected and there is no relational evi-
dence at all between clusters. As a result, all initial merges
would occur based solely on attribute similarity, which is
what we want to avoid. To deal with this, we would like
to bootstrap the clusters so that some relational evidence
may be leveraged. It would also speed up the algorithm if
initial clusters could be merged without similarity computa-
tions and updations. One option is to assign the same initial
cluster to any two references that have attributes v; and wva,
where either v; is identical to vz, or v; is an initialed form
of va. For example, we may merge ‘Alfred Aho’ references
with other ‘Alfred Aho’ references or with ‘A. Aho’ refer-
ences. However, for domains where last names repeat very
frequently, like Chinese, Japanese or Indian names, this can
affect precision quite adversely. For the case of such com-
mon last names', the same author label can be assigned to
pairs only when they have document co-authors with iden-
tical names as well. For example, two ‘X. Wang’ references
will be merged when they are co-authors with ‘Y. Li’. (We
will also merge the ‘Y. Li’ references.) This should improve
bootstrap precision significantly under the assumption that
while it may be common for different authors to have the
same (initialed) name, it is extremely unlikely that they will
collaborate with the same author, or with two other authors
with identical names.

In addition to using a secondary source for determining
common names, a data-driven approach may also be em-
ployed. A [last name, first initial] combination in the data
is ambiguous, if there exist multiple first names with that
initial for the last name. For example, though ‘Zabrinsky’
is not a common last name, ‘K. Zabrinsky’ will be consid-
ered ambiguous if ‘Ken Zabrinsky’ and ‘Karen Zabrinsky’
occur as author references in the data. Ambiguous refer-
ences or references with common last names are not boot-
strapped in the absence of relational evidence in the form of
co-authorships, as described above.

Once potential duplicate entity clusters have been iden-
tified and clusters have been bootstrapped, the algorithm

'A list of common last names is available at
http://en.wikipedia.org/wiki/List_of_most_popular_family names



iterates over the following steps. At each step, it identifies
the currently closest pair of clusters (ci,c;) from the can-
didate set and merges them to create a new cluster c;;. It
removes from the candidate set all pairs that involve either
¢; or ¢; and inserts relevant pairs for ¢;;. It also updates
the similarity measures for the ‘related’ cluster pairs. All of
these tasks are performed efficiently using an indexed prior-
ity queue to make the algorithm scalable.

8. EXPERIMENTAL RESULTS

We perform evaluations on two citation datasets from dif-
ferent research areas and compare the relational entity res-
olution algorithm (RC-ER) with others based solely on at-
tributes. Here we report results for the single entity case
where we only resolve references of the author type. We do
not resolve venues or papers.

The first of the citation datasets is the CiteSeer dataset
containing citations to papers from four different areas in
machine learning, originally created by Giles et al.[12]. This
has 2,892 references to 1,165 authors, contained in 1,504 doc-
uments. The second dataset is significantly larger; arXiv
(HEP) contains papers from high energy physics used in
KDD Cup 20032. This has 58,515 references to 9,200 au-
thors, contained in 29,555 papers. The authors for both
datasets have been hand-labeled.®

To evaluate the algorithms, we measure the performance
of the algorithms for detecting duplicates in terms of the
traditional precision, recall and F1 on pairwise duplicate
decisions. It is practically infeasible to consider all pairs,
particularly for HEP, so a ‘blocking’ approach is employed
to extract the potential duplicates. This approach retains ~
99% of the true duplicates for both datasets. The number of
potential duplicate pairs of author references after blocking
is 13,667 for CiteSeer and 1,534,661 for HEP.

As our baseline (ATTR), we compare with the hybrid
Soft TF-IDF measure [7] that has been shown to outperform
other unsupervised approaches for text-based entity reso-
lution. Essentially, it augments the TF-IDF similarity for
matching token sets with approximate token matching us-
ing a secondary string similarity measure. Jaro-Winkler is
reported to be the best secondary similarity measure for
Soft TF-IDF. We also experiment with the Jaro and the
Scaled Levenstein measures. ATTR only reports pairwise
match decisions. Since the duplicate relation is transitive,
we also evaluate ATTR* which removes inconsistencies in
the pairwise match decisions in ATTR by taking a transi-
tive closure. Note that this issue does not arise with RC-
ER; it does not make pairwise decisions. All of these un-
supervised approaches ATTR, ATTR* and RC-ER need
a similarity threshold for deciding duplicates. We consider
the best F'1 that can be achieved over all thresholds.

Table 1 records F1 achieved by the four algorithms with
various string similarity measures coupled with Soft TF-IDF
while Table 2 shows the best F1 and the corresponding pre-
cision and recall for the four algorithms for each dataset
over all secondary similarity measures. The recall includes
blocking, so that the highest recall achievable is 0.993 for
CiteSeer and 0.991 for HEP.

2http: //www.cs.cornell.edu/projects/kddcup/index.html
3We would like to thank Aron Culotta and Andrew McCal-
lum for providing the author labels for the CiteSeer dataset
and David Jensen for providing the author labels for the
HEP dataset. We performed additional cleaning for both.

Table 1: Performance of ATTR, ATTR* and RC
using neighborhood and edge detail similarity in
terms of F1 using various secondary similarity mea-
sures with Soft TF-IDF. The measures compared are
Scaled Levenstein (SL), Jaro (JA), and Jaro Winkler
(JW).

CiteSeer HEP
SL JA JW SL JA JW
ATTR 0.980 0.981 0.980 | 0.976 0.976 0.972

ATTR* 0.989 0.991 0.990 | 0.971 0.968 0.965
RC(Nbr) 0.994 0.994 0.994 | 0.979 0.981 0.981
RC(Edge) | 0.995 0.995 0.995 | 0.982 0.983 0.982

Table 2: Best F1 and corresponding precision and
recall for ATTR, ATTR* and RC-ER with neigh-
borhood and edge detail similarity for CiteSeer and
HEP datasets.

CiteSeer HEP
P R F1 P R F1
ATTR 0.990 0.971 0.981 | 0.987 0.965 0.976

ATTR* 0.992 0.988 0.991 | 0.976 0.965 0.971
RC(Nbr) 0.998 0.991 0.994 | 0.990 0.972 0.981
RC(Edge) | 0.997 0.993 0.995 | 0.992 0.974 0.983

The best baseline performance is with Jaro as secondary
string similarity for CiteSeer and Scaled Levenstein for HEP.
Transitive closure affects the baseline differently in the two
datasets. While it adversely affects precision for HEP re-
ducing the F1 measure as a result, it improves recall for
CiteSeer and thereby improves F1 as well.

RC-ER outperforms both forms of the baseline for both
datasets. Also, for each secondary similarity measure RC-
ER with neighborhood similarity outperforms the baselines
with that measure and is in turn outperformed by RC-ER
using edge detail similarity. For CiteSeer, RC-ER gets close
to the highest possible recall with very high accuracy. Im-
provement over the baseline is greater for HEP. While the
improvement may not appear large in terms of F1, note that
RC-ER reduces error rate over the baseline by 44% for Cite-
Seer (from 0.009 to 0.005) and by 29% for HEP (from 0.024
to 0.017). Also, HEP has more than 64,6000 true duplicate
pairs, so that a 1% improvement in F1 translates to more
than 6,400 correct pairs.

Looking more closely at the resolution decisions from Cite-
Seer, we were able to identify some interesting combination
of decisions by RC-ER that would be difficult or impos-
sible for an attribute-only model. There are instances in
the dataset where reference pairs are very similar but corre-
spond to different author entities. Examples include (liu j, lu
j) and (chang ¢, chiang ¢). RC-ER correctly predicts that
these are not duplicates. At the same time, there are other
pairs that are not any more similar in terms of attributes
than the examples above and yet are duplicates. These are
also correctly predicted by RC-ER using the same simi-
larity threshold by leveraging common collaboration pat-
terns. The following are examples: (john m f, john m st),
(reisbech c, reisbeck c¢ k), (shortliffe e h, shortcliffe e h),
(tawaratumida s, tawaratsumida sukoya), (elliott g, elliot g
1), (mahedevan s, mahadevan sridhar), (livezey b, livezy b),



(brajinik g, brajnik g), (kaelbing 1 p, kaelbling leslie pack),
(littmann michael I, littman m), (sondergaard h, sndergaard
h) and (dubnick cezary, dubnicki c). An example of a par-
ticularly pathological case is (minton s, minton andrew b),
which is the result of a parse error. The attribute-only base-
lines cannot make the right prediction for both these sets of
examples simultaneously, whatever the decision threshold,
since they consider names alone.

Figure 2 shows how performance varies for RC-ER. for
the two datasets with varying combination weight o for at-
tribute and relational similarity. Recall that when « is 0,
the similarity is based only on attributes and when a is 1
it is wholly relational. The plots show that RC-ER with
both neighborhood and edge detail similarity outperform
the baselines over all values of a. Note that RC-ER takes
advantage of relational bootstrapping in these experiments
which explains why it is better than the baseline even when
alpha is 0. The best performance for CiteSeer is around
0.5 while for HEP performance peaks around 0.1 and then
trails off. It can also be observed that edge detail similarity
is more stable in performance over varying « than neigh-
borhood similarity. Significantly, once clusters have been
bootstrapped using attribute and relational evidence, RC-
ER outperforms the baselines even when alpha is 1, which
means that attributes are being overlooked altogether and
clusters are merged using relational evidence alone.

Figure 3 shows performance of RC-ER without using re-
lational bootstrapping. When «a is 0, RC-ER is identical to
ATTRX* which is verified by the results. As « increases from
0, performance improves over the baseline and then drops
again. For HEP, performance falls sharply with higher o
with neighborhood similarity. Edge detail similarity how-
ever still performs surprisingly well. Even when « is 1, it
does better than the baseline for CiteSeer and is able to
achieve close to 0.9 F1 for HEP. This suggests that edge
detail is a reliable indicator of identity even without consid-
ering attributes. It should however be noted these results
include blocking, which uses attributes to find potential du-
plicates. This suggests that given people with similar names,
it is possible to identify duplicates with a high degree of re-
liability using edge detail similarity alone.

Table 3: Execution time of RC-ER, ATTR and
ATTR* in CPU seconds for CiteSeer and HEP

datasets.

CiteSeer HEP
ATTR 1.70 164.34
ATTR* 1.97 191.40
RC(Nbr w/ Bootstrap) 3.28 1123.41
RC(Edge w/ Bootstrap) 3.56 1462.77
RC(Nbr w/o Bootstrap) 14.50 4099.88
RC(Edge w/o Bootstrap) 14.34 4143.17

Finally, we look at the execution times of the algorithms.
All experiments were run on a 1.1GHz Dell PowerEdge 2500
Pentium III server. First, in Table 3 we record the execution
times in CPU seconds of the baselines and different versions
of RC-ER on the CiteSeer and HEP datasets. RC-ER ex-
pectedly takes more time than the baselines. But it is quite
fast for CiteSeer taking only twice as much time as AT'TR*.
It takes longer for HEP; about 7 times as long compared to
the baseline. While using edge detail is more expensive than

neighborhood similarity, it does not take significantly longer
for either dataset. The complexity of edge detail depends
on a number of factors. It grows quadratically with the av-
erage number of edges per entity and linearly with average
number of references in each edge. While the average edge
size is same for both datasets, average number of edges per
entity is 2.5 for CiteSeer and 6.36 for HEP which explains
the difference in execution times. In contrast, complexity of
neighborhood similarity is linear in the average number of
neighbors per entity, which is 2.15 for CiteSeer and 4.5 for
HEP.

Execution time
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Figure 4: Execution time for ATTR* and RC-ER
with neighborhood and edge detail similarity over
varying number of references in synthetic datasets.

To see how the algorithms scale with increasing number of
references in the dataset, we used a synthetic generator for
ambiguous data. We preserved features of the real datasets
wherever possible, like the average number of references and
edges per entity, the degree of neighborhood for each entity
and the average number of references per edge. The exe-
cution times of ATTR* and different versions of RC-ER
are plotted in Figure 4 against varying number of references
in the dataset. We would like to stress that the execution
time depends on other factors as well like the number of
potential duplicate pairs in the data, which we were not
able to control directly. So these numbers should not be
compared with the execution times on the real datasets but
instead should serve only for a comparative study of the dif-
ferent algorithms. The curves confirm that RC-ER takes
longer than the baseline but they also show that the trend
is roughly linear in the number of references for all versions
of it. The plots also show the significant speedup that is
achieved with relational bootstrapping in addition to the
performance benefits that it provides.

9. CONCLUSIONS

In this paper, we address the problem of resolving refer-
ences to multiple types of entities in relational data. We
propose two different similarity measures for references that
consider relational similarity among them in addition to the
attribute similarities. We show how these similarity mea-



Varying alpha: Jaro for CiteSeer

Varying alpha: Jaro Winkler for CiteSeer

Varying alpha: Scaled Levenstein for CiteSeer

0.996 . . . . 0.996 . s s s 0.996 . . . .
0994 | ] 0.994 m 0.994 | ]
0.992 ¢ 1 0.992 7 1 0.992 | 1

~ 099 ] . 099y ~ 099¢% ]

% o988 | L 0988y % osgss|

[ ’ ® 0986 | - RC-ER (Nbr) [ ’

<0986 | —— RC-ER (Nbr) 2 esal -e— RC-ER (Edge) <0986 | —— RC-ER (Nbr)

- RC-ER (Edge) : ATTR - RC-ER (Edge)
0.984 v ATTR 0.982 | ATTR" 0.984 ¢ v ATTR
0.982 | ATTR 0.98 | 0.982 | ATTR
0.98 ; : ! ; 0.978 . . . . 0.98 ; : ; ;
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
alpha alpha alpha
(a) (b) (c)
Varying alpha: Jaro for HEP Varying alpha: Jaro Winkler for HEP Varying alpha: Scaled Levenstein for HEP
0.985 . . . . 0.985 . . . . 0.985 . . . .
7 ¢ 7
= 0975 “ 0975 ¢ = 0975 [

4 — RC-ER (Nbr) 4 8

< - RC-ER (Edge) < <
0.97 | ATTR 0.97 f —— RC-ER (Nbr) 0.97 | — RC-ER (Nbr)

ATTR* -e— RC-ER (Edge) - RC-ER (Edge)
e ATTR e ATTR
0.965 | ) ) ) ) 0.965 | ATTR” 0.965 | ) ) ATTR*
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
alpha alpha alpha
() (e) (f)

Figure 2: The best F1 measures achieved by RC-ER with neighborhood and edge detail similarities over
varying combination weight a for (a-c) CiteSeer and (d-f) HEP using single link for attribute similarity with
Jaro, Jaro-Winkler and Scaled Levenstein respectively.

sures may be used to resolve references into entities by clus-
tering them. Experiments on the CiteSeer and HEP biblio-

graphic datasets demonstrate that relational similarity when

used in addition to attribute similarity results in improved
entity resolution performance. In fact, one of our relational

similarity measures does surprisingly well in resolving am-

biguous references even without the assistance of attributes.
While relational clustering expectedly takes longer than at-
tribute clustering, we show that the algorithms scale grace-

fully with the size of the data. We present a relational boot-

strapping scheme for clustering that significantly reduces ex-
ecution time in addition to improving performance. We also

illustrate the diverse issues that need to be addressed when

resolving typed references in relational data.
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