
Collective Entity Resolution in Relational Data

INDRAJIT BHATTACHARYA

and

LISE GETOOR

University of Maryland, College Park

Many databases contain uncertain and imprecise references to real-world entities. The absence
of identifiers for the underlying entities often results in a database which contains multiple ref-
erences to the same entity. This can lead not only to data redundancy, but also inaccuracies in
query processing and knowledge extraction. These problems can be alleviated through the use
of entity resolution. Entity resolution involves discovering the underlying entities and mapping
each database reference to these entities. Traditionally, entities are resolved using pair-wise sim-
ilarity over the attributes of references. However, there is often additional relational information
in the data. Specifically, references to different entities may co-occur. In these cases, collective
entity resolution, in which entities for co-occurring references are determined jointly, rather than
independently, can improve entity resolution accuracy. We propose a novel relational clustering
algorithm that uses both attribute and relational information for determining the underlying do-
main entities, and we give an efficient implementation. We investigate the impact that different
relational similarity measures have on entity resolution quality. We evaluate our collective entity
resolution algorithm on multiple real-world databases. We show that it improves entity resolu-
tion performance over both attribute-based baselines and over algorithms that consider relational
information but do not resolve entities collectively. In addition, we perform detailed experiments
on synthetically generated data to identify data characteristics that favor collective relational
resolution over purely attribute-based algorithms.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Clustering; H.2.8 [Database Management]: Database Applications—
Data mining

General Terms: Algorithms

Additional Key Words and Phrases: entity resolution, graph clustering, record linkage, data
cleaning

1. INTRODUCTION

In many applications, there are a variety of ways of referring to the same under-
lying real-world entity. For example in a census database, “J. Doe”, “Jonathan
Doe” and “Jon Doe” may all refer to the same person. Additionally, in many do-
mains references to different entities often co-occur in the data. For example, the
same database may also have records showing that “Jonathan Doe” is married to
“Jeanette Doe” and has dependents“James Doe” and “Jason Doe”, “Jon Doe” is
married to “Jean Doe”, and “J. Doe” has dependents “Jim Doe”, “Jason Doe” and
“Jackie Doe”. Such relationships between entity references are best represented as
a graph, which we refer to as the reference graph, where the nodes are the entity
references and edges (or often hyper-edges) in the graph indicate references which
co-occur. The problem is, for any real-world entity, there may be multiple refer-
ences to it, and, accordingly, there is more than one node in the reference graph
corresponding to that entity.

ACM Journal Name, Vol. v, No. n, mm 20yy, Pages 1–35.

2 · Bhattacharya and Getoor

Thus an important first step in any graph mining algorithm is transforming such
a reference graph into an entity graph, where nodes are the entities themselves and
edges are among entities. Given a collection of references to entities, we would
like to a) determine the collection of ‘true’ underlying entities and b) correctly
map the entity references in the collection to these entities. Figure 1(a) shows the
reference graph from our census example and Figure 1(b) shows the entity graph
after the references in the reference graph have been resolved. Even in this simple
example, the entity graph is much smaller than the reference graph and consists of
a single connected component. This provides a much more accurate picture of the
underlying domain structure than the collection of disconnected subgraphs in the
reference graph.

Entity resolution is a common problem that comes in different guises (and is given
different names) in many computer science domains. Examples include computer
vision, where we need to figure out when regions in two different images refer to
the same underlying object (the correspondence problem); natural language pro-
cessing when we would like to determine which noun phrases refer to the same
underlying entity (co-reference resolution); and databases, where, when merging
two databases or cleaning a database, we would like to determine when two tuple
records are referring to the same real-world object (deduplication and data inte-
gration). Deduplication [Hernández and Stolfo 1995; Monge and Elkan 1996] is
important for both accurate analysis, for example determining the number of cus-
tomers, and for cost-effectiveness, for example removing duplicates from mailing
lists. In information integration, determining approximate joins [Cohen 2000] is
important for consolidating information from multiple sources; most often there
will not be a unique key that can be used to join tables in distributed databases,
and we must infer when two records from different databases, possibly with differ-
ent structures, refer to the same entity. In many of these examples, co-occurrence
information in the input can be naturally represented as a graph.

Traditional approaches to entity resolution and deduplication use a variety of
attribute similarity measures, often based on approximate string matching crite-
ria. These work well for correcting typographical errors and other types of noisy
reference attributes. More sophisticated approaches make use of domain specific
attribute similarity measures and often learn such mapping functions from resolved
data. However, it is still difficult to decide when identical references are in fact dis-
tinct. For example, two people with name ‘J. Doe’ and living at the same address
and of the same age may be brothers and not the same person.

More recent approaches take structural (i.e., relational) similarity into account
[Ananthakrishna et al. 2002; Bhattacharya and Getoor 2004; Kalashnikov et al.
2005; Dong et al. 2005]. One approach simply looks at the attributes of related
references, and incorporates them into the attribute similarity score. For example,
if we are comparing two census records for ‘Jon Doe’ and ‘Jonathan Doe’, we should
be more likely to match them if they are married to ‘Jean Doe’ and ‘Jeannette Doe’.
The problem becomes even more interesting when we assume that the entity for a
reference depends not on the attribute similarities of related references but instead
on the entities to which they correspond. Then the references cannot be assigned
to entities independently any more — the entities for related references depend

ACM Journal Name, Vol. v, No. n, mm 20yy.

Collective Entity Resolution in Relational Data · 3

Jim Doe

Jason Doe

Jackie Doe

J Doe

Jon Doe

Jean Doe

Jason Doe

James Doe

Jonathan Doe

Jeanette Doe

(a)

James Doe

Jason Doe

Jackie Doe

Jonathan Doe

Jeanette Doe

(b)

Fig. 1. Example of (a) a reference graph for simple example given in the text and (b) the resolved
entity graph.

on one another. In our example, we would not consider ‘Jon Doe’ and ‘Jonathan
Doe’ to be the same person simply because their wives’ names are similar, since
different people may have wives with similar names. But if we can determine that
they are married to the same person, this would provide significant evidence that
these references refer to the same entity. Because the resolutions are no longer
independent, the problem becomes one of collective entity resolution.

The collective entity resolution problem can be solved in an iterative fashion.
Determining that two references refer to the same entity may in turn allow us to
make additional inferences about their related references. In our census example, if
we are able to determine that the two “Jason Doe”s refer to the same person, that
would provide further evidence to believe that their fathers “Jonathan Doe” and
“J. Doe” are also the same, and possibly that their siblings “Jim Doe” and “James
Doe” are the same person as well. Using the relational evidence for collective entity
resolution has the potential benefit that we may produce more accurate results over
using only attribute similarity measures.

This potential benefit comes at the cost of additional algorithmic complexity re-
sulting from propagating the dependence between different resolution decisions. In
this work, we study the trade-off between the increased accuracy offered by collec-
tive resolution, and the computational cost required to achieve this improvement.

Here we propose a collective entity resolution approach based on a novel unsu-
pervised relational clustering algorithm. This article builds on our initial work on
entity resolution in relational data described in a workshop paper [Bhattacharya
and Getoor 2004] and included in a survey book chapter [Bhattacharya and Getoor
2006a]. The contributions of this article are: 1) a comprehensive description of
the collective relational entity resolution algorithm, 2) a thorough exploration of
different types of neighborhood similarity measures, 3) a comparison with a naive
relational clustering approach, 4) evaluations on significantly larger real datasets
that have multi-valued attributes and 5) a suite of synthetic data experiments
which investigates the performance of collective entity resolution against varying

ACM Journal Name, Vol. v, No. n, mm 20yy.

4 · Bhattacharya and Getoor

W Wang A Ansari W Wang A Ansari

A AnsariW W Wang
�������
�������
�������

�������
�������
�������

��

���

A Mouse Immunity Model A Better Mouse Immunity Model

Autoimmunity in Biliary CirrhosisMeasuring Protien−bound Fluxetine

C ChenL Li W Wang

C Chen

Paper 2

Paper 4Paper 3

Paper 1

Fig. 2. The references in different papers in the bibliographic example. References to the same
entity are identically shaded.

structural characteristics of the data.
The rest of this article is organized as follows. In Section 2, we present a more

realistic motivating example for entity resolution using the relations between ref-
erences. In Section 3, we formalize the relational entity resolution problem. We
explore and compare different approaches for entity resolution and formulate col-
lective relational entity resolution as a clustering problem in Section 4. We propose
novel relational similarity measures for collective relational clustering in Section 5.
We discuss the clustering algorithm in further detail in Section 6. In Section 7,
we describe experimental results using the different similarity measures on multiple
real-world datasets. We also present detailed experiments on synthetically gener-
ated data to identify data characteristics that indicate when collective resolution
should be favored over the more naive approaches. We review related work on
entity resolution in Section 8, and finally conclude in Section 9.

2. MOTIVATING EXAMPLE FOR ENTITY RESOLUTION USING RELATIONSHIPS

We consider as our motivating example the problem of resolving the authors in a
database of academic publications similar to DBLP, CiteSeer or PubMed.

Consider the following set of four papers, which we will use as a running example:

(1) W. Wang, C. Chen, A. Ansari, “A mouse immunity model”

(2) W. Wang, A. Ansari, “A better mouse immunity model”

(3) L. Li, C. Chen, W. Wang,“Measuring protein-bound fluxetine”

(4) W. W. Wang, A. Ansari, “Autoimmunity in biliary cirrhosis”

Now imagine that we would like to find out, given these four papers, which of
these author names refer to the same author entities. This involves determining
whether paper 1 and paper 2 are written by the same author named Wang, or
whether they are different authors. We need to make similar decisions about the
Wang from paper 3 and the Wang from paper 4, and all pairwise combinations. We
need to answer similar questions about the other author names Ansari and Chen
as well.

In this example, it turns out there are six underlying author entities, which
we will call Wang1 and Wang2, Chen1 and Chen2, Ansari and Li. The three

ACM Journal Name, Vol. v, No. n, mm 20yy.

Collective Entity Resolution in Relational Data · 5

A Ansari

A AnsariW W Wang

W Wang
W Wang A Ansari

W Wang

C Chen

C Chen

L Li

(a)

Chen2

Wang2Li

Ansari

Chen1

Wang1

(b)

Fig. 3. (a) The reference graph and (b) the entity graph for the author resolution example.

references with the name ‘A. Ansari’ correspond to author Ansari and the reference
with name ‘L. Li’ to author Li. However, the two references with name ‘C. Chen’
map to two different authors Chen1 and Chen2. Similarly, the four references
with name ‘W. Wang’ or ‘W. W. Wang’ map to two different authors. The ‘Wang’
references from the first, second, and fourth papers correspond to author Wang1,
while that from the third paper maps to a different author Wang2. This is shown
pictorially in Figure 2, where references which correspond to the same authors are
shaded identically.

There are two different subproblems that are of interest in solving the entity
resolution problem. One is figuring out for any author entity the set of different
name references which may be used to refer to the author. We refer to this as the
identification problem. For example, for a real-world entity with the name ’Wei
Wei Wang’, her name may come up as ‘Wei Wang’, ‘Wei W. Wang’, ‘W. W. Wang’,
‘Wang, W. W.’ and so on. There may also be errors in the data entry process, so
that the name may be incorrectly recorded as ‘W. Wong’ or ‘We Wang’ etc.

In addition to the reconciliation of different looking names which refer to the same
underlying entity, a second aspect of the entity resolution problem is distinguishing
references that have very similar and sometimes exactly the same name and yet refer
to different underlying entities. We refer to this as the disambiguation problem.
An example of this is determining that the ’W. Wang’ of paper 1 is distinct from
the ’W. Wang’ of paper 3. The extent of the disambiguation problem depends on
the domain. The problem can be exacerbated by the use of abbreviations — many
databases (for example PubMed) store only abbreviated first names.

Our aim is to make use of the relationships that hold among the observed refer-
ences to resolve them better, and to solve both the identification and disambiguation
problem at the same time. As in the case of the census example, we can represent
the relationships as a graph where the vertices represent the author references and
the hyper-edges represent the co-authorship relations that hold between them in
the dataset. Figure 3(a) shows the reference graph for our bibliographic example.
Given this graph representation for our data, our goal is to take the hyper-edges
into account to better partition the references into entities. Now, in addition to the
similarity of the attributes of the references, we consider their relationships as well.
In terms of the graph representation, two references that have similar attributes are
more likely to be the same entity if their hyper-edges connect to the same entities

ACM Journal Name, Vol. v, No. n, mm 20yy.

6 · Bhattacharya and Getoor

as well. To see how this can help, observe in Figure 2(a) that the Wang references
in papers 1, 2 and 4 collaborate with Ansari’s who correspond to the same author.
This makes it more likely that they are the same entity. In contrast, the ‘Wang’
from paper 3 collaborates with different authors, which suggests that it does not
refer to the same person as the other cases.

But it seems that we are stuck with a ‘chicken-and-egg’ problem. The identity of a
reference depends on those of its collaborators, and the identity of the collaborators
depends on the identity of the reference itself. So where do we begin? Intuitively,
we start with the resolutions that we are most confident about. For instance,
two references with the name ‘A. Ansari’ are more likely to be the same because
‘Ansari’ is an uncommon name, in contrast to references with common names such
as ‘Chen’, ‘Li’ or ‘Wang’. This then provides additional evidence for merging other
references. In our example after consolidating the ‘Ansari’s, the ‘Wang’ references
from paper 1, 2 and 4 have a common co-author, which provides provides evidence
for consolidating them. The entity resolution algorithm incrementally constructs
the entity graph by considering as evidence the entity relationships that it has
already discovered in earlier iterations. Figure 3(b) shows the resulting entity graph
for our example after all the references have been correctly resolved.

3. ENTITY RESOLUTION USING RELATIONSHIPS: PROBLEM FORMULATION

In this section, we describe the notation we use for describing the relational entity
resolution problem. In the entity resolution problem, we are given a set of references
R = {ri}, where each reference r has attributes r.A1, r.A2, . . . , r.Ak. The references
correspond to some set of unknown entities E = {ei}. We introduce the notation
r.E to refer to the entity to which reference r corresponds. The problem is to recover
the hidden set of entities E = {ei} and the entity labels r.E for individual references
given the observed attributes of the references. In addition to the attributes, we
assume that the references are not observed independently, but that they co-occur.
We describe the co-occurrence with a set of hyper-edges H = {hi}. Each hyper-
edge h may have attributes as well, which we denote h.A1, h.A2, . . . , h.Al, and we
use h.R to denote the set of references that it connects. A reference r can belong to
zero or more hyper-edges and we use r.H to denote the set of hyper-edges in which
r participates. In this paper, we only discuss entity resolution when each reference
is associated with zero or one hyper-edge, but in other domains it is possible for
multiple hyper-edges to share references. For example, if we have paper, author
and venue references, then a paper reference may be connected to multiple author
references and also to a venue reference.

Let us now illustrate how our running example is represented in this notation.
Figure 4(a) shows the references and hyper-edges. Each observed author name
corresponds to a reference, so there are ten references r1 through r10. In this case,
the names are the only attributes of the references, so for example r1.A is “W.
Wang”, r2.A is “C. Chen” and r3.A is “A. Ansari”. The set of true entities E is
{Ansari, Wang1, Wang2, Chen1, Chen2, Li} as shown in Figure 4(b). References
r1, r5 and r9 correspond to Wang1, so that r1.E = r5.E = r9.E = Wang1.
Similarly, r2.E = r4.E = r10.E = Ansari and r3.E = Chen1 and so on. There
are also the hyper-edges H = {h1, h2, h3, h4}, one for each paper. The attributes of

ACM Journal Name, Vol. v, No. n, mm 20yy.

Collective Entity Resolution in Relational Data · 7

h h

h h

1 2

43

r r

rr
r

r

r

r

r

r1 2

3

4 5

6 7

8

9 10

(a)

r 2 r 4 r 10r 1 r 5 r 9

h3

h1

h4

h2

r 6 r 7

r 8

r 3

Wang1: Ansari:

Li:

Chen2:

Wang2:

Chen1:

(b)

Fig. 4. (a) A more abstract representation of the reference graph for the author resolution example;
the r’s are references and the h’s are hyper-edges. (b) An abstract representation for the entity
graph for the author resolution example; the nodes are the entities, the set of references they
correspond to are listed, and the h’s are hyper-edges.

the hyper-edges in this domain are the paper titles; for example, h1.A1=“A Mouse
Immunity Model”. The references r1 through r3 are associated with hyper-edge h1,
since they are the observed author references in the first paper. This is represented
as h1.R = {r1, r2, r3}. Also, this is the only hyper-edge in which each of these
references participate. So r1.H = r2.H = r3.H = {h1}. We similarly represent the
hyper-edge associations of the other references.

4. ENTITY RESOLUTION APPROACHES

In this section, we compare and contrast existing entity resolution approaches. We
distinguish between attribute-based, naive relational and collective relational entity
resolution. While the attribute-based approach considers only the attributes of the
references to be matched, the naive relational approach considers attribute similar-
ities for related references as well. In contrast, the collective relational approach
resolves related references jointly. We describe these approaches in detail in the
following subsections.

4.1 Attribute-based Entity Resolution

This is the traditional approach [Fellegi and Sunter 1969; Cohen et al. 2003] where
similarity simA(ri, rj) is computed for each pair of references ri, rj based on their
attributes and only those pairs that have similarity above some threshold are con-
sidered co-referent. We use the abbreviation A to refer to the attribute-based ap-
proach. Additionally, transitive closure may be taken over the pair-wise decisions.
We denote this approach as A*.

Several sophisticated similarity measures have been developed for names, such
as the Jaro, Levenstein, Jaro-Winkler among others, and popular TF-IDF schemes
may be used for other textual attributes like keywords. The measure that works best
for each attribute can be used. Finally, a weighted combination of the similarities
over the different attributes for each reference can be used to compute the attribute
similarity between two references. In our example, the approach A may allow us to
decide that the ‘W. Wang’ references (r1, r5) are co-referent. We may also decide

ACM Journal Name, Vol. v, No. n, mm 20yy.

8 · Bhattacharya and Getoor

using A that ‘W. Wang’ and ‘W.W. Wang’ (r1, r9) are co-referent, but not as
confidently. However, as we have already discussed, attributes are often insufficient
for entity resolution, particularly for the disambiguation aspect of the problem. In
our example, A is almost certain to mark the two ‘W. Wang’ references (r1, r7) as
co-referent, which is incorrect.

4.2 Naive Relational Entity Resolution

The simplest way to use relationships to resolve entities is to treat related references
as additional attributes for matching. For instance, to determine if two author
references in two different papers are co-referent, we can compare the names of
their co-authors. In our running example, the naive relational decision about the
references ‘W. Wang’ and ‘W. W. Wang’, would consider that both have co-authors
with the name ‘A. Ansari’. We refer to this approach as NR. As before, transitive
closure can be taken over the pair-wise decisions for NR. We refer to the transitive
closure as NR*.

A similar idea has been used in the context of matching in dimensional hierarchies
[Ananthakrishna et al. 2002]. We generalize the idea for unordered relationships
and define hyper-edge similarity simH(hi, hj) between two hyper-edges hi and hj

as the best pair-wise attribute match between their references. Since the references
in any hyper-edge are not ordered, each reference r ∈ hi can be matched to any
reference r′ ∈ hj . So for each reference r ∈ hi we find the best match to hj :

simH(r, hj) = maxr′∈hj
simH(r, r′)

For symmetry, we also compute the best match to hyper-edge hi for each reference
in hj and then take the average over all of the references in the two hyper-edges
to get simH(hi, hj). We then use this similarity measure between two hyper-edges
to find the hyper-edge similarity simH(ri, rj) between two references ri and rj by
matching their hyper-edges. When each reference belongs to just one hyper-edge,
simH(ri, rj) can be computed simply as simH(ri.H, rj .H). Otherwise, we need to
make pair-wise comparisons between their hyper-edges. Finally, we take a simple
linear combination of the attribute match simA(ri, rj) and the hyper-edge match
simH(ri, rj) to get naive relational similarity for two references ri and rj :

simNR(ri, rj) = (1 − α) × simA(ri, rj) + α × simH(ri, rj), 0 ≤ α ≤ 1 (1)

While the naive relational approach improves significantly on the attribute-based
approach, it can be misled in domains where most names are frequent and hyper-
edges are dense. In our example, the two ‘W. Wang’ references, r1 and r7 are not
co-referent, though they have co-authors with matching names ‘C. Chen’. Since we
only match the strings, naive relational similarity returns a high match value. This
may incorrectly lead to the decision that r1 and r7 are co-referent.

4.3 Collective Relational Entity Resolution

The problem with the naive relational approach is that it does not reason about
the identities of the related references. For the two ‘Wang’ references in the earlier
example, the two ‘C. Chen’ co-authors match regardless of whether they refer to
Chen1 or Chen2. The correct evidence to use here is that the ‘Chen’s are not
co-referent. In such a setting, in order to resolve the ‘W. Wang’ references, it is

ACM Journal Name, Vol. v, No. n, mm 20yy.

Collective Entity Resolution in Relational Data · 9

necessary to resolve the ‘C Chen’ references as well, and not just consider their
name similarity. This is the goal of collective relational entity resolution (CR),
where resolutions are not made independently, but instead one resolution decision
affects other resolutions via hyper-edges. We now motivate entity resolution as a
clustering problem and propose a relational clustering algorithm for collective
relational entity resolution.

Given any similarity measure between pairs of references, entity resolution can
be posed as a clustering problem where the goal is to cluster the references so that
only those that correspond to the same entity are assigned to the same cluster. We
use a greedy agglomerative clustering algorithm, where at any stage, the current
set C = {ci} of entity clusters reflects the current belief about the mapping of the
references to entities. We use r.C to denote the current cluster label for a reference;
references that have the same cluster label correspond to the same entity.

So far, we have discussed similarity measures for references; for the clustering
approach to entity resolution, we need to define similarities between clusters of
references. For collective entity resolution, we define the similarity of two clusters
ci and cj as:

sim(ci, cj) = (1 − α) × simA(ci, cj) + α × simR(ci, cj), 0 ≤ α ≤ 1 (2)

where simA() is the similarity of the attributes and simR() is the relational simi-
larity between the references in the two entity clusters. On analyzing Eq. (2), we
can see that it reduces to attribute-based similarity for α = 0. Also, the relational
aspect of the similarity measures distinguishes it from the naive relational similar-
ity measure from Eq. (1). While naive relational similarity measures the attribute
similarity of the related references that are connected through hyper-edges, here
we consider the labels of related clusters that represent entities. This similarity
is dynamic in nature, which is one of the most important and interesting aspects
of the collective approach. For attribute-based and naive relational resolution, the
similarity between two references is fixed. In contrast, for collective resolution, the
similarity of two clusters depends on the current cluster labels of their neighbors,
and therefore changes as their labels are updated. In our example, the similarity
between ‘W. Wang’ and ‘W. W. Wang’ increases once the Ansari references are
given the same cluster label.

As we have mentioned earlier, similarity measures for attributes have been studied
in great detail. Our focus is on measuring relational similarity between two clusters
of references. The references in each cluster c are connected to other references via
hyper-edges. For collective entity resolution, relational similarity considers the
cluster labels of all these connected references. Recall that each reference r is
associated with one or more hyper-edges in H. Therefore, the set of hyper-edges
c.H that we need to consider for an entity cluster c is defined as

c.H =
⋃

r∈R∧r.C=c

{h | h ∈ H ∧ r ∈ h.R}

These hyper-edges connect c to other clusters. The relational similarity for two
clusters needs to compare their connectivity patterns to other clusters.

For any cluster c, the set of other clusters to which c is connected via its hyper-

ACM Journal Name, Vol. v, No. n, mm 20yy.

10 · Bhattacharya and Getoor

edge set c.H form the neighborhood Nbr(c) of cluster c:

Nbr(c) =
⋃

h∈c.H,r∈h.R

{cj | cj = r.C}

This defines the neighborhood as a set of related clusters, but the neighborhood
can also be defined as a bag or multi-set, in which the multiplicity of the different
neighboring clusters is preserved. We will use NbrB(ci) to denote the bag of neigh-
boring clusters. In our example in Figure 4(b), the neighborhood of the cluster for
Wang1 consists of the clusters for Ansari and Chen1; alternatively it is the bag of
clusters {Ansari, Ansari, Ansari, Chen1}. Note that we do not constrain the def-
inition of the neighborhood of a cluster to exclude the cluster itself. In Section 5.6,
we discuss how such constraints can be handled when required by the domain.

For the relational similarity between two clusters, we look for commonness in
their neighborhoods. This can be done in many different ways, as we explore in the
following section.

5. NEIGHBORHOOD SIMILARITY MEASURES FOR COLLECTIVE RESOLUTION

We have seen how the neighborhood of a cluster of references can be represented
as a set (or alternatively as a bag or multi-set) of cluster labels and that we can
compute relational similarity between two clusters by considering the similarity of
their neighborhoods. Many different metrics have been proposed and evaluated in
the literature for measuring commonness between sets; for example Liben-Nowell
and Kleinberg [2003] study their use for prediction tasks in social networks. Here
we adapt and modify some of these measures and study their applicability for entity
resolution.

5.1 Common Neighbors

This is the simplest approach for measuring commonness between sets and counts
the number of elements that occur in both. For two clusters ci and cj , their common
neighbor score is defined as

CommonNbrScore(ci, cj) =
1

K
× |Nbr(ci)

⋂
Nbr(cj)| (3)

where K is a large enough constant such that the measure is less than 1 for all
pairs of clusters. For two references ‘John Smith’ and ‘J. Smith’, where attribute
similarity is not very informative, this score measures the overlap in their connected
entities. The greater the number of common entities, the higher the possibility that
the two references refer to the same entity as well.

This definition ignores the frequency of connectivity to a neighbor. Suppose
‘John Smith’ has collaborated with the entity ‘J. Brown’ several times, while ‘J.
Smith’ has done so only once. To investigate if this information is relevant for entity
resolution, we also define a common neighbor score with frequencies that takes into
account multiple occurrences of common clusters in the neighborhoods:

CommonNbrScore + Fr(ci, cj) =
1

K ′
× |NbrB(ci)

⋂
NbrB(cj)| (4)

ACM Journal Name, Vol. v, No. n, mm 20yy.

Collective Entity Resolution in Relational Data · 11

5.2 Jaccard Coefficient

The main shortcoming of the common neighbor score is the normalizing constant
K which is the same over all pairs of clusters. Consider the situation where we
have two ‘John Smith’ clusters, c1 and c2, both of which have the same number of
neighbors in common with the ‘J. Smith’ cluster c3. Then they are equally similar
to c3 in terms of the common neighbor score. Suppose that all of c1’s neighbors are
shared with c3, while c2 has a very large neighborhood and only a small fraction
of it is shared with c3. When entities have large neighborhoods, finding shared
neighbors by chance becomes more likely. In this case, we may want the similarity
between c1 and c3 to be greater than the similarity between c2 and c3. We can get
around this issue by taking into account the size of neighborhood. This gives us
the Jaccard coefficient for two clusters:

JaccardCoeff(ci, cj) =
|Nbr(ci)

⋂
Nbr(cj)|

|Nbr(ci)
⋃

Nbr(cj)|
(5)

As before, we may consider neighbor counts to define the Jaccard coefficient with
frequencies, JaccardCoeff + Fr(ci, cj), by using NbrB(ci) and NbrB(cj) in the
definition.

5.3 Adamic/Adar Similarity

Both the common neighborhood measure and Jaccard coefficient consider all cluster
labels in the neighborhood as equally important and significant for determining co-
reference. However this is not always desirable. If a cluster is frequently linked
with many different clusters, then its presence in a shared neighborhood is not as
significant as a cluster which is less frequent. This is similar to the idea behind
‘inverse document frequency’ in the commonly used TF-IDF scheme in information
retrieval. Adamic and Adar [2003] use this idea for predicting friendship from web-
page features. They proposed a similarity measure between two web-pages X and
Y that individually considers the significance of each element that they share and
assigns weights to them accordingly. This has come to be called the Adar/Adamic
score:

similarity(X, Y) =
∑

shared feature z

1

log(frequency(z))

Liben-Nowell and Kleinberg [2003] adapted this idea for the task of link prediction
in social networks considering node neighborhoods, where they used the size of
a node’s neighborhood for measuring frequency or commonness. We generalize
this idea to propose a class of Adar/Adamic measures for entity resolution. If the
‘uniqueness’ of a cluster label c (or a shared feature, in general) is denoted as u(c),
then we define the Adar similarity score of two clusters ci and cj as

Adar(ci, cj) =

∑
c∈Nbr(ci)∩Nbr(cj)

u(c)
∑

c∈Nbr(ci)∪Nbr(cj)
u(c)

(6)

where the denominator normalizes the score. Now the Jaccard coefficient can be
viewed as a special case of the Adar score when all nodes are equally unique. Also,
observe that without the normalization Eq. (6) reduces to the similarity score of

ACM Journal Name, Vol. v, No. n, mm 20yy.

12 · Bhattacharya and Getoor

Liben-Nowell and Kleinberg [2003] for

u(c) =
1

log(|Nbr(c)|)
(7)

We refer to Adar score that uses this definition of uniqueness as the AdarNbr score.
As before, we evaluate two versions, AdarNbr that considers the set of neighbors
and AdarNbr+Fr that takes into account the multiplicity of the neighbors.

5.4 Adar Similarity with Ambiguity Estimate

While using the neighborhood size of a cluster to measure its uniqueness has been
shown to work well in link prediction applications, it may not be appropriate for
entity resolution. For entity resolution applications, we do not directly know the
neighbors for each entity from the data. The true neighborhood size for any en-
tity cluster is known only after the entity graph has been correctly reconstructed.
So using the neighborhood size as a measure of uniqueness at any intermediate
stage of the resolution algorithm is incorrect, and is an overestimate of the actual
neighborhood size.

As an alternative, we can use a definition of uniqueness which incorporates a
notion of the ambiguity of the names found in the shared neighborhood. To under-
stand what this means, consider two references with name ‘A. Aho’. Since ‘Aho’
can be considered as an ‘uncommon’ name, they are very likely to be the same
person. In contrast, two other references with a common name such as ‘L. Li’ are
less likely to be the same person. So we define the ambiguity Amb(r.Name) of a
reference name as the probability that multiple entities share that particular name.

Intuitively, clusters which share neighbors with uncommon names are more likely
to refer to the same entity and should be considered more similar. We define the
uniqueness of a cluster c as inversely proportional to the average ambiguity of its
references:

u(c) =
1

Avgr∈c(Amb(r.Name))
(8)

In general, this approach is not specific to names and can be used with any attribute
of the references. We refer to an Adar similarity score which uses this definition of
uniqueness as AdarName when applied to the set of neighbors and AdarName+Fr
to refer to the measure applied to the bag of neighbors.

The Adar-Name measure is defined in terms of the ambiguity of a reference’s
name. There are a number of ways to estimate the ambiguity of a name. One
scheme that works quite well in our domains is to estimate the probability that two
randomly picked references with Name = n correspond to different entities. For a
reference attribute A1, denoted R.A1, a naive estimate for the ambiguity of a value
of n for the attribute is:

Amb(r.A1) =
|σR.A1=r.A1

(R)|

|R|
,

where |σR.A1=r.A1
(R)|denotes the number of references with value r.A1 for A1.

This estimate is clearly not good since the number of references with a certain
attribute value does not always match the number of different entity labels for that
attribute. We can do much better if we have an additional attribute A2. Given A2,

ACM Journal Name, Vol. v, No. n, mm 20yy.

Collective Entity Resolution in Relational Data · 13

the ambiguity for value of A1 can be estimated as

Amb(r.A1 | r.A2) =
|δ(πR.A2

(σR.A1=r.A1
(R)))|

|R|
,

where |δ(πR.A2
(σR.A1=r.A1

(R)))| is the number of distinct values observed for A2

in references with R.A1 = r.A1. For example, we can estimate the ambiguity of
a last name by counting the number of different first names observed for it. This
provides a better estimate of the ambiguity of any value of an attribute A1, when
A2 is not correlated with A1. When multiple such uncorrelated attributes Ai are
available for references, this approach can be generalized to obtain better ambiguity
estimates.

5.5 Higher-Order Neighborhoods

Analysis of the commonness of neighborhoods can be viewed as an investigation of
paths of length two between two clusters. We also investigate whether higher-order
neighborhoods play a role in detecting co-reference. In addition to the neighborhood
similarity measures described, we also evaluate measures which take into account
collaboration paths of length three. As the clusters change, it becomes compu-
tationally infeasible to recompute all paths between all cluster pairs. Instead, we
calculate the second order neighborhood Nbr2(c) for a cluster c by recursively
taking the set union (alternatively, multi-set union) of the neighborhoods of all
neighboring clusters: Nbr2(c) =

⋃
c′∈Nbr(c) Nbr(c′). For paths of length three to

be present between two clusters ci and cj , there must be intersections between the
Nbr(ci) and Nbr2(cj), or vice versa. Then, to find the similarity over paths of
length 3 or less for ci and cj , we take the average of the similarities over length-2
paths and length-3 paths:

Path3Sim(ci, cj) =
1

3
[Jaccard(Nbr(ci), Nbr(cj)) + Jaccard(Nbr2(ci), Nbr(cj))

+Jaccard(Nbr(ci), Nbr2(cj))] (9)

5.6 Negative Constraints From Relationships

The common relational structure we have considered so far can be seen as posi-
tive evidence for inferring that two author references refer to the same underlying
author entity. Additionally, there may be negative constraints as well for entity
resolution arising from relationships. For example, in many relational domains, two
references appearing in the same hyper-edge cannot refer to the same entity. As
a real bibliographic example, consider a paper with co-authors ‘M. Faloutsos’, ‘P.
Faloutsos’ and ‘C. Faloutsos’. Despite the similarity of the uncommon last name, in
reality these references correspond to distinct author entities. So, for bibliographic
domains, we can add a constraint that two references which co-occur cannot refer
to the same entity. In domains other than citation data, there may be different re-
lational constraints. In general, we can have a set of negative relational constraints
that clusters need to satisfy. We take these into account by setting the similarity
between two cluster pairs in Eq. (2) to zero if merging them violates any of the
relational constraints.

ACM Journal Name, Vol. v, No. n, mm 20yy.

14 · Bhattacharya and Getoor

1. Find similar references using blocking

2. Initialize clusters using bootstrapping

3. For clusters ci, cj such that similar(ci, cj)
4. Insert 〈sim(ci, cj), cj , cj〉 into priority queue

5. While priority queue not empty

6. Extract 〈sim(ci, cj), ci, cj〉 from queue

7. If sim(ci, cj) less than threshold, then stop

8. Merge ci and cj to new cluster cij

9. Remove entries for ci and cj from queue

10. For each cluster ck such that similar(cij , ck)
11. Insert 〈sim(cij , ck), cij , ck〉 into queue

12. For each cluster cn neighbor of cij

13. For ck such that similar(ck , cn)
14. Update sim(ck, cn) in queue

Fig. 5. High-level description of the relational clustering algorithm

6. RELATIONAL CLUSTERING ALGORITHM

Given the similarity measure for a pair of reference clusters, we use a greedy ag-
glomerative clustering algorithm that finds the closest cluster pair at each step and
merges them. High level pseudo-code for the algorithm is provided in Figure 5. In
this section, we discuss several important implementation and performance issues
regarding relational clustering algorithms for entity resolution.

6.1 Blocking to Find Potential Resolution Candidates

Unless the datasets are small, it is impractical to consider all possible pairs as
potential candidates for merging. Apart from the scaling issue, most pairs checked
by an O(n2) approach will be rejected since usually only about 1% of all pairs are
true matches. Blocking techniques [Hernández and Stolfo 1995; Monge and Elkan
1997; McCallum et al. 2000] are usually employed to rule out pairs which are certain
to be non-matches. The goal is to separate references into possibly overlapping
buckets and only pairs of references within each bucket are considered as potential
matches. The relational clustering algorithm uses the blocking method as a black-
box and any method that can quickly identify potential matches minimizing false
negatives can be used. We use a variant of an algorithm proposed by McCallum
et al. [2000] that we briefly describe below.

The algorithm makes a single pass over the list of references and assigns them
to buckets using an attribute similarity measure. Each bucket has a representative
reference that is the most similar to all references currently in the bucket. For
assigning any reference, it is compared to the representative for each bucket. It is
assigned to all buckets for which the similarity is above a threshold. If no similar
bucket is found, a new bucket is created for this reference. A naive implementation
yields a O(n(b + f)) algorithm for n references and b buckets and when a reference
is assigned to at most f buckets. This can be improved by maintaining an inverted
index over buckets. For example, when dealing with names, for each character we

ACM Journal Name, Vol. v, No. n, mm 20yy.

Collective Entity Resolution in Relational Data · 15

maintain the list of buckets storing last names starting with that character. Then
the buckets can be looked up in constant time for each reference leading to an
O(nf) algorithm.

6.2 Relational Bootstrapping

Each iteration of the relational clustering algorithm makes use of clustering de-
cisions made in previous iterations. This is achieved by measuring the shared
neighborhood for similar clusters, as explained in Subsection 4.3. But if we begin
with each reference in a distinct cluster, then initially there are no shared neigh-
bors for references that belong to different hyper-edges. So the initial iterations of
the algorithm have no relational evidence to depend on. As a result, the relational
component of the similarity between clusters would be zero and merges would occur
based on attribute similarity alone. Many of such initial merges can be inaccurate,
particularly for the references with ambiguous attribute values. To avoid this, we
need to bootstrap the clustering algorithm such that each reference is not assigned
to a distinct cluster. Specifically, if we are confident that some reference pair is
coreferent, then they should be assigned to the same initial cluster. However, pre-
cision is crucial for the bootstrap process, since our algorithm cannot undo any of
these initial merge operations. Observe that this bootstrapping is not necessary
for approaches that are not collective. For such approaches, the decision for any
reference pair is the same irrespective of the decisions for other pairs. So boot-
strapping does not have any effect on subsequent decisions. In this subsection, we
describe our bootstrapping scheme for relational clustering that makes use of the
hyper-edges for improved bootstrap performance. The basic idea is very similar
to the naive relational approach described in Subsection 4.2, with the difference
that we use exact matches instead of similarity for attributes. To determine if any
two references should be assigned to the same initial cluster, we first check if their
attributes match exactly. For references with ambiguous attributes, we also check
if the attributes of their related references match. We now discuss this in greater
detail.

The bootstrap scheme goes over each reference pair that is potentially coreferent
(as determined by blocking) and determines if it is a bootstrap candidate. First,
consider the simple bootstrap scheme that looks only at the attributes of two ref-
erences. It determines which attribute values are ambiguous and which are not
using a data-based ambiguity estimate, as described in Subsection 5.4. References
with ambiguous attribute values are assigned to distinct clusters. Any reference
pair whose attribute values match and are not ambiguous is considered to be a
bootstrap candidate.

The problem with this simple approach is that it assigns all references with
ambiguous attributes to distinct clusters leading to poor recall in datasets with
high ambiguity. When hyper-edges are available, they can be used as evidence
for bootstrapping of ambiguous references. A pair of ambiguous references form
a bootstrap candidate if their hyper-edges match. Two hyper-edges h1 and h2

are said to have a k-exact-match if there are at least k pairs of references (ri, rj),
ri ∈ h1.R, rj ∈ h2.R with exactly matching attributes, i.e. ri.A = rj .A. Two
references r1 and r2 are bootstrap candidates if any pair of their hyper-edges have
a k-exact-match. As a bibliographic example, two references with name ‘W. Wang’

ACM Journal Name, Vol. v, No. n, mm 20yy.

16 · Bhattacharya and Getoor

will not be merged during bootstrapping on the basis of the name alone. However,
if the first Wang reference has co-authors ‘A. Ansari’ and ‘C. Chen’, and the second
Wang has coauthor ‘A. Ansari’, then they have a 1-exact-match and, depending on
a threshold for k, they would be merged. The value of k for the hyper-edge test
depends on the ambiguity of the domain. A higher value of k should be used for
domains with high ambiguity. Also, when matching hyper-edges, references with
ambiguous attributes are not considered for matches in high ambiguity domains.
For example, ‘C. Chen’ may not be considered for a co-author match, since it is a
common name.

Other attributes of the references, and also of the hyper-edges, when available,
can be used to further constrain bootstrap candidates. Two references are consid-
ered only if these other attributes do not conflict. In the bibliographic domain,
author references from two different papers can be merged only if their languages
and correspondence addresses match.

After the bootstrap candidates are identified, the initial clusters are created using
the union-find approach so that any two references that are bootstrap candidates
are assigned to the same initial cluster. In addition to improving accuracy of the re-
lational clustering algorithm, bootstrapping reduces execution time by significantly
lowering the initial number of clusters without having to find the most similar
cluster-pairs or perform expensive similarity computations.

6.3 Merging Clusters and Updating Similarities

Once the similar clusters have been identified and bootstrapping has been per-
formed, the algorithm iteratively merges the most similar cluster pair and updates
similarities until the similarity drops below some specified threshold. This is shown
in lines 5-14 of Figure 5. The similarity update steps for related clusters in lines
12-14 are the key steps that distinguish collective relational clustering from a tra-
ditional agglomerative clustering algorithm. In order to perform the update steps
efficiently, indexes need to maintained for each cluster. In this section, we describe
the data structure that we maintain for this purpose.

In addition to its list of references, we maintain three additional lists with each
cluster. First, we maintain the list of similar clusters for each cluster. The second
list keeps track of all neighboring clusters. Finally, we keep track of all the queue
entries that involve this cluster. For a cluster that has a single reference r, the
similar clusters are those that contain references in the same bucket as r after
blocking. Also, the neighbors for this cluster are the clusters containing references
that share a hyper-edge with r. Then, as two clusters merge to form a new cluster,
all of these lists can be constructed locally for the new cluster from those of its
parents. All of the update operations from lines 9-14 can be performed efficiently
using these lists. For example, updates for related clusters are done by first accessing
the neighbor list and then traversing the similar list for each of them.

6.4 Complexity Analysis

Now that we have described each component of our relational clustering algorithm,
let us analyze its time complexity. First, we look at how the number of similarity
computations required in lines 3-4 of Figure 5 is reduced by the blocking method.
We consider the worst case scenario where the bootstrapping approach does not

ACM Journal Name, Vol. v, No. n, mm 20yy.

Collective Entity Resolution in Relational Data · 17

reduce the number of clusters at all. We need to compare every pair of references
within each bucket. Suppose we have n references that are assigned to b buckets
with each reference being assigned to at most f buckets. Then using an optimistic
estimate, we have nf/b references in each bucket, leading to O((nf/b)2) compar-
isons per bucket and a total of O(n2f2/b) comparisons. In all of our discussion, we
assume that the number of buckets is proportional to the number of references, i.e.,
b is O(n). Additionally, assuming that f is a small constant independent of n, we
have O(n) computations. It should be noted that this is not a worst case analysis
for the bucketing. A bad bucketing algorithm that assigns O(n) references to any
bucket will lead to O(n2) comparisons.

Now, let us look at the time taken by each iteration of the algorithm. To analyze
how many update/insert operations are required, we assume that for each bucket
that is affected by a merge operation, all the O((nf/b)2) computations need to be
redone. Then we need to find out how many buckets may be affected by a merge
operation. We say that two buckets are connected if any hyper-edge connects two
references in the two buckets. Then if any bucket is connected to k other buckets,
each merge operation leads to O(k(nf/b)2) update/insert operations. This is still
only O(k) operations when f is a constant independent of n and b is O(n). Using a
binary-heap implementation for the priority queue, the extract-max and each insert
and update operation take O(log q) time, where q is the number of entries in the
queue. So the total cost of each iteration of the algorithm is O(k log q).

Next, we count the total number of iterations that our algorithm may require.
In the worst case, the algorithm may have to exhaust the priority queue before
the similarity falls below the threshold. So we need to consider the number of
merge operations that are required to exhaust a queue that has q entries. If the
merge tree is perfectly balanced, then the size of each cluster is doubled by each
merge operation and as few as O(log q) merges are required. However, in the worst
case, the merge tree may be q deep requiring as many as O(q) merges. With each
merge operation requiring O(k log q) time, the total cost of the iterative process is
O(qk log q).

Finally, in order to put a bound on the initial size q of the priority queue, we
again consider the worst case scenario where bootstrapping does not reduce the
number of initial clusters. This results in O(n2f2/b) entries in the queue as shown
earlier. Since this is again O(n), the total cost of the algorithm can be bounded
by O(nk log n). The one cost that we have not considered so far is that of boot-
strapping. We can analyze the bootstrapping by considering it as a sequence of
cluster merge operations that do not require any updates or inserts to the priority
queue. Then the worst case analysis of the number of iterations accounts for the
bootstrapping as well.

To see how this compares against the attribute and naive relational baselines,
observe that they need to take a decision for each pair of references in a bucket.
This leads to a worst case analysis of O(n) using the same assumptions as before.
However, each similarity computation is more expensive for the naive relational
approach (Eq. (1)) than the attribute-based approach, since the former requires a
pair-wise match to be computed between two hyper-edges.

ACM Journal Name, Vol. v, No. n, mm 20yy.

18 · Bhattacharya and Getoor

7. EXPERIMENTAL EVALUATION

We evaluated our relational entity resolution algorithm on several real-world and
synthetic datasets. We begin with a description of our experiments on real biblio-
graphic datasets.

7.1 Evaluation on Bibliographic Data

Our real-world datasets describe publications in several different scientific research
areas. As in our running example, the goal is to use co-author relationships in the
papers to help discover the underlying author entities in the domain and map the
author references to the discovered author entities. We first describe the datasets
in more detail, and then describe our evaluation and results.

7.1.1 Datasets.

CiteSeer: The CiteSeer dataset contains 1,504 machine learning documents with
2,892 author references to 1,165 author entities. For this dataset, the only attribute
information available is author name. The full last name is always given, and in
some cases the author’s full first name and middle name are given and other times
only the initials are given. The dataset was originally created by Giles et al. [1998]
and the version which we use includes the author entity ground truth provided by
Aron Culotta and Andrew McCallum, University of Massachusetts, Amherst.

arXiv: The arXiv dataset describes high energy physics publications. It was orig-
inally used in KDD Cup 20031. It contains 29,555 papers with 58,515 references
to 9,200 authors. The attribute information available for this dataset is also just
the author name, with the same variations in form as described above. The author
entity ground truth for this data set was provided by David Jensen, University of
Massachusetts, Amherst.

BioBase: Our third dataset, describing biology publications, is the Elsevier BioBase
dataset2 which was used in a recent IBM KDD-Challenge competition. It was cre-
ated by selecting all Elsevier publications on ‘Immunology and Infectious Diseases’
between years 1998 and 2001. It contains 156,156 publications with 831,991 au-
thor references. Unlike arXiv and CiteSeer that have complete as well as initialed
author names, in BioBase, all of the first names and middle names are abbrevi-
ated. However the BioBase dataset has other attributes which we use for resolution
including: keywords, topic classification, language, country of correspondence and
affiliation of the corresponding author. There is a wide variety in the data with
20 languages, 136 countries, 1,282 topic classifications and 7,798 keywords. Entity
labels are available only for the top 100 author names with the highest number
of references. We evaluate entity resolution performance for BioBase over 10,595
references that have these 100 names, although our collective resolution algorithm
requires resolving many of the other references as well.

Ground truth was determined for all of these datasets by the owners using a
combination of automatic and manual strategies. The process is not completely

1http://www.cs.cornell.edu/projects/kddcup/index.html
2http://help.sciencedirect.com/robo/projects/sdhelp/about biobase.htm

ACM Journal Name, Vol. v, No. n, mm 20yy.

Collective Entity Resolution in Relational Data · 19

free from errors and we had to perform additional cleaning for some CiteSeer and
arXiv references in the course of our experiments. For BioBase, 97% of the labels
are estimated to be correct.

Despite the common underlying domain, these datasets vary in a number of im-
portant ways. The most important difference is in the inherent uncertainty in the
name references. We introduce two measures, which we refer to as ambiguity (corre-
sponding to the disambiguation aspect of resolution) and dispersion (corresponding
to the identification aspect), to measure the uncertainty in the data. We consider
a name (last name and first initial) to be ambiguous if multiple entities share that
name. In CiteSeer dataset, only 3 out of 1185 names are ambiguous and the aver-
age number of entities per ambiguous name is 2.33 (the maximum is 3). For arXiv,
374 of the 8737 names are ambiguous, and the average number of entities for these
ambiguous names is 2.41 (the maximum is 11). For BioBase, the ambiguity is much
higher — 84 of the 100 names are ambiguous. The number of entities for each name
ranges from 1 to 100 with an average of 32. We introduce dispersion as another
measure of the inherent difficulty of the entity resolution problem for a domain.
The dispersion for an entity is the number of distinct observed names for each en-
tity. For CiteSeer, 202 out of the 1164 entities have multiple recorded names, the
average and maximum dispersion are 1.24 and 8 respectively. In contrast, 3083
out of 8967 entities for arXiv are dispersed over multiple names, and the average
dispersion is 1.44 and the maximum is 10. Since we do not have complete ground
truth for the BioBase dataset, dispersion cannot be directly measured. Apart from
the level of uncertainty, BioBase differs significantly from the other two datasets
in terms of its hyper-edge structure. For BioBase, the number of author references
per publication ranges from 1 to 100 with the average being 5.3. In comparison,
the averages are 1.92 and 1.98 respectively for CiteSeer and arXiv, the range being
1 to 10 for both.

7.1.2 Evaluation. We compare attribute-based entity resolution (A), naive re-

lational entity resolution (NR) that uses attributes of related references, and our
collective relational entity resolution (CR). For the first two algorithms, we also
consider variants which perform transitive closures over the pair-wise decisions (A*

and NR*).

In order to measure the performance of our algorithms, we consider the correct-
ness of the pair-wise co-reference decisions over all references. We evaluate the
pair-wise decisions using the F1 measure, which is the harmonic mean of precision
and recall. For additional insight, we also plot precision-recall curves. For a fair
comparison, we consider the best F1 for each of these algorithms over all possible
thresholds for determining matches.

7.1.3 Experimental Details. For comparing attributes, which is required for all
of the algorithms, we use the Soft TF-IDF similarity for names [Cohen et al. 2003;
Bilenko et al. 2003] since it has been shown to perform well for name-based entity
resolution. Essentially, Soft TF-IDF augments the TF-IDF similarity for matching
token sets with approximate token matching using a secondary string similarity
measure. Jaro-Winkler is reported to be the best secondary similarity measure
for Soft TF-IDF, but for completeness, we also experiment with the Jaro and the

ACM Journal Name, Vol. v, No. n, mm 20yy.

20 · Bhattacharya and Getoor

Table I. Performance of different algorithms on the CiteSeer, arXiv and BioBase datasets. We
report the mean and the standard deviations (within parenthesis) of the F1 scores obtained using
Scaled Levenstein, Jaro and Jaro-Winkler as secondary similarity measure within Soft TF-IDF.

CiteSeer arXiv BioBase

A 0.980 (0.001) 0.974 (0.002) 0.568 (0)
A* 0.990 (0.001) 0.967 (0.003) 0.559 (0)
NR 0.981 (0.006) 0.975 (0.016) 0.710 (0)
NR* 0.991 (0.002) 0.972 (0.039) 0.753 (0)
Bootstrap H-Amb 0.217 (0) 0.119 (0) 0.452 (0)
Bootstrap L-Amb 0.942 (0) 0.977 (0) 0.317 (0)
CR 0.995 (0) 0.985 (0) 0.819 (0)

Scaled Levenstein measures. Scaled Levenstein belongs to the edit-distance family
of similarity measures that assigns unit cost to each edit operation and normalizes
the result. Jaro and Jaro-Winkler do not belong to the edit-distance family. They
measure the number and order of common characters between strings. Jaro-Winkler
is a variant of Jaro that also considers the longest common prefix [Cohen et al. 2003].
They are both well-suited for short strings such as personal names. In the case of
BioBase, where we had other multi-valued attributes to make use of besides names,
we used TF-IDF similarity.

Since for CiteSeer and arXiv it is infeasible to consider all pairs as potential
duplicates, blocking is employed to extract the potential matches. This approach
retains ∼ 99% of the true duplicates for both CiteSeer and arXiv by allowing at
most two character transpositions for last names. We use bootstrapping for our
relational clustering algorithm (CR) for all three datasets. We use bootstrap for
low ambiguity domains with k = 1 for CiteSeer and arXiv and bootstrap for high
ambiguity domains with k = 2 for BioBase. Recall that our relational clustering
algorithm (CR) and the naive relational approach (NR and NR*) both use a
combination weight α. We measure performance of both algorithms at 20 different
values of α between 0 and 1 and report the best performance for each of them over
this range. For estimating ambiguity of references for AdarName, we use last names
with first initial as the secondary attribute. This resulted in very good estimates of
ambiguity — the ambiguity estimate for a name is strongly correlated (correlation
coeff. 0.8) with the number of entities for that name.

7.1.4 Results. Table I gives an overview of the F1 results of the various algo-
rithms on our three datasets. Recall that our collective relational clustering uses
bootstrapping to initialize the clusters. In addition to our three entity resolution
approaches that we have discussed, we also include for comparison the two boot
strapping approaches, one for low ambiguity domains (Bootstrap L-Amb) that
is used by CR for CiteSeer and arXiv, and the other for high ambiguity data
(Bootstrap H-Amb) that is employed for BioBase. For CR, Table I records the
performance for the best neighborhood similarity measure, which is Jaccard for
CiteSeer and arXiv, and AdarName for BioBase. As mentioned earlier, there are
several possible choices for the secondary string metric used with the Soft TD-IDF
similarity for comparing the names. The results above are the averages using three
choices — Scaled Levenstein, Jaro and Jaro-Winkler, with the standard deviation

ACM Journal Name, Vol. v, No. n, mm 20yy.

Collective Entity Resolution in Relational Data · 21

shown in parenthesis.

First, note that the standard deviation in Table I measures sensitivity of entity
resolution performance in terms of the similarity measure used for names. We can
see that the results are not very sensitive to the secondary string metric choice. In
fact, for collective relational entity resolution (CR), the choice is irrelevant and for
the BioBase dataset, in which we have additional features besides the names, the
choice is also irrelevant. For the cases in which there were some small differences,
Scaled Levenstein was most often, but not always, the best.

Second, looking at the first line in Table I, note the differences in performance for
attribute-based entity resolution (A) for the three datasets. The attribute-based
algorithm performs remarkably well for the CiteSeer database, and its performance
on the arXiv dataset is also respectable. This is in keeping with our earlier obser-
vation about the ‘hardness’ of the datasets in terms of ambiguity and dispersion.
The CiteSeer dataset has very little ambiguity and arXiv is only moderately more
ambiguous. When datasets are not ambiguous, all dispersed entities can be suc-
cessfully identified simply by raising the discrimination threshold for determining
duplicates. This increases recall without generating false positives. However, this
is not possible when there is significant ambiguity in the data, as we see in the
case of BioBase. The performance of the bootstrapping algorithms highlight the
same trend. For CiteSeer and arXiv, the low ambiguity version (Bootstrap L-

Amb) performs almost as well as the attribute baseline. In a higher ambiguity
dataset such as BioBase, it performs many incorrect matches. The high ambiguity
bootstrap strategy (Bootstrap H-Amb), which is more cautious for ambiguous
references, performs poorly for CiteSeer and arXiv due to low recall but improves
performance over Bootstrap L-Amb for BioBase by increasing precision.

Next, observe that the naive relational entity resolution algorithm (NR) which
uses attributes of related references in its similarity calculations improves perfor-
mance over A only marginally for CiteSeer and arXiv, while the improvement is
quite significant in the case of BioBase. This suggests that while the attributes of
related entries can help in disambiguation in domains with high ambiguity, there
may not be much improvement for less ambiguous domains.

The table also shows that the effect of transitive closure on entity resolution
performance also varies over the datasets. While it improves performance for both
A and NR for CiteSeer and arXiv, in the case of BioBase, it helps NR but not A.
A possible explanation is that transitive closure improves performance in domains
with low ambiguity, but it may result in false identifications in datasets with higher
ambiguity.

Finally, note that across all three datasets, the collective relational entity resolu-
tion algorithm (CR) performs the best. The gains for the less ambiguous domains
are more modest, while in the most ambiguous domain, the gain is quite significant.
In addition, the performance improvements of CR over NR highlights the impor-
tance over considering the identities of related references rather than just their
attributes. Also, since the performance is insensitive to the choice of attribute
similarity used, overall CR is more robust than A and NR.

In Figure 6, we show the precision-recall curves for the three algorithms in our
three datasets using the Jaro similarity measure for names. For CiteSeer and arXiv,

ACM Journal Name, Vol. v, No. n, mm 20yy.

22 · Bhattacharya and Getoor

 0.8

 0.85

 0.9

 0.95

 1

 0.8 0.85 0.9 0.95 1

P
re

ci
si

on

Recall

CiteSeer

CR
A
NR

(a)

 0.8

 0.85

 0.9

 0.95

 1

 0.8 0.85 0.9 0.95 1

P
re

ci
si

on

Recall

arXiv

CR
A
NR

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

BioBase

CR
A
NR

(c)

Fig. 6. Precision Vs Recall for (a) CiteSeer, (b) arXiv and (c) BioBase

we have zoomed in to show the region where the curves differ significantly from each
other. The plots confirm that the benefits of CR are significantly larger in domains
with high ambiguity such as BioBase.

Recall that CR, NR and NR* involve a weighting parameter α for combining
attribute and relational similarity. As mentioned earlier, the numbers in Table I
record the best performance over different values of α for each of these algorithms.
The best performance is not always achieved for the same value of α for different
datasets or for the 100 different reference names in BioBase. In Figure 7 we see
how the performance of the different algorithms changes over different values of
α for the three datasets. For BioBase, we plot the average performance over all
100 reference names for a particular value of α. As a reference, we also show
the performances of A and A* which do not depend on α. We can make two
interesting observations from the plots. First, the relational clustering algorithm
CR consistently outperforms the naive relational baselines (NR) and (NR*) for
all values of α for all three datasets. Secondly, for CiteSeer and arXiv, the naive
relational approach outperforms the attribute-only baseline only marginally for
small values of α and then its performance drops significantly at higher values.
It is more stable for BioBase but performs still drops below the attribute-only

ACM Journal Name, Vol. v, No. n, mm 20yy.

Collective Entity Resolution in Relational Data · 23

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

F1

alpha

CiteSeer

A
A*
NR
NR*
CR

(a)

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

F1

alpha

arXiv

A
A*
NR
NR*
CR

(b)

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 0.2 0.4 0.6 0.8 1

F1

alpha

BioBase

A
A*
NR
NR*
CR

(c)

Fig. 7. Entity resolution performance at different values of α for (a) CiteSeer, (b) arXiv and (c)
BioBase

baseline for high values of α. The performance of CR is significantly more stable
over varying α for all three datasets, in that it never falls below that of the baselines.
This is another validation of the usefulness of resolving related references instead of
considering their similarities. Note that for CiteSeer and arXiv, performance does
not improve as much beyond α = 0 as for BioBase. This is due to a ceiling effect
and the sparsity of available relationships in these two datasets. It should also be
pointed out that the performance gap between the CR and the attribute baseline
at α = 0 comes from the bootstrapping phase, which makes use of both attributes
and relationships, as explained in Subsection 6.2.

Now we explore CR in more depth, by comparing the performance of the al-
gorithm using different graph-based similarity measures. Table II shows the per-
formance of the collective relational entity resolution with the different proposed
measures on our three datasets. There is little difference in performance on the
CiteSeer and arXiv datasets. The simplest measure, Common, correctly retrieves
almost all duplicates in CiteSeer. Recall that due to the ‘blocking’ approach, 100%
recall — and therefore an F1 score of 1.0 — is not attainable for these two datasets.

There is a bit more of an impact on the BioBase results. The numbers do not

ACM Journal Name, Vol. v, No. n, mm 20yy.

24 · Bhattacharya and Getoor

Table II. F1 performance for collective relational entity resolution using different neighborhood
similarity measures in the three bibliographic datasets.

CiteSeer arXiv BioBase

Common 0.994 0.984 0.814
Common+Fr 0.994 0.984 0.816
Jaccard 0.994 0.985 0.818
Jaccard+Fr 0.995 0.985 0.818
AdarNbr 0.994 0.984 0.815
AdarNbr+Fr 0.994 0.984 0.816
AdarName 0.994 0.985 0.819
AdarName+Fr 0.995 0.984 0.817
Path3Sim 0.994 0.984 0.812

provide enough evidence to validate the use of frequencies (+Fr) for comparing
neighborhoods. It improves performance in some cases and affects it adversely
in others. So in the following discussion, we concentrate on the basic similarity
measures where the cluster neighborhood is treated as a set, rather than as a bag.
We make four observations:

—Jaccard similarity improves performance over Common neighbors. Recall that
the difference between the two is in the normalization. This shows the importance
of considering the size of the common neighborhood as a fraction of the entire
neighborhood.

—AdarNbr performs worse than Jaccard. Recall that Adar similarity consid-
ers the importance or uniqueness of each cluster in the shared neighborhood.
We pointed out that the ‘connectedness’ of a shared neighbor is not a reliable
indicator in our case, since the graph is consolidated over iterations and new
hyper-edges are added to each cluster. This is validated by the drop in perfor-
mance as we move to AdarNbr from Jaccard.

—AdarName performs the best over all the graph-based similarity measures. Re-
call that AdarName attempts to capture the ‘uniqueness’ of a cluster of refer-
ences, and this, combined with Adar similarity, works the best of all the neigh-
borhood similarity measures on BioBase.

—Path3Sim has the lowest performance of all the graph-based measures. Recall
that Path3Sim explores second order neighborhoods for detecting co-reference.
This suggests that in dense collaboration graphs with many ambiguous enti-
ties, where distinct entities with similar attributes have common higher order
neighbors, going beyond immediate neighborhood can hurt entity resolution per-
formance. Along similar lines, we show later in our experiments on sythetic data
that dense first order relationships can also be confusing and have an adverse
effect on resolution accuracy.

The numbers in Table II show the average performance of the different measures
over all 100 instances in BioBase. However, it is not the case that performance
is affected for every instance by changing the similarity measure. For example,
performance changes in only 22 of the 100 instances when using Jaccard similarity
instead of AdarName similarity, as compared to 80 for Jaccard compared to the

ACM Journal Name, Vol. v, No. n, mm 20yy.

Collective Entity Resolution in Relational Data · 25

Best Baseline

Common AdarNbr

AdarName

Path3Sim

-0.1

-0.075

-0.05

-0.025

0

C
ha

ng
e

in
 F

1

Fig. 8. Comparison of different relational similarity measures against Jaccard over only the
affected instances in BioBase in each case. The best baseline for BioBase is NR*

baseline attribute-based similarity measure. In Figure 8, we compare the other
measures with Jaccard similarity by measuring the average change in F1-measure
over only the affected instances. We see the same trends as discussed above, but
the difference between the measures become more pronounced.

Table III. Execution time of different algorithms in CPU seconds

CiteSeer arXiv BioBase

A 0.1 11.3 3.9
NR 0.1 11.5 19.1
CR 2.7 299.0 45.6

7.1.5 Execution Time. As we have seen, the use of collective relational entity
resolution improves entity resolution performance over attribute-based baselines.
However it is more expensive computationally. Table III records the execution
times in CPU seconds of the baseline algorithms and CR on the three datasets.
All execution times are reported on a Dell Precision 870 server with 3.2GHz Intel
Xeon processor and 3GB of memory. Let us first consider the execution times for
CiteSeer and arXiv. As expected, CR takes more time than the baseline but it is
still quite fast. It takes less than 3 secs for the 2,982 references in CiteSeer and less
than 5 minutes for the 58,515 references in arXiv. This is around 9 times as long
as the baseline for CiteSeer and 17 times for arXiv. Recall that the complexity of
neighborhood similarity is linear in the average connectivity between similar names.
The average number of neighbors per entity for CiteSeer is 2.15 and for arXiv it is
4.5. So this difference in the degree of relational connectivity explains the difference
in execution times for the two datasets. Also, the available attribute for these two
datasets is the author name and the average number of authors per publication is
very small (1.9) for both. So very little extra computation is needed for the naive
relational approach over the attribute baseline.

Now let us consider BioBase. The time recorded for BioBase in Table III is
not for cleaning the entire dataset. Rather, it is the average time for collectively
resolving references with each of the 100 labeled names. We picked each of the 100

ACM Journal Name, Vol. v, No. n, mm 20yy.

26 · Bhattacharya and Getoor

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 10 20 30 40 50 60 70

tim
e

(s
ec

s)

#references (in thousands)

BioBase
arXiv

Fig. 9. Execution time of CR with increasing number of references

names in the BioBase dataset and extracted all the references relevant for resolving
references with that name collectively. The time recorded for BioBase in Table III is
the average time taken by different algorithms to resolve these ‘relevant references’
for each name. The ‘relevant references’ for each name are found iteratively by
including all references that are reachable from the ‘base references’ that have this
name in k steps. The average number of relevant references for each of the 100
instances in 5,510. Table III shows that the difference in execution time between
CR and the baselines is much smaller for BioBase. One reason for this is that
BioBase has many attributes in addition to author name that the attribute-only
baseline also need to take into account. Also, the average number of authors per
publication is 5.3 for BioBase as compared to 1.9 for the other two datasets. This
makes the naive relational approach significantly more expensive than the attribute-
only baseline.

We also used this iterative setup to explore how the collective relational entity
resolution algorithm scales with increasing number of references. We created 4
datasets of varying sizes from arXiv and BioBase. Figure 9 shows how CR scales
with increasing number of references in the dataset. Recall that the complexity of
CR is O(nk log n) for n input references where k represents the degree of connec-
tivity among the references.

Table IV. Comparison of CR with LDA-ER

CiteSeer arXiv
F1 secs F1 secs

CR 0.995 2.7 0.985 299
LDA-ER 0.993 240 0.981 36,000

7.1.5.1 Comparison With Other Approaches. Before moving on to experiments
on synthetically generated data, we briefly look at how CR compares with other
collective relational approaches for entity resolution. We have also developed a

ACM Journal Name, Vol. v, No. n, mm 20yy.

Collective Entity Resolution in Relational Data · 27

probabilistic generative model for collective entity resolution (LDA-ER) [Bhat-
tacharya and Getoor 2006b] that uses a non-parametric approach to resolve enti-
ties by discovering underlying groups of entities from observed relationships. In
Table IV, we compare the performance and execution times for LDA-ER and CR

on CiteSeer and arXiv. We are currently not able to compare them for BioBase,
since extending the LDA-ER generative process for multiple attributes is ongo-
ing work. We can see that CR is superior in terms of performance. However, it
requires a similarity threshold to be specified. In comparison, LDA-ER does not
require any such threshold and automatically figures out the most likely number of
entities. Additionally, LDA-ER automatically discovers hidden group structures
among the entities from the observed hyper-edges. This is often a useful by-product
in the knowledge discovery process. The price for this improvement in the case of
LDA-ER is significantly longer execution times, as can be seen from Table IV. In
terms of complexity, LDA-ER runs in O(t(ng+e)) time for n references, where t is
the number of iterations to converge, g is the number of groups and e is the number
of entities discovered. In general, the algorithm needs to go over many iterations
before converging and the hidden constants in the complexity are also high in com-
parison to CR, as the execution times for CiteSeer and arXiv demonstrate. So we
can see that collective relational entity resolution (CR) compares favorably with
other collective resolution approaches both in terms of performance and execution
time.

7.2 Experiments on Synthetic Data

As we saw in the previous section, the benefit of using collective relational entity
resolution varied across the different datasets. We attribute this performance differ-
ence to the differences in structural properties of the datasets, such as the fraction
of references that are ambiguous, the number of neighbors per entity, etc. To bet-
ter understand how these different structural characteristics affect the performance
of our collective relational entity resolution, we also experiment with synthetically
generated data where we can control the different structural characteristics. As we
explain next, our synthetic data generator is not tailored solely to bibliographic
data, but can model general relationships between entities, as in social network
data or email data.

7.2.1 Synthetic Data Generator. We designed a two-stage data generator, as
described in Figure 10. Intuitively, we first construct a ‘collaboration’ graph de-
scribing which entities are related, and then, using this graph, we generate a col-
lection of observed relationships between entity references. In the first stage, the
domain entities and their relationships are created. During the creation stage, we
first create N entities and their attributes and then add M binary relationships
between them. For simplicity, rather than generating strings, we have one floating
point attribute x for each entity and its references are later generated from a Gaus-
sian distribution with mean x and variance 1.0. pa controls the ambiguity of the
generated attributes; with probability pa the entity attribute is chosen from values
that are already in use by other entities. Values of x are chosen from a range that is
large enough to accommodate attributes of all N entities at the specified ambiguity
level. Once the entities are created, M binary relations (ei, ej) are added by choos-

ACM Journal Name, Vol. v, No. n, mm 20yy.

28 · Bhattacharya and Getoor

Creation Stage

1. Repeat N times

2. Create random attribute x with ambiguity pa

3. Create entity e with attribute x

4. Repeat M times

5. Choose entities ei and ej randomly

6. Set ei = Nbr(ej) and ej = Nbr(ei)

Generation Stage

7. Repeat R times

8. Randomly choose entity e

9. Generate reference r using N (e.x, 1)
10. Initialize hyper-edge h = 〈r〉
11. Repeat with probability pc

12. Randomly choose ej from Nbr(e) without replacement

13. Generate reference rj using N (ej .x, 1)
14. Add rj hyper-edge h

15. Output hyper-edge h

Fig. 10. High-level description of synthetic data generation algorithm

ing entities ei and ej randomly. In the next stage, we generate the publications and
their co-authors. R hyper-edges are generated, each with its own references. Each
hyper-edge 〈ri, ri1, . . . , rik〉 is generated by first sampling an entity e and generat-
ing a reference ri from it according to its Gaussian distribution. Each instance rij

comes from randomly sampling (without replacement) a neighbor of e. Instances
ri1 through rik are generated one by one with probability pc of continuing further
after each step.

7.2.2 Evaluation. We performed three sets of experiments on synthetically gen-
erated data. In all of our experiments we consider average performance over 200
different runs. In our first experiment, we studied the effect of the number of ref-
erences in each hyper-edge. The objective of this experiment is two-fold. Consider
a collaborative graph, where an entity e has many neighbors. If hyper-edges are
small in size then two hyper-edges involving references r1 and r2 corresponding to
e may not have any other entities in common. Then it is not possible to identify
that r1 and r2 refer to the same entity e even using relational similarity. Secondly,
in ambiguous domains, a single shared neighbor may not be enough to distinguish
between two entities. In both cases, collective resolution is expected to benefit from
larger hyper-edge sizes. In each run for this experiment, we first constructed an
entity graph by creating 100 entities and 200 binary relationships. Then we created
different reference datasets, each with 500 hyper-edges. We varied pc which led to
different number of references in the edges. Figure 11(a) shows the performance of
the different entity resolution algorithms on these datasets. Note that we have used
standard deviation for error bars; standard error is too small for all three plots. We
see that while the performances of the attribute baselines (A and A*) does not
change, the performance of CR improves with increasing number of references per
hyper-edge. Interestingly, performance of the naive relational approach (NR*) de-

ACM Journal Name, Vol. v, No. n, mm 20yy.

Collective Entity Resolution in Relational Data · 29

 0.75

 0.8

 0.85

 0.9

 0.95

 2.5 2.75 3 3.25 3.5 3.75

F1

Avg #references / hyper-edge

A
A*
NR
NR*
CR

(a)

 0.6

 0.7

 0.8

 0.9

 1

 0.05 0.15 0.25 0.35 0.45

F1

Percentage of ambiguous attributes

A
A*
NR
NR*
CR

(b)

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 1 2 3 4 5 6 7 8

F1

Avg #neighbors / entity

A
A*
NR
NR*
CR

(c)

Fig. 11. Performance of different entity resolution algorithms on data synthetically generated
by varying different structural parameters such as (a) the average size of hyper-edges, (b) the
percentage of ambiguous references and (c) the average number of neighbors per entity. Standard
deviations are shown using error bars.

grades with increasing number of references. This demonstrates the importance of
resolving related names instead of considering their attribute similarities only.

In our second experiment, we varied the number of ambiguous references in the
data. Collective resolution is particularly useful for ambiguous references. It may
be possible to address the problem of identifying dispersed references for any entity
by using a smaller similarity threshold with the attribute-only baseline. In con-
trast, disambiguation cannot be done using attributes but is often possible using
relationships. So we expected our collective resolution approach to show larger
improvements over the baseline for more ambiguous data. We created five sets of
datasets, each with 100 entities, but with different ambiguous attribute probability
pa. Then we added 200 binary relations between these entities and generated 500
hyper-edges with an average of 2 references per hyper-edge. Figure 11(b) com-
pares entity resolution performance for the different algorithms on the datasets.
As expected, the performance of all algorithms drops with increasing percentage

ACM Journal Name, Vol. v, No. n, mm 20yy.

30 · Bhattacharya and Getoor

of ambiguous references. However, the performance drop for CR is significantly
slower than those for the attribute and naive relational baselines since the entity
relationships help to make the algorithm more robust. As a result, the gap between
CR and the baselines increases as the percentage of ambiguous references in the
data increases.

In our final experiment, we explored the impact of varying the number of rela-
tionships between the underlying entities. In the extreme situation, where there
are no relationships between entities, clearly no improvement can be obtained us-
ing collective resolution. At the other extreme, when all entities are connected to
each other, there is no pattern in the relationships that collective resolution can
exploit. The objective of this experiment was to explore how increased connectivity
among entities affects collective resolution. We first created a set of 100 entities.
Then we created different entity graph structures by adding different number of
relations between the entities. As before, we generated 500 hyper-edges (with an
average of 2 references per hyper-edge) from each of these different entity-graphs
and compared performances of the different algorithms for the different datasets.
The results are shown in Figure 11(c). First we note that, as expected, the per-
formances of the attribute baselines (A and A*) do not change significantly since
they do not depend on the relationships. The naive relational approaches (NR and
NR*) degrade in performance with higher neighborhood sizes, again highlighting
the importance of resolving related references. The performance of CR increases
initially as the number of relationships increases. However it peaks when the av-
erage number of neighbors per entity is around 2 and then it starts falling off. In
fact, it falls below the attribute-baseline when the neighborhood size increases to
8. This is an interesting result that shows that increasing number of relationships
does not always help collective entity resolution. As more relationships get added
between entities, relationship patterns between entities are less informative, and
may actually hurt performance. In this experiment, the probability of ambiguous
attributes pa was 0.3. We observe the same trend for other values of pa, the only
change is the position of the peak. The peak occurs earlier as pa is increased.

Finally, we discuss two of the current limitations of our approach. For the first
limitation, recall that the similarity measure in Eqn. 2 involves a weighting pa-
rameter α for combining attribute and relational similarity. It is not clear how
the optimal value for α should be chosen for each case and, for most of our com-
parisons, we consider the best F1 score over all values of α. Figure 7 shows the
performance for a fixed value of α in contrast to a different optimal value for each
case. It demonstrates that there are significant performance improvements using
CR for any value of α over its entire range. Recall that the similarity measure
uses only attributes when α = 0 and only relations when α = 1. For CiteSeer and
arXiv, performance does not vary significantly with α. Since BioBase has much
higher ambiguity in terms of attributes (many references have exactly the same
name and therefore mostly the same countries, and all papers are from the same
area), resolution performance improves with increasing α. Secondly, as with any
clustering algorithm, determination of the termination threshold is an issue. Note
that this comes up for all of the baselines as well, and here we report best accuracy
over all thresholds. This is an area of ongoing research.

ACM Journal Name, Vol. v, No. n, mm 20yy.

Collective Entity Resolution in Relational Data · 31

8. RELATED WORK

The entity resolution problem has been studied in many different areas under dif-
ferent names — co-reference resolution, deduplication, object uncertainty, record
linkage, reference reconciliation, etc. Here we review some of the main work, but
the review is not exhaustive. Winkler [1999] also provides a nice summary report.

The traditional approach to entity resolution looks at textual similarity in the
descriptions of the entities. For example, determining whether two citations refer
to the same paper depends on the similarity measure such as edit distance between
the two citation strings. There has been extensive work on defining approximate
string similarity measures [Monge and Elkan 1996; Navarro 2001; Cohen et al. 2003;
Chaudhuri et al. 2003] that may be used for unsupervised entity resolution. An-
other approach is to use adaptive supervised algorithms that learn string similarity
measures from labeled data [Ristad and Yianilos 1998; Bilenko and Mooney 2003;
Cohen and Richman 2002; Tejada et al. 2001]. One of the difficulties in using a
supervised method for resolution is constructing a good training set that includes
a representative collection of positive and negative examples. Other approaches
use active learning [Sarawagi and Bhamidipaty 2002; Tejada et al. 2001], where the
user is asked to label ambiguous examples by the learner.

Even the attribute-only approach to entity resolution is known to be a hard
problem computationally. Therefore, efficiency issues have long been a focus for
data cleaning, the goal being the development of inexpensive algorithms for finding
approximate solutions. The key mechanisms for doing this involve computing the
matches efficiently and employing techniques commonly called ‘blocking’ to quickly
find potential duplicates [Hernández and Stolfo 1995; Monge and Elkan 1997; Mc-
Callum et al. 2000]. Gravano et al. [2003] propose a sampling approach to quickly
compute cosine similarity between tuples for fast text-joins within an SQL frame-
work. Chaudhuri et al. [2003] use an error tolerant index for data warehousing
applications to efficiently look up a small but ‘probabilistically safe’ set of reference
tuples as candidates for matching for an incoming tuple. Swoosh [Benjelloun et al.
2005] has recently been proposed as a generic entity resolution framework that con-
siders resolving and merging duplicates as a database operator and the goal is to
minimize the number of record-level and feature-level operations.

The groundwork for posing entity resolution as a probabilistic classification prob-
lem was done by Fellegi and Sunter [1969], who extend the ideas of Newcombe et al.
[1959] for labeling pairs of records from two different files to be merged as “match”
or “non-match” on the basis of agreement among their different fields. Winkler
[2002] and more recently Ravikumar and Cohen [2004] have built upon this work.
Probabilistic models that take into account interaction between different entity
resolution decisions have been proposed for named-entity recognition in natural
language processing and for citation matching. McCallum and Wellner [2004] use
conditional random fields for noun coreference and use clique templates with tied
parameters to capture repeated relational structure. Singla and Domingos [2004]
use the idea of merging evidence to allow the flow of reasoning between different
pair-wise decisions over multiple entity types. These two relational models are su-
pervised and require labeled data to train the parameters. Availability of sufficient
labeled data is often an issue for this problem and unsupervised relational models

ACM Journal Name, Vol. v, No. n, mm 20yy.

32 · Bhattacharya and Getoor

have also been developed. Li et al. [2005] address the problem of disambiguating
“entity mentions”, potentially of multiple types, in the context of unstructured
textual documents. They propose a probabilistic generative model that captures a
joint distribution over pairs of entities in terms of co-mentions in documents. Pa-
sula et al. [2003] propose a generic probabilistic relational model framework for the
citation matching problem. In other work of our own [Bhattacharya and Getoor
2006b], we have extended the Latent Dirichlet Allocation model for documents and
topics and extended it to propose a generative group model for collective entity res-
olution. Instead of performing a pair-wise comparison task, we use a latent group
variable for each reference, which is inferred from observed collaborative patterns
among references in addition to attribute similarity to predict the entity label for
each reference. All of these probabilistic models have been shown to perform well
in practice and have the advantage that the match / non-match decisions do not
depend on any user specified threshold but are learned directly from data. How-
ever, this benefit comes at a price. Inference in relational probabilistic models is an
expensive process. Exact inference is mostly intractable and approximate strategies
such as loopy belief propagation and Monte Carlo sampling strategies are employed.
Even these approximate strategies take several iterations to converge and extending
such approaches to large datasets is still an open problem.

Alternative approaches [Ananthakrishna et al. 2002; Bhattacharya and Getoor
2004; Kalashnikov et al. 2005; Dong et al. 2005] consider relational structure of the
entities for data integration but avoid the complexity of probabilistic inference. By
avoiding a formal probabilistic model, these approaches can handle complex rela-
tionships between different entities more easily and the resolution process is sig-
nificantly faster as well. Kalashnikov et al. [2005] enhance feature-based similarity
between an ambiguous reference and the many entity choices for it with relationship
analysis between the entities, such as affiliation and co-authorship. They propose
a ‘content attraction principle’ hypothesizing that an ambiguous reference will be
more strongly connected via such relationships to its true entity compared to other
entity choices for it. They translate this principle to a set of non-linear equations
involving connection strengths in the entity graph, which are solved to determine
the entity choice for each reference. They show improvements by the use of rela-
tionship chains connecting multiple types of entities, in contrast to just first order
relationships. This approach is useful for incremental data cleaning when the set of
entities currently in the database is known and an incoming reference needs to be
matched with one of these entities. In the more general setting that we consider,
the entities are not known and need to be discovered. Ananthakrishna et al. [2002]
introduce relational deduplication in data warehouse applications where there is a
dimensional hierarchy over the relations. Using an approach similar in spirit to our
naive relational baseline, they augment the string similarity measure between two
tuples with the similarity between their foreign key relations across the hierarchy
which they call children sets. In the specific case, where the relationships represent
an ordered set as in a domain hierarchy, they show how the similarity computation
can be made more efficient. To avoid comparison between all pairs of tuples in a
relation, they propose a grouping strategy that makes use of the relational hierar-
chy. In earlier work of our own [Bhattacharya and Getoor 2004], we have done a

ACM Journal Name, Vol. v, No. n, mm 20yy.

Collective Entity Resolution in Relational Data · 33

preliminary exploration of clustering approaches for collective entity resolution in
the presence of relations. The approach that is the most similar in spirit to ours
is that of Dong et al. [2005]. They collectively resolve entites of multiple types
by propagating relational evidence in a dependency graph, and demonstrate the
benefits of collective resolution in real datasets. Their approach creates a binary
decision node for each potential pair of duplicates, which can be expensive in large
datasets. One key strategy that they employ to propagate evidence is merging at-
tribute decision nodes. Specifically, for a pair of names such as ‘J. Smith’ and ‘John
Smith’, they create a single decision node in the dependency graph and multiple
entity pairs can share this decision. However, while ‘John Smith’ and ‘J. Smith’
may refer to the same individual for a particular mention of ‘J Smith’, it is quite
possible for another mention of ‘J. Smith’ to refer to ‘James Smith’. This approach
is useful for identifying many dispersed references for the same entity but not for
domains where disambiguation is important.

9. CONCLUSION

Entity resolution is an area that has been attracting growing attention to address
the influx of structured and semi-structured data from a multitude of heteroge-
neous sources. Accurate resolution is important for a variety of reasons ranging
from cost-effectiveness and reduction in data volume to accurate analysis for criti-
cal applications. In the case of structured data, it is especially important to look at
entity resolution from a relational perspective. Collective relational entity resolu-
tion is a powerful and promising approach that combines attribute similarity with
relational evidence and shows improved performance over traditional approaches.

In this article, we have shown how entity resolution may be posed as a relational
clustering problem where the entity labels of related references depend on each
other. We described an algorithm for this problem that augments a general class of
attribute similarity measures with relational similarity among the entities to be re-
solved. We investigated the effectiveness of these relational similarity measures on
three real bibliographic datasets with different characteristics and levels of ambigu-
ity. In all datasets, our similarity measures significantly outperformed the baseline
algorithms, but the degree of improvement depended on the intrinsic ambiguity of
the dataset — the greater the ambiguity, the greater the benefit obtained using
collective resolution. To study the dependence of the algorithm’s performance on
different structural characteristics of the domain, we performed detailed experi-
ments on synthetically generated data where we can vary the data characteristics
in a controlled fashion. We showed that the benefits of relational clustering over
attribute-based approaches is greatest when there are many references per hyper-
edge and when there are many ambiguous references in the data. Interestingly, we
also showed that as the number of relations between underlying entities increases,
the performance of collective resolution peaks for a particular neighborhood size.
But then the gains diminish as relational patterns become less informative.

There are many interesting avenues for future work. While our algorithms are
general and can handle multiple entity types, our experimental results have fo-
cused on a single entity and relation type. Also all our real-world datasets are
bibliographic, it would be interesting to study our algorithms on different types of

ACM Journal Name, Vol. v, No. n, mm 20yy.

34 · Bhattacharya and Getoor

relational data including consumer data, social network data and biological data.
Our work starts from data in which the references have already been extracted;
it would be interesting to integrate the collective resolution process with the ex-
traction process. Finally, in this paper, we have viewed entity resolution as an
offline data cleaning process; an alternative view, which we have recently begun
to investigate [Bhattacharya and Getoor 2006c], is the notion of query-time entity
resolution, in which only the data relevant to a query is resolved.

ACKNOWLEDGMENTS

We wish to thank our anonymous reviewers for their many constructive suggestions
for improving the paper. This work was supported by the National Science Foun-
dation, NSF #0423845 and NSF #0438866, with additional support from the ITIC
KDD program.

REFERENCES

Adamic, L. and Adar, E. 2003. Friends and neighbors on the web. Social Networks 25, 3 (July),
211–230.

Ananthakrishna, R., Chaudhuri, S., and Ganti, V. 2002. Eliminating fuzzy duplicates in data
warehouses. In The International Conference on Very Large Databases (VLDB). Hong Kong,

China.

Benjelloun, O., Garcia-Molina, H., Su, Q., and Widom, J. 2005. Swoosh: A generic approach
to entity resolution. Tech. rep., Stanford University. March.

Bhattacharya, I. and Getoor, L. 2004. Iterative record linkage for cleaning and integration. In
The ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery
(DMKD). Paris, France.

Bhattacharya, I. and Getoor, L. 2006a. Entity Resolution in Graphs. Wiley, Chapter Mining
Graph Data (L. Holder and D. Cook, eds.).

Bhattacharya, I. and Getoor, L. 2006b. A latent dirichlet model for unsupervised entity
resolution. In The SIAM Conference on Data Mining (SIAM-SDM). Bethesda, USA.

Bhattacharya, I. and Getoor, L. 2006c. Query-time entity resolution. In The ACM Interna-
tional Conference on Knowledge Discovery and Data Mining (SIGKDD). Philadelphia, USA.

Bilenko, M. and Mooney, R. 2003. Adaptive duplicate detection using learnable string similarity
measures. In The ACM International Conference on Knowledge Discovery and Data Mining
(SIGKDD). Washington, DC, USA.

Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., and Fienberg, S. 2003. Adaptive name
matching in information integration. IEEE Intelligent Systems 18, 5, 16–23.

Chaudhuri, S., Ganjam, K., Ganti, V., and Motwani, R. 2003. Robust and efficient fuzzy
match for online data cleaning. In The ACM International Conference on Management of
Data (SIGMOD). San Diego, USA.

Cohen, W. 2000. Data integration using similarity joins and a word-based information represen-
tation language. ACM Transactions on Information Systems 18, 288–321.

Cohen, W., Ravikumar, P., and Fienberg, S. 2003. A comparison of string distance metrics
for name-matching tasks. In The IJCAI Workshop on Information Integration on the Web
(IIWeb). Acapulco, Mexico.

Cohen, W. and Richman, J. 2002. Learning to match and cluster large high-dimensional data
sets for data integration. In The ACM International Conference on Knowledge Discovery and
Data Mining (SIGKDD). Edmonton, Canada.

Dong, X., Halevy, A., and Madhavan, J. 2005. Reference reconciliation in complex information
spaces. In The ACM International Conference on Management of Data (SIGMOD). Baltimore,
USA.

ACM Journal Name, Vol. v, No. n, mm 20yy.

Collective Entity Resolution in Relational Data · 35

Fellegi, I. and Sunter, A. 1969. A theory for record linkage. Journal of the American Statistical

Association 64, 1183–1210.

Giles, C. L., Bollacker, K., and Lawrence, S. 1998. CiteSeer: An automatic citation indexing
system. In The ACM Conference on Digital Libraries. Pittsburgh, USA.

Gravano, L., Ipeirotis, P., Koudas, N., and Srivastava, D. 2003. Text joins for data cleansing
and integration in an RDBMS. In The IEEE International Conference on Data Engineering
(ICDE). Bangalore, India.

Hernández, M. and Stolfo, S. 1995. The merge/purge problem for large databases. In The
ACM International Conference on Management of Data (SIGMOD). San Jose, USA.

Kalashnikov, D., Mehrotra, S., and Chen, Z. 2005. Exploiting relationships for domain-
independent data cleaning. In The SIAM International Conference on Data Mining (SIAM
SDM). Newport Beach, USA.

Li, X., Morie, P., and Roth, D. 2005. Semantic integration in text: From ambiguous names to
identifiable entities. AI Magazine. Special Issue on Semantic Integration 26, 1, 45–58.

Liben-Nowell, D. and Kleinberg, J. 2003. The link prediction problem for social networks.
In The International Conference on Information and Knowledge Management (CIKM). New
Orleans, USA.

McCallum, A., Nigam, K., and Ungar, L. 2000. Efficient clustering of high-dimensional data
sets with application to reference matching. In The International Conference On Knowledge
Discovery and Data Mining (SIGKDD). Boston, USA.

McCallum, A. and Wellner, B. 2004. Conditional models of identity uncertainty with ap-
plication to noun coreference. In The Annual Conference on Neural Information Processing
Systems (NIPS). Vancouver, Canada.

Monge, A. and Elkan, C. 1996. The field matching problem: Algorithms and applications. In
The International Conference on Knowledge Discovery and Data Mining (SIGKDD). Portland,
USA.

Monge, A. and Elkan, C. 1997. An efficient domain-independent algorithm for detecting ap-
proximately duplicate database records. In The SIGMOD Workshop on Research Issues on
Data Mining and Knowledge Discovery (DMKD). Tuscon, USA.

Navarro, G. 2001. A guided tour to approximate string matching. ACM Computing Sur-
veys 33, 1, 31–88.

Newcombe, H., Kennedy, J., Axford, S., and James, A. 1959. Automatic linkage of vital
records. Science 130, 954–959.

Pasula, H., Marthi, B., Milch, B., Russell, S., and Shpitser, I. 2003. Identity uncertainty
and citation matching. In The Annual Conference on Neural Information Processing Systems
(NIPS). Vancouver, Canada.

Ravikumar, P. and Cohen, W. 2004. A hierarchical graphical model for record linkage. In The
Conference on Uncertainty in Artificial Intelligence (UAI). Banff, Canada.

Ristad, E. and Yianilos, P. 1998. Learning string edit distance. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI) 20, 5, 522–532.

Sarawagi, S. and Bhamidipaty, A. 2002. Interactive deduplication using active learning. In
The ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD).
Edmonton, Canada.

Singla, P. and Domingos, P. 2004. Multi-relational record linkage. In The ACM SIGKDD
Workshop on Multi-Relational Data Mining (MRDM). Seattle, USA.

Tejada, S., Knoblock, C., and Minton, S. 2001. Learning object identification rules for infor-
mation integration. Information Systems Journal 26, 8, 635–656.

Winkler, W. 1999. The state of record linkage and current research problems. Tech. rep.,
Statistical Research Division, U.S. Census Bureau, Washington, DC, USA.

Winkler, W. 2002. Methods for record linkage and Bayesian networks. Tech. rep., Statistical
Research Division, U.S. Census Bureau, Washington, DC, USA.

ACM Journal Name, Vol. v, No. n, mm 20yy.

