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Information diffusion, viral marketing, graph-based semi-supervised learning, and collective clas-

sification all attempt to model and exploit the relationships among nodes in a network to improve

the performance of node labeling algorithms. However, sometimes the advantage of exploiting the

relationships can become a disadvantage. Simple models like label propagation and iterative clas-

sification can aggravate a misclassification by propagating mistakes in the network, while more

complex models that define and optimize a global objective function, such as Markov random fields

and graph mincuts, can misclassify a set of nodes jointly. This problem can be mitigated if the

classification system is allowed to ask for the correct labels for a few of the nodes during inference.

However, determining the optimal set of labels to acquire is intractable under relatively general

assumptions, which forces us to resort to approximate and heuristic techniques. We describe three

such techniques in this article. The first one is based on directly approximating the value of the

objective function of label acquisition and greedily acquiring the label that provides the most im-

provement. The second technique is a simple technique based on the analogy we draw between

viral marketing and label acquisition. Finally, we propose a method, which we refer to as reflect
and correct, that can learn and predict when the classification system is likely to make mistakes

and suggests acquisitions to correct those mistakes. We empirically show on a variety of synthetic

and real-world datasets that the reflect and correct method significantly outperforms the other two

techniques, as well as other approaches based on network structural measures such as node degree

and network clustering.
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1. INTRODUCTION

Information diffusion, viral marketing, graph-based semi-supervised learning,
and collective classification all attempt to exploit relationships in a network to
reason and make inferences about the labels of the nodes in the network. The
common intuition is that knowing (or inferring) something about the label of
a particular node can tell us something useful about the other nodes’ labels in
the network. For instance, the labels of the linked nodes often tend to be corre-
lated (not necessarily a positive correlation) for many domains; hence, finding
the correct label of a node is useful for not only that particular node, but the
inferred label also has an impact on the predictions that are made about the
nodes in the rest of the network. Thus, it has been shown that methods such as
collective classification, that is, classifying the nodes of a network simultane-
ously, can significantly outperform content-only classification methods, which
make use of only the attributes of nodes and ignore the relationships between
them [Chakrabarti et al. 1998; Neville and Jensen 2000; Getoor et al. 2001;
Taskar et al. 2002; Lu and Getoor 2003a; Jensen et al. 2004; Macskassy and
Provost 2007; Sen et al. 2008]. However, sometimes, the advantage of exploiting
the relationships can become a disadvantage. In addition to the typical errors
made by content-only classification models (errors due to model limitations,
noise in the data, etc.), collective classification models can also make mistakes
by propagating misclassifications in the network. This can sometimes even have
a domino effect leading to misclassification of most of the nodes in the network.
For example, consider a simple binary classification problem where an island
of nodes that should be labeled with the positive label are surrounded with a
sea of negatively labeled nodes. The island may be flooded with the labels of
the neighboring sea of negative nodes.

This flooding of the whole network (or part of it) can occur for simple models
such as iterative classification [Lu and Getoor 2003a; Neville and Jensen 2000]
and label propagation [Zhu and Ghahramani 2002]. A misclassification can be
propagated to the rest of the network, especially if the misclassification is sys-
tematic and common, such as misclassifying nodes as belonging to the majority
class. Flooding can also happen for more complex models that define a global
objective function to be optimized. For example, for pairwise Markov random
field models [Taskar et al. 2002] with parameter values that prefer intra-class
interactions over inter-class interactions, the most probable configuration of
the labels might be the one where most of the network is labeled with one class.
Or, for a graph mincut formulation [Blum and Chawla 2001], where we pay a
penalty for inter-class interactions, the best objective value might be achieved
by assigning only one label to each connected component in the graph.

One strategy for avoiding flooding is to have an expert in the loop during
inference, who can guide the inference and constrain the solution space in the
right directions by providing the correct labels for a few nodes. Depending on the
application, labels can be acquired by asking the expert to rate specific items,
a company can provide free samples to a small set of customers and customers’
viral networking or purchasing behavior can be observed, or targeted laboratory
experiments can be performed to determine protein functions, etc. However,
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providing these additional labels is often costly and we are often limited to
operate within a given budget. As we show later, determining the optimal set of
labels to acquire is intractable under relatively general assumptions. Therefore,
we are forced to resort to approximate and heuristic techniques to get practical
solutions.

In this article, we describe three polynomial-time label acquisition strategies.
The first and most direct approach is based on approximating the objective
function (which we define formally in Section 2) and greedily acquiring the
label that provides the greatest improvement in the objective value. The second
approach draws on an analogy between viral marketing and label acquisition,
and translates one of the existing viral marketing formulations into a label
acquisition strategy. The third approach, which we refer to as reflect and correct,
is a simple yet effective acquisition method that learns the cases when a given
collective classification model makes mistakes, finds islands of nodes that the
collective model is likely to misclassify, and suggests acquisitions to correct
these potential mistakes.

In addition to these three methods, we also experiment with acquisition
strategies that are based on network structural measures such as node degree
and network clustering. To compare the different acquisition strategies, we
use two representative collective models: one that consists of a collection of
local classifiers, and one that defines and optimizes a global objective function.
Using synthetic datasets, we analyze the cases when flooding might happen and
its degree of severity. We compare the acquisition strategies on the synthetic
datasets under varying settings and on real-world datasets, and we empirically
show that the reflect and correct method we propose significantly outperforms
all of the other methods.

The label acquisition problem has received ample attention within the con-
text of active learning [Cohn et al. 1996; McCallum and Nigam 1998; Tong and
Koller 2002]. There are two main differences between the scenario we address
and the active learning scenario. First, active learning has traditionally been
concerned with non-relational data; here, we are interested in network data.
The second (and the biggest) difference is that we assume that we have available
an already trained model of the domain, and thus the learning has been done
offline, but we have the option to acquire labels to seed the classification during
inference. This is the setting Rattigan et al. [2007] introduced and referred to as
“active inference.” They looked at the relational network classifier, introduced
by Macskassy and Provost [2003], in which there are no node attributes; only
labels are propagated. Here, we build on this, and look at networks in which
the nodes have attribute information and compare to the structural strategy
that they introduced.

This article builds upon our earlier work [Bilgic and Getoor 2008]. Our con-
tributions in this article include:

—We introduce three novel label acquisition strategies for collective classifica-
tion.

—We describe the three acquisition strategies using a common utility-based
active inference framework.

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 20, Publication date: November 2009.



20:4 • M. Bilgic and L. Getoor

—We investigate the flooding and active inference using two different types of
collective models, which provides additional insights.

—We experiment with different content-only classifiers for feature construction
for the proposed method.

—We explore the spectrum of flooding using synthetic datasets with varying
attribute noise levels and label correlations.

—We perform extensive experiments comparing different acquisition strategies
in different settings.

We formulate the label acquisition problem and state the objective function
in Section 2. Then, we explain the three approaches in Sections 3.1, 3.2, and
3.3. We then show experimental results on both synthetic and real datasets
(Section 4). Finally, we discuss related work (Section 5), summary and future
work (Section 6 and Section 7) and then conclude (Section 8).

2. PROBLEM FORMULATION

We begin by reviewing the collective classification problem and define the ob-
jective function for label acquisition for collective classification. In this prob-
lem, we assume that our data is represented as a graph with nodes and
edges, G = (V, E). Each node Vi ∈ V is described by an attribute vector
�X i and a class label Yi pair, Vi = 〈 �X i, Yi〉. �X i is a vector of individual at-
tributes 〈X i1, X i2, . . . , X ip〉. The domain of X ij can be either discrete or con-
tinuous whereas the domain of the class label Yi is discrete and denoted as
{ y1, y2, . . . , ym}. Each edge Eij ∈ E describes some sort of relationship between
its endpoints, Eij = 〈Vi, Vj 〉. Examples include:

—Social Networks. Here, the nodes are people, the attributes may include de-
mographic information such as age and income and the edges are friendships.
The labels indicate categories of people, for example we may be interested in
labeling the people that are likely to partake in some activity (e.g., smoking,
IV drug use), have some disease (e.g., tuberculosis, obesity), or exhibit some
behavior (buying a product, spreading a rumor).

—Citation Networks. The nodes are publications, the attributes include content
information and the edges represent citations. The labels may be the topics of
the publications, or an indication of the reputation of the paper, for example
whether the paper is seminal or not.

—Biological Networks. Where for example, the nodes represent proteins, at-
tributes include annotations, and edges represent interactions. In this do-
main for example, we may be interested in inferring protein function.

2.1 Collective Classification

In graph data, the labels of neighboring nodes are often correlated (though
not necessarily positively correlated). For example, friends tend to have sim-
ilar smoking behaviors, papers are likely to have similar topics to the papers
that they cite, and proteins are likely to have complementary functions. Ex-
ploiting these correlations can significantly improve classification performance
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over using only the attributes, �X i, for the nodes. However, when predicting the
label of a node, the labels of the related instances are also unknown and need
to be predicted. Collective classification is the term used for simultaneously
predicting the labels Y of V in the graph G, where Y denotes the set of labels of
all of the nodes, Y = {Y1, Y2, . . . , Yn}. In general, the label Yi of a node can be
influenced by its own attributes �X i as well as the labels Y j and attributes �X j

of other nodes in the graph.
There are many collective classification models proposed to date that make

different modeling assumptions about these dependencies. They can be grouped
into two broad categories. In the first category, local collective classification mod-
els, the collective models consist of a collection of local vector-based classifiers,
such as logistic regression. For the this category of collective models, each object
is described as a vector of its local attributes �X i and an aggregation of attributes
and labels of its neighbors. Examples include Chakrabarti et al. [1998], Neville
and Jensen [2000], Lu and Getoor [2003a], Macskassy and Provost [2007], and
McDowell et al. [2007]. The second category of collective classification models
are global collective classification models. In this case, the collective classifica-
tion is defined as a global objective function to be optimized. In many cases, a
relational graphical model is learned over all the attributes and labels in the
graph, and a joint probability distribution over these attributes and labels is
learned and optimized. Examples of this category include conditional random
fields [Lafferty et al. 2001], relational Markov networks [Taskar et al. 2002],
probabilistic relational models [Getoor et al. 2002], and Markov logic networks
[Richardson and Domingos 2006].

In this article, we use an example model from each category, which we explain
briefly here. For the local collective classification model, we use Iterative Classi-
fication Algorithm (ICA) [Neville and Jensen 2000; Lu and Getoor 2003a], and,
for the global collective classification model, we use a pairwise Markov Random
Fields (MRF) based on the relational Markov network of Taskar et al. [2002].
We first introduce notations and assumptions common to both models and then
describe the two approaches.

LetNi denote the labels of the neighboring nodes of Vi,Ni = {Y j |〈Vi, Vj 〉 ∈ E}.
A general assumption that is made is the Markov assumption that Yi is directly
influenced only by �X i and Ni. Given the values of Ni, Yi is independent of Y \Ni

and is independent of X \ { �X i}, where X denotes the set of all attribute vectors
in the graph, X = { �X 1, �X 2, . . . , �X n}. That is, once we know the the values of
Ni, then Yi is independent of attribute vectors �X j of all neighbors and non-
neighbors, and it is independent of labels Y j of all non-neighbors.

2.1.1 Iterative Classification Algorithm (ICA). In the ICA model, each node
in the graph is represented as a vector that is a combination of node features,
�X i, and features that are constructed using the labels of the nodes’ immediate
neighbors. Because each node can have a varying number of neighbors, we
use an aggregation function over the neighbor labels in order to get a fixed-
length vector representation. For example, the count aggregation constructs
a fixed-size feature vector by counting how many of the neighbors belong to
each label; other examples of aggregations include proportion, mode, etc. Once
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the features are constructed, then an off-the-shelf probabilistic classifier can
be used to learn P (Yi | �X i, aggr(Ni)), where aggr is an aggregate function that
converts a set of inputs into a fixed length vector. One can use a single classifier
to learn P (Yi | �X i, aggr(Ni)) or can use a structured classifier to learn P (Yi | �X i)
and P (Yi | aggr(Ni)) separately, which can be combined in a variety of ways to
compute P (Yi | �X i, aggr(Ni)).

A key component of this approach is that during inference, the labels of
the neighboring instances are often not known. ICA addresses this issue, and
performs collective classification, by using the predicted labels for the neighbors
for feature construction. ICA iterates over all nodes making a new prediction
based on the predictions made for the unknown labels of the neighbors in the
previous iteration; in the first step of the algorithm, initial labels can be inferred
based solely on attribute information, or based on attribute and any observed
neighboring labels. ICA learning is typically done using fully labeled training
data, however there are also approaches that use semi-supervised techniques
for learning ICA [Lu and Getoor 2003b; Xiang and Neville 2008].

2.1.2 Pairwise Markov Random Fields (MRF). Now, we briefly describe the
MRF model we used. In MRF, the joint probability of P (Y|X ) is given by:

P (Y | X ) = 1

Z

∏
Yi∈Y

φ(Yi, �X i)φ(Yi, Ni),

where φ are the “compatibility” functions that in effect capture the degree and
the strength of the relationships between different values of Yi and �X i and Yi

and Ni. For example, in social networks, these compatibility functions can be
considered to capture the degree of correlations between the smoking behaviors
of friends in a network. The Z is a normalization function ensuring that P (Y |
X ) is a legitimate probability function.

Note that in this representation, the number of arguments for φ are neither
fixed nor uniform; that is, for one particular node φ(Yi, Ni) can have just two
arguments whereas for a different node it can have hundreds of arguments.
This property is undesirable for many reasons including representational inef-
ficiency, lack of sufficient data for accurate parameter estimation, and difficulty
of generalizing from train data to the test data. To get around these problems,
one trick is to assume a functional form for the φ. For example, we can ap-
proximate the interactions between many nodes as the product of the pairwise
interactions; this assumption leads to pairwise Markov Random Fields:

P (Y | X ) = 1

Z

∏
Yi∈Y

(
p∏

j=1

φ(Yi, X ij)

) ⎛
⎝ ∏

Y j ∈Ni

φ(Yi, Y j )

⎞
⎠ . (1)

One other trick to make sure that the φ are generalizable from train to test
data and also to make sure that P (Y | X ) is integrable is to represent φ as log-
linear combinations of a set of indicator functions of the form f yi ,xij (Yi, X ij) �
σ (Yi = yi, X ij = xij), and f yi , y j (Yi, Y j ) � σ (Yi = yi, Y j = y j ). Then, the
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compatibility functions are represented as:

φ(Yi, X ij) = e

⎛
⎝∑

ij
wyi ,xij

f yi ,xij
(Yi ,X ij)

⎞
⎠

; φ(Yi, Y j ) = e

⎛
⎝∑

ij
wyi , y j f yi , y j (Yi ,Y j )

⎞
⎠

,

where ws are weights to be learned from the train data. With this representa-
tion, the products in Eq. (1) turn into sums in the exponent of e. Then, maximum
likelihood learning can be done by the taking log of (P (Y | X ), which is now
sum of the products of the weights and the indicator features, and maximizing
it through gradient ascent methods [Taskar et al. 2002].

2.2 Label Acquisition

For active inference for both ICA and MRF, we assume that we are given a
training graph Gtr(V tr, E tr) where labels of all the nodes are known. Let CM
represent the collective model we use, here either ICA or MRF. We train our
collective model CM using this training graph. Given a test graph G, a trained
model CM , and assuming the values of the attribute vectors X are known, but
the labels for the nodes are unknown, our goal is to correctly predict Y. We
assume we are given a cost for misclassifying a node; when we classify a node
as yk whereas the correct assignment is yl , we incur a cost of ckl. The expected
misclassification cost (E MC) for a node is then given by:

EMC(Yi|X = x, CM) = min
yk

∑
yl �= yk

P (Yi = yl |X = x, CM) × ckl.

The total expected misclassification cost is then sum of the expected misclassi-
fication costs for the individual nodes:∑

Yi∈Y
EMC(Yi|X = x, CM).

As mentioned in the introduction, we are interested in settings where we
are able acquire additional information, or to ask for the labels for some of the
nodes. More formally, we consider the case where we can acquire the values for
a subset of the labels A ⊆ Y. The acquisition of A changes the misclassification
cost as follows: ∑

Yi∈Y\A
EMC(Yi|X = x, A, CM).

However, we do not know the values of the labels in A before we acquire them.
Thus, we take an expectation over possible values.∑

Yi∈Y\A

∑
a

P (A = a)EMC(Yi|X = x, A = a, CM).

In this general setting, we also attach costs to acquiring labels. Let the cost of
acquiring the value of the label Yi be Ci. Extending it to sets, C(A) = ∑

Yi∈A Ci.
Then, the total cost we incur is just the sum of the acquisition cost and the
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expected misclassification cost:

L(A) = C(A) +
∑

Yi∈Y\A

∑
a

P (A = a)EMC(Yi|X = x, A = a, CM). (2)

Given a spending budget B, the label acquisition problem, and our objective,
is then to find the optimal subset

A∗ = argmin
A⊆Y,C(A)≤B

L(A),

minimizing the sum of expected misclassification cost and acquisition cost.
Finding the optimal A∗ requires us to evaluate the objective function for

each candidate A along with an efficient search and exploration of the candi-
date space. Krause and Guestrin [2005] discuss this problem in the context of
value of information calculations in graphical models. They associate a reward
for observing the value at a node, which is equivalent to acquiring a label in
our case, and they show that reward computations are #P-complete even for
discrete polytrees. They also show that finding the optimal set to acquire in

batch mode, where the acquisition decisions are made all at once, is NPPP-
complete for discrete polytrees. Finally, they show that finding the optimal set
in a conditional plan, that is the next acquisition is conditioned on the previous

acquisitions, is NPPP-hard for discrete polytrees. Given that we are considering
arbitrary networks, such as citation, friendship, and protein networks, finding
the optimal solution is at least as hard as, if not harder than, considering dis-
crete polytrees. The details of these theoretical limits can be found in Krause
and Guestrin [2005].

3. ACTIVE INFERENCE

Since finding the optimal solution to the label acquisition problem is intractable
under relatively general assumptions, we must resort to approximate and/or
heuristic acquisition techniques. In this article, we introduce three such tech-
niques. Each technique associates a utility value with each label (or sets of
labels) and makes acquisition decisions based on the utility values. The first
strategy that we propose approximates the objective function and defines the
utility of a label in terms of the improvement it achieves in the objective value.
The second method draws an analogy between viral marketing and active in-
ference and associates utilities with labels accordingly. The third is a simple
yet effective and intuitive approach based on learning and predicting the mis-
classifications of a collective classifier.

3.1 Approximate Inference and Greedy Acquisition (AIGA)

There are two reasons why finding the optimal set A∗ is intractable: (1) un-
less the probability distribution for A∗ can be factored with the acquisition of
a single label Yi, we need to consider all possible subsets A ⊆ Y, which is ex-
ponential in the size of Y, (2) for each candidate set A, we need to compute
the value of the objective function L(A) (Eq. (2)), which requires us to compute
exact probability distributions over Y.
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To tackle these two obstacles, we introduce the most obvious approach: ap-
proximate inference and greedy acquisition (AIGA). In AIGA, instead of consid-
ering all candidate sets, we consider acquiring one label at a time. That is, we
define the utility of a label to be the amount of improvement it provides in the
current objective value and we greedily acquire the label that has the highest
utility:

utilityaiga(Yi) � L(A ∪ {Yi}) − L(A).

In essence, the utilityaiga function is computing the expected value of information
for each label [Howard 1966].

To address the intractability of the exact probability computations, we resort
to approximate inference techniques. For the collective models (such as ICA)
that are a collection of local classifiers, we use iterative approaches to approx-
imate the conditional probability distributions for the labels. For the collective
models that define and optimize a global objective function (such as MRF), there
exist a variety of approximate inference techniques, including loopy belief prop-
agation [Yedidia et al. 2000], variational methods [Jordan et al. 1999], and Gibbs
sampling [Gilks et al. 1996]; in this article, we use loopy belief propagation.

With these two approximations, AIGA iteratively finds the label that has the
highest utilityaiga, adds it to the acquisition set, and repeats this step until the
budget is exhausted. Note that, even though we make the problem tractable
through approximate inference and greedy selection, we still need to run ap-
proximate inference for each iteration, for each node, and for each possible
value of the label of the node under consideration. This requirement makes this
approach still quite expensive, especially if the number of nodes is relatively
high and the underlying approximate inference technique is slow. Additionally,
the accuracy of this method depends heavily on the precision of the estimated
probability values. If the probability estimates are not well calibrated, then the
expected misclassification costs will be incorrect [Zadrozny and Elkan 2001],
making the utilityaiga values inaccurate.

3.2 Viral Marketing Acquisition (VMA)

Another approach to label acquisition is based on an analogy to viral marketing
[Richardson and Domingos 2002; Kempe et al. 2003; Leskovec et al. 2007]. In
the viral marketing setting, we have customers that are potential buyers of a
product, and the customers have relationships between each other, such as fam-
ily, friendship, co-worker, etc. When a customer buys a product, the customer
advertises it (by word of mouth) to his or her neighbors in the network. The ob-
jective of viral marketing is to maximize the sales for a product by marketing it
to the right set of customers, while minimizing the marketing costs. Thus, sim-
ilar to the label acquisition problem, there is then the question of which subset
of customers we should target, in the hope that these customers will like the
product, buy it, and recommend it to their neighbors, who will hopefully buy
and recommend it in turn.

The analogous mapping to label acquisition for collective classification is
as follows. There are nodes (customers) that we need to classify and we have
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Table I. The Analogy between Viral Marketing and Active Inference

Viral Marketing Active Inference

Objects Customers Nodes

States Bought / Did not buy Classified correctly / Misclassified

Action Market a product to a subset of customers Acquire labels for a subset of nodes

Objective Maximize the number of customers Maximize the number nodes

that buy the product that are classified correctly

Constraint A budget for the marketing costs A budget for acquisition costs

the choice to acquire the labels for (market to) some of them. Our task is to
acquire the labels for the right subset of nodes so that the number of correctly
classified nodes (the customers who buy the product) in the end is maximized,
while minimizing the acquisition cost. This analogy between viral marketing
and label acquisition is summarized in Table I.

There are many viral marketing approaches that differ in the formulation
of the problem, the assumptions that they make, and the solutions that they
offer [Richardson and Domingos 2002; Kempe et al. 2003; Leskovec et al. 2007].
We chose the formulation of Richardson and Domingos [2002]; an advantage of
their approach is that it has an exact solution.

In this formulation, we introduce a new random variable Ti for each node
Vi, which indicates whether Yi is predicted correctly. Whether a prediction for
a node is correct depends on the informativeness of the node’s attributes X i,
whether its neighbors Ni are classified correctly, and which labels are acquired,
A. Following Richardson and Domingos [2002], we make the assumption that
this probability is a linear combination of a local probability and a relational
probability as follows:

P (Ti|Ni, X i, A) � βi Pl (Ti|X i, A) + (1 − βi)Pr (Ti|Ni, A),

where βi denotes how much the label of a node depends on the node’s local
attributes versus its neighbors. Here, Pl stands for the local probability, which
is defined as:

Pl (Ti|X i, A) �
{

1 if Yi ∈ A
max

yk
P (Yi = yk|X i) otherwise

(3)

and Pr stands for the relational probability, which is a linear combination of
the statuses of the neighbors:

Pr (Ti|Ni, A) = 1

|Ni|
∑

Y j ∈Ni

Tj .

The probability P (Yi = yk|X i) in Eq. (3) can be computed by learning a classifier
on the nodes of the train graph Gtr.

The objective here is to maximize the total probability of correctly classify-
ing the nodes in the network. With this objective, we define the utilityvma(Yi)
to be the increase in this total probability that Yi causes once it is acquired.
To compute utilityvma(Yi), we first calculate two intuitive measures. The first
one corresponds to how much a unit change in Pl (Ti|X i, A) affects the total
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probability in the network:

�(Yi) �
∑
Vj ∈V

∂ P (Tj = 1|X j , A)

∂ Pl (Ti|X i, A)
.

The second one measures how much an instance’s probability of correct classi-
fication is increased when we acquire the label for it:

�P (Yi) = βi
(
Pl (Ti|X i, A ∪ Yi) − Pl (Ti|X i, A)

)
.

Then, the effect that acquiring a label Yi will have in the network, i.e., the
utilityvma of a label is, just a product of the two:

utilityvma(Yi) � �(Yi)�P (Yi).

We omit some of the details about how to derive these equations. The interested
reader can refer to Richardson and Domingos [2002].

With these assumptions, our formulation is the same as that of Richardson
and Domingos [2002] with one subtle difference. In the viral marketing domain,
when a person is marketed a product, there is still a non-zero probability of that
person not buying the product. In label acquisition, however, we assume that
we can acquire labels with perfect information; that is, there is no uncertainty
about a node’s label after we acquire it. Because this particular formulation
of viral marketing has an exact solution, we compute the utilityvma values for
all candidate labels only once, and then we acquire the labels that have the
highest utility values. This property of the approach makes it quite fast and
thus attractive.

3.3 Reflect and Correct (RAC)

The next method that we introduce is based on a simple intuition: the sets of
nodes that the collective classification model misclassifies tend to be clustered
together because misclassifying one node makes it very likely that its neighbors
will be misclassified as well (propagation of incorrect information). Thus, there
are islands (or peninsulas) of misclassification in the graph – sets of connected
nodes that are misclassified. We call such nodes the flooded nodes. If we can
find these islands of misclassification, then we can potentially trigger correct
classification of those islands by acquiring labels for a few of the nodes in the
islands. The question is then how to find the islands of misclassification.

We first focus on finding out when a prediction for a particular node is in-
correct. We again associate a random variable Ti with each Vi ∈ V, like we did
in the viral marketing formulation, but this time we take a reverse perspective
and Ti denotes whether the prediction for Yi was indeed incorrect. Addition-
ally, instead of using a viral marketing approach to learn and predict Ti, we
formulate it as a classification problem by constructing features that are pos-
sible indicators of whether a node is misclassified, and learning a classifier to
capture the dependence of Ti on the constructed features. Then, the acquisition
problem can be solved by running the collective inference on the test graph,
predicting which nodes are misclassified, acquiring a label for a central node
among the potentially flooded ones, and repeating the process until the budget
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Fig. 1. Active inference using the RAC method. We iteratively label the nodes using the collective

model, predict which nodes are misclassified, acquire the central node among the misclassified

ones, and repeat the process until the budget is exhausted. To predict which nodes are misclassified,

we use a classifier whose input consists of a set features that are constructed using the content

information of the nodes, information from the neighbors, and global statistics.

is exhausted. This process is illustrated in Figure 1. Because we reflect back
on our inference results on the test graph and try to correct the mistakes by
acquiring a label, we call this method reflect and correct (RAC).

Many different kinds of features can be constructed to be used for predicting
whether a node is misclassified. In this paper, we present the general framework
for RAC and construct and experiment with only three simple and intuitive
features as examples. The list can be extended with more features; especially,
one can think of incorporating domain knowledge as features as well. The first
of the three features we constructed is based on the content information of the
node, the second one is based on the neighbors of the node, and the last one is
based on global statistics. Intuitively, the content indicator captures how much
the node attributes disagree with the classification decisions of the collective
model. The relational indicator captures how likely it is that the neighbors of a
node are also misclassified. Lastly, the global indicator captures how different
the posterior distribution of the labels is from the expected prior distribution.
We next explain these features in detail and provide their formal definitions.

The content indicator measures how far the prediction of the collective model
is from the truth according to the attributes. Assume that the collective model
predicts Yi = y j . Then, we define the content indicator for node Vi to be:

cii � 1 − P (Yi = y j | X i)

Again, we can compute P (Yi = y j | X i) by learning a local classifier for the
nodes of the train graph Gtr. The intuition behind the content indicator ci is that
if the attributes of a node disagree with the prediction made by the collective
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model, then it is a signal for a possible misclassification. The content indicator
is a measure of the strength of the disagreement between the local classifier and
the collective model. However, the content indicator alone will not be sufficient
for misclassification detection; otherwise, we could just replace the collective
model with the local classifier.

The relational indicator captures how likely it is that a node’s neighbors are
also misclassified. The intuition is that if a node’s neighbors are misclassified,
then the node itself is probably misclassified as well (because the classification
model is a collective one). There are different possibilities for defining the re-
lational indicator; for instance, it can be defined as a recursive function of Ti,
and then it can be computed iteratively. We take the simplest approach and
define it as the average of the content indicators, ci j , of the neighbors of the
node Vi.

rii � 1

|Ni|
∑

Y j ∈Ni

ci j .

Finally, the global indicator captures the difference between our prior belief
about the class distributions and the posterior distribution that we get based on
the predictions. For example, based on our prior belief, if we expect to classify
20% of the nodes with label y j , but the collective model predicts 60% of the
nodes as label y j , then some of the nodes that are classified as y j are probably
misclassified. Let the prior distribution of the class y j be denoted by Prior ( y j )
and let the posterior distribution based on the predictions of the collective model
be denoted by Posterior ( y j ). Then, we define the global indicator for the node
Vi that is predicted as y j as follows:

gii � Posterior ( y j ) − Prior ( y j )

1 − Prior ( y j )
.

Having constructed these three features, we learn a classifier for estimating
the distribution P (Ti | cii, rii, gii). To learn this classifier, we need training
data, which requires four pieces of information per node: the three indicators
described above, and the value of Ti. To obtain this information, we use our
collective model and the training graph Gtr. As a first step, we run collective
inference on Gtr assuming the labels are unknown, to obtain a new graph where
the node labels are now the predicted ones. Let this new graph be called the
prediction graph Gpr. To obtain the content indicator cii, we first learn a content-
only classifier on the attribute vectors of the nodes of the training graph Gtr and
then use this content-only classifier and the predicted labels in the prediction
graph Gpr to compute cii. To obtain the relational indicators rii, we use the
content indicators that we just computed. To obtain the global indicators gii,
we collect the prior class distribution statistics on the training graph Gtr and
the posterior class distribution statistics on the prediction graph Gpr. Finally, to
obtain the value of Ti, we compare the correct labels from the training graph Gtr

with the predicted labels from the prediction graph Gpr. Having constructed the
training data, we can use any probabilistic classifier to learn the distribution
P (Ti | cii, rii, gii). This process is illustrated in Figure 2.
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Fig. 2. The process of learning P (Ti | cii , rii , gii). We use the collective model CM to predict the

labels for the training graph. To construct the content indicator, we use the predicted labels and a

content-only classifier that was learned on the training graph. To construct the global indicator, we

collect prior class distribution statistics on the training graph and the posterior class distribution

statistics on the predicted labels. To obtain the class information Ti , we compare the true labels

and the predicted labels.

The question that remains to be answered is how to define the utility of label
Yi given P (Ti | cii, rii, gii). The most obvious way is to have utilityracYi � P (Ti |
cii, rii, gii). However, given that we have a limited budget, we want each of the
acquisitions to correct as many misclassifications as possible. The node that has
the highest probability of misclassification P (Ti | cii, rii, gii) can be an isolated
node in the network; then acquiring the label for that node might not have a
big impact on the predictions for the labels of the rest of the nodes. Based on
these intuitions, we want the utility of a label to be a function of whether the
corresponding node is misclassified, and how many misclassified neighbors it
has. More formally:

utilityrac(Yi) �

⎧⎨
⎩

0 if P (Ti | cii, rii, gii) < σ

1 + ∑
Y j ∈Ni

δ(P (Tj | ci j , ri j , gi j ) > σ ) otherwise,

where δ(predicate) = 1 if the predicate is true, 0 otherwise, and σ is the thresh-
old used to decide if a node is misclassified.

We can have a fixed threshold σ , like 0.5, however, we want to set it adaptively
based on the training data and the underlying collective model. Specifically, we
want σ to be a function of the prior probability of the misclassifications of the
collective model on the training data. The way we set it is as follows: let p
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be the percentage of the nodes in the training data that are misclassified by
the collective model. Then, we first sort all the test data in decreasing order
of P (Ti | cii, rii, gii) and then we set σ to the misclassification probability of
the last node in the top p percent in this sorted list. Instead of continuously
updating the σ after each acquisition step, we fix it at this value before any
acquisitions are made because we expect the percentage of misclassified nodes
in the test graph to decrease as we acquire more labels. With the misclassifi-
cation predictor learned and the utility function defined, the missing pieces of
the acquisition process, which is illustrated in Figure 1, are now complete.

We provided a general framework to perform RAC and also described three
example features and an example utility function. The relative merits of each
feature and utility function depend on the domain, the noise level in the at-
tributes of the nodes, the strength of the correlation between the node labels,
and the degree of class skew present in the data. For example, the benefit of
the content indicator correlates negatively with the noise level in the attributes
of the nodes; the relational indicator’s benefit correlates with the degree of la-
bel correlation; the global indicator’s benefit correlates with the degree of class
skew in the data. Similarly, a utility function that takes the misclassification
predictions for neighbors into account is useful for correcting flooded regions,
whereas the utility function that takes only the individual scores into account
is useful for domains where flooding is not the main problem but instead the
focus is to correct single mistakes.

3.4 Generalized Utility-Based Active Inference

In this section, we describe a generic active inference algorithm that unifies
the three acquisition methods described above. The algorithm also serves as
a generic utility-based active inference technique. In this general algorithm
which we formally describe in Algorithm 1, we iteratively find the label Yi that

Algorithm 1. Generalized utility-based active inference algorithm

Input:
G – the test graph
CM – the learned collective model
cij – misclassification costs
Ci – the acquisition costs
B – the budget
Output:
A – the set of acquisitions

1 A ← ∅
2 while C(A) < B do
3 Ymax ← nil
4 maxValue ← −∞
5 for Yi ∈ Y \ A do
6 utilityYi

← utility(Yi | X , A, Y \ A, cij, CM)

7 if utilityYi
> maxValue ∧ C(A ∪ {Yi}) ≤ B then

8 maxValue ← utilityYi
9 Ymax ← Yi
10 A ← A ∪ {Ymax}
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has the highest utility and whose acquisition cost does not cause us to exceed
the given budget, we add it to our acquisition set, and then repeat the process
until we exhaust the budget.

The utility function at step six of the algorithm is replaced with utilityaiga,
utilityvma, and utilityrac for the acquisitions we described previously. The utility
function in its most general form is a function of the label under consideration
Yi, the set of all attribute vectors X , what has been acquired thus far A, the set
of remaining labels Y\A, the cost model cij, and the underlying collective model.

This algorithm is very similar to the general utility-based active learning
algorithms used by many different techniques such as Lewis and Gale [1994],
Melville and Mooney [2004], Roy and McCallum [2001], and Saar-Tsechansky
and Provost [2004] with one notable difference; in active learning, we update
the underlying classification model at each step. However, in active inference,
we assume that we have enough training data to learn the collective model.
One thing that might not be obvious from this algorithm is that the utility
computation at step six of the algorithm might require running the collective
inference for some of the acquisition strategies.

4. EXPERIMENTAL EVALUATION

We begin our experimental evaluation with a study aimed to better understand
the effects of flooding in collective classification. Then, we evaluate our proposed
label acquisition strategies with a variety of baselines. We evaluate on both
synthetic and real-data and perform a relatively comprehensive exploration of
options and settings for the algorithms.

4.1 Understanding Flooding

Collective classification models classify a node in a network based on both lo-
cal attributes and characteristics of the node, such as words in a document,
and information contained in the neighboring nodes, such as topics of the doc-
uments that reference this document. Thus, a prediction for a node in a given
network both affects and depends on the predictions for the other nodes in the
network. Due to these structural dependencies, in addition to the typical errors
made by the non-collective models (errors due to noise in the data, incorrect
modeling assumptions, etc), collective models can make a second type of error
by spreading an incorrect decision to the neighboring nodes or by committing
to an incorrect decision jointly. As mentioned in the introduction, we call this
kind of error flooding. Depending on the characteristics of the data and the un-
derlying collective model, flooding can be quite severe; in extreme cases, most
of the network can be flooded with just one label.

Before we evaluate different acquisition strategies, we explore the spectrum
of flooding as a function of noise in the attributes and correlation of the node
labels in the network. In order to quantify flooding, we introduce two measures.
The first measure, which we refer to as perfect information (PI) accuracy, is the
accuracy that corresponds to the setting where to classify a node, the collective
model is allowed to look at the true labels (according to the ground-truth) of the
node’s neighbors instead of the predicted labels. Obviously, this is a hypothetical
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situation, but it is quite useful for quantifying floods and comparing different
collective models as to how well their modeling assumptions fit to the data and
how well they can exploit attribute and neighborhood information. The second
measure, which we refer to a no acquisition (NOACQ) accuracy, is the accuracy
that is achieved before any label is acquired. Given these two measures, we
define the flood percentage (FP) as the difference between the two:

FP � PI − NOACQ.

To explore the spectrum of flooding, we generated synthetic data where we
change the attribute noise level and the level of the correlation between the
labels of the neighboring nodes, which we measure using the assortativity coef-
ficient of Newman [2003]. As our collective models, we used a pairwise Markov
Random Field (MRF) [Taskar et al. 2002] and Iterative Classification Algorithm
(ICA) [Lu and Getoor 2003a; Neville and Jensen 2000]. For MRF inference, we
used loopy belief propagation [Yedidia et al. 2000]. For ICA, we used the count
aggregation for feature construction, and used logistic regression as the under-
lying classifier. We next describe the procedure we used to generate synthetic
data.

4.1.1 Synthetic Data Generation. We generated synthetic networks using
the forest-fire graph generation model [Leskovec et al. 2007]. The forest fire
model is shown to exhibit many real-world phenomena such as power law de-
gree distribution, small world effect, and shrinking diameters. However, the
forest-fire method, like most random network generators, does not generate
labels and attributes for the nodes. In order to label the nodes, we used the
method described in Rattigan et al. [2007]. In their method, for each label an
initial number of random nodes are selected and labeled with it. Then, an each
iteration, nodes that have not received a label yet are labeled based on their
neighbors’ labels. The number of nodes that are labeled at random at the ini-
tial phase of the algorithm controls the assortativity of the network; the higher
the initial number of labelings, the less the assortativity. We varied the initial
number of labelings to obtain different levels of assortativity.

Rattigan et al. [2007] did not generate attributes for the nodes. We gener-
ated attributes using a simple Naive Bayes model after we labeled the nodes.
Assuming we have m labels, we generated m × k binary attributes, aij, where
k is a parameter controlling the total number of attributes generated, i ranges
from 1 to m and j ranges from 1 to k; that is, the attributes are grouped by
the value of the class label. P (aij = True | class = l ) is set to p > 0.5 if i = l ,
and it is set to q < 0.5 if i �= l . The values of the attributes were sampled by
conditioning on the label of the node. In our experiments, we set m = 5 and
k = 4, giving us 20 attributes per node. We varied the p and q parameters to
obtain different levels of attribute noise.

4.1.2 The Spectrum of Flooding. We generated 10 train-test graph pairs,
each with 2000 nodes and with varying attribute noise and assortativity levels.
We experimented with three noise levels: low, medium, and high. We distributed
these levels uniformly between 0.2 (pure random classification accuracy) and
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Fig. 3. Analysis of the PI accuracies achieved by MRF and ICA under low noise (LN), medium

noise (MN), high noise (HN), and low assortativity (LA), medium assortativity (MA), and high

assortativity (HA) settings. (a) PI accuracy from the attribute noise perspective. (b) PI accuracy

from the assortativity perspective.

1; thus, accuracies corresponding to high, medium, and low noise levels are
0.4, 0.6, and 0.8 respectively. Similarly, we distributed the assortativity levels
between 0 and 1 uniformly, having 0.25, 0.5, and 0.75 assortativity coefficients
for the networks of low, medium, and high assortativity.

Before presenting the flooding percentages of MRF and ICA, we present the
PI accuracies they achieved under varying attribute noise and assortativity
level settings. The corresponding plots are shown in Figure 3. Not surpris-
ingly, both MRF and ICA achieve the highest PI accuracies under low attribute
noise or high assortativity settings. However, when the assortativity level is not
high and if the attributes are not very noisy, ICA outperforms MRF in terms
of PI accuracy. This result indicates that ICA is possibly better at exploiting
the attribute information compared to MRF under comparably low assortative
settings. The fact that they achieve comparable PI accuracies when the assor-
tativity level is high regardless of the attribute noise level signals that MRF is
able to exploit the neighborhood information at least as well as ICA.

We present the flood percentage results in Figure 4. As one expects, as the
attribute noise level increases, the flood percentage also increases, and this is
true for both MRF and ICA (Figure 4(a)). Because the attributes are noisy (1) a
misclassification is more likely, (2) classification decisions depend more on the
labels of the neighboring nodes, and (3) there are not many nodes that can pre-
vent misclassification propagation (nodes whose attributes carry enough signal
in the degree that they can be classified using only their attribute information).
If we look at the problem from the perspective of assortativity (Figure 4(b)),
when the attribute noise is high, the higher the assortativity, the higher the
flooding; however, when the attribute noise is low, the assortativity does not
play a significant role for flooding. Again, higher assortativity means greater
dependence on the neighbors, but when the attribute noise is low, attributes
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Fig. 4. Analysis of the error caused by flooding, measured as the difference between PI accuracy

and NOACQ accuracy, under low noise (LN), medium noise (MN), high noise (HN), and low assorta-

tivity (LA), medium assortativity (MA), and high assortativity (HA) settings. (a) Flood percentage

from the attribute noise perspective. (b) Flood percentage from the assortativity perspective.

also play a significant role in the classification decision. Thus, nodes are less
likely to be misclassified and there are enough nodes that can prevent mis-
classification propagation. Finally, we observe that MRF floods more than ICA
does. This observation is also in line with the observation we made earlier that
ICA is able to exploit attribute information more than MRF.

With these experiments, we provide only a flavor of the different settings
under which flooding occurs. A comprehensive analysis of the flooding is beyond
the scope of this article. Having analyzed the flooding, we next show how active
inference can be used to detect and correct it.

4.2 Experiments Comparing Different Active Inference Techniques

Next, we move on to the main evaluation of the proposed algorithms. We com-
pared six acquisition methods: the three acquisition methods described earlier
(AIGA, VMA, and RAC), two acquisition methods that are based on the struc-
tural properties of the network, and the random acquisition (RND) as a base-
line. The two structural acquisition methods are: degree (DEG) and k-mediods
clustering (KM). DEG ranks the nodes according to their degree in the network
and acquires the highest degree ones. The intuition is that the high degree
nodes affect more nodes in the network. The KM method, which was proposed
by Rattigan et al. [2007] and shown to outperform many other structure-based
acquisition strategies, clusters the network into k clusters using k-mediods
clustering and acquires the mediods of the clusters. To compute the similarity
of nodes, it uses geodesic distances of nodes in the network. The intuition is to
spread the acquired labels in the network evenly and to choose central nodes
whenever possible.
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We compare these acquisition strategies on both synthetic and real-world
datasets using accuracy as the performance measure. To assess how well each
acquisition methods deals with flooding, we also plot PI and NOACQ accura-
cies. For different acquisition methods, we computed accuracy over the labels
that were not acquired (i.e., Y \ A), whereas for PI and NOACQ, we measured
accuracy on all the labels Y. Even though PI and NOACQ accuracies are quite
useful to know to asses how well the acquisition strategies perform, neither
PI is an upper bound nor NOACQ is a lower bound because the acquisition
strategies and the PI and NOACQ are evaluated on different sets. An acqui-
sition strategy, in practice, can acquire the labels that even PI misclassifies,
thus can surpass PI accuracy. Similarly, an acquisition strategy might acquire
labels that even NOACQ does not make mistakes on, thus even though both
the acquisition strategy and NOACQ make the same number of mistakes, the
acquisition strategy has worse accuracy than NOACQ simply because the ac-
quisition strategy is evaluated on a smaller set (Y \ A versus Y).

Finally, both RAC and VMA require content-only classifiers, classifiers that
use only the attribute and label information for each node independently; RAC
requires a content-only classifier for feature construction (the content and rela-
tional indicators) and it requires a content-only classifier for predicting whether
a node is misclassified given the constructed features, whereas VMA requires
a content-only classifier for local probability computation. For RAC feature
construction and VMA local probability computation, we used Naive Bayes
for the synthetic datasets (because we generated the attributes using Naive
Bayes) and we compared using Naive Bayes versus logistic regression for the
real-world datasets. To classify nodes as misclassified or not based on the con-
structed features, we used logistic regression for both synthetic and real-world
datasets.

Even though the AIGA method is a polynomial-time algorithm, each single
acquisition decision requires running inference for each node and for each pos-
sible value of its label. Thus, it is impractical to run AIGA on large networks.
We first present a series of results on networks small enough to run AIGA, and
then present results on larger networks, which do not include AIGA results.

4.2.1 Experiments on Synthetic Networks with 200 Nodes. We trained and
tested our collective models on ten training-testing network pairs; the training
networks had 2000 nodes in order to learn a reliable collective model and the
testing networks had 200 nodes. The nodes had medium noise and assortativ-
ity levels. We varied the percentage of labels acquired from 5% to 30% in 5%
increments. The results are shown in Figure 5.

One of the striking results is that for MRF, AIGA performed worse than
random (Figure 5(a)). This is surprising at first, because one would expect the
AIGA method to perform the best. However, recall that we used loopy belief
propagation for MRF inference, which is an approximate method for probability
computation and it is known to produce suboptimal results when there are short
cycles in the graph. Because of the assortativity of the nodes, we observed that
beliefs about the nodes’ labels reinforced one another iteratively, and thus most
of the probability distributions for the nodes’ labels were extreme: 1 for one label

ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 20, Publication date: November 2009.



Reflect and Correct • 20:21

Fig. 5. Experiments comparing AIGA with other methods on small size graphs. (a) MRF results.

(b) ICA results.

value and 0 for the other values. Because the probabilities were extreme, AIGA
made acquisition decisions based on utilityaiga that were extremely similar for
many nodes. As for ICA (Figure 5(b)), AIGA performed better than all methods
except RAC. This suggests that the probabilities for ICA were better calibrated
than for MRF, however, this claim needs further investigation.

As for the time it took for different acquisition methods to complete, at 30%
acquisition level for MRF, AIGA took about 38 minutes, RAC took 4 seconds,
the other methods took less than a second. For ICA, AIGA took 11 minutes,
RAC took 3 seconds, and the other methods again took less than a second.
Because AIGA takes much more time and its accuracy depends heavily on the
calibration of the probability estimates, AIGA is an undesirable acquisition
method. Some approaches to speeding up AIGA are to work with a sample
rather than using all of the test data and to acquire more labels at a time,
however, these modifications will most likely further reduce its accuracy.

4.2.2 Experiments on Synthetic Networks with 2000 Nodes. Next, we com-
pared the acquisition strategies on larger test graphs with 2000 nodes under
nine settings: the cross product of the variations in the attribute noise level
and assortativity level. For each plot, we zoom in to the area of interest; that is,
the low point of the y-axis starts from NOACQ accuracy, and the highest point
in the y-axis is the accuracy of either PI or the accuracy achieved by the best
performing acquisition method, whichever is higher. The reason we zoom in is
to be able to highlight the differences between different acquisition methods.

We present results in the order of high noise, medium noise, and low noise
settings. For each noise setting, we vary the assortativity levels. The results for
high attribute noise and varying assortativity levels for both MRF and ICA are
shown in Figure 6. For MRF, RAC outperforms all other methods at all levels.
The differences are statistically significant at all levels for high and medium
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Fig. 6. Accuracy comparisons for the high attribute noise case. (a) and (b) High assortativity,

(c) and (d) Medium assortativity, (e) and (f) Low assortativity.
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assortativity level, and after 15% acquisition level for the low assortativity case,
where significance is measured using paired t-test at 95% confidence level.
For ICA, RAC does slightly worse than KM for the high assortativity case,
comparable for the medium assortativity case, and slightly better for the low
assortativity case; the differences are not statistically significant except at 20%
and 30% acquisition levels for the low assortativity case. Note that two of the
three features that RAC uses are based on the content-only model’s predictions;
even though the node attributes are quite noisy and thus the content-only model
is quite unreliable, RAC is either comparable or better than the other methods
in the high attribute noise case.

When we compare the remaining methods, they all significantly outperform
random acquisition in almost all cases (except random has comparable results
to DEG and VMA only for ICA when the assortativity is high and if we acquire
30% of the labels). For high assortativity levels, KM significantly outperforms
other methods for both MRF and ICA at almost all acquisition levels and this
result is in line with the findings of Rattigan et al. [2007]. For medium assorta-
tive levels, there is not a clear winner between VMA, KM, and DEG, but when
the assortativity level is low, VMA outperforms other methods slightly.

One important observation is that MRF is easier to improve than ICA; even
though MRF accuracies start very low compared to ICA due to high flood per-
centages, MRF accuracies are better than ICA accuracies for all acquisition
methods (except RND) starting from 10% acquisition level for high assortativ-
ity and starting 15% for medium assortativity. This observation also confirms
that MRF is more dependent on neighbor information than ICA.

Next, we present results on the medium attribute noise case in Figure 7. RAC
significantly outperforms all other methods at all levels for both MRF and ICA.
It is also able to reach beyond PI accuracy at high acquisition levels for medium
assortativity and starting 20% acquisition for low assortativity case. As for the
other methods, KM again has better accuracy than other methods in the high
assortativity case; for the medium assortativity and low assortativity, VMA
outperforms other methods, and the differences are statistically significant for
most acquisition levels.

The final set of results on low attribute noise synthetic data are shown in
Figure 8. Remember that in this setting, the flood percentage was low, espe-
cially for ICA. Thus, the remaining errors to correct are the errors due to model
imperfection, attribute noise, etc., that is, the difference between 1 and PI ac-
curacy, and this type of error is higher for the low assortativity case. Thus, one
would expect the acquisition methods to perform better than PI accuracy in
this low attribute noise setting. We observe that RAC outperforms all other
methods significantly at all levels for both MRF and ICA. It is also able to per-
form better than PI accuracy in almost all acquisition levels. As for the other
methods, VMA significantly outperforms DEG, KM, and RND in most cases; it
is also able to perform better than PI but only in half of the cases. This result
is not surprising because VMA makes use of a content-only classifier whereas
DEG, KM, and RND do not. And, for the same reason, DEG, KM, and RND are
never able to get beyond PI accuracy, except DEG for only the low assortativity
case for only MRF.
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Fig. 7. Accuracy comparisons for the medium attribute noise case. (a) and (b) High assortativity,

(c) and (d) Medium assortativity, (e) and (f) Low assortativity.
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Fig. 8. Accuracy comparisons for the low attribute noise case. (a) and (b) High assortativity,

(c) and (d) Medium assortativity, (e) and (f) Low assortativity.
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4.2.3 Experiments on Real-World Datasets. We experimented on two real
publication datasets that are publicly available, the Cora dataset [McCallum
et al. 2000] and the CiteSeer dataset [Giles et al. 1998]. The Cora dataset
contains 2708 machine learning papers that are divided into seven classes,
while CiteSeer dataset has 3312 documents that are divided into six classes.

Our evaluation methodology for these datasets is slightly different from the
general practice. In real-world scenarios, we typically have only a small per-
centage of the data labeled. This makes the interactions between the unlabeled
nodes more common than the interactions between the labeled and unlabeled
nodes. To mimic these two observations, we adopted the following evaluation
strategy. We divided each dataset into three disjoint splits and repeatedly
trained on one split and tested on the remaining two (in contrast to training
on two splits and testing on the other). Additionally, we did not make use of
the edges between the labeled nodes and the unlabeled ones during inference.
Because of these changes in the evaluation strategy, which we believe results in
a more realistic evaluation, the accuracies corresponding to NOACQ are very
low compared to the numbers reported in the literature. The primary reason is
that the test graphs are more amenable to flooding now, because they are large
and there are no interactions between the test graph and the training graph.
However, the PI accuracies are close to the previously reported numbers [Sen
et al. 2008], only being slightly lower because we are using less training data.

With these real-world datasets, we also experimented with using different
content-only classifiers for RAC and VMA. The purpose of this experiment is
to explore whether and how much the strength of the underlying content-only
model affects the accuracy results for RAC and VMA. We experimented with
using Naive Bayes and logistic regression; the content-only classification accu-
racies for Naive Bayes were worse than logistic regression accuracies; Naive
Bayes had an average accuracy of 0.61 for Cora and 0.57 for CiteSeer, whereas
logistic regression accuracies were 0.69 and 0.62 respectively. Finally, the assor-
tativity coefficient for Cora is 0.79, whereas for CiteSeer it is slightly lower with
0.68. The accuracies for different acquisition strategies are shown in Figure 9.

One of the first observations is that MRF again floods more than ICA does
on both datasets; the flood percentage for MRF on Cora is 0.43 and for CiteSeer
is 0.35 whereas for ICA they are 0.11 and 0.06 respectively. For MRF, both
versions of RAC outperform all other methods significantly for both datasets.
There are not significant differences between RAC-LR and RAC-NB for MRF,
except for Cora at 30% acquisition level. Because MRF floods more than ICA
does, this result suggests that RAC might not need a very strong local classifier
for detecting the floods. Differences emerge when most of the flooded nodes
are corrected; RAC-LR outperforms RAC-NB significantly for MRF only at 30%
acquisition level.

For ICA, RAC-LR outperforms all other methods, including RAC-NB, for
both datasets. Again, this suggests that when the flood percentage is not high,
which is the case for ICA, a stronger local classifier is more helpful. RAC-NB
outperforms all other methods, including VMA-LR, for CiteSeer but it has com-
parable performance to VMA-LR for Cora, while still outperforming the re-
maining methods.
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Fig. 9. Experiments on the real-world datasets. (a) MRF results on Cora, (b) ICA results on Cora,

(c) MRF results on CiteSeer, and (d) ICA results on CiteSeer.

One of the interesting results is that DEG performed quite poorly for ICA
for both Cora and CiteSeer; for Cora, it was initially better than RND but it
became worse after 20% acquisition; for CiteSeer, it was always worse than even
NOACQ. This observation suggests that, at least in these real datasets, higher
degree nodes can be easier to classify for ICA, and thus, acquiring labels for
them is not only useless but in fact, we are investing our budget in nodes that
we have a high chance of being correctly classified, which we should definitely
avoid. Because we evaluated the performance of different acquisition strategies,
including DEG, on the labels that were not acquired (Y \A), acquiring the labels
that were already classified correctly made the performance of DEG worse than
NOACQ. The reason is that even though the number of misclassified nodes did
not change for both DEG and NOACQ, the percentage of misclassified nodes
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increased for DEG simply because the denominator got smaller (|Y | for NOACQ
versus |Y \ A| for DEG).

5. RELATED WORK

Substantial research has been done in the area of active learning [Cohn et al.
1994; Seung et al. 1992]. While active learning is related to label acquisition
during inference, there are two fundamental differences between existing ac-
tive learning work and active inference. The first is that the objective of the
two problems are different. The aim of active learning is to learn a good model,
while active inference assumes that a learned model (or training data) al-
ready exists. The second difference is that most of the existing active learning
work is on non-graph data, while active inference makes more sense in graph
data.

Nonetheless, there are many similarities between the two approaches and
some of the active learning techniques could be used for active inference as
well. The closest active learning work to approximate inference greedy acqui-
sition (AIGA) method is that of Roy and McCallum [2001]. They estimate the
usefulness of a label in terms of the expected error reduction; similarly, AIGA
estimates the usefulness of a label in terms of the improvement in the value of
the objective function. The closest works to reflect and correct (RAC) are uncer-
tainty sampling [Lewis and Gale 1994] and query by committee [Seung et al.
1992; Freund et al. 1997]. Uncertainty sampling acquires the label that the
underlying classifier is most uncertain about, where uncertainty is measured
in terms of the posterior probability distribution of the label [Lewis and Gale
1994]. RAC on the other hand, queries the label that the collective model is most
likely to misclassify, and the possibility of misclassification is not measured in
terms of the probability distribution of the label according to the collective
model, but measured using a misclassification prediction classifier. Similarly,
the query by committee work samples a committee of classifiers from the set of
possible hypotheses using a sampling strategy like Gibbs sampling, and queries
the label on which the disagreement of the committee members is the highest
[Seung et al. 1992; Freund et al. 1997]. We can think of the content-only clas-
sifier and the collective classifier as two committee members, though it is not
in the same sense that Seung et al. [1992] used (they do not belong to the
same classes of hypotheses). RAC capitalizes on the disagreement between the
content-only classifier and the collective classifier, but it is only one of the three
features that the misclassification prediction classifier uses.

Another related area to active inference is viral (or targeted) marketing
[Richardson and Domingos 2002; Kempe et al. 2003; Leskovec et al. 2007;
Provost et al. 2007] where a subset of customers need to be selected for tar-
geted advertisement so as to maximize the product sales. We showed how viral
marketing is related to label acquisition and used Richardson and Domingos’s
model [2002] to compare against. Other models could very well be used and com-
pared against; one of the reasons we chose [Richardson and Domingos 2002] is
because the exact solution was tractable. The work in feature-value acquisition
during testing [Sheng and Ling 2006; Bilgic and Getoor 2007] is very related
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to the label acquisition problem; however, the focus in this field has been on
acquiring feature values, not labels.

The most closely related work that we are aware of is that of Rattigan et al.
[2007]. They are the first to directly describe label acquisition during inference.
They compared different acquisition methods based on network structural mea-
sures, such as degree and betweenness, and they suggested a method based on
clustering the network. They showed empirically that the clustering method
performed the best. They assumed that the nodes did not have any attributes,
thus their method did not require any training data. We made different assump-
tions about the data; that is, the nodes have attributes and we have training
data available.

6. SUMMARY AND CONTRIBUTIONS

We have formulated the active inference problem in terms of expected misclassi-
fication costs and label acquisition costs and discussed why finding the optimal
solution was hard under relatively general assumptions. We discussed the prob-
lem of flooding and experimentally showed that it was an important problem for
two representative collective classification models: pairwise Markov Random
Field (MRF) with loopy belief propagation and Iterative Classification Algo-
rithm (ICA). Through synthetic data, we explored the degree of flooding under
varying attribute noise and label assortativity settings. We empirically showed
that MRF flooded more than ICA.

We introduced three informed active inference strategies and compared them
with two acquisition strategies that are based on structural properties of the
network. The first informed active inference strategy that we proposed is based
on approximating the value of the objective function through approximate infer-
ence and acquiring labels greedily. We experimentally showed that this method
did not perform well in practice, especially for MRF. When we analyzed the rea-
sons further, we observed that the probability estimates were not calibrated,
which caused the failure of this acquisition method.

Next, we described the analogy between viral marketing and the active in-
ference problem, and introduced a second informed active inference algorithm
based on viral marketing. We showed the details of the mapping between ac-
tive inference and the viral marketing formulation of Richardson and Domingos
[2002]. We empirically showed that this method performed equally well with
the structural methods under high noise settings, and performed better as the
attributes got more useful.

Of the methods that were based on structural properties of the network, the
method that acquired labels according to the degree of the nodes had the most
erratic performance; sometimes, it performed better than the other structure-
based method, K-Mediods, while other times, it performed worse than random.
K-Mediods on the other hand performed better than most acquisition methods
under high noise and high assortative settings, and it had much more stable
performance compared to the degree method in the remaining settings.

Finally, we proposed a third active inference strategy called reflect and cor-
rect (RAC) that is based on learning when a collective model makes mistakes
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and suggests acquisitions to correct those mistakes. RAC learned a misclas-
sification predictor using three features that we constructed by (1) comparing
the predictions of a non-collective classifier and the collective model, (2) using
the neighborhood information, and (3) comparing the class prior and posterior
distribution statistics on the training and testing networks. We empirically
showed that RAC outperformed other methods on most cases, most of the time
with statistically significant differences, and it had comparable performance
on the remaining few cases, never losing significantly. We also experimented
with using Naive Bayes and logistic regression for constructing the features for
the misclassification predictor. We showed that when the flooding was signif-
icant, RAC did not require a strong content-only classifier; otherwise, logistic
regression classifier lead to better results.

7. LIMITATIONS AND FUTURE WORK

One of the limitations of the RAC method is that it is based on the assump-
tions that the misclassification costs are symmetric and the acquisition costs
are uniform. The latter assumption can be lifted by making use of the proba-
bilities that the RAC classifier produces about whether a node is misclassified.
However, lifting the first assumption requires further research.

We formally analyzed and experimentally investigated the active inference
problem for collective classification approaches, however, active inference can
be used for related areas such as semi-supervised learning [Chapelle et al.
2006] and viral marketing [Kempe et al. 2003; Leskovec et al. 2007; Provost
et al. 2007; Richardson and Domingos 2002], where flooding also occurs. For
example, flooding is acknowledged to occur in graph-based semi-supervised
learning techniques such as Gaussian random fields [Zhu et al. 2003] and graph
mincuts [Blum and Chawla 2001].

8. CONCLUSIONS

In many real-world applications, a collective inference framework is required
to make predictions. These models are often used to guide a human expert
that makes the final decisions. Our work on active label acquisition helps to
focus the efforts of the expert on feedback that will have the highest impact. It
also highlights the complex processes involved in collective classification, and
hopefully raises awareness about the sensitivity of these models to errors, and
provides some insight in how one might detect these types of errors.
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