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ABSTRACT
Node classification in networks is a common graph mining task. In
this paper, we examine how separating identity (a node’s attribute)
and preference (the kind of identities to which a node prefers to link)
is useful for node classification in social networks. Building upon re-
cent work by Chin et al. (2019), where the separation of identity and
preference is accomplished through a technique called “decoupled
smoothing”, we show how models that characterize both identity
and preference are able to capture the underlying structure in a
network, leading to improved performance in node classification
tasks. Specifically, we use probabilistic soft logic (PSL) [2], a flexible
and declarative statistical reasoning framework, to model identity
and preference. We compare our approach with the original de-
coupled smoothing method and other node classification methods
implemented in PSL, and show that our approach outperforms the
state-of-the-art decoupled smoothing method as well as the other
node classification methods across several evaluation metrics on a
real-world Facebook dataset [24].
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1 INTRODUCTION
Classifying, or labeling, nodes in networks is a common graph
mining task for which a wide variety of methods have been pro-
posed [7, 9, 13, 15, 16, 23, 28, 29]. Most methods infer information
about a node’s label based on its attributes, relational structure, and
neighbors’ labels. Many methods also propagate node labels along
edges in order to jointly infer unobserved labels. Within social net-
works, the phenomenon of homophily, where neighboring nodes
tend to have the same label [19], is commonly exploited. Another
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phenomenon, known as monophily, where nodes share similarity
with their neighbors’ neighbors, has also been shown to be useful
in identifying unknown labels [1].

In this paper, we examine how the notions of identity and pref-
erence are useful for node classification in social networks. Identity
refers to a specific attribute of an individual, such as their gender,
political affiliation, religious belief, and so on; preference refers to
the tendency of an individual to share a connection with others
having a particular identity. The idea of decoupling identity and
preference was first introduced by Chin et al. (2019). In their work,
they make specific assumptions on the correlations between an
individual’s identity and preference: they assume that the identity
of a given node, an ego node, is approximated by a weighted average
of its neighbors’ preferences, and the preference of the ego node
can be approximated by a weighted average of its neighbors’ identi-
ties. Following these assumptions, all preferences can be eliminated
from the system, so the unlabeled identities can be inferred without
explicitly modeling the preference of any node. We refer to this
approach as “original decoupled smoothing” (ds orig).

We build upon the original decoupled smoothing work and show
how to use probabilistic soft logic (PSL) [2], a statistical relational
learning framework for relational domains, to model preferences
and identities. We show that PSL can solve node classification prob-
lems efficiently using the concept of decoupled smoothing. In addi-
tion, the rich modeling capabilities of PSL allow us to incorporate
prior information and domain knowledge into our model.

We perform an empirical study using different approaches on
a real Facebook dataset [24]. Specifically, we compare the PSL im-
plementation of Decoupled Smoothing (ds psl ) with the original
Decoupled Smoothing method (ds orig ) and other existing clas-
sification methods based on homophily (1-hop psl) or monophily
(2-hop psl), by applying them to a gender labeling task. Our results
first show that ds psl outperforms 1-hop psl, 2-hop psl, and ds
orig in terms of both categorical accuracy and AUROC, especially
when less than 50% percent of the node labels are observed. This in-
dicates that ds psl is able to better capture the underlying network
structure by modeling identity and preference explicitly, especially
when the label information is sparse. In addition, we find that while
ds orig fails to outperform 2-hop psl, ds psl outperforms 2-hop
psl, showing the effectiveness of decoupled smoothing in PSL as a
fundamental modeling tool. We also explore a variation of ds psl by
adding an additional rule that incorporates local homophily prop-
erties of preference among individuals that are tightly connected
with each other. This achieves similar performance compared to ds

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


MLG ’20, Aug 24, 2020, San Diego, CA, USA Yatong Chen, Bryan Tor, Eriq Augustine, and Lise Getoor

psl, but provides a way to exploit additional relational structures
in the graph beyond friendship links.

2 PROBLEM STATEMENT
In this work, we focus on label prediction in social networks. Given
the structure of a social network graph and the labels for a subset of
nodes, the task is to infer the labels for the unlabeled nodes. Specif-
ically, we assume that we are given a social network of individuals,
represented as nodes, with social ties, such as friendship, repre-
sented as undirected, unweighted edges. The neighbors of node
𝑖 refers to the set of individuals who are immediate friends with
𝑖 . Each person 𝑖 is associated with an identity and a preference.
Identity is the label that we are trying to predict, and corresponds
to a specific attribute of an individual, such as gender, political
affiliation, or religious affiliation. In contrast, the preference of an
individual is their tendency to have social ties with individuals of a
certain identity. Preference is completely unobserved and treated
as a latent variable

The separation of identity and preference is more evident when
the preference is not homophily-driven. For example, users of similar
political affiliation tend to prefer neighbors of that same affiliation,
which results in a user’s identity and preference being the same.
Figure 1a shows that the center node’s political affiliation is Party
A, and most of its friends also have the same political affiliation of
Party A. In this case, the separation of identity and preference is
less obvious, since preference of political affiliation is homophily
driven. However, users of a particular gender may not always prefer
neighbors of that same gender, which results in users having a pref-
erence that is not the same as their identity. As is shown in Figure
1b, the center node’s gender is male. However, it has a preference
of making friends with people whose identities are female. In this
case, the separation of identity and preference is more apparent,
since gender preference is not always homophily driven.

In this work, we focus on the specific task of gender prediction. In
this setting, a person’s identity is their gender and their preference
is a latent variable indicating their tendency to make friends with
a particular gender. Because of limitations in the dataset, we treat
gender as a binary label: Female or Male.

3 BACKGROUND
In this section, we provide a brief review of the properties of large-
scale social networks, decoupled smoothing on graphs, and Proba-
bilistic Soft Logic (PSL).

3.1 Properties of Large-Scale Social Networks
The recent emergence and popularization of Online Social Net-
works (OSNs) has made available a large amount of data on social
organization, interaction, and human behavior, providing many re-
search opportunities for data mining in large-scale networks. Node
classification is a common graph mining task. There are several
special characteristics that are commonly observed in large-scale
social network graphs that can help improve the accuracy of pre-
dictions. First is the well-known phenomena of homophily [14],
in which individuals tend to be connected with people who are
similar to themselves. This phenomena is sometimes referred to
as “birds of a feather flocking together”, and is often observed in

social networks [19]. For neighbors within a network, homophily
finds similarity between their attributes [6]. Another phenomenon
that often exists in large-scale social networks is monophily [1].
Monophily is the phenomena where attributes of an individual’s
friends are likely to be similar to the attributes of the individual’s
other friends. As pointed out by Altenburger and Ugander (2018),
in cases where homophily is weak or nonexistent, monophily has
been shown to still hold.

In addition to these statistical characteristics of labels, social net-
works also exhibit various purely topological properties. In most
real-world OSNs, people are likely to form highly clustered commu-
nities, which is one of the distinguishing features of social networks
[26]. The degree distribution is highly skewed [22]. Moreover, many
graphs have high clustering coefficients [27], which is indicative of
underlying community structure.

3.2 Decoupled Smoothing on Graphs
Decoupled smoothing was first introduced by Chin et al. (2019). The
key principle of decoupled smoothing is the separation of a person’s
identity from their preference. Suppose we have an undirected,
unweighted social network graph and an associated matrix 𝑊 ,
where each element𝑊𝑖 𝑗 represents the influence of individual 𝑖 on
individual 𝑗 .𝑊𝑖 𝑗 is non-zero if 𝑖 and 𝑗 are friends. Let the row sums
be denoted by 𝑧𝑖 =

∑
𝑗𝑊𝑖 𝑗 , and the column sums be denoted by

𝑧′
𝑗
=
∑
𝑖𝑊𝑖 𝑗 . Decoupled smoothing relates an individual 𝑖’s identity

𝜃𝑖 and preference 𝜙𝑖 via𝑊 as follows:

𝜃𝑖 ≈
1
𝑧𝑖

𝑛∑
𝑗=1

𝑊𝑖 𝑗𝜙 𝑗

𝜙 𝑗 ≈
1
𝑧′
𝑗

𝑛∑
𝑖=1

𝑊𝑖 𝑗𝜃𝑖

Intuitively, this means that individual 𝑖’s identity 𝜃𝑖 is a weighted
average of its friends’ preferences, and its preference𝜙𝑖 is aweighted
average of its friends’ identities. Chin et al. (2019) show that this
model is equivalent to marginally specifying the joint Gaussian
distribution for 𝜃 and 𝜙 . Since the goal is to obtain predictions
for unobserved identities, they view the preference variable as a
nuisance parameters and marginalize them out. In this way, prefer-
ences can be eliminated from the system while its information can
still be encoded in the remaining linear system. The authors then
propose various ways to estimate the weight matrix𝑊 under cer-
tain assumptions. The result is that node identities can be inferred
without explicitly modeling the preference of any node.

Notions of identity and preference are not limited to social net-
works and the idea can be applied to any attributed graph.

3.3 Probabilistic Soft Logic (PSL)
Probabilistic Soft Logic (PSL) is a statistical reasoning framework
for collective, probabilistic reasoning in relational domains. A PSL
model is defined through a set of weighted first-order logical rules,
which can be used to specify features of graphical models over
ground atoms with a continuous relaxation of Boolean logic. We
point the reader to Bach et al. (2017) for a more detailed discussion
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a. An example of political affiliation identity and prefer-
ence. The center node’s political affiliation is Party A, and
most of its friends share the same political affiliation. In
this case, identity and preference share a large overlap,
since the preference of political affiliation is homophily
driven.

b. An example of gender identity and preference. The
center node’s gender is male, but most of its friends’ are
female. In this case, identity and preference are almost
disjoint, since the preference of gender is not always ho-
mophily driven.

Figure 1: A demonstration on decoupling identity and preference for political affiliation identity and gender identity.

of PSL. Here, we illustrate the key ideas by providing an example:

𝑤 : Edge(A,B) ∧ Gender(A,G)
→ Gender(B,G)

In this PSL rule, 𝑤 ∈ 𝑅+ is a learnable weight, indicating the
importance of satisfying this rule. Edge and Gender are two predi-
cates, where A/B and G are placeholders for a person and a gender,
respectively. In our setting, the Edge predicate takes two nodes
as its arguments, and represents the friendship link between two
people. When the value of this predicate is 1, we determine that the
two nodes are friends in the social network, and 0 otherwise. The
value of a predicate can also be a numeric value in [0, 1]. When a
rule is instantiated with data, e.g.,

𝑤 : Edge(“Alice”,“Bob”) ∧ Gender(“Alice”,“Female”)
→ Gender(“Bob”,“Female”)

it is referred to as ground rule and each atom in a ground rule,
such as Gender(“Alice”,“Female”), is referred to as a ground
atom. Each ground atom is represented as a continuous variable
in the range of [0, 1] and each ground rule represents a clique in
hinge-loss Markov random field (HL-MRF). Given the observed
variables, 𝑋 , and unobserved variables, 𝑌 , the probability density
of a HL-MRF is:

𝑃 (𝑌 |𝑋 ) ∝ exp
(
−

𝑚∑
𝑖=1

𝑤𝑖𝜙𝑖 (𝑌,𝑋 )
)
,

where 𝜙𝑖 = max{0, ℓ𝑖 (𝑌,𝑋 )}𝑑𝑖 , 𝑑𝑖 ∈ {1, 2}

where𝑚 is the total number of cliques, 𝜙𝑖 is a potential function
associated with a clique generated by a ground rule, ℓ𝑖 is a linear
function, 𝑑𝑖 is the choice between linear and squared hinge loss (we
use squared in this paper), and𝑤𝑖 is the weight associated with the
rule. The task of inference can then be written as:

argmax
𝑌

𝑃 (𝑌 |𝑋 ) = argmin
𝑌

𝑚∑
𝑖=1

𝑤𝑖𝜙𝑖 (𝑌,𝑋 )

The above expression can be solved using the Alternating Direction
Method of Multipliers (ADMM) [5].

4 METHODOLOGY
In this section, we describe different gender prediction models in
PSL. For all of ourmodels, Edge(A,B) is fully observed. TheGender
predicate takes two arguments: a node A and a gender G. For all of
our models, Gender is partially observed. Gender(A, “Female”)
represents the probability that person A is female, and Gender(A,
“Male”) is the probability that person A is male. For those whose
genders are observed, the value of the atom that corresponds to
their true gender is 1, and the value of the atom for the other
gender is 0. For those whose genders are unobserved, we will infer
their two gender predicates Gender(A, “Male”) and Gender(A,
“Female”) jointly, and then assign the predicted gender based on
the majority value.

For all models, we apply a functional constraint to the Gender
predicate. This constraint ensures that sum of the female and male
atoms is always 1.

Gender(A, +G) = 1

We list all the rules associated with each model in Table 1. Next,
we will explain each method and their corresponding PSL rules in
details.

One-hop Method. The one-hop method (1-hop psl) relies solely
on homophily. The PSL implementation of one-hop is accomplished
in one rule: if two nodes A and B share an edge, and A has the gender
attribute G, we conclude that node B is likely to have the gender
attribute G as well:

Edge(A,B) ∧ Gender(A,G)
→ Gender(B,G)

Two-hop Method. The two-hop method (2-hop psl) is based on
monophily. This method uses the relationship between a node and
its two-hop neighbors. Like one-hop, the PSL implementation of
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Model PSL Rules

1-hop psl Edge(A,B) ∧ Gender(A,G) → Gender(B,G)
Gender(A, +G) = 1

2-hop psl Edge(A,B) ∧ Edge(B,C) ∧ Gender(A,G) → Gender(C,G)
Gender(A, +G) = 1

ds psl

Edge(A,B) ∧ Gender(A,G) → Preference(B,G)
Edge(A,B) ∧ Preference(A,G) → Gender(B,G)

Preference(A, +G) = 1
Gender(A, +G) = 1

ds-pc psl

Edge(A,B) ∧ Gender(A,G) → Preference(B,G)
Edge(A,B) ∧ Preference(A,G) → Gender(B,G)

CloseFriend(A,B) ∧ Preference(A,G) → Preference(B,G)
Preference(A, +G) = 1
Gender(A, +G) = 1

Table 1: PSL rules for different models.

2-hop psl only requires one rule: if three nodes A, B, and C form
a relationship chain such that A is friends with B, and B is friends
with C, then we conclude that nodes A and C are likely to have the
same gender attribute:

Edge(A,B) ∧ Edge(B,C)
∧Gender(A,G) → Gender(C,G)

Decoupled Smoothing. The decoupled smoothing (ds psl) model
allows an individual’s gender preference to differ from their own
gender identity. In order to achieve this, we add a Preference pred-
icate, representing each person’s propensity to befriend people of a
particular gender. Preference(A, G) can any take any value within
the range of [0, 1]: a value of 1 implies A strongly prefers friends
of gender G, a value of 0 implies A strongly prefers friends not of
gender G, and any value between falls on that spectrum. Unlike
gender, there is no explicit information available for preference. In
our approach, we learn a person’s preference by jointly reasoning
about both their identity (gender) and preference: if two nodes A
and B share an edge, and A has gender attribute G, then we conclude
that B likely has a preference for gender attribute G. Furthermore, if
two nodes A and B share an edge, and A has a preference for gender
attribute G, then we conclude that B likely has a gender attribute G.
The corresponding PSL rules are:

Edge(A,B) ∧ Gender(A,G)
→ Preference(B,G)

Edge(A,B) ∧ Preference(A,G)
→ Gender(B,G)

We apply a functional constraint to the Preference predicate:

Preference(A, +G) = 1

Decoupled Smoothing with Preference Concentration. Next, we
introduce a model that captures both preferences and community
structure. We make an additional assumption that a pair of friends
who share a large number of common friends are more likely to also
share similar preferences. We refer to this method as “decoupled
smoothing with preference concentration” (ds-pc psl). To measure

how closely two friends are related, we create an observed Close-
Friend predicate, which takes two individuals as its arguments,
and represents the “closeness” between them based on the number
of their common friends. We then measure “closeness” either by
normalizing the number of common friends (divide it by the largest
number of common friends in the graph) shared by individuals,
or with a threshold. Figure 2 show how different thresholds can
lead to a significant difference in the number of common friends
a pair of individuals share. However, empirical results show that
different threshold choices do not lead to a significant change in per-
formance. As a result, we will use 200 as a representative threshold
of ds-pc psl since it takes the shortest amount of time to run. We
will address it as ds-pc psl (200). We also consider the normalized
version of CloseFriend, denoted as ds-pc psl (normalized).

In addition to the rules established for decoupled smoothing,
we add a rule representing the idea that two individuals with a
higher value of CloseFriend are more likely to have a similar
Preference. This additional rule allows the model to focus on pair
of individuals who belong to the same clustered local communities,
where homophily on preference might be stronger.

The corresponding additional PSL rules are:

CloseFriend(A,B) ∧ Preference(A,G)
→ Preference(B,G)

5 EMPIRICAL EVALUATION
In this section, we evaluate the performance of 1-hop psl, 2-hop
psl, ds orig, ds psl, and ds-pc psl on a gender classification task
using a real-world Facebook dataset [24].

5.1 Dataset and Evaluation Metric
Our datasets consists of a network of Facebook users who were
undergraduates attending Amherst College in 2005 [24]. We use the
largest connected component from the network, which contains
2032 nodes and 78733 edges, with 1017 female users and 1015 male
users. We only consider nodes that have a self-reported gender.
Following the evaluation of Chin et al. (2019), we uniformly sample
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Figure 2: The number of pairs of friends whose number of
common friends is greater than a threshold. Note that the
y-axis uses a log scale.

a set of the nodes to be labeled initially, and evaluate on the re-
maining unlabeled nodes. The percentage of nodes that are initially
labeled ranges from 1% to 90%. The sampling process is repeated ten
times to create ten independently sampled splits for each labeling
percentage.

To evaluate the performance of our methods on gender (identity)
prediction, we measure classification performance using both AU-
ROC and categorical accuracy. We also reproduce the experiment
conducted by Chin et al. (2019) to obtain the original decoupled
smoothing result for comparison.

5.2 Results
Figure 3 shows the AUROC and categorical accuracy for each
method across different percentages of initially labeled nodes. We
show the average values across ten trials. Table 2 shows the AUROC
macro-average across all labeling percentages as well as the AU-
ROC for 20%, 50%, and 90% labeled nodes with standard deviations
included.

First, we will discuss the difference in performance between 1-
hop psl and 2-hop psl. In terms of AUROC, 2-hop psl outperforms
1-hop psl regardless of the percentage of initially label nodes. In
terms of categorical accuracy, 1-hop psl performs better when less
than 50% of the nodes are initially labeled, but then 1-hop psl per-
forms worse when more than 50% of the nodes are initially labeled.
Overall, 1-hop psl has a lower standard deviation compared to
2-hop psl for both AUROC and categorical accuracy. This indicates
that when observed labels are sparse, homophily is more useful
than monophily. This is possibly because when the observed la-
bels are sparse, less two-hop neighbors will be observed, thus it is
difficult to make use of the monophily.

Next, we observe that ds psl outperforms ds orig across all
metrics and labeling percentages, with the gap in performance
growing as fewer nodes are initially labeled. This indicates that
explicitly modeling preference and performing joint inference al-
lows ds psl to better capture the underlying interaction between
identity and preferences among individuals, especially when the

observed labels are sparse. ds orig, however, heavily relies on spe-
cific assumptions made on the interaction between identity and
preferences for each individual and their neighbors.

Third, ds psl outperforms 2-hop psl, while ds orig preforms
similarly to 2-hop psl. This supports our assertion that decoupled
smoothing is a more expressive model than 2-hop psl, and unlike
2-hop psl , both ds psl and ds orig do not directly rely on the
monophily phenomena.

We also observe that ds-pc psl performs similarly to ds psl de-
spite incorporating additional information from the CloseFriend
predicate. This is likely because of weak shared community prefer-
ences in our data. We believe that ds-pc psl may have better per-
formance if evaluated on a network where there is higher shared
community preferences, or in a setting where the preference is
more homophily driven.

6 RELATEDWORK
There has been extensive research on node classification for large
scale social networks. Existing node classification techniquesmainly
fall into the following two categories [3]: methods based on itera-
tive application of traditional classifiers using graph information
as features, and methods which propagate the existing labels using
random walks. The algorithms which belong to the first category
iteratively predict labels for the unlabeled nodes in the graph using
labels predicted in the previous iteration. For example, as discussed
in the methodology section, Macskassy and Provost (2003) intro-
duced the weighted-vote relational neighbor classifier, which is
based on a direct application of homophily. Lu and Getoor (2003) in-
troduced link-based classification, which proved to be a monophily
based method by [1]. The second type of method relies on perform-
ing some forms of label propagation on the social network graphs
based on random walk methods. Examples include the work of Zhu
et al. (2003) on semi-supervised learning using Gaussian Markov
random fields, and Zhou et al.’s (2004) related method for random
walk smoothing. The original decoupled smoothing work of Chin
et al. (2019) belongs to this category as well. In addition, there is
a fair amount of recent work on the use of higher-order network
structures that aid graph semi-supervised learning [9] and deep
generative models [8, 12, 13].

In addition to PSL, other statistical relational learning (SRL) meth-
ods have been used for network classification tasks because of their
ability to exploit relationships between labels of related nodes. Sen
et al. (2008) provides a survey of collective classification in network
data. Neville and Jensen (2000) present an iterative classification
procedure that exploits relational data, which is the first method
in the SRL community on collective classification. McDowell and
Aha (2012) examine how to improve the semi-supervised learning of
collective classification models when given only a sparsely labeled
graph. Gallagher et al. (2008) propose a “ghost edge” method to
work for scenarios where homophily may not necessarily hold for
a network, which is also one of the key motivations for the devel-
opment of decoupled smoothing. Ghamrawi and McCallum (2005)
explores multi-label conditional random field classification models
that directly parameterize label co-occurrences in multi-label classi-
fication settings. Bilgic et al. (2007) introduces a way to combine col-
lective classification and link prediction. Moore and Neville (2017)
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Model Name Average 20% 50% 90%
1-hop psl 0.640±0.021 0.637±0.019 0.675±0.011 0.659±0.047
2-hop psl 0.689±0.034 0.670±0.038 0.730±0.034 0.738±0.042
ds orig 0.688±0.020 0.663±0.036 0.724±0.029 0.740±0.041
ds psl 0.703±0.030 0.698±0.031 0.746±0.035 0.754±0.034
ds-pc psl (normalized) 0.701±0.030 0.703±0.032 0.752±0.030 0.755±0.033
ds-pc psl (200) 0.699±0.030 0.683±0.029 0.742±0.032 0.755±0.033

Table 2: Experimental results showing the AUROC averaged over all labeling percentages, and with 20%, 50%, and 90% of nodes
labeled. The significantly best results, at p = 0.05, are shown in bold. All PSL-based decoupled smoothing methods beat out all
the non-PSL methods.

Figure 3: AUROC and categorical accuracy on all methods averaged over 10 samples with the percentage of initially labeled
nodes ranging from 5% to 90%.

exploits recent development in recurrent neural networks (RNN)
for collective inference classification in network datasets.

7 CONCLUSION AND FUTUREWORK
In this work, we study the modeling of identity and preference for
node classification in social networks using PSL. Building on work
by Chin et al. (2019), we propose ds psl, an implementation of
decoupled smoothing in PSL. Unlike previous work, which makes
strong assumptions about the correlation of identity of an individual
with the preference of their neighbors, ds psl is able to avoid this
by modeling both the identity and preference of an individual. We
also implement other node classification methods which explicitly
model the correlation between the identities of individuals and their
neighbors (1-hop psl, 2-hop psl) in PSL. We evaluate these methods
on a real-life Facebook dataset for a gender classification task. Our
results demonstrate that ds psl is able to achieve better classification
performance than state of art (ds psl) and other models in terms
of AUROC and categorical accuracy, especially when the initially
observed labels are sparse. This shows that decoupled smoothing
in PSL is better at capturing the underlying network structures

without making additional assumptions on the specific interactions
between preference and identity between individuals and their
neighbors.

Because of the flexible nature of decoupled smoothing in PSL,
there are many opportunities for further improvements. First, we
can easily incorporate external information on either identity or
preference in the form of additional PSL rules. In the current prob-
lem setting, the only (partially) observed attribute is identity. Hav-
ing additional information would be useful for further improving
the classification accuracy, and could be easily added to ds psl. Ex-
tra information can include network structure, such as information
about an individual’s social circles [17], or prior estimates about an
individual’s preferences based on other attributes [25]. Second, we
believe that ds psl and ds-pc psl can be extended to other attribute
prediction settings. As discussed in Section 3.2, the concept of sepa-
rating identity and preference is general and is not limited to social
networks, and we can not only decouple identity from preference,
but also other attributes associated with individuals. Third, it would
be interesting to evaluate ds psl on datasets with varying degrees
of homogeneity. Our empirical results demonstrates that ds psl can
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work relatively well in a setting where homophily in identity is
weak. Ultimately, we would like to build a hybrid model which can
automatically detect the homogeneity properties of the graph, and
adjust the weight between homophily and decoupled smoothing
accordingly.
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