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Abstract

We address the problem of searching camera network
videos to retrieve frames containing specified individuals.
We show the benefit of utilizing a learned probabilistic
model that captures dependencies among the cameras. In
addition, we develop an active inference framework that
can request human input at inference time, directing hu-
man attention to the portions of the videos whose correct
annotation would provide the biggest performance improve-
ments. Our primary contribution is to show that by mapping
video frames in a camera network onto a graphical model,
we can apply collective classification and active inference
algorithms to significantly increase the performance of the
retrieval system, while minimizing the number of human an-
notations required.

1. Introduction

Camera networks frequently contain hundreds if not
thousands of cameras, generating huge amounts of data.
Querying such networks to find relevant frames quickly is
therefore a daunting task. Determining whether a lost child
has left a mall, or finding where a terror suspect entered
the subway may require human operators to comb through
large volumes of video. Computer vision algorithms, in-
cluding those for person reidentification, aim to automate
this process. However, it is difficult to achieve sufficient
performance for critical tasks using fully automatic meth-
ods. In addition, the majority of these methods do not ex-
plicitly reason about the structure of the camera network
during identification.

In this paper, we show how we can discover and exploit
spatial and temporal relationships among frames in a cam-
era network, and we study the use of active inference, which
can be used to direct human labeling efforts to portions of
video whose labels will provide the biggest performance

improvements. We consider a frame from a camera network
to be “relevant” if it contains a queried person; the retrieval
task is to identify all of the relevant frames.

We perform this by first mapping video frames in a cam-
era network onto a graphical model. This allows us to per-
form more effective inference than when each frame is inde-
pendently analyzed. More importantly, as a human operator
examines frames of the video, her input can improve classi-
fication of portions of video that have not yet been analyzed.
In addition, we can use active inference algorithms to direct
attention towards the most useful portions of video. Our
primary contribution is therefore to show that by modeling
video frames using a graphical model, we can perform col-
lective classification and active inference to produce more
effective video analysis in camera networks.

Specifically, our contributions are as follows:

e We describe how to model retrieval in a camera net-
work using a graphical model.

e We develop active inference techniques to prioritize
frames for human annotation.

e We empirically show that, among the several active
inference approaches we consider, the technique that
most heavily exploits network structure gives the best
performance.

The paper is organized as follows. We formulate the
problem in Section 2. We describe two probabilistic frame-
works for video analysis in camera networks in Section 3.
Next, we describe the active inference techniques in Sec-
tion 4. Section 5 discusses the experimental setup and re-
sults. We discuss related work in Section 6, and conclude in
Section 7.

2. Problem Formulation

Let C denote a network of cameras and let Fo rep-
resent the set of frames taken by camera C' € C.



Each frame F' € JF¢ is represented by a feature vec-
tor Xp = (XL, X2,... , X%) and class label Y pair,
F = (X r, Yr). Here, the X5 are continuous variables;
these variables can depend on the specific query that is be-
ing processed, and indicate the similarity between the query
image and a video frame (described further in Section 5.3).
Each Yr is binary, indicating whether F' is relevant or irrel-
evant to a query.

Given training data D" = {(XI,Y{)} for F €
Fo,C € C, atest set D' = {(Xt€ Y}€)}, and a budget
B determining the number of labels a human annotator can
provide, our objective is to determine the best set of labels
A C YVt to acquire as follows:

argmax Reward(S™ | X', Y A)
ACYte |AI<B

where V" and Yte represent the set of labels for the frames
from the training and testing data respectively, S*¢ =
{L1,La, -+, Ln} is the set of random variables for the la-
bel of each of the N testing instance, and X'*" and X'*¢ have
similar meaning for sets of features. In practice, this reward
function is based on the conditional probabilities of the la-
bels given observed, acquired and inferred information. We
use a probabilistic model to estimate these probabilities. We
consider two types of Reward functions in this paper; the
first one is accuracy, measuring the percentage of frames in
Yte that are correctly classified. The second one is aver-
age precision, measuring how well the model can rank the
frames in order of relevance.

3. Probabilistic Models

We will contrast two probabilistic models for video re-
trieval in a camera network.

3.1. Local Models (1.M)

In the simplest case, we assume that, given the parame-
ters of the underlying model, the labels of all frames in the
network are independent of one another, given the features
of the frame. Thus, in this model, we assume that each Yz
depends only on Xp and nothing else. Because this model
uses only the local information about the current frame, we
call it a local model (LM).

For estimating P(Yr | Xg), any probabilistic classi-
fier that can be trained discriminatively, such as logistic
regression, can be used. In our experiments, we use a vi-
sual bag-of-words model [22], which has been shown use-
ful for video image retrieval. The query image and video
frames are represented as vectors of visual word frequen-
cies. We then compute cosine similarity between these fre-
quency vectors to represent X, which is then used as input
to the probabilistic classifier. We provide more details in
Section 5.3.

3.2. Relational Models (rRM)

Because one person is typically present or not present for
a duration of time in a camera, and because cameras have
overlapping and non-overlapping fields of view, we expect
the above independence assumption to miss important rela-
tionships in the data. So we also consider a relational model
(RM), where the information from neighboring frames is in-
tegrated. Specifically, to predict the label Yy, we use the
label information from three types of neighbors, which we
define below.

1. Temporal neighbors Ng : These are the labels of the
frames that appear k time steps before frame F' and k
time steps after it in the same camera C.

2. Positively correlated spatial neighbors N{; : These
are the labels of the frames from other cameras at the
same time step that tend to have the same label as F'.
Such neighbors may correspond to cameras with over-
lapping fields of view and can be discovered from the
training data.

3. Negatively correlated spatial neighbors {/\; : These
are the labels of the frames from other cameras at the
same time step that tend to have labels different from
Yr. For example, when cameras have non-overlapping
fields of view, a person can be present in at most one
camera. Such neighbors can also be discovered auto-
matically.

The set of neighbors of Yz is then defined as Ny, =

NESUNE UNY. Relational models use both X and
Ny, to predict Yr. However, because the neighbor labels
are also often unobserved, the labels in the test data need
to be inferred collectively. Collective classification is the
process of using a relational model to infer the labels in
a network simultaneously, exploiting the relationships be-
tween the network entities (see [20] for an overview). In
this paper, we use Iterative Classification Algorithm (ICA).
We describe it below.

ICA uses two models, a local model and relational
model, to infer the labels of related entities iteratively. It
learns a local model that uses only Xp to bootstrap the la-
bels, and then applies a relational model that uses both X F
and Ny, to propagate the labels to neighboring frames in
the network iteratively. Specifically, the relational model
component of ICA represents each frame F as a vector that
is a combination of X r and features that are constructed
using Ny,

Because frames from different cameras can have vary-
ing numbers of neighbors, the combined feature vector
(Xp, Ny,.) will be of different length for different frames.
To get a fixed-length vector representation, we use an aggre-
gation function aggr over the neighbor labels. For example,



count aggregation constructs a fixed-size feature vector by
counting the number of neighbors with each label. With this
aggregation, we build the following combined feature vec-
tor: X'y = (X, aggr(VY; ), ager (N, ). ager(M3))).
Once the features are constructed, then an off-the-shelf
probabilistic classifier can be used to learn P(Yz | X'5).
Despite its simplicity, [CA has been shown to be quite ef-
fective and efficient [14, 17].

3.2.1 Choosing Neighborhoods for Cameras

In this paper, we use the explicit time information in each
camera to define the temporal neighborhood. Let Fé rep-
resent the frame from camera C; at time step ¢. Then,
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We learn the positive-spatial and negative-spatial neighbor-
hoods from the data as follows. Let V¢, represent the tem-
porally ordered set of all frames from camera C; in the test-

ing data. Then,
N}Zt ={Yr | corr(Ve,,Vc;) > op}
[oH 7

and
lef\; ={Yry, |corr(Ve,,Ve;) < on}
Iop J

where corr(.,.) measures the correlation between two or-
dered sets, and o, and o,, are threshold parameters that de-
fine whether a camera should be included as a neighbor.

4. Active Inference

We allow the underlying retrieval algorithm to request
the correct labels for some frames at inference time. This
setup is called “active inference” meaning that the underly-
ing model can actively collect more information at inference
time [18]. The goal is to make the most of available human
resources. We would like to determine for which frames the
probabilistic model should request labels so it can label the
remaining frames as well as possible. In this section, we de-
scribe a general framework for active inference and several
possible algorithms for video analysis.

We considered the following active inference techniques:

1. Random sampling (RND): Sample frames randomly
across different cameras and time steps.

2. Uniform sampling (UNI): Sample frames uniformly
over time, for each camera.

3. Most relevant (MR): Sample frames whose probability
of being relevant is the highest, where the probability
is based on the output of the probabilistic model.

4. Uncertainty sampling (UNC): Sample the frames
whose entropy value is the highest, where the entropy
is defined using the probability estimates of the proba-
bilistic model.

5. Most likely incorrect (MLI): Sample the frames that
are most likely to be incorrectly predicted. For this,
we adapt the reflect-and-correct algorithm (RAC) [1],
which uses a separately trained classifier to predict
which instances in a general network classification
problem are likely to be misclassified. Below we de-
scribe how we adapt RAC for the purposes of retrieval
in a camera network.

The first four methods can be applied to both LM and RM,
and our experiments demonstrate that RM with relational in-
formation outperforms LM significantly. Because MLT is
based on RAC, which specifically targets collective classifi-
cation, it can be applied with only RM.

4.1. Adapting rRAC for Retrieval in Camera Net-
works

RAC is an active inference technique that works as fol-
lows. At training time, a separate classifier is trained to
predict whether or not an instance is misclassified. Then,
at inference time, RAC uses this classifier to predict at what
instances RM is likely to make a mistake, and suggests ac-
quiring the label of a central instance in a region where most
of the instances are predicted to be misclassified [!]. To
learn and predict whether an instance is misclassified, RAC
utilizes a few features that are indicative of misclassifica-
tion. At a higher level, these features are based on the RM
prediction, LM prediction, and some global statistics about
the data. RAC learns the classification function using the
trainind data used for training RM.

In this paper, we introduce two important modifications
of the original RAC framework. These address i) what fea-
tures to use for RAC in camera networks and ii) how to train
RAC. To distinguish this adapted version from the original,
we refer to our version as Most Likely Incorrect (MLI).

4.1.1 Features for ML I

We used the following 10 features as possible indicators of
misclassification:

1. Four features based on the probability estimates of RM.
We use the entropy of the probability estimate for the

single label Y and average entropy values over A, TFk,
N, PF, and /\/'{,\; . These features capture the uncertainty
of the frame and uncertainty of its neighborhood.

2. Four features based on the probability estimates of
RM and LM. We use the KL divergence between the
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Figure 1. Camera layout and sample frames from each of the 7 cameras. The camera ID above each frame is the actual ID used in the UCR

Videoweb dataset.

RM probability and LM probability for label Yz, and
the average of this value for Ng:, N, i , and N{/\; )
These features provide a way to measure the likelihood
a frame and its neighborhood are misclassified, since
disagreement between RM and LM is a sign of misclas-
sification.

3. Whether Y7 is predicted to be relevant by RM. This
feature captures whether there is any bias of the model
toward one class. This feature is expected to be espe-
cially useful for domains where there is a class skew in
the data.

4. Percentage of N and J\/}F: that agree with the label

Yp. N and Nng both have positive correlation with
Yr. A lower percentage value indicates higher likeli-
hood of misclassification.

4.1.2 Training MI.T

Because MLI predicts whether a frame is misclassified, it
cannot use the labels in the training data directly. Rather,
it needs to be trained on data that specifies the features de-
scribed above for each frame and whether the frame is mis-
classified. To construct this training data, we split the origi-
nal training data into k folds. We train RM and LM on k — 1
folds and test them on the k*" fold. For each training frame
F for ML T, we construct the features described above using
these RM and LM. The label of F' for ML is misclassified if
RM (trained on the k — 1 folds) predicts Y incorrectly and
not-misclassified otherwise. We repeat this process for each
fold.

5. Experimental Evaluation

We performed video retrieval on the Videoweb dataset
from UC Riverside [4], where various people are recorded
for short periods of time, called the scenes. Our video re-
trieval task is: given training data for a number of people
in a number of scenes, retrieve the frames for a new query
person (whose image is given) in a new scene. We train
our probabilistic models, LM and RM, on the training data,
and perform active inference on the test data, where a hu-
man annotator can provide the labels of a small number of
frames, and the probabilistic models are expected to utilize
the annotated frames to perform better on the remaining
frames. We next describe the dataset, constructing the lo-
cal features from the query image and video frames, our
evaluation strategy, and experimental results in detail.

5.1. Dataset

The dataset contains a number of scenes recorded over
four days. Each scene is recorded by a camera network and
the videos from different cameras in the network are ap-
proximately synchronized and contain several types of ac-
tivities over a number of people.

We arbitrarily choose scenes 20 to 25 for our experi-
ments. In these scenes, seven cameras overlook the play-
ground. Scene 21 does not include data from one of the
seven cameras, sO we use it to generate queries. All other
scenes are used for retrieval. The time period for scene 24
is approximately twice as long as those of other scenes. We
split it into two parts with equal time periods, and refer to
them as scene 24.1 and 24.2. This gives us six scenes of
approximately equal length. Each camera has about half an



hour of video over all scenes, and we use a frame rate of
one frame per second. Figure 1 shows the camera layout
and example frames from these seven cameras.

5.2. Queries

We use a set of query images from four persons. These
images are from scene 21, which is not included in the
scenes used for retrieval. We consider three query images
for each person from the front, back, and side view. Since
people in the dataset can easily be occluded and are mainly
characterized by the patterns of their clothes, we manually
crop each query image to highlight their distinctive clothing
regions. These cropped images are used as queries. Figure
2 shows the query images and their cropped results.

5.3. Similarity Features

Both .M and RM need the local feature vector X r for
each frame, query and scene. We adopt a commonly used,
bag-of-words [22] approach to derive a feature that mea-
sures the similarity between the query and regions of in-
terest in each frame. This involves computing image de-
scriptors at keypoints in a region of interest. These de-
scriptors are quantized into codewords, which are created
by applying k-means clustering to training examples. Then
histograms of the codewords in two regions of interest are
compared using cosine similarity. In our implementation,
the entire query is one region of interest, while we use the
background subtraction algorithm of Zivkovic [3 1], which
is based on a standard method using Gaussian mixture
model [24], to determine regions of interest in the video.
We densely sample keypoints in the region of interest, and
build descriptors using a color histogram over RGB space.
For each video frame, descriptors from all detected regions
of interest are considered as a whole to represent the frame.
In preliminary experiments, the color histogram is more ef-
fective than some other descriptors, such as SIFT [11] and
OpponentSIFT [26]. Figure 3 shows an example of densely
sampled key points from video frames. Using k-means
clustering on a random subset of descriptors, we form 500
visual words. By comparing histograms, we obtain fea-
tures that encode the similarity between a query and video
frames.

5.4. Training 1M, RM, and ML T

When testing for a particular query in a given scene, the
neighborhood structure of the camera network, the proba-
bilistic models LM and RM, and the active inference tech-
nique MLT are learned on data from other persons and other
scenes. For computing the temporal neighborhood, N, TFk,
we set £ = 1 for RM, and £ = 4 for MLI. We have
three queries for each person, and they all share the same
structure, probabilistic models, and MLI. The threshold o,

for learning positive-spatial neighbors is 0.6 and o,, for
negative-spatial neighbors is —0.15. We use logistic regres-
sion in WEKA with default parameters [7] to learn LM, RM,
and MLI. We generated the ground truth for each person by
manually labeling the frames. Figure 4 shows an example
of the learned network structure.

5.5. Non-incremental and Incremental Sampling

The sampling locations for RND and UNT do not depend
on the output of any probabilistic models. Thus, for them
sampling is carried out independently, in a non-incremental
fashion, and the locations sampled for a smaller budget are
not a subset of those sampled for a larger budget. On the
other hand, sampling for MR, UNC, and MLT is dependent
on the output of probabilistic models. Because RM infer-
ence is based on the acquired labels, the labels acquired at
lower budget levels can change the predictions of RM. Thus,
for these active inference techniques we perform incremen-
tal sampling, first acquiring the labels of a small subset of
k frames, then incorporating these acquired labels into the
prediction, and running the acquisition algorithm again to
sample the next set of k frames. We do this until the budget
is used up. In our experiments we used £ = 10.

5.6. Evaluation Methods

We perform active inference for both LM and RM with a
budget (the number of frames for which the human annota-
tor provides the labels during inference) varying from 0% to
50% of all frames. For UNC-RM, MLI, and MR-RM we re-
peatedly perform inference to update the predictions when-
ever ten new labels have been acquired. In these methods,
the use of inference can allow the results of partial labeling
to guide the system in determining locations for additional
labeling.

Given that we have six scenes, four people, and three
queries per person, we train on five scenes with nine queries,
and test on a scene for three queries, and we repeat this pro-
cess for each scene and each person, giving us 72 different
test cases. We trim the scenes so that each one is 270 sec-
onds (4.5 minutes).

For each active inference technique, we plot two perfor-
mance measures on the Y axis as a function of the budget on
the X axis. The first performance measure is accuracy, mea-
suring the percentage of frames predicted correctly. The
second measure is the 11-point average precision [16] of
the precision-recall (PR) curves over all frames. For those
frames whose labels are acquired, we set their probabili-
ties to either O or 1 based on their actual labels. However,
in three out of 72 cases, the queries are completely absent
from the scene and the PR curve is undefined for these three
cases. We ignore these three scenes for calculating the 11-
pt precision measure. Significance claims are based on a
paired t-test at the 0.05 level.
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Figure 2. The 12 query images from 4 people. The parts inside the red bounding boxes are the cropped portions used to compute similarity

measure.
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Figure 3. An example showing densely sampled points over regions of interest computed by background subtraction. The right-most figure
is the enlarged view of the left-most region where key points are densely sampled. The detected region is of square shape, because we
run morphological operations after background subtraction and extract non-overlapping bounding boxes over connected components. In
addition, the reason that the person with a black coat is only partially sampled is because he has been present over a long period of time

with little motion.

5.7. Results and Discussion

We compare the performance of four active inference
methods described in section 4 using LM and RM, while
considering ML T only with RM. For MLI, we use temporal
neighbors within four time steps for constructing the fea-
tures that are based on temporal neighbors. The left side of
Figure 5 shows performance using average accuracy, while
the right side shows 11-pt average precision. For LM, UNC
has the best performance when compared with RND, UNT,
and MR. Therefore, we show results for only UNC for LM
in order to increase readability in the graphs. For RM, how-
ever, we show the results for all active inference techniques,
as they are better than UNC using LM.

Based on a statistical analysis of the results, we draw the
following conclusions. First, whenever we apply the same
algorithm using LM and RM, RM performs significantly bet-
ter. Comparing UNC—LM and UNC—RM in Figure 5 provides
a typical example of the large magnitude of this difference.
Second, we find that UNC—-RM and MLT always perform sig-
nificantly better than all other methods. Third, MLT has a
statistically significant advantage over UNC—RM in terms of
accuracy up to 32% budget (600 labels), and the two meth-
ods are comparable afterwards. When we measure 11-pt
average precision, MLT is significantly better than UNC-RM
in a few spots, and never significantly worse. Based on this
result, we conclude that the use of graphical models and col-
lective classification provides large improvements in perfor-

mance for active inference. In addition, ML I, our adaptation
of RAC, provides the best performance, especially at low
budget levels, which are more likely to be used in practice.

6. Related Work

Person reidentification, in which a person seen in one
surveillance video is located in later ones, closely resembles
the query problem we address. Wang et al. [30] use shape
and appearance context to model the spatial relationships of
object parts to do appearance-based person reidentification.
Gray and Tao [6] design a feature space and use Adaboost to
learn person reidentification classifiers. Lin and Davis [10]
reidentify people by a pairwise comparison-based learning
and classification approach. Loy et al. [13] facilitate human
reidentification by using cross canonical correlation analy-
sis to learn the spatial temporal relationship of video frames
in a camera network. In contrast, local descriptors have
been widely used in object recognition. In particular, Sivic
and Zisserman [22] consider video retrieval using a bag-of-
words model.

Other work has used graphical models to represent cam-
era networks. Loy et al. [12] performs abnormal event de-
tection by modeling regions from different camera views
using a time delayed probabilistic graphical model. Chen
et al. [3] use a conditional random field (CRF) to model a
camera network identify a known set of people.

Tracking over camera networks has also been widely ad-
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Figure 4. An example of learned topology. Light gold edges with solid lines denote positive correlation and black edges with dashes denote
negative correlation. Temporal edges are not shown because they are fixed.
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Figure 5. Left: Average accuracy as budget increases. Right: Average precision as budget increases.

dressed (eg., [15, 25, 5, 8, 23]). Typical problems include
inferring the topology of the camera network [15, 25, 5] and
finding correspondences between trajectories from multiple
cameras [8, 23].

The key difference between our work and these is the
use of collective classification and active inference to han-
dle queries to a camera network. In a very different con-
text, some of these issues have been addressed in interactive
segmentation. For example, Rother [19] extends the graph-
cut method [2] with substantially simplified user interaction
to achieve superior image segmentation quality. Wang et
al. [29] interactively extract foreground objects from a video
using user painted strokes. While this work focuses on min-
imizing the need for human labeling over still images or a
single video, we focus on active inference methods that can
direct human attention over camera networks.

Krause and Guestrin [9] did a theoretical analysis of ac-
tive inference for graphical models and they showed that
the optimal solution is tractable for Hidden Markov Mod-
els, but it is NPPP-hard for graphical models even with a
polytree structure. Rattigan et al. [18] performed active in-

ference on networks of arbitrary structure by first grouping
the nodes of the network into clusters and then acquiring the
labels of the central nodes in the clusters. Finally, the active
learning work [21] is very related to active inference, and
it has been applied to visual recognition [27, 28]; however,
the biggest difference is that active learning acquires labels
to construct training data to learn a model, whereas active
inference performs label acquisition for an already learned
model to guide the probabilistic inference to achieve better
accuracy and precision.

7. Conclusion

Our work addresses the problem of using active infer-
ence to direct human attention in searching a camera net-
work for people that match a query image. We first use lo-
cal information to measure the similarity between the query
and each frame. We find that by representing the camera
network using a graphical model, we can more accurately
determine whether video frames match the query, and im-
prove our ability to direct human attention. We experiment
with five methods of determining which frames should be



labeled. We find that the value of the graphical model is
very strong, regardless of which algorithm is used to se-
lect frames for human labeling. In comparing these active
inference methods, we find that there is an advantage in la-
beling those frames that are most likely to contain errors.
This can be captured by a simple method that measures the
entropy of the probability distribution that indicates our un-
certainty about the labels of each frame. However, we find
that we do somewhat better by adapting an approach that
uses a classifier to predict which frames are in error. Over-
all, we demonstrate that we can adapt tools developed for
active inference in graphical models to improve the capac-
ity of humans to effectively search or annotate video from
camera networks.

Acknowledgement: This work was supported by the
Army Research Office, ARO #W911NF0810466. Lilyana
Mihalkova is supported by a CI Fellowship under NSF
Grant #0937060 to the CRA.

References

[1] M. Bilgic and L. Getoor. Reflect and correct: A misclassifi-
cation prediction approach to active inference. ACM TKDD,
3(4):1-32, 2009. 3

[2] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal
boundary & region segmentation of objects in n-d images. In
ICCV, 2001. 7

[3] D. Chen, A. Bharusha, and H. Wactlar. People identifica-
tion through ambient camera networks. In ICDE Worshop on
Multimedia Ambient Intelligence, Media and Sensing, 2007.
6

[4] C. Ding, A. Kamal, G. Denina, H. Nguyen, A. Ivers,
B. Varda, C. Ravishankar, B. Bhanu, and A. Roy-
Chowdhury.  Videoweb Activities Dataset, ICPR con-
test on Semantic Description of Human Activities (SDHA).

http://cvrc.ece.utexas.edu/SDHA2010/Wide_Area_Activity.html,

2010. 4

[5] R. Farrell, D. Doermann, and L. Davis. Learning higher-
order transition models in medium-scale camera networks.
In ICCV workshop on Omnidirectional Vision, Camera Net-
works and Non-classical Cameras, 2007. 7

[6] D. Gray and H. Tao. Viewpoint invariant pedestrian recogni-
tion with an ensemble of localized features. In ECCV, 2008.
6

[7] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. Witten. The weka data mining software: An update.
SIGKDD Explorations, 11, 2009. 5

[8] O. Javed, K. Shafique, and M. Shah. Appearance modeling
for tracking in multiple non-overlapping cameras. In CVPR,
2005. 7

[9] A. Krause and C. Guestrin. Optimal nonmyopic value of
information in graphical models - efficient algorithms and
theoretical limits. In IJCAI, 2005. 7

[10] Z.Lin and L. Davis. Learning pairwise dissimilarity profiles

for appearance recognition in visual surveillance. In ISVC,
2008. 6

(11]

[12]

[13]
[14]
(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]
(24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

D. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2):91-110, 2004. 5

C. Loy, T. Xiang, and S. Gong. Modelling activity
global temporal dependencies using time delayed probabilis-
tic graphical model. In ICCV, 2009. 6

C. Loy, T. Xiang, and S. Gong. Multi-camera activity corre-
lation analysis. In CVPR, 2009. 6

Q. Lu and L. Getoor. Link based classification. In ICML,
2003. 3

D. Makris, T. Ellis, and J. Black. Bridging the gaps between
cameras. In CVPR, 2004. 7

C. Manning, P. Raghavan, and H. Schtze. Introduction to In-
formation Retrieval. Cambridge University Press, New York,
NY, USA, 2008. 5

J. Neville and D. Jensen. Iterative classification in relational
data. In AAAI Workshop on Learning Statististical Models
from Relational Data, 2000. 3

M. Rattigan, M. Maier, and D. Jensen. Exploiting network
structure for active inference in collective classification. In
ICDM Workshop on Mining Graphs and Complex Structures,
2007. 3,7

C. Rother, V. Kolmogorov, and A. Blake. “grabcut”: inter-
active foreground extraction using iterated graph cuts. ACM
SIGGRAPH, 23(3):309-314, 2004. 7

P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and
T. Eliassi-Rad. Collective classification in network data. Al
Magazine, 29(3):93-106, 2008. 2

B. Settles. Active learning literature survey. Computer
Sciences Technical Report 1648, University of Wisconsin—
Madison, 2009. 7

J. Sivic and A. Zisserman. Video google: A text retrieval
approach to object matching in videos. In ICCV, 2003. 2, 5,
6

B. Song and A. Roy-Chowdhury. Stochastic adaptive track-
ing in a camera network. In /CCV, 2007. 7

C. Stauffer and W. Grimson. Adaptive background mixture
models for real-time tracking. CVPR, 1999. 5

K. Tieu, G. Dalley, and W. Grimson. Inference of non-
overlapping camera network topology by measuring statis-
tical dependence. In ICCV, 2005. 7

K. van de Sande, T. Gevers, and C. Snoek. Evaluating color
descriptors for object and scene recognition. IEEE TPAMI,
32(9):1582-1596, 2010. 5

S. Vijayanarasimhan and K. Grauman. Whats it going to cost
you?: Predicting effort vs. informativeness for multi-label
image annotations. In CVPR, 2009. 7

S. Vijayanarasimhan, P. Jain, and K. Grauman. Far-sighted
active learning on a budget for image and video recognition.
In CVPR, 2010. 7

J. Wang, P. Bhat, R. A. Colburn, M. Agrawala, and M. F. Co-
hen. Interactive video cutout. ACM SIGGRAPH, 24(3):585-
594, 2005. 7

X. Wang, G. Doretto, T. Sebastian, J. Rittscher, and P. Tu.
Shape and appearance context modeling. In /CCV, 2007. 6
Z. Zivkovic. Improved adaptive gaussian mixture model for
background subtraction. In ICPR, 2004. 5



