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Introduction
Hinge-loss Markov random fields (HL-MRF) are a class of probabilistic graphical models with 
density functions that admit tractable MAP inference. When paired with a statistical relational 
learning (SRL) framework, HL-MRFs are powerful tools for performing structured prediction. One 
such framework, probabilistic soft logic (PSL), uses weighted first-order logical statements to 
incorporate domain knowledge and constraints into the HL-MRF structure. Traditionally, PSL 
restricts weights to be non-negative to ensure MAP inference remains tractable, but this limits the 
types of relations PSL models can represent. 
Contributions
● Introduce three novel methods for supporting negative weights in PSL.
● Leverage Gödel logical semantics to preserve convexity and scale of MAP inference problem 

in PSL models with negative weights.
● Develop a synthetic dataset to compare the effectiveness of the proposed and existing 

approaches.

Probabilistic Soft Logic

w
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: Friends(A, B) ∧ Likes(A, I) ->

 
Likes(B, I)

w
2
: Likes(A, I1) ∧ Similar(I1, I2) ->

 
Likes(A, I2)

Weighted Logical Rules Data
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HL-MRF

Probabilistic Soft Logic (PSL) is a general framework for defining a hinge-loss Markov random 
field (HL-MRF). Dependencies between variables are encoded with weighted first-order logical 
rules that are instantiated with data to create potentials for defining the HL-MRF density function.

HL-MRF Distribution MAP Inference
All instantiated potentials together define a 

distribution over the random variables
Maximum-a-posteriori (MAP) inference is a 

tractable convex optimization problem.

Negative Weights Empirical Evaluation
All methods are implemented in PSL and evaluated 
across 10 folds and 3 variants of a synthetic dataset.

Conclusions and Future Work
Conclusions
● Leveraging alternative real-valued logical semantics can increase expressivity and preserve both 

convexity of PSL MAP inference and model size.
● SGD on non-convex HL-MRF MAP inference problems from negative weights and Łukasiewicz 

negation can still converge to good local minimum.
Future Work
● Explore modelling applications for negative weights.
● Find other areas where alternative real-valued logical semantics improves scalability of PSL.
● Integrate negative weight semantics into weight and structure learning algorithms.

MAP Inference Convergence

Łukasiewicz Potentials
Instantiated rules are converted to conjunctive normal form and a random variable y

i
 is 

associated with each predicate. 

w
2
: ¬Likes(“Alice”, “Coffee”) ∨ ¬Similar(“Coffee”, “Tea”) ∨ Likes(“Alice”, “Tea”)

PSL conventionally uses Łukasiewicz logical semantics to define hinge-loss potential functions 
from instantiated weighted logical rules.

Weight Based Approaches
Negative Weights: Drop non negativity constraint. MAP objective is non-convex but can 
be expressed as a difference of convex functions.

Biased Weights: All weights are sufficiently biased to ensure non-negativity.

Negation Based Approaches

Łukasiewicz Negation: 

Negative weighted rules are first negated in the potential instantiation process. 

w: ¬P(“a”) ∨ Q(“a”) |w|: P(“a”) ∧ ¬Q(“a”)

Surface plots and heat maps of the three potentials instantiated by the negated rule.

Suppose P(“a”) is observed in the example above. The three negation based 
approaches instantiate the following potentials.

Sum of Disjunctions: 

Gödel Negation: 

-1.0: Predictor1(X, Y) ->
 
Target(X, Y) ^2

0.1: Target(X1, Y) ∧ Similar(X1, X2) ->
 
Target(X2, y) ^2

1.0: Predictor2(X, Y) =
 
Target(X2, y) ^2

0.1: ¬Target(X1, Y) ^2

Evaluation Model

RMSE by Dataset and Method

Łukasiewicz Sum of Disjunctions Gödel


