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Conclusion

Deep Hinge-Loss Markov Random Fields
Deep Hinge-Loss Markov Random Fields (Deep-HLMRFs)[1] are tractable probabilistic graphical models that integrate low-level neural perception with symbolic reasoning.
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Energy loss learning can achieve higher accuracy in roughly half the 
runtime of structured perceptron.   

Degenerate solutions

Direct optimization of losses leads collapsed energy functions
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Restrict weights to be on the simplex.
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Simplex Constrained Parameters Leads to Corner Solutions
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Add regularization to the energy loss pushing weights away from 0
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Regularized and 
Simplex Constrained Loss Function:

Neural 
Architectures 

Energy and structured perceptron learning losses were presented for Deep-HLMRFs. Degenerate solutions of the losses were identified and we proposed 
constraints, regularizations, and a tractable optimization technique to overcome them. The performance of learning losses was tested on a canonical NeSY 
dataset and we found, surprisingly, training with the simpler energy loss can achieve higher accuracy in roughly half the runtime of structured perceptron.
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