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Abstract—Identifying discriminative attributes between prod-
uct variations, e.g., the same wristwatch models but in different
finishes, is crucial for improving e-commerce search engines and
recommender systems. Despite the importance of these discrimi-
native attributes, values for such attributes are often not available
explicitly and instead are mentioned only in unstructured fields
such as product title or product description. In this work, we
introduce the novel task of discriminative attribute extraction
which involves identifying the attributes that distinguish product
variations, such as finish, and also, at the same time, extracting
the values for these attributes from unstructured text. This task
differs from the standard attribute value extraction task that has
been well-studied in literature, as in our task we also need to
identify the attribute, in addition to finding the value. We propose
DiffXtract, a novel end-to-end, deep learning based approach that
jointly identifies both the discriminative attribute and extracts
its values from the product variations. The proposed approach
is trained using a multitask objective and explicitly models the
semantic representation of the discriminative attribute and uses
it to extract the attribute values. We show that existing product
attribute extraction approaches have several drawbacks, both
theoretically and empirically. We also introduce a novel dataset
based on a corpus of data previously crawled from a large
number of e-commerce websites. In our empirical evaluation, we
show that DiffXtract outperforms state-of-the-art deep learning-
based and dictionary-based attribute extraction approaches by
up to 8% F1 score when identifying attributes, and up to 10%
F1 score when extracting attribute values.

I. INTRODUCTION

How do the two watches in Fig. 1a differ from each other?
While they share some canonical attribute values – they have
the same manufacturer, brand and model, they have different
finishes – stainless steel vs. leather and color –
gold vs. brown. Such groups of nearly identical but distinct
products are called product variations [1].

Identifying attributes that distinguish product variations is
crucial for the success of a variety of online platforms. For
example, many e-commerce sites provide a way to select
product variations in the user interface (UI). This requires the
knowledge of discriminative attributes between the variations.
Similarly, for conversational search agents, discovering and
eliciting a user’s choice among several variations is a necessary

*Work done while at Amazon

44mm Wrist Watch with
Stainless Steel Band - Gold

44mm Wrist Watch with
Leather Band - Brown

(a) Product variations: Two wristwatches with different
finishes and colors

(b) Performance for the baseline and DiffXtract: The baseline
misclassifies finish as color for 70% of the pairs. Similarly, it
misclassifies length as size for 40% of the pairs. The proposed
DiffXtract approach identifies them accurately.

Fig. 1: Identifying discriminative attributes in variations.

step for identifying the product the user wishes to purchase.
Further, we can also learn user preferences by mining the
discriminative attribute values between the products bought
by the user and other available variations. This in turn can
significantly improve the user’s recommendations.

Extracting discriminative attributes from product variations
involves several challenges. First, each product is typically
associated with a set of structured fields such brand and price
and a set of unstructured fields such as title and description.
There are usually few structured attributes and these are
often incomplete and noisy. Retailers often highlight important
attributes of the product by including them in unstructured
fields such as title. For example, the information about the
finish for the wrist watch bands in Fig. 1a (Stainless steel
and leather) might not be present as a structured attribute



but are mentioned in the title. While the task of extracting
product attribute values from unstructured text has received
significant attention [2, 3, 4, 5, 6, 7, 8, 9, 10], using these
approaches for discriminative attribute extraction task remains
largely unexplored. Fig. 1b shows the performance of a
baseline method that extracts discriminative values and then
identifies the corresponding attribute (more details in Section
IV). We see that this approach incorrectly identifies color as
the attribute when the true attribute is finish for about 70% of
the cases. Similarly, the baseline identifies size as the attribute
instead of length for about 40% of the pairs.

Second, discovering discriminative attributes involves
not only extracting the attribute values but also identifying
the attribute that differs between products. Different sets
of products can have different discriminative attributes. In
the case of ‘‘44mm Wrist Watch with Stainless
Steel Band - Gold’’ and ‘40mm Wrist Watch
with Stainless Steel Band - Gold’’ size
is the discriminative attribute; however, between the
products ‘‘44mm Wrist Watch with Stainless
Steel Band - Gold’’ and ‘‘44mm Wrist Watch
with Stainless Steel Band - Brown’’ the
discriminative attribute is color. While there is some work
on extracting semantic differences between a pair of words
[11, 12, 13] and extracting discriminative tokens from product
reviews [14], the task of discovering discriminative attributes
from product titles has not been studied.

Finally, there are a large number of potential discriminative
attributes. Variations in each product category vary along
different sets of attributes. Often there is little or no training
data for each of the possible discriminative attributes.

In this work, we propose a novel deep learning based
approach, DiffXtract, to overcome these challenges. DiffX-
tract jointly identifies the discriminative attribute and ex-
tracts the attribute values for a given pair of products. The
model is trained end-to-end using a multitask objective that
combines attribute identification and value extraction tasks.
The framework explicitly models the semantic representation
of the discriminative attribute and uses attention to capture
the relation between the attribute and the product title. This
enables the model to scale to a large number of product
attributes with little training data. From Fig. 1b, unlike the
baseline, we observe that the DiffXtract approach identifies
finish and length attributes with high accuracy.

The main contributions of our work include:
• Taxonomy of approaches: We propose a taxonomy of

approaches by extending the state-of-the-art attribute iden-
tification and attribute value extraction approaches for the
discriminative attribute extraction task.

• DiffXtract: We propose a novel end-to-end multitask ap-
proach that jointly performs both discriminative attribute
identification and value extraction. We establish a theoretical
upper bound for a class of approaches called extraction-
oriented approaches for the attribute identification task.

• Effectiveness: We introduce a novel dataset and empirically
show that the proposed DiffXtract approach outperforms

attribute-oriented and extraction-oriented approaches by up
to 8% F1 score when identifying attributes, and up to 10%
F1 score when extracting attribute values.

To the best of our knowledge, we are the first to study
and propose a solution to the task of discriminative attribute
extraction for product variations.

II. PRELIMINARIES

As discussed above, variational attributes play an important
role (e.g., in product browsing UI), but their values are often
not provided explicitly, and are included in unstructured text
fields. In this section, we introduce necessary terms to describe
the variational attributes and the formal problem definition. We
then provide a discussion of existing approaches for this task.

A. Problem Definition

Product attributes can be broadly divided into two sets of
attributes called base attributes and variational attributes [1].
Canonical attributes such as manufacturer, brand and product
line are called base attributes. Other product attributes that
cater to the users’ needs and preferences are called variational
attributes. Color, size and quantity are some examples of vari-
ational attributes. Product variations are products that share
the same value for all the base attributes but have different
values for variational attributes. For example, the two products
in Fig. 1a are variations of each other. The variational attributes
finish and color have the values Stainless steel and
Gold for the first product and Leather and Brown for the
second product. However, both the products share the same
value, 44mm, for the variational attribute size. We refer to a
variational attribute that has different values among product
variations as a discriminative attribute. In the example above,
finish and color are the discriminative attributes.

Having defined the notion of a discriminative attribute,
we now formally define the task of discriminative attribute
extraction.

Definition 1. Discriminative attribute extraction: Given
a pair of product variations with titles (T1, T2) the task
of discriminative attribute extraction is to output a triple
(ad, v1, v2), where ad is the discriminative attribute for the
product pair and (v1, v2) are the extracted product attribute
values for ad present in the titles (T1, T2).

For the pair of product variations above, the expected
triple is either {color, Gold, Brown} or {finish,
Stainless Steel, Leather}. We assume that the set
of all variational attributes A = {a1, a2, · · · , am} is given.
However, we make an open world assumption for the attribute
values. We do not assume any fixed, pre-defined vocabulary of
attribute values and products can contain new emerging values
that have not been seen before.

We denote the tokens in the product titles T1, T2 by the sets
{t11, t12, · · · , t1m}, {t21, t22, · · · , t2n} respectively. The extracted
values v1, v2 are subsets of the tokens present in T1, T2. The
set of tokens in the name of the attribute ai (e.g., color,
manufacturer part number) is represented by {ai1, ai2, · · · , aip}.



If one of the product titles contains an attribute value that
is missing in the other title, we do not consider this as a
discriminative attribute.

B. Discriminative Attribute Extraction Approaches
The discriminative attribute extraction task involves two

sub-tasks, identifying the discriminative attribute and extract-
ing the attribute values. Based on the sub-task that is solved
first, the approaches can be broadly classified into extraction-
oriented approaches and attribute-oriented approaches.

Extraction-oriented approaches: These approaches ex-
tract the attribute values first and then identify the attribute
to which these values belong. Since the values of the dis-
criminative attribute needs to be different, these values must
contain tokens that are present only in one of the titles. In the
example of ‘‘44mm Wrist Watch with Stainless
Steel Band - Gold’’ and ‘‘40mm Wrist Watch
with Stainless Steel Band - Gold’’ the tokens
44mm and 40mm are present in only one of the titles. Since
the attribute values can contain multiple tokens, and some of
these tokens can be common to both the titles (e.g., pack
of 2 and pack of 3), these approaches start with the
unique tokens and grow the values by including adjacent
tokens. Once these tokens are identified, extraction-oriented
approaches can solve the sub-task of identifying the attribute
using state-of-the-art unstructured text to product attribute
matching approaches. For example, Kannan et al. [8] use
an inverted index that maps values to attribute names. We
could also train a multiclass classifier to identify the attribute
from the tokens. The main advantage of these approaches is
their ability to compare and contrast the product pairs when
extracting the values.

Formally, these models can be represented by:

(âd, v̂1, v̂2) = argmaxad
P (ad|argmaxv1,v2P (v1, v2|T1, T2))

(1)
Attribute-oriented approaches: These approaches iden-

tify the attribute first and then extract the values for the
identified attribute. These approaches leverage and extend the
state-of-the-art product attribute extraction techniques [2, 3,
4, 5, 6, 7, 8, 9, 10]. Since the set of variational attributes
is known, these approaches extract the values for each of
these attributes and then identify the attribute that has different
values. In the example of ‘‘44mm Wrist Watch with
Stainless Steel Band- Gold’’, we can extract the
values for all variational attributes in A which includes size,
finish, and color. Similarly, we can extract the values for these
attributes for the product ‘‘40mm Wrist Watch with
Stainless Steel Band- Gold’’. Since the values for
the attribute size differ, we return the triplet (size, 44mm,
40mm). Formally, these models can be represented by:

(âd,v̂1, v̂2)

= argmaxv1,v2
P (v1, v2|T1, T2, argmaxad

P (ad|T1, T2))
(2)

However, both these approaches have several drawbacks.
While the attribute-oriented approaches make use of state-of-

the-art product attribute extraction techniques, they extract the
values for each product independently. They cannot contrast
between the product pairs while extracting the values. The
extraction-oriented approach, while capable of contrasting
between the product pairs, cannot make use of the state-of-
the-art product attribute extraction techniques as they require
the attribute to be given as an input. Approaches such as
Kannan et al. [8], that use an inverted index, find the attribute
identification task challenging when provided with previously
unseen attribute values.

More importantly, these approaches struggle to identify the
correct attribute where the attributes share a large set of
values. Attributes such as color and finish, for example, can
take the same set of values such as red, yellow and blue.
These problems are further exacerbated in attributes that take
numerical values such as length, width and height. We can
quantify the challenge of distinguishing such attributes by
calculating the Bayes error rate. The Bayes error rate provides
an upper bound on the accuracy that can be achieved by any
pattern classifier when class distributions overlap.

Let the attribute ai ∈ A take values from the sets Vi =
{vi1, vi2, · · · , vim}. We denote the probability of attribute ai
taking a value vk using the conditional distribution P (vk|ai).
In the case of categorical attributes such as color this takes
the form of a multinomial distributions Πi. Let the prior
probability of ai being the true discriminative attribute be
denoted by P (ai).

Theorem 1. The attribute identification task accuracy for the
extraction-oriented approaches has an upper bound given by:

1−
∑

vl,vm∈∪Vi

(
1−argmaxiΠi(vl)Πi(vm)P (ai)

)
Πi(vl)Πi(vm)

where P (ai) is the probability of ai being the discriminative
attribute and Πi(vm) is the probability of observing vm as the
value of attribute ai.

The proof of this theorem is given in the appendix. The
accuracy upper bound decreases as the overlapping between
values of different attributes increases. The upper bound is also
related to the prior probabilities of the attributes. The more
similar the prior probabilities of attributes with overlapping
values, the lower the upper bound on accuracy.

Multitask approach: To overcome these drawbacks, we
propose a multitask approach that jointly performs attribute
identification and value extraction. Formally, multitask ap-
proaches can be represented by:

(âd, v̂1, v̂2) = argmaxad,v1,v2
P (v1, v2, ad|T1, T2) (3)

Multitask approaches extract both the values and identify the
attribute together. These approaches look at the entire title and
model the probability of attribute ai being the discriminative
attribute. The tokens in the title can potentially help these
approaches circumvent the problem faced by extraction-based
approaches. For example, the position of the values vl, vm
in the tile T1, T2 can provide the context for identifying the
attribute. For example, typically, length tokens precede width



Attrib.
Identification

Value
Extraction

Attribute-oriented
(OpenTag[3], CAM[2], · · · )

Extraction-oriented
(Dict [8], · · · )

DiffXtract
(Proposed approach)

TABLE I: Discriminative attribute extraction approaches: The
proposed DiffXtract approach jointly identifies the attribute
and extracts their values

and height tokens. Tokens in the title that provide information
about the product type can help distinguish between color and
finish.

Table I gives an overview of the different approaches.
Attribute-oriented approaches extract the values for a given
attribute and extraction-oriented approach identify the attribute
given the extracted values. Our proposed multitask approach,
DiffXtract, jointly performs both tasks and is described in the
next section.

III. MULTITASK APPROACH USING DIFFXTRACT

Our proposed approach DiffXtract uses multitask learning
where we train a single end-to-end model to perform multiple
tasks. Our model performs all the tasks simultaneously - iden-
tifying the discriminative attribute and extracting the values
for the identified attribute from each of the product titles. We
cast the problem of identifying the discriminative attribute as
a classification task, and the task of extracting the attribute
values from the two titles as a sequence labeling task. We
identify the discriminative attribute and use this as an input
for the value extraction tasks.

Our approach follows state-of-the-art neural product at-
tribute extraction techniques and casts the attribute extraction
problem as a sequence labeling task. Each token in the title is
associated with a label from the set of {B, I,O} tags, where B
and I denote the beginning and inside tokens of the extracted
attribute value respectively, and O denotes the outside of the
value tag. Neural attribute value extraction approaches use a
bidirectional LSTM (BiLSTM) and conditional random field
(CRF) to perform tagging. Unlike dictionary-based approaches
that learn from a limited and pre-defined vocabulary of at-
tribute values, sequence labeling approaches can generalize
to previously unseen attribute values. Further, we extend the
token representation to incorporate information about whether
the token is unique to the product or if it is present in both the
product titles. This allows the model to compare and contrast
the two products when extracting the attribute values.

Fig. 2 shows the architecture of our proposed model. We
first review the building blocks of our approach for the clas-
sification task, followed by the blocks for the extraction task.
We then outline our multitask strategy for the discriminative
attribute extraction task.

A. Discriminative Attribute Identification

Word Representation Layer: Neural word embeddings
map tokens in a sentence to high dimensional vectors that

capture both syntactic and semantic information. We use a
pretrained Bidirectional Encoder Representations from Trans-
formers (BERT) [15] to map tokens to vectors. BERT gener-
ates contextual word embeddings by taking a sentence as input
and maps each token in the sentence to a vector. Since BERT
generates contextual embeddings, the embedding for the token
red in the brand red bull is different from the embedding in
the color cherry red. We add the [CLS] and [SEP] tokens to
the beginning and the end of the title and then generate BERT
embeddings for all tokens in both the products.

Bidirectional LSTM Layer: We capture the long-term
dependencies between the tokens in the product titles using as
Bidirectional LSTM (BiLSTM). Unlike LSTMs, which cap-
ture dependencies between a token and its preceding tokens,
BiLSTMs capture dependencies in both the directions via
backward and forward states. The forward and the backward
hidden states are concatenated to form the final output. We
use the BERT embeddings of the tokens in the title for each
of the products and the same BiLSTM for both titles. The
contextual representation of the titles H1,H2 is represented
as {h1CLS , h

1
1, h

1
2, · · · , h1m} and {h2CLS , h

2
1, h

2
2, · · · , h2n} and

is given by:

hj
i = [
−→
hji ;
←−
hji ] = BiLSTM(

−−→
hji+1,

←−−
hji−1,Wb) (4)

Attribute Classification Layer: We use a softmax layer
to predict the discriminative attribute between the titles. We
concatenate the hidden representation of [CLS] tokens from
both the product titles and pass it to the softmax layer. The
output is given by:

P (ad = k) = softmax([h1CLS , h
2
CLS ].Wh) (5)

where Wh is a weight matrix, h1CLS and h2CLS are the hidden
representations from the BiLSTM layer of [CLS] tokens, and
k ∈ A.

Using the training data, we learn the parameters of our
model. We use log-likelihood or cross entropy as the loss
function as it can handle unbalanced classes in the training
set. We denote the log-likelihood of the classifier by lc.

B. Attribute Value Extraction

Having identified the discriminative attribute, we next ex-
tract the values for this attribute from each of the titles.
Similar to the discriminative attribute identification task, we
first encode the tokens of the title into high dimensional
vectors using BERT and pass the embeddings to a BiLSTM to
generate the vector representation for the tokens. Unlike the
classification task, we need to generate tags for each token
in the title. Hence, we use all hidden states of BiLSTM from
both the titles, i.e., H1,H2.

Attribute representation: Similar to the tokens in the title,
we generate contextual representations for all the attributes
in A. We first map the tokens present in the attribute names
to high dimensional vectors using BERT and pass them to
another BiLSTM and use the hidden representation of the last
token as the representation of the attribute. We represent the
contextual vectors for each of the attribute by ha where a ∈ A.



Fig. 2: DiffXtract: Discriminative Attribute Extraction Model

From the output of the attribute identification task, we select
the attribute with the highest probability as the discriminative
attribute and use its representation for the value extraction task.
The discriminative attribute is represented as had and is given
by:

had = hâ where â = argmaxaP (ad = a) (6)

Attention Layer: While generating the final set of tags, the
CRF considers all tokens to be equally important. However,
this is not true as some tokens are more important when ex-
tracting the attribute values. In the Neural Machine Translation
literature, an attention mechanism was first used with great
success by Bahdanau et al. [16]. An attention mechanism
enables the model to attend to different parts of the input
while generating output tags.

While generating the output tags for the tokens in the title,
the attribute-based attention mechanism enables us to attend
to different tokens in the title while extracting values for
different attributes. This allows us to extract values for all
the attributes in A without training a separate model for each
of the attributes.

We compute the similarity between the attribute and the
product title token representations to obtain attention weights
A = {α1, α2 · · · , αm}. We use cosine similarity between the
attribute representation and the token representation, i.e, αi =
cosine(had , hti).

The attribute-weighted title representation is given by Ci =
A � Hi, where � represents element-wise multiplication. Ci

represents the weighted sum of words in the title T i with
respect to the attribute ad.

Diffbit: Tokens that are present in one title but not the other
are likely to be part of the discriminative attribute value. To
provide this signal to the final layer, we compute a diffbit for
each token in the title. This bit is 1 if the token is not present
in the other title and set to 0 otherwise. We denote this by dt.
We append the diffbits to the token representations.

Output layer: The final output layer generates the BIO
tags that are used to extract the attribute values. We use
conditional random fields (CRF) [17] for this task as they
capture dependencies in the output labels. For example, if the
tag for a token is O, we know that the probability of tag I for
the next token is 0. We concatenate the title representations
for the BiLSTM Ht, the attribute comprehension title Ct and
the diffbit dt to obtain the feature matrix Mt:

Mt = [Ht,Ct, dt] (7)

This feature matrix is used by the CRF layer to generate the
list of tags for each token in the title. The joint probability
distribution of tags y is given by:

P (yi|T ;ψ) ∝
m∏
i=1

exp(

K∑
k=1

ψkfk(yi−1, yi,M
t)) (8)

where ψk corresponds to the feature weight, fk is the feature
function, and K is the number of features. The final output
is the best label sequence y∗ with the highest conditional
probability, i.e.:

y∗ = argmaxyP (y|T ;ψ) (9)

We learn the parameters of the model using the maximum
conditional log-likelihood estimate. The maximum conditional
likelihood is given by:

lv(ψ) =

N∑
i=1

log P (yi|Ti;ψ) (10)

where N denotes the number of training samples. We denote
the log-likelihood for the first product as lv1 and for the second
product as lv2 .

C. Multitask Learning

Having described the building blocks of the classification
and extraction model, we now describe the full model that



Attribute Train Validation Test
Color 15357 3225 5316

Manufacturer part number 9203 1009 2071
Model 6062 824 970
Finish 5766 542 630
Size 1725 201 260

Length 1047 88 123
Width 975 92 128
Depth 882 50 72
Style 518 33 50

Material 254 23 42
Type 232 80 124

Dimensions 116 3 22
Height 107 6 17

Product type 91 12 21
UPC 61 3 6

Condition 21 16 56
Weight 15 3 1

Features 9 2 0
ASIN 4 0 0

Transmission 2 1 1

TABLE II: Attribute distribution: The table show the distribu-
tion of discriminative attributes across train, validation and test
splits. Here, ASIN refers to Amazon Standard Identification
Number and UPC refers to Universal Product Code.

is trained end-to-end. Fig. 2 shows the architecture of our
proposed model. We jointly train the model for discriminative
attribute identification and attribute value extraction. We do
this by combining the likelihood functions lc, l1v and l2v . The
multitask likelihood objective is given by:

l = lc + λ(l1v + l2v) (11)

where λ ∈ R is a hyperparameter that trades-off between the
attribute identification task and attribute value extraction task.

At prediction time, we first identify the discriminating
attribute using the hidden representation of the [CLS] tokens
from both the products. Having identified the attribute by
contrasting between the two titles, we extract the attribute
value. The semantic representation of the identified attribute in
the attention layer and the diffbit token enables the approach
to extract the value for attributes with few training examples.

IV. EXPERIMENTAL EVALUATION

In this section, we perform experimental evaluation to
answer the following questions
• Q1: How does the proposed DiffXtract method compare

to other techniques for the task of discriminative attribute
extraction?

• Q2: What attributes are harder to identify and extract?
• Q3: How does the proposed DiffXtract method perform on

the sub-task of attribute extraction?
• Q4: How sensitive is the hyperparameter λ that trades-off

between the two sub-tasks?

A. Data

We performed our experimental evaluation using the Multi-
modal Attribute Extraction dataset [18]. The dataset contains
over 2.2 million products collected from several e-commerce
sites. The dataset includes products from various categories

such as electronics, jewelry, clothing and vehicles. Along with
the product title, the dataset provides an open-schema table
of attribute-value pairs. There are about 7.6 million attribute-
value pairs that span 2100 attributes.

Within an e-commerce platform, the information about
which products are variations is often provided by sellers.
In our evaluation, we identified product variations with a
previously used approach [1]. We do this by first splitting
the products into train, validation and test splits in the ratio
0.8 : 0.05 : 0.15. For each of the splits, we blocked the
products using the tokens in the titles, and extracted pairs
where the title Jaccard similarity is ≥ 0.7 and have the same
value for brand. From these products, we identified product
attributes that have a frequency greater than 5000. The list of
identified attributes is given in Table II. For these attributes,
we identified pairs where each product in the pair contains
the same attribute with different values among the attribute-
value pairs associated with the products. For example, the
products ‘‘clear kaleidoscope static cling
window film 35’ wide x 75 ft’’ and ‘‘clear
kaleidoscope static cling window film 35’
wide x 82 ft’’ were associated with the attribute
length with values 75 ft and 82 ft. Their common
attribute with different values is the ground truth for the
discriminating attributes. Further, we removed pairs where the
values of the discriminating attribute values were not present
in the title. There were 42,447 pairs in the train split, 6215
pairs in the validation split and 9910 pairs in the test split.
The attribute distribution across splits is given in Table II.

We compute the precision, recall and F1 scores for the
attribute identification task and the value extraction tasks. For
the extraction task, we use an Exact Match criteria were the
model gets credit only when the full sequence of extracted
values are correct. As the attribute distribution is skewed,
we compute the weighted macro-average where metrics are
computed for each attribute and are weighted by the attribute’s
support.

B. Approaches

We analyse the performance of extraction-oriented and
attribute-oriented baselines, and compare them with the pro-
posed DiffXtract model.

Dict: For the extraction-oriented approach, we evaluated an
inverted index approach (Dict), similar to Kannan et al. [8],
where we generate a dictionary containing the values that an
attribute can take. We use the train and validation splits to
generate this dictionary. At test time, for each of the pairs,
we first identify discriminative tokens present in one of the
products but not the other. For each of the products, next we
identify attributes whose values are present in the title and
also contain a discriminative token. We then identify common
attributes that were extracted from both the products and sort
them based on the sum of frequency of the attribute values.
We return the top attribute and its values as the discriminative
attribute.



Opentag: For the attribute-oriented approach, we compare
our approach with Opentag [3], a recently introduced neural
sequence tagging model. This approach extends the BiLSTM-
CRF architecture by adding a self-attention mechanism to
highlight important information before the CRF layer. To
ensure fair comparison with the other approaches, we used
BERT word embeddings instead of the GloVe embeddings[19]
proposed in the model. We use the best performing joint
multi-attribute extraction model that extracts values for all
possible attributes. We extract attribute-value pairs for both
the titles and select the attribute with different values as the
discriminative attribute value triplet. We use the training set
to train the model and use the validation set to perform early
stopping. We evaluate the validation set after every epoch and
stop the training if the F1 score for the attribute identification
task or the value extraction task decreases for three consecutive
epochs.

Contextual attribute extraction model : We also ex-
tend the state-of-the-art contextual attribute extraction model
(CAM) [2]. CAM is a product attribute extraction approach
that takes as input a product title and an attribute and extracts
the attribute value from the product title. We extend this model
by first extracting the value of all possible discriminative
attributes from the title. We then identify attributes where the
extracted values are different and rank the attributes based
on the likelihood scores. We return the top ranked attribute
along with the values as the discriminative attribute value
triplet. Since this approach extracts values for each product
independently, we trained the model by passing each product
title in the pair and the attribute as a datapoint. We use
the training set to train the model and use the validation
set to perform early stopping. We evaluate the validation set
after every epoch and stop the training if the F1 score for
the attribute identification task or the value extraction task
decreases for three consecutive epochs.

DiffXtract: This is the proposed multitask approach that
jointly identifies the discriminative attribute and extracts values
for that attribute. We select the attribute with the highest
probability as the discriminative attribute along with the ex-
tracted values. We set parameter λ, that trades-off between
the attribute identification task and attribute value extraction
task, to 5. We use the training set to train the model and
use the validation set to perform early stopping. Similar to
the above approaches we perform early stopping using the
validation split.

For DiffXtract, CAM and Opentag, we set the batch size to
256, and a learning rate of 0.01. We set the hidden dimension
to 100 for the BiLSTM layer. During training, the maximum
number of epochs was set to 35, although all approaches
converged before that. We trained our models on a machine
that had a 250GB RAM, Intel Xeon 3.20GHz CPU and a
NVIDIA Quadro RTX 6000 GPU.

C. Q1: Discriminative Attribute Extraction Performance

The precision, recall and F1 scores for the attribute identi-
fication and value extraction tasks are shown in Table III.

Attribute identification Value extraction
Prec Recall F1 Prec Recall F1

Dict 0.855 0.632 0.646 0.721 0.558 0.629
Opentag 0.869 0.842 0.835 0.768 0.676 0.719

CAM 0.346 0.350 0.323 0.820 0.526 0.641
DiffXtract

(No dt) 0.853 0.875 0.858 0.873 0.712 0.784

DiffXtract 0.908 0.912 0.908 0.837 0.751 0.792

TABLE III: Performance metrics: The table shows the
precision, recall and F1 scores for the attribute identification
and value extraction tasks. We observe that the DiffXtract
approach outperforms all other approaches.

Attribute identification task: We observe that DiffXtract
outperforms all other approaches by more than 8% on the F1
score. CAM performs poorly compared to all other approaches
on this task. This is because the model is not trained to
explicitly perform this task, and likelihood scores are not
always informative with respect to attribute identification.
Further, Opentag and CAM models identify attributes from
each product independently and hence are unable to contrast
between the pairs. Opentag has a separate tag for each
attribute and hence is able to identify the attribute better than
CAM. Dict contrasts between product pairs by identifying
attribute values present in one pair but not the other. As a
result, Dict performs better on the attribute identification task
compared to CAM. However, Dict does not take into account
the other tokens in a title when identifying the attribute. As
a result, it performs poorly in the attribute identification task
compared to DiffXtract. Further, we observe that adding the
diffbit (dt) results in a performance improvement of 5% on
the F1 Score.

The upper bound on the precision for the Bayes classifier
mentioned in Theorem 1 on this dataset is 0.93. We note that
the precision for Dict (0.64) is lower than the best possible
value. We also observe that the precision for DiffXtract
(0.908) is much close to this, although this approach makes
use of the context in the title and can have precision higher
than the Bayes classifier.

Value extraction task: We observe that DiffXtract outper-
forms all other approaches by more than 10% on the F1 score.
Dict performs poorly compared to all other approaches on
this task. The Dict approach makes a closed-world assumption
and cannot discover new attributes that are not present in the
training data. As a result, it suffers from low recall which
hurts its performance. Opentag does not make a closed world
assumption and hence has a much higher recall. While CAM
also does not make the closed-world assumption, the incorrect
attribute identification, which is used to attend during value
extraction, hurts the performance of value extraction. As in
the attribute identification task, we observe that adding the
diffbit improves performance.

D. Q2: Analysis of Attribute Identification Task

To answer Q2, we analyze metrics for the top 10 attributes
in A by computing the confusion matrix. Fig. 3 shows the
confusion matrix for the Dict and DiffXtract approaches. The



(a) Confusion matrix for Dict (b) Confusion matrix for DiffXtract

Fig. 3: Confusion matrix: Dict is unable to distinguish between attributes with overlapping values. DiffXtract correctly
identify the attributes even when they have similar values.

Fig. 4: t-SNE plot: Plot shows the hidden states of [CLS] to-
kens from both the products. Attributes forms distinct clusters.

diagonal elements show the fraction of test pairs for each
attribute that were correctly classified and the off-diagonal
elements show the incorrectly classified pairs. We see that both
approaches have high diagonal elements for some attributes
suggesting that they perform the attribute identification task
reasonably well for these attributes. However, for attributes
that take similar values, we observe Dict is unable to dis-
tinguish between them. For example, the attribute finish is
confused for color in about 70% of the pairs. Similarly, the
attribute for length, depth and width is confused for size. This
is expected as these attributes are numerical in nature. The
DiffXtract model captures the token positions and context
information from the other tokens in the titles. As a result,
DiffXtract model correctly identifies the attributes even when
they have similar values.

To confirm this hypothesis, we plot the vector used by
DiffXtract to identify the attribute. This contains the hidden
states of [CLS] tokens from both the products. We project
this to a two-dimensional space using t-SNE [20]. The plot

Precision Recall F1
DiffXtract (No dt) 0.857 0.813 0.843

DiffXtract 0.889 0.839 0.863

TABLE IV: Attribute extraction Metrics: Providing the
ground-truth improves the attribute extraction task F1 perfor-
mance by 8%.

for the top four attributes is shown in Fig. 4. We observe that
variations that differ by color and those that vary by finish form
two distinct clusters. The model makes use of other tokens
present in the title to distinguish them. Similarly, we observe
variations that differ by part number and model also form
different clusters.

E. Q3: Product Attribute Extraction

We perform ablation experiments and evaluate the sub-task
of product attribute extraction. We provided the ground-truth
attribute and evaluate the value extraction performance. The
extraction metrics for the the proposed DiffXtract model are
given in Table IV. Comparing with the metrics in Table III,
we observe the F1 metric for the DiffXtract models improves
by 8%. We observe this for both the full model and the model
without the diffbit (dt). This shows that identifying the correct
attribute has a significant impact on the value extraction task.
The DiffXtract model has higher F1 score which suggests the
diffbit helps in value extraction.

F. Q4: Sensitivity to λ

To answer Q4, we train the DiffXtract model with different
values for λ and plot the precision, recall and F1 metrics for
the two sub-tasks. The different metrics for varying values of
λ are shown in Fig. 5. The model is robust to different values
of λ. Varying the values led to slightly different epochs before
the model converged.



Fig. 5: Sensitivity to λ: The model is robust to λ.

V. RELATED WORK

In this section we first review the related work in product
attribute extraction followed by discriminative attribute extrac-
tion.

A. Product attribute extraction

The task of extracting entity attribute values from unstruc-
tured text has received significant attention [2, 3, 4, 5, 6, 7,
8, 9, 10, 21]. These approaches can be broadly classified into
closed-world approaches which assume a predefined set of
attribute values [4, 6, 7], and open-world approaches which
do not make such assumptions [2, 3, 22]. Rule-based and
linguistic approaches such as Chiticariu et al. [23], Nadeau
and Sekine [24], Mikheev et al. [25] leverage the syntactic
structure of the text to extract the attributes. CRF-based
systems such as Putthividhya and Hu [7] make use of a seed
dictionary to bootstrap the models. Recently, neural network-
based models that combine LSTMs and CRF have been
proposed [2, 3, 22, 26]. Wang et al. [27] propose a multitask
question answering model that casts the attribute extraction
task as an answer span identification task. Zhu et al. [21]
propose a multimodal approach that uses both the product de-
scription and the image to extract attributes. These approaches
extract the value for a given attribute from a product title. Our
task involves contrasting between two product variations and
extracting both the discriminative attribute and its values.

B. Discriminative attribute extraction

McRae et al. [28] was one of the early works that stud-
ied the task of identifying important features of living and
non-living entities. They introduced the notion of semantic
feature production norms or McRae norms to test theories
of semantic representation and computation. They collected
a list of features that people think are important for set of 541
living and non-living concepts. Sommerauer and Fokkens [11]
proposed an approach for investigating the nature of semantic
information captured by word embeddings. Stepanjans and
Freitas [12] proposed a model to explicitly detect and explain
discriminative attributes from word embeddings. Krebs et al.
[13] first proposed the task of semantic difference detection
where the goal is to predict whether a given word could
discriminate between two words. They model the semantic
difference as a ternary relation between two concepts such

as apple and banana and a discriminative attribute such as
red that characterizes the first concept but not the other. Kim
and Kang [14] proposed a Latent Dirichlet Allocation-based
approach to extract discriminative attributes from product
reviews. Building on this literature, we propose the task of
discriminative attribute extraction for product variations where
when given a pair of product titles, the goal is to identify the
discriminative attribute and extract the values from the titles.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed the novel task of discrimi-
native attribute extraction that is crucial for product search
engines and voice-based shopping assistants. We showed that
approaches for this task can be classified into three groups,
extraction-oriented approaches, attribute-oriented approaches
and multitask approaches. We then proposed a novel multitask
approach that jointly identifies and extracts the attributes. For
extraction-oriented approaches, we proved a theoretical upper
bound for the attribute identification task. Empirical results on
a real-world product dataset show that the proposed multitask
approach outperforms all other approaches.

This work suggests other interesting future directions. The
proposed approach can be extended to learn the preferences
of a user by identifying the discriminative attribute values
between the products bought by the user and other available
variations. Generating such user profiles and using them to
improve the recommendations is an interesting direction. An-
other direction for future work is to use the proposed approach
to build a conversational search agent that can elicit user’s
preferences and identify the correct variation the user would
be likely to purchase.
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[9] H. Köpcke, A. Thor, S. Thomas, and E. Rahm, “Tailoring
entity resolution for matching product offers,” in EDBT,
2012.

[10] P. Ristoski, P. Petrovski, P. Mika, and H. Paulheim, “A
machine learning approach for product matching and
categorization,” SWJ, vol. 9, pp. 1–22, 2017.

[11] P. Sommerauer and A. Fokkens, “Firearms and tigers are
dangerous, kitchen knives and zebras are not: Testing
whether word embeddings can tell,” in EMNLP Workshop
on BlackboxNLP, 2018.

[12] A. Stepanjans and A. Freitas, “Identifying and explaining
discriminative attributes,” in EMNLP, 2019.

[13] A. Krebs, A. Lenci, and D. Paperno, “Semeval-2018 task
10: Capturing discriminative attributes,” in SEMEVAL,
2018.

[14] S. G. Kim and J. Kang, “Analyzing the discriminative
attributes of products using text mining focused on cos-
metic reviews,” Information Processing & Management,
vol. 54, no. 6, pp. 938–957, 2018.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“BERT: Pre-training of deep bidirectional transformers
for language understanding,” in NAACL, 2019.

[16] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,”
ICLR, 2015.

[17] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional
random fields: Probabilistic models for segmenting and
labeling sequence data,” ICML, 2001.

[18] R. L. Logan IV, S. Humeau, and S. Singh, “Multimodal
attribute extraction,” AKBC, 2017.

[19] J. Pennington, R. Socher, and C. D. Manning, “Glove:
Global vectors for word representation,” in EMNLP,
2014.

[20] L. Van der Maaten and G. Hinton, “Visualizing data using
t-sne.” Journal of machine learning research, vol. 9,
no. 11, 2008.

[21] T. Zhu, Y. Wang, H. Li, Y. Wu, X. He, and B. Zhou,
“Multimodal joint attribute prediction and value extrac-
tion for e-commerce product,” EMNLP, 2020.

[22] G. Karamanolakis, J. Ma, and X. L. Dong, “Txtract:
Taxonomy-aware knowledge extraction for thousands of
product categories,” KDD, 2020.

[23] L. Chiticariu, R. Krishnamurthy, Y. Li, F. Reiss, and
S. Vaithyanathan, “Domain adaptation of rule-based an-
notators for named-entity recognition tasks,” in EMNLP,
2010.

[24] D. Nadeau and S. Sekine, “A survey of named entity
recognition and classification,” Lingvisticae Investiga-

tiones, vol. 30, pp. 3–26, 2007.
[25] A. Mikheev, M. Moens, and C. Grover, “Named entity

recognition without gazetteers,” in EACL, 1999.
[26] Z. Kozareva, Q. Li, K. Zhai, and W. Guo, “Recognizing

salient entities in shopping queries,” in ACL, 2016.
[27] Q. Wang, L. Yang, B. Kanagal, S. Sanghai, D. Sivakumar,

B. Shu, Z. Yu, and J. Elsas, “Learning to extract attribute
value from product via question answering: A multi-task
approach,” in KDD, 2020.

[28] K. McRae, G. S. Cree, M. S. Seidenberg, and C. Mc-
Norgan, “Semantic feature production norms for a large
set of living and nonliving things,” Behavior research
methods, vol. 37, no. 4, pp. 547–559, 2005.

APPENDIX

Theorem. The attribute identification task accuracy
for the extraction-oriented approaches has an
upper bound given by 1 −

∑
vl,vm∈∪Vi

[1 −
argmaxiΠi(vl)Πi(vm)P (ai)]Πi(vl)Πi(vm)] where P (ai) is
the probability of ai being the discriminative attribute and
Πi(vm) is the probability of observing vm as the value of
attribute ai.

Proof. Extraction-oriented approaches first extract the values
and then identify the attributes, i.e:

(âd, v̂1, v̂2) = argmaxad
P (ad|argmaxv1,v2

P (v1, v2|T1, T2))

The attribute-identification task for these approaches assuming
correct extraction is given by argmaxad

P (ad|v1, v2).
From Bayes rule, the posterior probability of observing the

triplet (ai, vl, vm) denoted by P (ai|vl, vm) is given by:

P (ai|vl, vm) =
P (vl, vm|ai)∑

a P (vl, vm|aa)P (aa)

Since the values vl, vmare independent conditioned on ai

=
P (vl|ai)P (vm|ai)P (ai)∑
a P (vl|aa)P (vm|aa)P (aa)

=
Πi(vl)Πi(vm)P (ai)∑
a Πa(vl)Πa(vm)P (aa)

The optimal Bayes classifier, assign the attribute with the
highest posterior probability as the discriminative attribute i.e.:

âd = argmaxai

Πi(vl)Πi(vm)P (ai)∑
a Πa(vl)Πa(vm)P (aa)

= argmaxiΠi(vl)Πi(vm)P (ai)

The classifier misclassifies when the true discriminative
attribute does not have the highest posterior probability. This
is called the Bayes error rate and is given by:

Ebayes =
∑

vl,vm∈∪Vi

[1−argmaxiΠi(vl)Πi(vm)P (ai)]Πi(vl)Πi(vm)

Thus the accuracy of the classifier is upper bounded by
1− Ebayes, i.e:

1−
∑

vl,vm∈∪Vi

[1−argmaxiΠi(vl)Πi(vm)P (ai)]Πi(vl)Πi(vm)]


