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ABSTRACT
E-commerce sites group similar products into categories, and these

categories are further organized in a taxonomy. Since different

sites have different products and cater to a variety of shoppers, the

taxonomies differ both in the categorization of products and the

textual representation used for these categories. In this paper, we

propose a technique to align categories across sites, which is useful

information to have in product graphs. We use breadcrumbs present
on the product pages to infer a site’s taxonomy. We generate a list

of candidate category pairs for alignment using anchor products -
products present in two or more sites. We use multiple similarity

and distance metrics to compare these candidates. To generate the

final set of alignments, we propose a model that combines these

metrics with a set of structural constraints. The model is based on

probabilistic soft logic (PSL), a scalable probabilistic programming

framework. We run experiments on data extracted from Amazon,

Ebay, Staples and Target, and show that the distance metric based

on products, and the use of PSL to combine various metrics and

structural constraints lead to improved alignments.

1 INTRODUCTION
The widespread adoption of e-commerce sites such as Amazon

and Ebay has led to the emergence of product search sites such as

Google Shopping
1
and Bing Shopping

2
. These sites allow users to

search for products, compare prices across e-commerce sites, and

recommend related products. In order to provide these services,

search sites often make use of knowledge graphs of products called

product graphs.
Subsumption relationships among product categories are an

important component of product graphs. One way to infer these

relationships is by using breadcrumbs present on the product pages.

Breadcrumbs show the path in an e-commerce site’s taxonomy,

from the root to the parent category of a product. In this paper,

we represent breadcrumbs as a list of categories separated by the

character ‘>’. For example, the page for Apple watch on Amazon

has the following breadcrumb:

Electronics > Wearable Technology > Smart Watches

From the above breadcrumb, we can infer that “Smart Watches”
are a type of “Wearable Technology”, which is itself a type of

“Electronics”.
1
https://www.google.com/shopping

2
www.bing.com/shop
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Since each e-commerce site offers a different set of products and

caters to a variety of shoppers, sites’ product taxonomies differ

both in categorization of products and in their textual represen-

tation. As a result, there are multiple textual representation for

the same category across breadcrumbs from different sites. For in-

stance, products related to 3D printing are present in a category

called “3D Printing & Supplies” on Ebay, while the same prod-

ucts are present in a category called “Additive Manufacturing
Products” on Amazon. Another challenge is the use of same tex-

tual representation to to denote multiple categories. The textual

representation “Accessories”, for e.g., occurs in more than 25 con-

texts on Amazon, as a child category of strollers, video games, car

seats and so on.

Thus, in addition to incorporating subsumption relationships

from breadcrumbs extracted from various sites, it is useful to add

information about similar categories across sites’ taxonomies. This

problem can also be viewed as aligning similar nodes across product

taxonomies.

One of the early approaches to product taxonomy alignment

was proposed by Park and Kim[7]. In their work, they find a set of

synonyms for each category using Wordnet, and align categories

using two measures computed on the paths in the taxonomy. Fol-

lowing this, many other approaches have been proposed to align

product taxonomies [1, 2]. All of these approaches make use of

Wordnet [5] hierarchies to overcome the challenges of synonyms

and polysemy. While this technique helps in the case of categories

such as “notebooks” and “televisions”, it fails to find a match for

categories such as “playstation” and “xbox”, which are not found

in Wordnet. Another drawback of the existing techniques is that

they search through all possible categories in a taxonomy to find an

alignment. This is expensive and cannot scale to large taxonomies

such as Amazon, which have tens of thousands of categories.

In contrast, our proposed techniquemakes use of products present

under each category to help in alignment. This is similar to instance-

based matching approaches used in the closely related problem of

ontology matching [4, 8]. We use products in two ways. First, we

use them to prune the search space by generating a set of anchor
products. This is similar to the concept of anchors proposed by

Noy and Musem[6] in the context of ontology alignment. Anchor

products are products that are have two or more breadcrumbs,

from different sites, associated with them. Given the set of anchor

products along with associated breadcrumbs, we only consider cat-

egories that appear in these breadcrumbs for possible alignment.

This results in a significant reduction in the search space. Second,

we use products to compute a distance metric between categories.

The metric uses tf-idf vectors generated from product titles present

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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under each category. Our experiments show that this improves the

performance of the alignments.

We use the probabilistic soft logic (PSL)[3] framework to jointly

align all categories across taxonomies, combining multiple distance

and similarity metrics, and structural constraints to find consistent

alignments.

In this paper, we propose an approach that aligns similar product

categories in breadcrumbs extracted from product pages. Since the

space of possible alignments is large, we use anchor products to

prune the search space. We propose multiple similarity and distance

metrics to align the candidate pairs. To fuse these metrics along

with various structural constraints, we use PSL. To evaluate the

effectiveness of various components of our approach, we perform

an ablation study on data extracted from Amazon, Ebay, Staples

and Target.

2 SIMILARITY & DISTANCE METRICS
In this section, we describe various similarities and distance metrics

that we use in our approach. First, we present our approach for

generating candidate category pairs for alignment using anchor

products in Section 2.1. Next, in Section 2.2 we present a similarity

metrics based on the position of categories in the breadcrumbs. In

Section 2.3 and Section 2.4, we introduce two distance metrics based

on the textual representation of product categories, and products

present in each category.

2.1 Anchor Products
Anchor products are products that are on sale on multiple sites.

Given a set of products on sale across various e-commerce sites, we

define a matching function to find anchor products. The matching

function could look for product IDs such as Universal Product

Code(UPC) and International Standard Book Number(ISBN). In this

paper, we use a simple approach where we consider two products

to be the same only if their titles match exactly. Once we have the

set of anchor products, we create the set of candidate alignment

pairs by generating all possible pairs of categories that occur in

the breadcrumbs. For example, the product lego creator corner
deli 31050 has the following breadcrumbs:

Amazon.com − [toys & games; building toys]

Target.com − [toys; building sets & blocks; building sets & kits]

From this anchor product, we generate the following 6 candidate

category pairs where the first category is from Amazon and the

second one is from Target: [(toys & games, toys), (toys & games,

building sets & blocks), (toys & games, building sets & kits), (build-

ing toys, toys), (building toys, building sets & blocks), (building

toys, building sets & kits)]

2.2 Breadcrumb Similarity
In the above example of lego creator corner deli 31050, the
correct alignment for the category “building toys” is “building
sets & kits”. Since both “building toys” and “building sets
& kits” are present at lower positions, we could infer the alignment

based on the position of the categories in the breadcrumb. We call

this breadcrumb similarity. However, since the breadcrumbs often

have different lengths, and taxonomies differ in their granularity, a

simple one-to-one matching strategy does not work. To overcome

this, for each anchor product, we assign indices to the categories

starting with 0 for the category at the bottom of the breadcrumb,

and assign higher indices as we go up. Given the indices, the per-

product anchor similarity score for a candidate category pair is

given by:

PerProductBreadcrumbSim(C1,C2) =max(0, 1 − α ∗ |i − j |) (1)

where i and j are the indices of categoriesC1 andC2 in anchor prod-

uct p. α is a hyperparameter that varies the similarity of categories

at different depths.

In the example, the pair (building toys, building sets & kits)
has a score of 1 and the pair (building toys, toys) has a score of
0.8 (α = 0.1).

The overall breadcrumb similarity is given by taking the average

of all per-product breadcrumb similarity scores.

BreadcrumbSim(C1,C2) =

∑
p∈A PerProductBreadcrumbSim(C1,C2)∑

p∈A 1

where p iterates over all anchor products that contain categories

C1 and C2.

2.3 Name Distance
Name distance is based on the textual representation of categories.

One of the ways to compute this could be to use Jaccard Similarity

on the tokens in the textual representation. However, to take into

account the rarity of occurrence of tokens, we propose the follow-

ing approach. We first tokenize the category names and compute

the idf scores. We then represent each category by an idf vector

computed from the tokens in textual representation of the cate-

gory and normalize the 2-norm. The name distance between two

categories is given by:

NameDist(C1,C2) = 1 −v1
Tv2 (2)

where C1,C2 are two categories and v1,v2 are their category vec-

tors.

2.4 Product Distance
Intuitively, categories that have very different products under them

should not be aligned. We formalize this notion by computing

a distance metric called product distance based on the products

present in each category. As in the case of name distance, we use a

tf-idf based score. We first tokenize the product titles and compute

the idf scores for each token in the dataset. We then represent each

product by a tf-idf vector computed from its title. We generate the

category vector by summing all the product vectors that belong to

that category and normalize its 2-norm.

The product distance between two categories is given by:

ProdDist(C1,C2) = 1 −v1
Tv2

where C1,C2 are two categories and v1,v2 are their category vec-

tors.

3 ALIGNING PRODUCT CATEGORIES
In this section, we present our proposed framework in which we

combine different metrics introduced in Section 2, and strucutral
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constraints using PSL. We first review PSL in Section 3.1 and then

introduce our proposed PSL model in Section 3.2.

3.1 Probabilistic Soft Logic
PSL is a statistical-relational learning framework for defining hinge-

loss markov random fields (HL-MRFs), a class of undirected proba-

bilistic graphical models, that supports modeling of relational data.

A PSL model consists of weighted logical clauses that encode statis-

tical dependencies and structural constraints. Given a set of random

variables, some of which are observed, a PSL model defines a prob-

ability distribution over the unobserved variables. PSL supports

efficient maximum a posteriori (MAP) inference.

A PSL model consists of a set of rules. For instance the rule:

λ : Child(C1,C2) ∧ Align(C1,C3) =⇒ ¬Align(C2,C3)

is a PSL rule which suggests that the categories (C2,C3) are unlikely

to be aligned if categories (C1,C3) are aligned and C1 is the child
of C2 in the site’s taxonomy. Observe that this rule makes the ran-

dom variables corresponding to Align(C1,C3) and Align(C2,C3)

dependent, and during inference they are inferred jointly. The rule

is weighted by a weight λ, that could either be set by the user, using
his domain knowledge, or can be learned from the data, and denotes

the importance of the rule.

3.2 PSL Model
In this section, we discuss the various rules that are present in our

PSL model.

3.2.1 Similarity & Distance Rules. We combine the various sim-

ilarity and distance metrics and compute a combined similarity

between two categories. The combined similarity between two

categories is given by the predicate Similar(C1,C2). We add the fol-

lowing rules to the PSL model to infer the value of Similar(C1,C2).

λAncSim : BreadcrumbSim(C1,C2) =⇒ Similar(C1,C2)

λNameDist : NameDist(C1,C2) =⇒ ¬Similar(C1,C2)

λProdDist : ProdDist(C1,C2) =⇒ ¬Similar(C1,C2)

The above rule assigns higher value to Similar if the Breadcrumb-

Sim is high and NameDist and ProdDist is low.

3.2.2 Alignment Rules. To infer if two categories should be

aligned, we define a predicate Align, and add the following rules

to the PSL model.

λAliдn : Align(C1,C2) =⇒ Similar(C1,C2)

λAliдn : Similar(C1,C2) =⇒ Align(C1,C2)

The rules state that categories with high similarity should align,

and categories that align must have high similarity.

3.2.3 Structural Rules. Structural rules consider the structure
of the taxonomy and create dependencies between various inferred

alignments. As a result, the alignments are jointly inferred.

We represent the paths in the site’s taxonomy using the predicate

Child. Child(C1,C2) is set to 1 if the category C1 is a child of C2

in the site’s taxonomy and set to 0 otherwise.

One of the issues in aligning product categories is that, often,

the parent and the child categories have similar names and similar

products. As a result, it is hard to find the right level of generality

in aligning categories. For example, consider the category “books”
and “children’s books” from Amazon, and “books” and “kid’s
books” from Target. All four categories have the word books in
them. There is also some overlap in the products as all of them

deal with books. The model might propose, based on the previous

metrics, to have all possible combinations of alignments, i.e, “books”
and “children’s books” from Amazon aligned to both “books”
and “kids books” from Target. In order to bias the alignments to

pick one of the two categories, we add the following rules to the

PSL model.

λExclusive : Child(C1,C2) ∧ Align(C1,C3) =⇒ ¬Align(C2,C3)

λExclusive : Child(C1,C2) ∧ Align(C2,C3) =⇒ ¬Align(C1,C3)

Consider the categories “baby products” from Amazon and

“baby” fromTarget. The category “baby products” has a child node
“baby monitors” and the the category “baby” has a child node

“monitors”. If we align the categories “baby” and “baby products”,
it is likely that their children “monitors” and “baby monitors”
should also be aligned. However, another child of “baby” is
“diapering”, which is not related to “baby monitors” and should

not be aligned. To encourage similar children of aligned categories

to align, we add the following rules to the PSL model:

λChild : Child(C1,C2) ∧ Child(C3,C4)∧

Align(C2,C4) ∧ Similar(C1,C3) =⇒ Align(C1,C3)

λChild : Child(C1,C2) ∧ Child(C3,C4)∧

Align(C2,C4) ∧ ¬Similar(C1,C3) =⇒ ¬Align(C1,C3)

When there is no evidence to suggest alignment of two cate-

gories, we should not align the categories. This is enforced by the

prior rules.

λPr ior : ¬Align(C1,C2)

λPr ior : ¬Similar(C1,C2)

4 EXPERIMENTS
Weperformed our experiments on data extracted from four websites

- Amazon, Ebay, Staples and Target. We used the Diffbot
3
KB Search

API to get the set of products and their breadcrumbs. Certain textual

representations such as “accessories”, “safety” occur multiple times

in the taxonomies representing different categories. A few of the

contexts in which the word “accessories” occurs are:

cell phones & accessories > accessories

video games > nintendo ds > accessories

clothing shoes & jewelry > men > accessories

baby products > strollers & accessories > accessories

To distinguish between categories with different ancestors, we

represent them as accessories1, accessories2 and so on. We

split the data into train and test, where the train split contains

products and categories related to electronics and the test split

contains all other products and categories. Table 1 presents the

number of products and categories across splits for each site.

3
https://diffbot.com
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Site Train Test

# of prod # of cat # of prod # of cat

Amazon 44919 801 441677 18853

Ebay 2385 870 58526 21024

Staples 8971 111 32912 1427

Target 2188 184 32846 2315

Table 1: Data Statistics

We generated anchor products from this data where we consid-

ered two products to be the same if their titles were same. We found

389 anchor products in the training data and 3269 anchor products

in the test. From these anchor products we generated the set of can-

didate alignment pairs. There were 1022 pairs in the training data

and 9446 pairs in the test set. We then computed various similarity

and distance metrics for these pairs.

For the baseline, we considered all category pairs where the

NameDist is below a threshold. We call this approach Nameθ ,
where θ is the threshold. In our experiments we set θ = 0.8.

We ran the alignment process using PSL models consisting of

all similarity and distance rules mentioned in 3.2.1 (PSLSim ), and

the full PSL model consisting of all similarity and structural rules

(PSLFull ). In our experiments we used the following parameters

- λAncSim = 25, λNameDist = 25, λProdDist = 35, λAliдn = 50,

λExclusive = 35, λChild = 20, λPr ior = 2, α = 0.1.

After the PSL models generated truth values for the candidate

category pairs, we labeled all pairs with truth value greater than

0.5 as either correct or incorrect. In Table 2 we give the number of

suggested alignments, number of correct alignments, and precision

for all three models.

Suggested Correct Precision Recall* F1*

Name0.8 621 242 0.389 0.98 0.558

PSLSim 492 227 0.461 0.922 0.615

PSLFull 393 206 0.524 0.837 0.644

Table 2: Alignment Metrics - Recall* and F1* are recall and
F1 computed using the correct pairs present in the union of

alignments suggested by all the models

We first observed that the number of suggested alignments de-

creases as we go from Name0.8 to PSLFull . We also observed that

the alignments suggested by PSLSim were a superset of alignments

suggested by PSLFull . This is because most of the additional rules

have¬Align and¬Similarity in their head which reduce the truth

values of alignments below the threshold. However, we observe

that the precision improves as we add more rules. This suggests that

most of the alignments that are removed are incorrect alignments.

Since the entire set of correct alignments in the dataset is large

and difficult to get, we cannot compute recall for all models. Instead,

we compute the recall and f1 score for the models using the set of

all correct alignments present in the union of alignments suggested

by all three models. We observe, from Table 2, that the f1 score for

PSLFull is higher than that of PSLSim which in turn higher than

that of Name0.8.
We briefly explain our hypothesis for the above finding. Un-

like Name0.8, PSLSim considers the products under each category.

As a result, it is able to distinguish between categories that have

similar words in their textual representation but mean slightly

different things. For example, while Name0.8 suggests alignment

between “bicycle stands & storage” and “storage & home
organization”, due the common word storage, PSLSim does not.

As a result PSLSim has better metrics than Name0.8.
PSLFull is able to correctly align the categories to the right

generality due the structural rules. For example, while PSLSim
aligns “beauty & personal care” to both “beauty” and “hair
care”, PSLFull suggests aligning it to only “beauty” as “hair care”
is a child of “beauty”. As a result PSLFull performs better than

PSLSim .

We also observed that quite few of the ambiguous categories such

as “accessories” were correctly aligned. For example, “accessories21”
of Amazon, which occurs in the context of “baby products” > “car
seats & accessories” > “accessories”, was correctly aligned to
“car seat accessories” of Target. Similarly “training aids

2
”

of Ebay, which occurs in the context of “sporting goods” > “team
sports” > “soccer” > “training aids”, was correctly aligned

to “ training equipment
5
” of Amazon, which has the following

context “sports & outdoors” > “sports & fitness” > “team
sports” > “soccer” >“training equipment”.

5 CONCLUSION & FUTUREWORK
In this paper we have proposed a method to align similar categories

present in breadcrumbs extracted from various e-commerce sites.

We make use of products present under each category to generate

a set of anchor products which in turn reduces the search space for

possible alignments. We also make use of products to generate a

distance metric that improves the accuracy of the alignment. We

use PSL to combine various similarity and distance metrics, and

to also incorporate various structural features. In our experiments,

we show that this increases the performance of alignments.

In our future work, we plan to explore better matching functions

that can generate a larger set of anchor products. Another direc-

tion is to explore other similarity and distance metrics that can

improve the performance this technique. Finally, we plan to run

the alignment technique on a larger dataset involving a large num-

ber of e-commerce websites, and provide a more comprehensive

evaluation of recall.
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