

Estimating Aggregate Properties In Relational Networks With Unobserved Data

Varun Embar ⁺, Sriram Srinivasan ⁺, and Lise Getoor University of California, Santa Cruz ⁺Equal Contribution

Tractable expectation computation for PSL

- Probabilistic Soft Logic^[1] is a state-of-the-art SRL framework
- Computing expectation is intractable due to integration
- Monte Carlo approximation using samples from Gibbs sampler

Challenge 1

High rule weight

Q

Node labels

Challenge

 Estimating aggregate properties when network is not fully observed (E.g. missing node labels)

Aggregate properties

• Aggregate property (Q): Aggregate function computed on a set of subgraphs that satisfy given conditions (Q: graph \rightarrow R) \circ Properties involving multiple nodes, edges and labels

Q1: Category cohesion: # of links across documents that belong to same category Q2: Category separation: # of links across documents that

(Citations across categories)

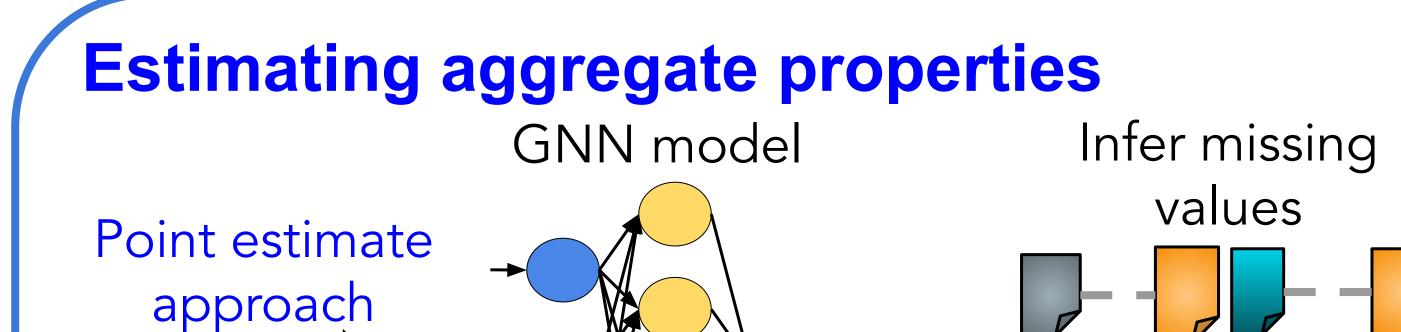
?

belong to different category

Q3: Diversity of influence:

- Identify association blocks from rules using
 Rule weights
- Feasible region
- Block sample RV in associated blocks

Challenge 2


 $\begin{array}{ll} \text{Conditional distribution for Gibbs sampler} & & \text{Hard to} \\ p(y_i \mid X, Y_{-i}) \propto exp\{-\sum_{r=1}^{N_i} w_r \phi_r(y_i, X, Y_{-i})\} & \text{sample from} \\ \end{array} \\ \text{\bullet Single step of Metropolis sampler inside gibbs sampler} \\ \alpha = \frac{exp\{-\sum_{r=1}^{N_i} w_r \phi_r(y_i', X, Y_{1:i-1}^{(t+1)}, Y_{i:n}^{(t)})\}}{exp\{-\sum_{r=1}^{N_i} w_r \phi_r(y_i, X, Y_{1:i-1}^{(t+1)}, Y_{i:n}^{(t)})\}} & \text{Acceptance} \\ \text{ratio} \\ \end{array}$

Experimental evaluation

Data: Cora, Pubmed and Citeseer

of nodes linked to at least half of all categories

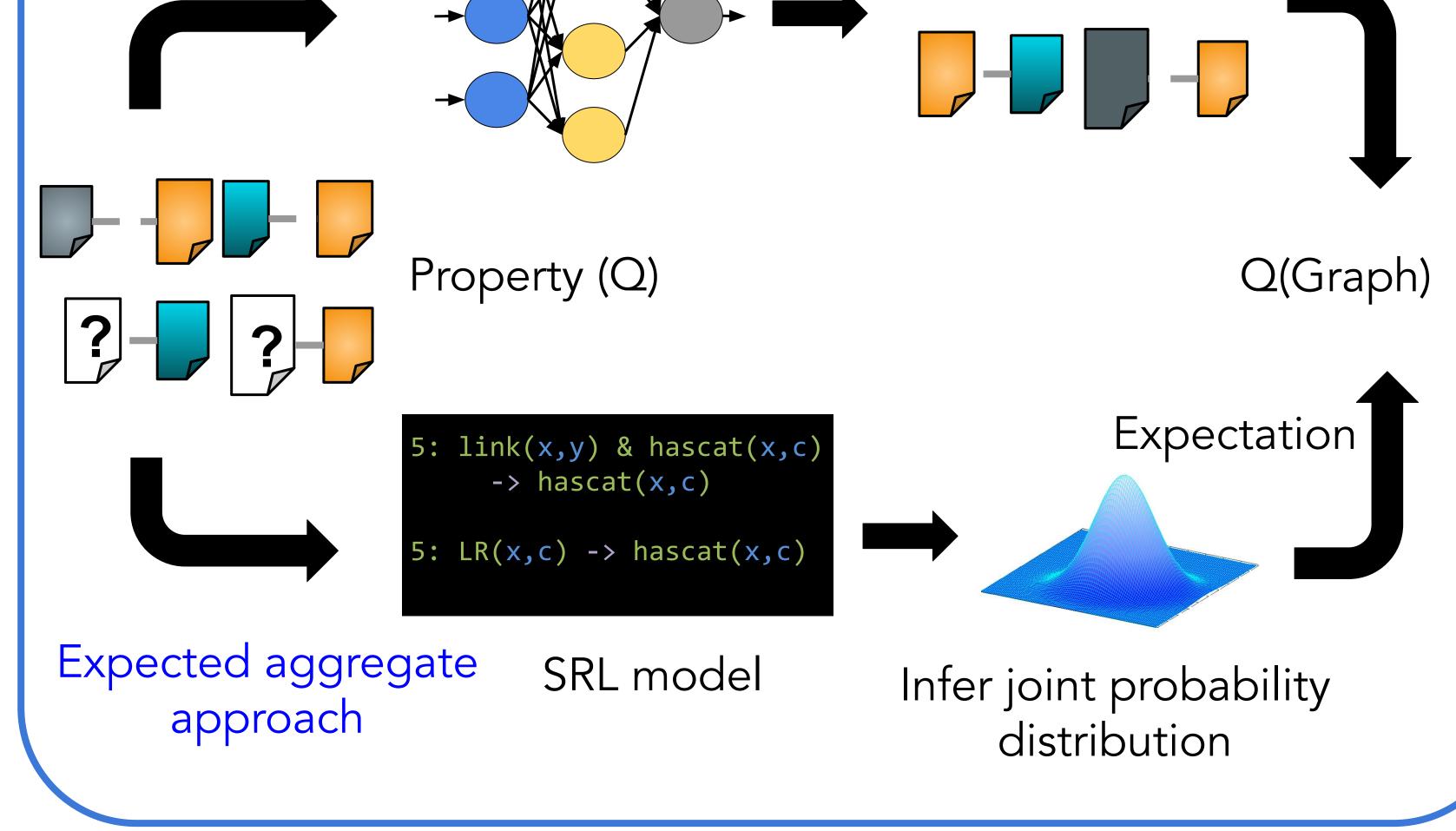
Q4: Exterior documents # of nodes where half the neighbors belong to different categories $\mathbf{r} = \mathbf{r} + \mathbf{r}$ Q5: Interior documents # of nodes where half the neighbors belong to same categories

Graph Neural Networks : Graph Convolutional Networks (GCN), Graph Attention Network (GAT), Graph Markov Neural Networks (GMNN) Statistical Relational Learning: Markov Logic Networks (MLN), Probabilistic Soft Logic (PSL)

Metric: Relative error

Aggregate property estimation:

Q1	Q2	Q3	Q4	Q5	Average
0.13	0.528	0.396	0.714	0.121	0.377
0.109	0.491	0.281	0.570	0.102	0.310
0.117	0.474	0.348	0.685	0.115	0.347
0.064	0.261	0.113	0.362	0.053	0.170
0.089	0.361	0.169	0.626	0.102	0.269
0.129	0.526	0.293	0.709	0.119	0.355
0.156	0.513	0.299	0.679	0.119	0.353
0.108	0.441	0.312	0.618	0.105	0.316
0.060	0.210	0.119	0.391	0.061	0.168
	0.13 0.109 0.117 0.064 0.089 0.129 0.156 0.108	0.130.5280.1090.4910.1170.4740.0640.2610.0890.3610.1290.5260.1560.5130.1080.441	0.130.5280.3960.1090.4910.2810.1170.4740.3480.0640.261 0.113 0.0890.3610.1690.1290.5260.2930.1560.5130.2990.1080.4410.312	0.130.5280.3960.7140.1090.4910.2810.5700.1170.4740.3480.6850.0640.261 0.1130.362 0.0890.3610.1690.6260.1290.5260.2930.7090.1560.5130.2990.6790.1080.4410.3120.618	0.130.5280.3960.7140.1210.1090.4910.2810.5700.1020.1170.4740.3480.6850.1150.0640.261 0.1130.3620.053 0.0890.3610.1690.6260.1020.1290.5260.2930.7090.1190.1560.5130.2990.6790.1190.1080.4410.3120.6180.105


Methods	Q1	Q2	Q3	Q4	Q5	Average
PSL-MAP	0.175	0.527	0.673	0.57	0.272	0.443
MLN-MAP	0.207	0.648	0.594	0.794	0.392	0.527
PSL-MEAN	0.134	0.403	0.544	0.551	0.253	0.377
MLN-MEAN	0.137	0.731	0.792	0.691	0.315	0.554
GCN	0.211	0.637	0.712	0.813	0.396	0.553
GAT	0.248	0.747	0.9	0.887	0.416	0.639
GMNN	0.257	0.774	0.881	0.906	0.447	0.653
PSL-SAMPLES	0.137	0.413	0.539	0.499	0.236	0.364
MLN-SAMPLES	0.244	0.736	0.793	0.691	0.315	0.555

Pubmed

Methods	Q1	Q2	Q3	Q4	Q5	Average
PSL-MAP	0.047	0.205	0.165	0.1	0.062	0.115
MLN-MAP	0.032	0.046	0.412	0.436	0.242	0.234
PSL-MEAN	0.021	0.090	0.027	0.054	0.041	0.047
MLN-MEAN	0.038	0.163	0.009	0.174	0.068	0.090
GCN	0.048	0.207	0.137	0.671	0.34	0.28
GAT	0.073	0.313	0.376	0.697	0.355	0.362
GMNN	0.071	0.306	0.174	0.711	0.352	0.322
PSL-SAMPLES	0.014	0.061	0.050	0.053	0.031	0.041
MLN-SAMPLES	0.045	0.161	0.042	0.173	0.068	0.097

Cora

Citeseer

Predictive accuracy

Methods	Cora	Pubmed	Citeseer
Methous	Acc (%)	Acc (%)	Acc (%)
PSL-MAP	85.34	83.6	72.25
MLN-MAP	77.9	76.75	71.7
PSL-MEAN	84.13	83.16	71.7
MLN-MEAN	82.35	75.14	71.25
GCN	81.96	77.73	68.78
GAT	81.43	76.87	70.41
GMNN	83.26	81.07	70.15
PSL-SAMPLES	83.01	81.88	71.29
MLN-SAMPLES	82.25	73.48	71.11

Runtime

Methods	Cora	Pubmed	Citeseer		
Methous	Time (sec)	Time (sec)	Time (sec)		
PSL-MAP	14	124	37		
PSL-MEAN	105	638	124		
MLN-MEAN	270	1947	166		
MLN-MAP	65	368	36		
GCN	24	59	29		
GAT	142	138	122		
GMNN	30	17	8		
PSL-SAMPLES	105	638	124		
MLN-SAMPLES	270	1947	166		

Conclusion

- Defined a suite of practical aggregate properties
- Proposed a novel sampling framework for PSL
- Extensive evaluation shows SRL approaches outperform GNNs when estimating aggregate properties

Supported by the NSF grants CCF-1740850 and IIS-1703331 and by AFRL and the DARPA.