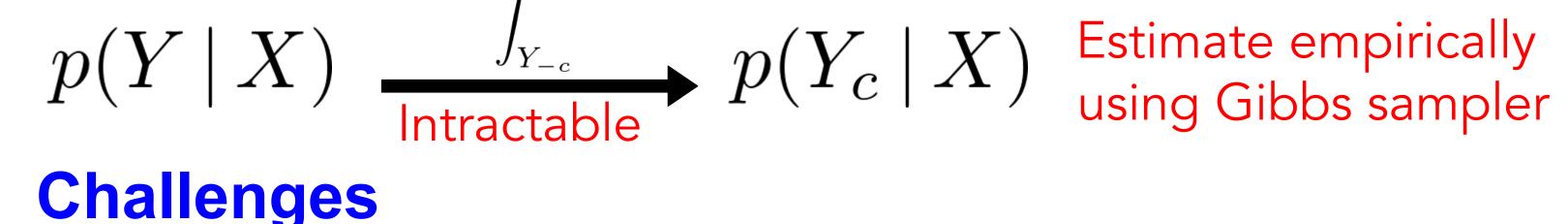


Tractable Marginal Inference for Hinge-loss Markov Random Fields Varun Embar⁺, Sriram Srinivasan⁺, and Lise Getoor University of California, Santa Cruz

*Equal Contribution

Goal

Compute the marginal distribution of a subset of random variables for HL-MRFs



Association blocks High rule weights Correlated random variables Islands of high probability Slow convergence of sampler

Q

• Hard to sample from conditional distributions • Small islands of high probability

Contributions

- Metropolis-in-gibbs sampler for HL-MRFs
- Identify islands of high probability using "association blocks"
- Estimation of *relational properties* using marginals outperform MAP estimates by upto 60%

Hinge-loss Markov Random Field

• Class of continuous MRF used model richly structured data • Supports efficient MAP

$$p(Y \mid X) = \frac{1}{Z} exp^{-\sum_{r=1}^{N} w_r \phi_r(Y,X)}$$

Probabilistic Soft Logic^[1]

Association blocks = Clusters of correlated RV

- Identify association blocks from rules using • Rule weights In O(rules) time
 - Feasible region
- Block sample RV in associated blocks

Proposal distribution

For each RV y_i in the block

With probability β $y_i \sim U[0,1]$ With probability $1 - \beta$ $y_i \sim \text{feasible region of } y_i$ Update feasible region for all unsampled RVs

Estimating network properties

Data: Synthetic social network - Small, Medium and Large

- Templating language for HL-MRFs
- Defined using weighted first-order logic rule

Rule weight (w:)LivesTogether(X,Y) \rightarrow Friends(X,Y)

Data Grounding

w: LivesTogether(Alice, Bob) \rightarrow Friends(Alice, Bob)

Łukasiewicz logic

$$\phi(x, y) = max\{x - y, 0\}$$
[1] http://psl.lings.org

Metropolis-in-gibbs sampler for HL-MRF

Unobserved RVs: Node party affiliations

Approaches: MAP, Mean and Expectation of Gibbs (Gibbs_{Mean} & Gibbs_{Exp}); Blocked Gibbs (ABGibbs_{Mean} & ABGibbs_{Exp})

PSL Model:

10: Strong(A, P) \rightarrow Party(A,P) 5: Weak(A, P) \rightarrow Party(A,P) 5: Party(A, P) \land Friends(A,B) \rightarrow Party(A,P) 1000: Party(A, +P) = 11: Party(A, P) = 0.5

High rule weight

)	Approach	Party Affiliation	P1	P2
	MAP	0.710	130	121
	Gibbs _{Mean}	0.707	1001	339
	Gibbs _{Exp}	0.702	1004	354
	ABGibbs _{Mean}	0.859	280	105
	ABGibbs _{Mean}	0.750	484	172
	Ground Truth	N/A	595	187

Network properties for the large graph

Network properties: P1: # of node pairs with different party affiliations P2: # of nodes that have adjacent nodes affiliated with both parties

• Conditional distribution for gibbs sampler

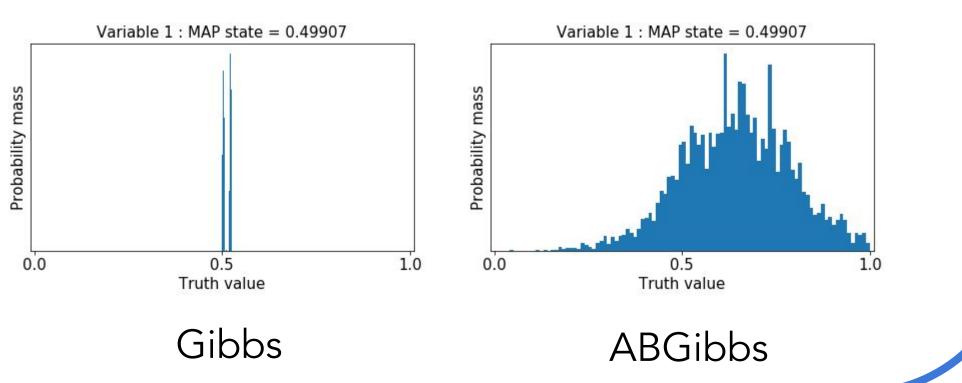
 $p(y_i | X, Y_{-i}) \propto exp\{-\sum^{i} w_r \phi_r(y_i, X, Y_{-i})\}$ Hard to sample from

• Single step of Metropolis sampler inside gibbs sampler

$$\alpha = \frac{exp\{-\sum_{r=1}^{N_i} w_r \phi_r(y'_i, X, Y_{1:i-1}^{(t+1)}, Y_{i:n}^{(t)})\}}{exp\{-\sum_{r=1}^{N_i} w_r \phi_r(y_i, X, Y_{1:i-1}^{(t+1)}, Y_{i:n}^{(t)})\}}$$
 Acceptance ratio with probability α

$$y_i^{(t+1)} \sim U[0, 1]$$
 Update state $y_i^{(t+1)} = y_i^{(t)}$

Inferred distribution: Gibbs sampler fails to recover the distribution due to correlated RVs



Conclusion

- Proposed a novel sampling approach to compute the marginal distributions for HL-MRFs
- Using association block, we identify islands of high probability
- Network properties estimated using marginals computed using ABGibbs outperform other approaches by upto 60%

Supported by the NSF grants CCF-1740850 and IIS-1703331 and by AFRL and the DARPA.