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Abstract

Templated graphical models (TGMs) encode
model structure using rules that capture recurring
relationships between multiple random variables.
While the rules in TGMs are interpretable, it is not
clear how they can be used to generate explana-
tions for the individual predictions of the model.
Further, learning these rules from data comes with
high computational costs: it typically requires an
expensive combinatorial search over the space of
rules and repeated optimization over rule weights.
In this work, we propose a new structure learning
algorithm, Explainable Structured Model Search
(ESMS), that learns a templated graphical model
and an explanation framework for its predictions.
ESMS uses a novel search procedure to efficiently
search the space of models and discover models
that trade-off predictive accuracy and explainabil-
ity. We introduce the notion of relational stability
and prove that our proposed explanation frame-
work is stable. Further, our proposed piecewise
pseudolikelihood (PPLL) objective does not re-
quire re-optimizing the rule weights across models
during each iteration of the search. In our empiri-
cal evaluation on three realworld datasets, we show
that our proposed approach not only discovers mod-
els that are explainable, but also significantly out-
performs existing state-of-the-art structure learning
approaches.

1 INTRODUCTION

Templated graphical models (TGMs), a class of probabilis-
tic graphical models that are represented by parameterized
potential functions, often use rules or probabilistic con-
straints to define the model. The templates encode the prob-
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abilistic dependencies between random variables (RVs) and
are instantiated many times within the model [Koller and
Friedman, 2009]. TGMs have been successfully applied in
many domains including computational biology[Segal et al.,
2001], knowledge base completion[Jiang et al., 2012], text
mining[Beltagy et al., 2014] and computer vision [Aditya
et al., 2018]. Learning the components of these models
(rules and constraints) directly from the data is known as
structure learning [Kok and Domingos, 2009, Khot et al.,
2011, Mihalkova and Mooney, 2007]. However, it poses
several computational challenges. First, the model space is
potentially infinite and, even when restricted to be finite,
results in a large combinatorial search. Second, approaches
that iteratively grow a set of rules require many costly rounds
of parameter estimation. Finally, scoring the model often
involves computing the model likelihood, which is typically
intractable to evaluate exactly.

In addition to predictive performance, there is a growing
interest in generating explanations [Wang et al., 2019, Adadi
and Berrada, 2018, Zhao et al., 2021, Watson et al., 2021].
Models that provide explanations lead to increased user trust
and have also been shown to be more persuasive [Tintarev
and Masthoff, 2007, Ribeiro et al., 2016, Alvarez-Melis and
Jaakkola, 2018, Doshi-Velez and Kim, 2017, Zhang et al.,
2014, Wang et al., 2018]. Explanations can also help isolate
and identify incorrect assumptions and biases learned by the
model. While TGMs are more interpretable than other large
graphical models, generating explanations for individual
predictions that satisfy certain desired properties is still
challenging. Further, not all rules that are included in the
model can be explained to the end user. When learning
a model from the data, there may be a need to trade-off
accuracy and end-user explainability.

In this work, we propose a novel approach, explainable
structured model search (ESMS), that learns an explain-
able templated graphical model automatically from data.
Our proposed approach leverages probabilistic soft logic
(PSL)[Bach et al., 2017], a TGM defined using a set of
weighted first-order logic rules. Unlike other TGMs that use

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<vembar@ucsc.edu>?Subject=Learning Explainable Templated Graphical Models


Boolean logic, PSL uses Lukasiewicz logic, a continuous
relaxation of Boolean logic, and can incorporate real-valued
data such as similarity metrics and confidence scores. Our
ESMS approach searches the model space effectively using
meta templates that capture common rule patterns. Our pro-
posed structure learning approach utilizes an efficient weight
learning strategy that minimizes the need to re-optimize rule
weights across models during the search. We also introduce
an effective learning objective for PSL that assigns impor-
tance weights for rules and eliminates non-informative rules.
Our approach uses an explanability score that biases the
search to learn explainable models. After learning a model,
we generate explanations for each of the predictions us-
ing these rules. The use of human-interpretable rules en-
sures our explanations satisfy the property of explicitness
[Alvarez-Melis and Jaakkola, 2018]. The continuous nature
of inferred values allows us to identify the "true" explana-
tions, a property called faithfulness. Further, we extend the
property of stability for the relational setting and show that
the proposed explanation strategy is stable.

The main contributions of our work include: 1) We propose
a novel structured search approach that efficiently discov-
ers a templated graphical model using meta templates that
best capture the statistical dependencies in the data; 2) We
introduce an efficient weight learning strategy based on a
piecewise pseudolikelihood objective that allows paralleliza-
tion and requires weights for a meta template to be learned
only once across models; 3) Using an explainabilty parame-
ter, our learning approach generates models that trade-off
accuracy and end-user explainability of its predictions; 4)
We propose a new Fisher score-based ranking algorithm
that identifies the best explanation for a prediction and the-
oretically show that this is stable; and 5) We empirically
show that the discovered models using our proposed ap-
proach outperform models generated using state-of-the-art
methods.

2 RELATED WORK

Our approach builds on a large body of existing work. Here,
we give a brief overview of structure learning in templated
graphical models and related work in explainability.

Structure Learning: Many algorithms have been proposed
to learn Markov Logic Networks [Richardson and Domin-
gos, 2006], a class of discrete TGMs. Bottom-up approaches
generate informative clauses by using relational paths to cap-
ture patterns and motifs in the data [Mihalkova and Mooney,
2007, Kok and Domingos, 2009, 2010]. Most recently, MLN
structure learning has been viewed from the perspectives
of moralizing learned Bayesian networks [Khosravi et al.,
2010] and functional gradient boosting [Khot et al., 2011].
These methods improve scalability while maintaining pre-
dictive performance. Structure learning methods specific to
a task of interest use inductive logic programming [Mug-

gleton, 1991] to generate clauses which are pruned with
L1-regularized learning [Huynh and Mooney, 2008, 2011]
or perform iterative local search [Biba et al., 2008] to re-
fine rules with the operations described above. For PSL, a
reinforcement learning based approach has been proposed
[Zhang and Ramesh, 2019]. Our approach builds on these
approaches and the concept of meta templates [Rocktäschel
and Riedel, 2017, Wang and Cohen, 2015b, Weber et al.,
2019] to learn an model and also generates explanations.

Explainability: Explainable AI (XAI) is fast-growing area
of research [Ehsan et al., 2021, Arrieta et al., 2020, Gade
et al., 2019]. Explainable models can be broadly classified
into model-intrinsic methods and model-agnostic methods.
Model-intrinsic approaches such as Catherine and Cohen
[2016], Kouki et al. [2019], Al-Shedivat et al. [2020] use in-
terpretable models that are easy to explain. Model-agnostic
or post-hoc explanations such as Ribeiro et al. [2016], Peake
and Wang [2018], Yang et al. [2018] consider the model
as a black box and generate explanations from the output.
Our proposed approach is a model-intrinsic method that
learns an interpretable PSL model. Several gradient-based
and perturbation-based explanations have been proposed
by Bach et al. [2015], Zeiler and Fergus [2014], Shrikumar
et al. [2017], Wolf et al. [2019] for deep learning models.
Sundararajan et al. [2017] proposed the notion of integrated
gradients that satisfy the properties of sensitivity and im-
plementation invariance. In this work, we propose a similar
approach for templated graphical models.

3 BACKGROUND

Probabilistic soft logic is a TGM that defines a hinge-loss
Markov random field (HL-MRF) [Bach et al., 2017]. The
templates are weighted logical rules that encode statistical
dependencies and structural constraints. HL-MRFs support
modeling of multi-relational data and use a continuous re-
laxation of discrete logic to generate continuous RVs in the
range [0,1]. This allows PSL to incorporate information such
as similarity measures. This also makes inference of unob-
served RVs efficient and scalable, which is crucial for large
scale probabilistic reasoning. PSL has been used success-
fully in several domains including natural language process-
ing [Beltagy et al., 2014], social media analysis [Johnson
and Goldwasser, 2016, Ebrahimi et al., 2016] and recom-
mender systems [Kouki et al., 2015]. As an example, con-
sider the following rule present in a typical recommender
system.

w : SimItem(I1, I2) ∧ Rating(U , I1) =⇒ Rating(U , I2)

The rule suggests similar items are rated similarly. Here,
SimItem is a predicate that encodes the similarity between
two items I1 and I2, the predicate Rating encodes the rating
assigned to the item by the user U and w denotes the weight
of the rule which determines its importance. The variables



I1, I2,U range over the constants in a domain. The number
of variables in a predicate is called the arity of the predicate.
The predicate together with the list of variables is called an
atom. The set of predicates under consideration is denoted
by P. Given a set of users {Alice, Bob} and and movies
{Legend, Taps}, PSL generates ground rules by substituting
variables in the rules with constants. An example of a ground
rule is as follows:

w : SimItem(Legend, Taps) ∧ Rating(Alice, Legend)

=⇒ Rating(Alice, Taps)

The atoms in a ground rule are called ground atoms (e.g.
SimItem(Legend, Taps)). A PSL Model (denoted by M)
is a set of weighted rules {r1, r2, · · · , rn}. Using the model
M and a set of ground atoms, PSL generates a HL-MRF.
PSL associates a RV with each ground atom. RVs with
observed values are called observed RVs (X) and those with
unobserved values are called unobserved RVs (Y). These
unobserved RVs correspond to the target predicates whose
values we wish to infer. For the ground rule mentioned
above, let X1, Y1, Y2 be the RVs associated with the ground
atoms SimItem(Legend, Taps), Rating(Alice, Legend),
Rating(Alice, Taps). Then each grounded rule is mapped
to a hinge-loss potential ϕ using Lukasiewicz logic. For
the ground rule mentioned above the hinge-loss potential is
given by ϕ(Y,X) = max{X1 + Y1 − Y2 − 1, 0}p. In this
work we consider p = 2, which results in squared hinge-loss
potentials.

Given the set of observed and unobserved RVs X,Y, and
the set of potentials Φ, PSL defines a probability distribution
X as follows:

P (Y|X) =
1

Z(X)
exp(−E(Y,X))

where E(Y,X) =
∑
j

wjΦj(Y,X)

Z(X) =

∫
Y

exp(−E(Y,X))

(1)

Here, j iterates over all the ground rules, and w gives the
rule weights. The function E is called the energy function.

4 EXPLAINABLE TEMPLATED
GRAPHICAL MODELS

Explanations are human-understandable artifacts that pro-
vide qualitative understanding of the relationship between
the data, the model’s internal state, and the predictions
[Ribeiro et al., 2016, Wolf et al., 2019]. Explanations can ei-
ther be generated a posteriori, where the model is viewed as
a black box, or generated by the model internally along with
its predictions. A good explanation must satisfy three prop-
erties: explicitness, faithfulness and stability [Alvarez-Melis
and Jaakkola, 2018]. Explicitness means that the generated

explanation is interpretable by the user. A faithful expla-
nation implies that the generated explanation is relevant to
the prediction. Finally, stability means that the generated
explanation does not change drastically for small changes in
the input features. The predictions in a TGM depend on the
ground rules present in the model. Since these ground rules
are human-interpretable, they can be used as explanations.

In a non-relational setting, an explanation is typically a func-
tion of the input features. In the relational setting, the gener-
ated explanations depend on other observed and unobserved
RVs. A stable explanation should not change drastically
when the values of other RVs change. We refer to this as
relational stability. We formally define this by extending
the framework in Wolf et al. [2019] to a relational setting.

Let M be a model that predicts the values for the un-
observed RVs Y given the observed RVs X, denoted by
M(X,Y). For example, in PSL, the model infers the val-
ues of Y by identifying the mode of the distribution, e.g.,
M(X,Y) = argmaxY P (Y|X). Let Gi denote the set of
possible explanations for a RV Yi.

Definition 1. Explaining function: An explaining func-
tion, denoted by f , produces an importance score of an
explanation in Gi for the inferred value of Yi.

Definition 2. Relational Stability: Let M be a model and
f be an explaining function. Let X,Y be the set of observed
and unobserved RVs and Gi be the set of possible explana-
tions for the RV Yi. We say that f is stable with respect to
M , if for any two X1,X2 that differ in a single RV Xk by
at most ϵ, ∃δ ∈ R such that:

∀i∀g ∈ Gi, |f(X1,M(X1,Y), g)−f(X2,M(X2,Y), g)| ≤ δ
(2)

The above definition states that the explaining function score
for every explanation across predictions do not vary a lot
when the value of one of the observed RVs is changed by a
small value.

Having defined relational stability, we now define the task
of learning explainable templated graphical models.

Definition 3. Learning explainable templated graphical
models: Given a set of predicates P along with a target
predicate PT ∈ P that we need to infer, the task of learn-
ing explainable templated graphical model involves two
subtasks: 1) The structure learning subtask involves dis-
covering a templated model M that is then used to infer
the values of Y that belong to the predicate PT , and 2) The
explanation subtask involves generating and ranking the
explanations for each of the inferred values of Y using the
explanation function f that satisfies the three properties of
explicitness, faithfulness and relational stability.



5 LEARNING EXPLAINABLE
TEMPLATED GRAPHICAL MODELS

Learning an explainable TGM directly from data poses three
main challenges. First, even after restricting the rule length
and the size of the model, it involves a combinatorial search
and the possible set of models is very large. Second, the
search over the space of models involves estimating the
weights of the rules many times, which is costly. Finally,
not all predicates may be interpretable by the end-user.

To overcome these challenges, we introduce the notion of
a meta template and propose a novel likelihood function,
piecewise-pseudologlikehood (PPLL), to learn the weights
of the inferred rules. We also incorporate an explainabilty
bias that learns a more interpretable model.

5.1 META TEMPLATE

Meta templates guide the search by capturing common sta-
tistical relational patterns present in the data across a wide
range of domains. Further, they restrict the search space by
ensuring that the domains and ranges of the predicates are
taken into consideration. The concept of a meta template has
been proposed for tasks such as predicate learning Muggle-
ton et al. [2015], information and relation extraction [Wang
and Cohen, 2015a], question answering[Weber et al., 2019]
and in Neural Theorem Provers[Rocktäschel and Riedel,
2017].

Definition 4. Meta template: A meta template has slots
in place of predicates and encodes the variable bindings
between the predicates. Filling the slots with predicates
results in a rule.

Consider the following meta template that can be used
to combine or fuse information from multiple sources:

(A,B) =⇒ PT (A,B). Here, is a slot that can
be filled by a predicate that has the same domain and range
as the target predicate. For example, in a hybrid recom-
mender system[Kouki et al., 2015], we can incorporate
the outputs of standalone recommender systems such as
non-negative matrix factorization (NMF ) and collaborative
filtering(CF ) into our model using this meta template. The
rule generated by filling the slot with NMF is given by
NMF (U , I) =⇒ Rating(U , I).

We propose four meta templates that capture a wide vari-
ety useful patterns in relational domains. Additional meta
templates that generate domain-specific rules can also be
incorporated into our approach.

Path Template: The path template is the most common
meta template and can capture relational patterns such as
transitivity. Each slot in the template must be filled with a
predicate of arity two. A path template of size two has the
following structure: (A,B)∧ (B,C) =⇒ PT (A,C)

For example, the notion of triadic closure used in social
network analysis can be generated from the path template
and is given by: Friends(A,B) ∧ Friends(B,C) =⇒
Friends(A,C). Similarly, path templates of size three and
higher can be defined.

Similarity Template: The similarity template captures the
relationship between multiple target instances. Each slot in
the template must be filled with a predicate of arity two and
has the following structure: (A,B) ∧ (C,A) =⇒
PT (C,B) For example, similarity functions used in collab-
orative filtering can be generated from this template and
is given by: SimilarItem(I1, I2) ∧ Rating(U , I1) =⇒
Rating(U , I2).

Local Template: The local template can integrate infor-
mation from multiple sources and has the following three
structures: (A,B) =⇒ PT (A,B); (B) =⇒
PT (A,B); (A) =⇒ PT (A,B) In addition to our
earlier hybrid recommender example, consider the case
of fusing multiple classifiers such as RandomForest and
NeuralNetworks for the task of entity resolution. We
could incorporate them into our model by rules such as:
RandomForest(U1,U2) =⇒ SamePerson(U1,U2)

Prior Template: For targets where we have no information,
we typically want to encode some prior information. This is
captured by the prior template and has the following form:
PT (A,B) = {0, 1} By setting different weights to these
rules, we can vary the prior value for targets in the range
[0, 1].

5.2 PIECEWISE PSEUDOLIKELIHOOD

In addition to the rules, we also need to learn the relative
weights of these rules in a PSL model. One approach to
weight learning involves optimizing the likelihood function.
However, the partition function Z in likelihood involves an
integration that makes it intractable to compute. To over-
come the intractable likelihood score, pseudo-likelihood
[Besag, 1975] is commonly used by weight learning meth-
ods. For HL-MRFs, the pseudo-likelihood approximates the
likelihood as:

P (Y|X) =
∏

Yi∈Y

1

Zi(Y−i,X)
exp(−Ei(Y,X))

where Ei(Y,X) =
∑

j:Yi∈Φj

wjΦj(Y,X)

Zi(Y−i,X) =

∫
Yi

exp(−Ei(Y,X))

(3)

The notation j : Yi ∈ Φj selects ground rules where Yi

appears. However, due to the coupling of the rules, we also
need to re-estimate the weights for the same rule in different
models. Further, the objective function is non-convex and is
hard to optimize.



To overcome these challenges, we propose to use the
efficient-to-optimize objective function called piecewise
pseudolikelihood (PPLL). PPLL has two key properties
that makes weight learning highly scalable : 1) with PPLL,
the optimal weight of a rule is independent of other rules in
the model; and 2) the PPLL objective is convex and admits
an inherently parallelizable gradient-based algorithm for
optimization.

PPLL was first proposed for weight learning in conditional
random fields (CRF) Sutton and McCallum [2007]. For HL-
MRFs, PPLL factorizes the joint conditional distribution
along both RVs and rules and is defined as:

P (Y|X) =
∏
r∈M

∏
Yi∈Y

1

Zr
i (Y−i,X)

exp(−Er
i (Y,X))

where Er
i (Y,X) =

∑
j:Yi∈Φr

j

wjΦj(Y,X)

Zr
i (Y−i,X) =

∫
Yi

exp(−Er
i (Y,X))

(4)

The notation j : Yi ∈ Φr
j selects ground rules generated

from rule r and has Yi. The key advantage of PPLL over
likelihood arises from the factorization of Z into Zr

i , which
requires only ground rules corresponding to rule r and vari-
able Yi for its computation. Following standard convention,
we optimize the log of PPLL denoted lppll(w).

We now show that for the log PPLL objective function,
performing weight learning on the entire model containing
all rules is equivalent to optimizing the weight for each rule
independently.

Lemma 1. Optimizing lppll(w) over the set of weights w
is equivalent to optimizing over each wr separately.

Proof. By the definition of lppll(w), we have

argmax
w

lppll(w)

= argmax
w

∑
r∈M

∑
Yi∈Y

−Er
i (Y,X)− logZr

i (Y−i,X)

=
∑
r∈M

argmax
wr

∑
Yi∈Y

−Er
i (Y,X)− logZr

i (Y−i,X)

= argmax
wr

∑
Yi∈Y

−Er
i (Y,X)− logZr

i (Y−i,X)∀r ∈M

We optimize lppll(w) using a projected gradient descent
algorithm. The gradient for a rule weight wr turns out to
be the difference between observed and expected hinge-loss
potential summed over corresponding ground rules Φr. We
can compute observed penalties once and cache their values.
Unlike the gradients for likelihood, each expectation term in
the PPLL gradient considers a single rule. Thus, when eval-
uating gradients for weight updates, we use multi-threading

to compute the expectation terms in parallel. The dual ad-
vantages of parallelizing and requiring weight learning only
once for a rule makes PPLL highly scalable.

5.3 EXPLAINABILITY BIAS

Having introduced key components of our structure search,
we next turn to explanability. Some predicates are explain-
able and other are not. As an example, in a recommender
system, rules containing predicates such as SimUserCosine

can be explained using sentences such as “User U1 who
is similar to you liked this item I”. Other predicates such
as latent factor recommendation approaches may be harder
to explain to the end-user. We partition the predicates into
explainable and non-explainable predicates. Because ex-
planabilty can be subjective, our approach is flexible, and
partitions can be tuned to what seems natural at either the
domain level, or even for a particular user. Given a partition,
we formally define end-user explainability of a rule as:

Definition 5 (α-explainable). A rule r is α-explainable if
the proportion of explainable predicates in the body of the
rule is greater than α.

Therefore, if a rule has no end-user explainable predicates
in the body then it is a non-explainable (0-explainable) rule
and if every predicate in the body of a rule is end-user
explainable then it is a fully explainable (1-explainable)
rule.

In applications where providing meaningful explanations to
the end user is important, we may prefer models with many
α-explainable rules. A model with many α-explainable rules
can result in a greater number of predictions that are explain-
able. However, this might result in a loss of predictive accu-
racy. To address this trade-off at the model discovery time,
we introduce an explainability bias parameter γ ∈ [0, 1]
which is the minimum proportion of rules in a model that
are explainable and tune it based on the application’s need.

5.4 EXPLAINABLE STRUCTURED MODEL
SEARCH

Algorithm 1 outlines our proposed ESMS algorithm. For
each rule in the model, we first sample a template. We then
sample predicates for each slot in the template. We add all
α-explainable rules to the model, and with probability 1−γ,
we add non-α-explainable rules rule to the model. A value of
1 for γ and α ensures every rule in the model only contains
predicates that are explainable and hence all predictions can
be explained. This ensures that the generated explanations
satisfy the property of explicitness. Once all the rules in
the model are sampled, we learn the relative importance of
these rules by performing weight learning using PPLL. We
then evaluate the performance of the model V (M) on the



Algorithm 1 Explainable Structured Model Search
(ESMS)
Input: T : Rule templates; LM : Max rules; N : max itera-

tions;
P : Set of predicates; γ: Explainability parameter;

Output: M∗: Explainable model
scorebest ← −∞
for i ∈ 1 to N do

lM ← 0
M ← ϕ
while lM < LM do

r ← GenerateRule(T, P, γ)
M ←M ∪ r
lM+ = 1

w← argmaxw lppll(w)
if V (M) > scorebest then

M∗ ←M
scorebest ← V (M)

return M∗

Algorithm 2 Generate Rule(T, P, γ)
Input: T : Rule templates; P Set of predicates; γ: Explain-

ability parameter
Output: r: a rule

RuleFlag← False
while RuleFlag is False do

t ∼ Unif(T )
for Slot s in t do

Sample p ∈ P that satisfies domain and range
constraints of the variables.

r(s)← p

if r is α-explainable then
RuleFlag← True

else
g ∼ Unif([0, 1])
if g ≥ γ then

RuleFlag← True
Return r

training data. We repeat this process N times and return the
best performing model as the final model.

6 GENERATING EXPLANATIONS

We now describe our approach to generate explanations for
the PSL model’s predictions on new data, after we have
learned a model using the ESMS approach. The unob-
served values are inferred by maximizing the likelihood of
the graphical model. The values of the unobserved target
RVs Y depend on all the ground rules they are present in.
We can either display these ground rules directly to the user
or use a translation system, that takes as input a ground
rule and outputs sentences in natural language or pictori-

ally as described in Kouki et al. [2019]. Thus, the set of
explanations for a target RV Yi (denote by Gi) is given by
{ϕ : ϕ ∈ Φ ∧Yi ∈ ϕ}.

However, this set is usually large and not all are explanations
are equally important. To ensure faithfulness, we measure
the importance of each ground rule to the inferred value and
display the most important rule to the user. We define an
explaining function f to score the the importance of ground
rules.

Definition 6. The explaining function f : (X,Y, ϕ) →
R scores the importance of a ground rule ϕ ∈ Gi with
respect to a RV Yi. It is given by the norm of the first partial
derivative of the ground rule at the inferred value y, i.e:
f(X,Y, ϕ) =

∥∥∥w∂ϕ(X,Y)
∂Yi

|y
∥∥∥

Unlike other gradient-based approaches such as integrated
gradients Sundararajan et al. [2017] where it can be chal-
lenging to prove stability, we show in the next subsection
that our approach is stable as defined in Section 4.

6.1 STABILITY OF THE EXPLANATION
FUNCTION

We first observe that the energy function E is a summation
of squared hinges and hence E is convex. Further, the prior
template described in Section 5 acts a regularizer of Y and
hence E is strongly convex. This was also noted by London
et al. [2016].

We state two lemmas that show the change in the optimal
energy function is bounded when the value of one of the
observed RV (X) is changed (Lemma 2) and this bounds the
change is the values of the unobserved RVs Ys (Lemma 3).
The proofs for these lemmas are given in the supplementary
material.

Lemma 2. For a graphical model G with a set of potentials
Φ, let Qi denote the number of potentials that involve Xi,
and let QG ≜ maxi Qi. Let ∥w∥ < R. Let X,X′ ∈ X
differ at a single coordinate i by at most ϵ. Then, for
Ẏ ≜ argminY E(Y,X) and Ẏ′ ≜ argminY E(Y,X′),∥∥∥E(Ẏ′,X)− E(Ẏ′,X′)

∥∥∥ ≤ ϵR
√
QG

Lemma 3. Let E : (Y,X ) → R be κ-strongly
convex, and let Ẏ ≜ argminY E(Y,X) and Ẏ′ ≜
argminY E(Y,X′), where X,X′ ∈ X differ at a single

RV Xi. Then,
∥∥∥Ẏ′ − Ẏ

∥∥∥2 ≤ 2
κ

∥∥∥E(Ẏ′,X)− E(Ẏ′,X′)
∥∥∥.

We now state a lemma that shows that the change in the
explaining function score for a ground rule ϕ ∈ Gi denoted
by f(X,Y, ϕ) is bounded.

Lemma 4. For an explanation ϕ ∈ Gi, let the explaining
function f be defined as f(X,Y, ϕ) =

∥∥∥w∂ϕ(X,Y)
∂Yi

|y
∥∥∥. Let



X,X′ ∈ X differ at a single RV Xi by at most ϵ. Let
∥Y −Y′∥ < B for any two Y,Y′ ∈ Y and ∥w∥ < R.
Then ∥f(X,Y, ϕ)− f(X′,Y′, ϕ)∥ ≤ 2R(ϵ+B)

We now prove that the explaining function f is stable.

Theorem 1. The explaining function f is stable with respect
to M(X,Y).

Proof. From Lemma 2 and Lemma 3, for any X,X′ ∈
X that differ in a single RV Xi by at most ϵ, we have:∥∥∥Ẏ′ − Ẏ

∥∥∥ ≤√
2
κRϵ
√
QG

From Lemma 4, we have
∥∥∥f(X, Ẏ, ϕ)− f(X′, Ẏ′, ϕ)

∥∥∥ ≤
2R(ϵ+

√
2
κRϵ
√
QG)

7 EXPERIMENTAL EVALUATION

We investigate the following research questions empirically:
RQ1) What is the predictive accuracy of models discovered
by ESMS ? RQ2) What is the impact of the explainability
parameter γ on end-user explainability? RQ3) How well
can the predictions be explained?

Datasets: We evaluate the predictive accuracy of the dis-
covered models on an entity resolution dataset and two
recommendation datasets. Further, for the recommendation
datasets, we evaluate the generated explanations. More de-
tails are given in the supplementary material.
CORA : This is an entity resolution dataset containing 10
predicates such as the title, venue, author, words in the title
and authors that refer to the same entity. The task is to pre-
dict publication pairs that refer to same entity.
YELP : This is a restaurant recommendation dataset contain-
ing 34,454 users, 3,605 restaurants, 8,512 friendship links
and 99,049 observed ratings.
LASTFM : This is a music artist recommendation dataset
containing 1,892 users, 17,632 music artists, 12,717 friend-
ship links and 92,834 observed ratings.
Both the recommendation datasets contain a total of 21 re-
lations such as user and item similarities, and the output
of external classifiers such non-negative matrix factoriza-
tion (NMF). For both datasets, the task is to predict the
unobserved ratings. We classified the relations that encode
similarity between users or items as explainable and other
relations such the output of latent factor models such as
NMF as non-explainable; in the end, 15 of the 21 relations
were classified as explainable to the end-user. To prevent
the generation of a quadratic number of user-item pairs, we
perform blocking. Blocking restricts the rating pairs by iden-
tifying the important pairs using a simple heuristic. We use
the splits from Kouki et al. [2015].

Approaches: We evaluate by comparing the following
structure learning methods:

BOOST[Khot et al., 2011]: This is a state-of-the-art
structure learning approach for MLNs. It uses Friedman’s
functional gradient boosting algorithm to generate a series
of relational regression problems, which in turn are used to
generate the rules in the model. We use the code of Khot
et al. [2011] with the recursion flag set to True. BOOST
uses Boolean logic, so we round the values of the ground
atoms to 1 if the value is greater that 0.5, and 0 otherwise.
We learn 10 trees and combined the rules across the trees to
generate a PSL model. We use the same weights learned
by the BOOST approach. Since PSL only allows positive
weights, we truncate negative weights to 0. In addition, we
also evaluate a model with the weights learned using the
PPLL objective (BOOSTPPLL). Here, we considered all
rules discovered by BOOST including rules with negative
weights.
PRA[Gardner and Mitchell, 2015]: PRA is a relational
path finding algorithm that identifies paths that connect
unobserved pairs by performing random walks. We use the
code of Gardner and Mitchell [2015] to identify paths of
length up to three. We then convert these paths to PSL rules.
We learn the rule weights using our proposed PPLL weight
learning method. We considered all rules including rules
with negative weights.

ESMS1: Our proposed approach that performs a
structured search to learn an explainable PSL model. We
use the rule templates described in 5. We set the maximum
number of rules in a model to 15, maximum iterations to
100 and γ = 0.

7.1 PREDICTIVE PERFORMANCE OF ESMS

We evaluate [RQ1] by comparing the predictive accuracies
of BOOST, BOOSTPPLL, PRA and ESMS . We com-
pute the positive class AUPR for the CORA dataset. For
the recommendation datasets we compute the mean squared
error (MSE) and mean absolute error (MAE) by rescaling
the ratings between [0, 1]. Table 1 shows the mean and stan-
dard deviation of the metrics computed across the 5 folds.
We perform a paired t-test to measure significance and the
numbers in bold are statistically significant with p < 0.05
. First, we observe that the ESMS approach outperforms
both versions of BOOST and PRA on the recommenda-
tion datasets. On the entity resolution dataset, it outperforms
PRA and is comparable to BOOST. PRA can only dis-
cover rules that are paths and this limitation hurts the perfor-
mance of the model. We next observe that the BOOST mod-
els perform better than the BOOSTPPLL model. The
BOOST method did not learn any collective rules such
as: Rating(A,B) ∧ SimItem(B,C) =⇒ Rating(A,C).
These content-based rules are important for the recom-
mender system performance. As a result, the ESMS per-

1Code, model, and data available at
https://github.com/linqs/embar-uai22



CORA YELP LASTFM
AUPR MAE MSE MAE MSE

BOOST 0.700 (0.163) 0.196 (0.008) 0.079 (0.007) 0.279 (0.058) 0.11 (0.044)
BOOSTPPLL 0.651 (0.186) 0.212 (0.012) 0.092 (0.013) 0.257 (0.046) 0.0941 (0.058)

PRA 0.622 (0.169) 0.2005 (0.0004) 0.086 (0.0004) 0.186 (0.001) 0.048 (0.0004)
ESMS 0.684 (0.148) 0.193 (0.003) 0.065 (0.008) 0.177 (0.070) 0.043 (0.0004)

Table 1: Metrics: Our ESMS approach significantly outperforms other approaches on recommendation datasets and is
comparable to BOOST on CORA. Numbers in bold are statistically significant with p < 0.05.

forms better than BOOST. The learned models for all ap-
proaches are given in the supplementary material.

ESMS discovered social rules such as Friends(U1,U2) ∧
Rating(U1, I1) =⇒ Rating(U2, I1), similarity rules
such SimItemPearson(I1, I2) ∧ Rating(U1, I1) =⇒
Rating(U1, I2). Further, the model incorporates external
systems such as Bayesian Probabilistic Matrix Factoriza-
tion (BPMF) with rules such as BPMF (U1, I1) =⇒
Rating(U1, I1).

7.2 TRADE-OFF BETWEEN PREDICTIVE
ACCURACY AND EXPLAINABILITY

We evaluate [RQ2] by investigating the impact of the ex-
plainability parameter γ on a model’s predictive accuracy
and end-user explainability. For each prediction, we gener-
ated a ranked list of ground rules in Gi and compute mean
explainable precision(MEP@K) [Abdollahi and Nasraoui,
2016] that represents that fraction of ratings that are ex-
plainable. MEP@K is defined as 1

|Y|
∑|Y|

i=1(Ek(Gi)), where
Ek(Gi) is 1 if one of the top-K ranked rules in Gi is explain-
able and zero otherwise. We consider a rule to be explainable
if it contains at least one explainable predicate (α = 0.25).
We modified γ from 0 to 1 and computed the MEP@1 and
MSE of all generated models.

Fig. 1 shows the change in MSE and MEP@1 as we vary γ
for the LASTFM dataset. We observe that, not surprisingly,
we generate models with more explainable rules as we in-
crease γ. However, the MSE also increases slightly. This is
due to the model not containing non-explainable rules such
as latent factor models that have high predictive accuracy.
We found a similar pattern on the YELP dataset.

7.2.1 Analysis of Explanations

We evaluate [RQ3] by analyzing the MEP for all models
at K = {1, 2, 3}. Fig. 2 shows the MEP@K for various
approaches. As we increase the value for K, the MEP value
increases for all approaches. For ESMS, we get a MEP of
1 for γ > 0.7 for all K. PRA has MEP close to 0.9 due
to the large number of rules in the model. BOOST starts
with MEP close to 0.5 at K = 1 but increases rapidly as we
increase K.
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Figure 1: MEP vs MSE for LASTFM: As γ increases, the
models become more explainable and have a slightly higher
MSE.
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Figure 2: MEP @ K for LASTFM: MEP increases for
all approaches as we increase K. ESMS with γ > 0.7
outperforms BOOSTand PRA.

As a concrete example of our results, we look at an
example of the most important explanation identified by our
approach for a rating in the LASTFM dataset. For the pair
(User12, Artist5) ESMS identified the most important
rule as: MF (User12,Artist5)→ Rating(User12,Artist5)
when γ was set to 0. This is a non-explainable rule.
When we changed γ = 1, the most important
ground rule became: Rating(User12,Artist29) ∧
SimItemjaccard(Artist29,Artist5) →
Rating(User12,Artist5). This is explainable.

8 CONCLUSION

We proposed an efficient approach to learning explainable
templated graphical models that trades off between per-



formance and explainability. Our explanation framework
satisfies the properties of explicitness, faithfulness and sta-
bility and our search algorithm integrates efficient structure
and weight learning. We show that we can learn more ex-
plainable model then existing SOTA approaches without
compromising much on accuracy. Our work suggests several
future directions. Latent predicates are crucial for improving
model performance, and we plan to extend our approach
to handle them. In addition, we could incorporate end-user
preferences into the explanation ranking.
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