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1 Introduction

AI and machine learning have become essential tools in au-
tomatic decision-making. When used in processes such as
employment, education, advertising, loan approval, criminal
risk assessment, and policing, these tools can have signifi-
cant influence on the lives of individuals. This potential in-
fluence has raised concerns about algorithmic discrimination
and bias. Recently, a number of methods to address these
concerns have been proposed. These methods deal with bias
through unawareness/blindness, awareness/Lipschitz prop-
erty (Dwork et al. 2012), demographic parity/disparate im-
pact (Feldman et al. 2015), preference-based (Zafar et al.
2017), and equality of opportunity (Hardt, Price, and Srebro
2016).

The existing studies on fairness in machine learning as-
sume the attribute-value data format. In this setting, the goal
is to design algorithms that make fair predictions across two
groups that are defined in terms of an attribute value such as
age, gender, race, religion, etc. These two groups are called
protected and unprotected.

Since many forms of bias occur in a social context, lever-
aging relational information is essential. In this paper, we ex-
tend the concepts of fairness-aware inference and learning to
the relational setting. Instead of defining the protected group
in terms of a single attribute value, we introduce new defi-
nitions to include the relational context in which discrimi-
nation may occur. This extension leads to a richer notion of
fairness, which can capture complex dependenices that are
present in real-world scenarios. For example in an organi-
zation, the existing biases in evaluation reports produced by
employees can influence the promotion decisions. These bi-
ases can be resulting from the complex relational network of
opinions of employees about each other.

We first introduce and formulate fairness in relational set-
ting, then we propose 1) fairness-aware constrained condi-
tional inference subject to common data-oriented fairness
measures and 2) fairness-aware learning by incorporating
decision-oriented fairness measures.
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2 Fairness in Relational Settings
In this section, we formalize relational fairness using
first-order logic: An atom is an expression of the form
p(a1, a2, . . . , an) where p is a predicate symbol, and each
argument a1, a2, . . . , an is either a constant or a variable.
The finite set of all possible substitutions of a variable to a
constant for a particular variable a is called its domain Da.
If all variables in p(a1, a2, . . . , an) are substituted by some
constant from their respective domain, then we call the re-
sulting atom a ground atom. A formula is defined by induc-
tion: every atom is a formula. If α and β are formulae, then
α ∨ β, α ∧ β, ¬α, ∃xα, ∀xα are formulae. An interpreta-
tion I is a mapping that associates a truth value I(P ) to each
ground atom P .

We denote formula F which has only one free variable
v (i.e. other variables in F are quantified) by F [v]. The
population defined by F [v] is the set of substitutions of
v for which F [v] holds. A discriminative pattern is a pair
DP [v] ≡ (F1[v], F2[v]) , where F1[v] and F2[v] are formu-
lae.
Example 1. Consider a hypothetical scenario in an organi-
zation in which young female workers who have older male
supervisors have lower chances of promotion than their
male counterparts1. In this scenario, the discrimination pat-
tern is:

DP[v] :=
(
Female(v),Young(v)∧(

∃u,¬Young(u) ∧ ¬Female(u) ∧ Supervise(u, v)
))
.

Given an interpretation I , the protected group

PG ≡ {v : F1[v] ∧ F2[v]}
is defined as the set of all instances hold for variable v for
which F1[v] ∧ F2[v] is true under interpretation I , that is,
I(F1[v] ∧ F2[v]) = 1. Similarly, the unprotected group

UG ≡ {v : ¬F1[v] ∧ F2[v]}
is defined as the set of all instances holds for variable v for
which I(¬F1[v] ∧ F2[v]) = 1. A decision atom d(v) is an

1Of course, many other patterns may be possible: female bosses
may promote female subordinates and discriminate against male
workers, or male bosses may promote female employees. Our goal
is to provide a general framework which is able to describe arbi-
trarily complex discrimination patterns.



atom containing exactly one variable v that specifies a deci-
sion affecting the protected group which is defined either by
law or end-user.
Example 2. The protected group of the discrimination pat-
tern specified in Example 1 is

PG :=
{
v : Female(v) ∧ Young(v)∧(
∃u,¬Young(u) ∧ ¬Female(u) ∧ Supervise(u, v)

)}
and the unprotected group is

UG :=
{
v : ¬Female(v) ∧ Young(v)∧(
∃u,¬Young(u) ∧ ¬Female(u) ∧ Supervise(u, v)

)}
.

The decision atom d[v] := Promotion(v) indicates the pro-
motion decision.

3 Fairness-aware Inference
To formulate fairness in the relational setting, we propose
fairness-aware constrained conditional inference subject to
common data-oriented fairness measures. We first introduce
these fairness measures and then re-define them using the
notation introduced in Section 2. Let a and c denote the
counts of denial (i.e., negative decisions) for protected and
unprotected groups, and n1 and n2 denote their sizes, re-
spectively. Let p1 = a/n1 be the proportion of benefit denied
for the protected group, and p2 = c/n2 be the proportion of
benefit denied for the unprotected group. Using p1 and p2 we
can define three well-known fairness measures as follows:

1. Risk difference: RD = p1 − p2, also known as absolute
risk reduction. The UK uses RD as it’s legal definition of
fairness measure.

2. Risk Ratio: RR = p1/p2, also known as relative risk. The
EU court of justice has given more emphasis on the RR as
a measure of fairness.

3. Relative Chance: RC = 1− p1/1− p2 also known as se-
lection rate. The US laws and courts mainly refer to the
RC as a measure of fairness. For further information we
refer to (Pedreschi, Ruggieri, and Turini 2012).

Notice that RR is the ratio of benefit denial between the pro-
tected and unprotected groups, while RC is the ratio of ben-
efit granting.

Now, we can formulate these measures using the formal-
ism defined in Section 2. Given the decision atom d(v) and
discriminative pattern DP(F1[v], F2[v]), the counts of denial
for both protected and unprotected groups are computed by
the following equations:

a ≡
∑
v∈Dv

I
(
¬d(v) ∧ F1[v] ∧ F2[v])

c ≡
∑
v∈Dv

I
(
¬d(v) ∧ ¬F1[v] ∧ F2[v])

n1 ≡
∑
v∈Dv

I
(
F1[v] ∧ F2[v])

n2 ≡
∑
v∈Dv

I
(
¬F1[v] ∧ F2[v])

Using these counts, the fairness measures can be com-
puted as: RD ≡ a/n1− c/n2, RR ≡ a/n1

c/n2
, and RC ≡ 1−a/n1

1−c/n2
.

Finally, we introduce the notion of δ-fairness.
Definition 1 (δ-fairness). If a fairness measure for a deci-
sion making process falls within some δ-window, then the
process is δ-fair. Given 0 ≤ δ ≤ 1, the δ-windows for mea-
sures RD/RR/RC are defined as:

−δ ≤RD ≤ δ
1− δ ≤RR ≤ 1 + δ

1− δ ≤RC ≤ 1 + δ

The standard MAP inference aims at finding values that
maximize the conditional probability of unknowns. Once a
decision is made according to these values, one can use the
fairness measure to quantify the degree of discrimination.
To develop fairness-aware inference, we propose to incor-
porate fairness in MAP inference by adding the δ-fairness
constraints to the underlying optimization problem of MAP
inference.

Consider risk difference, RD, where RD ≡ a
n1
− c

n2
. The

δ-fairness constraint −δ ≤ RD ≤ δ can be encoded as the
following constraints:

n2a− n1c− n1n2δ ≤ 0

n2a− n1c+ n1n2δ ≥ 0

Similarly, from RR ≡ a/n1

c/n2
and the δ-fairness constraint

1− δ ≤ RR ≤ 1 + δ we obtain:

n2a− (1 + δ)n1c ≤ 0

n2a− (1− δ)n1c ≥ 0

And finally, RC ≡ 1−a/n1

1−c/n2
and the δ-fairness constraint

1− δ ≤ RC ≤ 1 + δ gives:

− n2a+ (1 + δ)n1c− δn1n2 ≤ 0

− n2a+ (1− δ)n1c+ δn1n2 ≥ 0

4 Fairness-aware parameter learning
In this section, we first review five measures of fairness from
literature. The difference between these measures and the
ones introduced earlier is that the latter are based on the de-
cision made by an algorithm. To explain these measures, as-
sume that symbols tp, fn, fp, and tn denote true positive,
false negative, false positive, and true negative rate, respec-
tively. Each of the following measures assume that a deci-
sion is fair if the values of some quantity among the pro-
tected and unprotected group are the same:

1. Overall accuracy equality: equal values for
(tp + tn)/(tp + fn + fp + tn). This measure is not com-
monly used because it does not distinguish between the
accuracy for success and failure.



2. Demographic parity: equal marginal distributions
of the predicted classes (tp + fp)/(tp + fn + fp + tn) or
(fn + tn)/(tp + fn + fp + tn) in both groups. This measure
has been criticized as it can lead to highly undesirable de-
cisions (Dwork et al. 2012).

3. Equality of opportunity: equal values for tp/(tp + fn) or
tn/(fp + tn).

4. Conditional use accuracy equality: equal values for
tp/(tp + fp) or tn/(fn + tn).

5. Treatment equality: equal ratio of false negatives and
false positives (i.e., fp/fn or fn/fp) in both groups.

To incorporate these measures in learning the parameters
of a decriminative relational model with joint probability
distribution P (y|x), we first introduce their logical counter-
parts. Let ŷj and yj denote the actual and predicted truth
values for n atoms of interest. We extend the definitions of
tp, fn, fp and tn as:

tp =

n∑
j=1

I(ŷj ∧ yj)

fn =

n∑
j=1

I(ŷj ∧ ¬yj)

fp =

n∑
j=1

I(¬ŷj ∧ yj)

tn =

n∑
j=1

I(¬ŷj ∧ ¬yj)

Fair parameter learning is an optimization problem with
two possibly conflicting goals: 1) to achieve high prediction
power according to the data, and 2) ensuring fair predictions.
The first goal can be for example translated into a high like-
lihood of the data.

In order to achieve the second goal, we add a term to
the objective function that reflects the degree of fairness of
predictions according to known fair truth values for a sub-
set of variables. More specifically, let yPG and yUG de-
note the fair truth values of the target predicate for subsets
of protected and unprotected groups, respectively. Given a
fairness measure M (which can be one of the measures de-
fined above), we aim at decreasing the value of |M(yPG)−
M(yUG)|. Combining these two goals leads to the following
objective function for fairness-aware parameter learning:

max
W

{
logPW (y|x)− γ · EW

[
|M(yPG)−M(yUG)|

]}
where γ is a positive constant that determines the relative

importance of the two components of the objective function.

5 Conclusion
In this paper, we introduce the notion of fairness in re-
lational setting. We extend MAP inference with fairness-

aware constrained conditional inference subject to com-
mon data-oriented fairness measures. In addition, we pro-
pose a fairness-aware learning algorithm that incorporates
decision-oriented fairness measures to ensure fairness in
learning. We believe that extending fairness to the relational
setting facilitates defining complex discrimination patterns.
Many applications in social network analysis, personalized
advertising, education science, and computational social sci-
ence can benefit from this extension.
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