Mach Learn (2017) 106:1971-1991
DOI 10.1007/s10994-017-5647-3

@ CrossMark

Soft quantification in statistical relational learning

Golnoosh Farnadi'? . Stephen H. Bach® . Marie-Francine Moens? -

Lise Getoor* - Martine De Cock®

Received: 19 February 2016 / Accepted: 1 June 2017 / Published online: 12 July 2017
© The Author(s) 2017

Abstract We present a new statistical relational learning (SRL) framework that supports
reasoning with soft quantifiers, such as “most” and “a few.” We define the syntax and the
semantics of this language, which we call PSL?, and present a most probable explanation
inference algorithm for it. To the best of our knowledge, PSL¥ is the first SRL framework
that combines soft quantifiers with first-order logic rules for modelling uncertain relational
data. Our experimental results for two real-world applications, link prediction in social trust
networks and user profiling in social networks, demonstrate that the use of soft quantifiers not
only allows for a natural and intuitive formulation of domain knowledge, but also improves

inference accuracy.
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1 Introduction

Statistical relational learning (SRL) has become a popular paradigm for knowledge represen-
tation and inference in application domains with uncertain data that is of a complex, relational
nature. A variety of different SRL frameworks has been developed over the last decade, based
on ideas from probabilistic graphical models, first-order logic, and programming languages
(seee.g., Muggleton and De Raedt 1994; Richardson and Domingos 2006; Getoor and Taskar
2007). Many of these frameworks use logical formulas to express statistical dependencies
over relational data. The number of elements in the data that satisfy a formula is called its
quantification. Quantification in first-order logic, and by extension SRL, is traditionally either
existential (3) or universal (V). However, there are many modeling scenarios in which softer
quantifiers, such as most and a few, are more appropriate.

For example, in models for social networks it is common to include the knowledge that the

behaviour, beliefs, and preferences of friends all influence each other. How this information
can be incorporated depends on the expressivity of the model. In a traditional probabilistic
model, adependency might be included for each pair of friends (corresponding to a universally
quantified rule), each expressing the knowledge that it is more probable that two friends share
a trait in common. An often cited example in SRL contexts describing smoking behaviour
among friends is:
VXVY Friends(X,Y) — (Smokes(X) <> Smokes(Y)) (Richardson and Domingos 2006). This
formula states that if two people are friends, then either both of them smoke or neither of
them. In this case, the probability that a person smokes scales smoothly with the number of
friends that smoke. However, many traits of interest might not behave this way, but instead
exhibit “tipping points” in which having a trait only becomes more probable once most or
some of one’s friends have that trait (e.g., smoking behaviour). Expressing this dependency
requires a soft quantifier, which none of the existing SRL frameworks allow.

What sets soft quantifiers apart from universal and existential quantification is that expres-
sions that contain them are often true to a certain degree, as opposed to either being true or
false. Indeed, the degree to which a statement such as “most of Bob’s friends smoke” is
true, increases with the percentage of smokers among Bob’s friends. This increase is not
necessarily linear; in fact, a common approach to compute the truth degree of soft quantified
expressions is to map percentages to the scale [0, 1] using non-decreasing piecewise linear
functions (Zadeh 1983). Previous SRL work (e.g., Milch et al. 2008; Jain et al. 2010; Poole
etal. 2012) has considered hard quantifiers with thresholds such as at least k. Soft quantifiers,
on the other hand, do not impose such hard thresholds but allow smooth, gradual transitions
from falsehood to truth.

Furthermore, the dependence of predicted probabilities on population size in relational
models such as Markov logic networks (MLNs) and relational logistic regression is addressed
in Poole et al. (2014) and Kazemi et al. (2014). Soft quantifiers not only provide the flexibility
of modelling complex relations, but their semantics also do not depend on the absolute
population size. Hence soft quantifiers allow us to learn a model for some population size
and apply the same model to another population size without the need for changes in the
model, e.g., without introducing auxiliary variables to control whether the population size
Srows.

Many SRL applications could benefit from the availability of soft quantifiers. Col-
lective document classification, for instance, relies on rules such as VDVEVC(Cites(D,
E) A Class(D,C) — Class(E,C)) which expresses that if documents D and E are linked
(e.g., by citation), and D belongs to class C, then E belongs to C (Bach et al. 2013). Soft
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quantifiers can express that a document should be assigned a class if most of its citing doc-
uments have that class, instead of one citing document. Similarly, in collaborative filtering,
one can rely on the preferred products of a user to infer the behaviour of a similar user,
i.e., YUYUaVJ (Likes(Uy, J) A Similar(Uy, Upy) — Likes(Us, J)) (Bach et al. 2013). Using soft
quantifiers would allow to infer preferences of a user based on most of the behaviours of a
similar user, or by comparing one user with most of the users similar to him.

In this paper we present the first SRL framework that combines soft quantifiers with first-
order logic rules for modelling uncertain relational data. A brief overview of our framework
is presented in Farnadi et al. (2014). We start from probabilistic soft logic (PSL) (Bach et al.
2015), an existing SRL framework that defines templates for hinge-loss Markov random
fields (Bach et al. 2013), and extend it to a new framework which we call PSLZ. As is
common in SRL frameworks, in PSL a model is defined by a set of logical rules using a
finite set of atoms. However, unlike other SRL frameworks whose atoms are Boolean, atoms
in PSL can take continuous values in the interval [0, 1]. Intuitively, value O means false and
value 1 means true, while any value v € [0, 1] represents a partial degree of truth.

Our approach differs from existing research on quantifiers for logical reasoning in various
ways. Studies on quantifiers in probabilistic logic settings deal with Boolean atoms (Lowd
and Domingos 2007; Beltagy and Erk 2015; Van den Broeck et al. 2013), while in this paper
atoms take on continuous values. The literature on fuzzy logic contains a fair amount of work
on reasoning with continuous values (e.g., Prade et al. 2003; Cao et al. 2002), including the
use of soft quantifiers (Bobillo and Straccia 2008), yet, to the best of our knowledge, there
is no prior work on such soft quantifiers in the SRL community.

An early version of this paper appeared in Farnadi et al. (2015). In addition to the inclusion
of proofs in Sect. 4, this paper extends this earlier work with more extensive evaluation,
including a new application presented in Sect. 6. After recalling the preliminaries of PSL in
Sect. 2, in Sect. 3 we introduce PSLZ, a new SRL framework that supports reasoning with
soft quantifiers, such as “most” and “a few.” Because this expressivity pushes beyond the
capabilities of PSL, in Sect. 4 we introduce new inference and weight learning algorithms
for PSLC. Finally, as a proof of concept, we present two PSL models, one for predicting
trust in social networks and another one for user profiling in social networks. We show that
our PSLZ model more accurately predicts trust in social networks than the current state-of-
the-art approach in Sect. 5. Similarly, our PSLC model significantly outperforms its sibling
PSL model in inferring age and gender in social networks in Sect. 6.

2 PSL: probabilistic soft logic

In this section, we review the syntax and semantics of probabilistic soft logic (PSL), a
probabilistic programming language with a first-order logical syntax. PSL is a probabilistic
programming language for defining hinge-loss Markov random fields (Bach et al. 2015) that
has been used in various domains, including bioinformatics (Fakhraei et al. 2014; Sridhar et al.
2016), knowledge graphidentification (Pujaraetal. 2013), recommender systems (Kouki et al.
2015), natural language processing (Beltagy et al. 2014; Deng and Wiebe 2015; Ebrahimi
et al. 2016), information extraction (Liu et al. 2016), information retrieval (Alshukaili et al.
2016), and social network analysis (Huang et al. 2013; West et al. 2014), among many others.

Multiple interpretations of PSL semantics are possible. In this paper, we use the
Lukasiewicz logic (Klir and Yuan 1995) interpretation, because soft degrees of truth nat-
urally complement soft quantifiers. We also focus on the subset of PSL syntax relevant to
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our approach. See Bach et al. (2015) for a full explanation of PSL syntax, semantics, and
possible interpretations.
We start by defining atoms.

Definition 1 An atom is an expression of the form p(ay, az, ..., a,) where p is a predicate
symbol, and each argumentay, az, . . ., a, is either a constant or a variable. The finite set of all
possible substitutions of a variable to a constant for a particular variable g; is called its domain
Dy, . Ifall variablesin p(ai, a2, . .., a,) are substituted by some constant from their respective
domain, then we call the resulting atom a ground atom. We call —p(a,az,...,a,) a
negated atom which is the negation of p(ay, az, ..., a,).

Under the FLukasiewicz logic interpretation, PSL atoms represent soft degrees of truth.

Definition 2 An interpretation / is a mapping that associates a truth value I (p) € [0, 1]
to each ground atom p.

For example, I(Knows(Alice, Bob)) = 0.7 indicates that Alice knows Bob to degree 0.7.
We next define programs and rules.

Definition 3 A PSL program is a collection of PSL rules. A PSL rule r is an expression
of the form:

MM:ThyANTOAN...ANTy - H VHy V...V H (1)
where Ty, T», ..., Ty, Hy, Ha, ..., H; are atoms or negated atoms and », € RT Uoo is the weight
of therule r. We call Ty AT) A... ATy the body of 7 (rpoay), and Hy v Hy v ... v H; the head of
r (Fheaq)- Grounding a PSL rule r means instantiating all the variables with constants from
their domains.

Rules 1-9 in Table 1 and rules 1—4 in Table 7 are examples of PSL programs. Conjunction
A is interpreted by the Lukasiewicz t-norm, disjunction V by the Lukasiewicz t-conorm, and
negation — by the Lukasiewicz negator.

Qeﬁnition 4 The Lukasiewicz t-norm (A) and the corresponding t-conorm (V) and negator
(—) are defined as follows. For m,n € [0, 1] we have mAn = max(0,m +n — 1), mVn =

min(m +n, 1) and =m = 1 — m.

The " indicates the relaxation over Boolean values. Using Definition 4, we can extend the
interpretation of atoms to more complex formulas in Lukasiewicz logic.

Definition 5 Given an interpretation /, and p; and p, ground atoms, we have I(p; A py) =
I(p1) A(p2). I(p1 vV p2) = 1(p1) V I(pz) and I (= py) = = I(py).

Remark 1 In Lukasiewicz logic, the expression B— H where — is implication, is logically
equivalent to =B\ H, thus the interpretation of a grounded PSL rule r is as follows:

I(r) = I(Vbody — Thead) = ;‘I(Vbody)gl(rhead) )

Example 1 Consider the grounded PSL rule Knows(Alice, Bob) — Trusts(Alice, Bob), and
suppose I(Knows(Alice, Bob)) = 0.5 and I(Trusts(Alice, Bob)) = 0.4. Then I(rpoqy) = 0.5,
I (rpeaq) = 0.4 and 1(r) = 0.9, i.e. rule r is satisfied to degree 0.9 under interpretation /.

The probability of truth value assignments in PSL is determined by the rules’ distance to
satisfaction.
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Definition 6 The distance to satisfaction d, (1) of a rule r under an interpretation / is defined
as:

dr (1) = max{0, I (rpody) — I (rhead)} 3)

By using Remark 1, one can show that a rule r is fully satisfied, i.e. satisfied to degree 1,
when the truth value of its head is at least as high as the truth value of its body. Thus, the
closer the interpretation of a grounded rule is to 1, the smaller its distance to satisfaction.

Remark 2 The distance to satisfaction of a PSL rule is equivalent to its negated interpretation:
dr(I) = =1 (r).

Example 2 Consider the example PSL rule in Example 1. Let’s assume that we know
I (Knows(Alice, Bob)) = 0.7 then to satisty the rule, I (Trusts(Alice, Bob)) > 0.7.

If Trusts(Alice,Bob) is true to 0.5, then the rule is satisfied to degree 1 — 0.7+ 0.5 = 0.8.
Consider the rule r in Example 1: d,(I) = 0.1, which is equal to =/(r) = 1 -0.9 = 0.1. If
I (Trusts(Alice, Bob)) = 0.6, then the rule is satisfied (to degree 1) and the distance to satisfaction
is 0.

A PSL program, i.e., a set of PSL rules, induces a distribution over interpretations /. Let
R be the set of all grounded rules, then the probability density function is:

1
f) = —exp [— Zxr(dr(l))f’} “
reR
Z= f exp [— Zxr(dr(lw} ®)
1 rer

where A, is the weight of rule r, Z is a normalization constant, and p € {1, 2} provides a choice
of two different loss functions, p = 1 (i.e., linear) favors interpretations that completely
satisfy one rule at the expense of higher distance from satisfaction for conflicting rules,
and p = 2 favors interpretations that satisfy all rules to some degree (i.e, quadratic). These
probabilistic models are instances of hinge-loss Markov random fields (HL-MRF). For further
explanation we refer to Bach et al. (2015).

Inference in PSL is performed by finding the most probable explanation (MPE) over a
set of given evidence, which is equivalent to maximizing the density function in Eq. 4. For
example, in a trust propagation application, given a set of trust relations between users, the
goal of MPE inference is to infer the trust degree between all users. Later in this paper we
discuss the inference phase in PSL in more detail.

3 PSL2: PSL with soft quantifiers

The statement that most of Bob’s friends are smokers is expressed in PSL2 with the quan-
tifier expression Most(T, Friend(T, Bob), Smokes(T)). The general form of such quantifier
expressions is Q(V, Fi[V], F»[V]), in which Q denotes a soft quantifier, V denotes the variable
over which the quantification ranges, and F;[V] and F,[V] are formulas containing V. These
formulas can be atoms as well as negations, conjunctions or disjunctions of formulas.

Definition 7 A quantifier expression is an expression of the form

oW, FilV], 2[VD 6
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where Q is a soft quantifier, and Fi[V] and F,[V] are formulas containing a variable V. A
grounded quantifier expression is obtained by instantiating all variables with constants
from their domains except for V.

Example 3 Consider the two formulas Knows(X,T) and Trust(X,T), then Most(T,
Knows(X, T), Trusts(X, T)) is a quantifier expression. By substituting X with Alice, we obtain
the grounded quantifier expression Most (T, Knows(Alice, T), — Trusts(Alice, T)) which can be
read as “Alice trusts most of the people she knows”.

Definition 8 A PSL program is a collection of PSL rules. A PSL rule has the same
form as a PSL rule defined in Eq. 1 except that 71, 75, . . ., T} are either atoms, negated atoms
or quantifier expressions. Grounding a PSL? rule means instantiating all the variables
with constants from their domain except for all the variables V in quantifier expressions
oWV, FilV], B2[VD.

Rules 10-14 in Table 2 and rules 58 in Table 8 are examples of PSL 2 rules with quantifier
expressions.

Analogously to how the interpretation of rules in PSL relies on operations from
Pukasiewicz logic (see Definition 4), the interpretation of quantifier expressions in PSLZ
relies on quantifier mappings.

Definition 9 A quantifier mapping O isa[0, 1] — [0, 1] mapping. If Q is non-decreasing
and satisfies the boundary conditions Q(0) = 0 and Q(1) = 1, it is called a coherent
quantifier mapping (Delgado et al. 2000).

We assume that for every soft quantifier Q an appropriate quantifier mapping Q can be
defined, i.e. a function that represents the meaning of Q.

Using two thresholds « € [0, 1] and B8 € [0, 1], where < B, the following equation
defines a parametrized family of such quantifier mappings:

0 ifx <«
Olap)(x) = g:g ifa<x<§B @)
1 ifx>p

Figure 1 depicts a possible coherent quantifier mapping for the soft quantifier “a few” as
Orew = 0[0.1,0.47 and for the soft quantifier “most” as Qyro5r = 010.25.0.75)- Note how Q .,y is
more relaxed than Qy,,,. For example, using these mappings, the statement “a few friends
of Bob smoke” is true to degree 1 as soon as 40% of Bob’s friends are smokers, while 75%
of Bob’s friends are required to be smokers for the statement “most friends of Bob smoke”
to be fully true. The evaluation section contains a detailed analysis on the effect of the choice
of the thresholds « and S on the results obtained with MPE inference.

Aninteresting observation is that in practice friendship is not necessarily a black-and-white
matter, i.e., people can be friends to varying degrees. For instance, I (Frie— nd(Bob, Alice)) = 1
and I (Friend(Bob, Chris)) = 0.2 denote that under interpretation 7, Alice is a very close friend
of Bob, while Chris is a more distant friend. Similarly, Chris might be a heavy smoker, while
Alice might be only a light smoker. All these degrees can and should be taken into account
when computing the truth degree of statements such as “a few friends of Bob smoke” and
“most friends of Bob smoke” (Zadeh 1983).

Remark 3 Zadeh (1983) suggested to calculate the truth value of “Q A’s are Bs”, with A :
X — [0,1]and B : X — [0, 1] fuzzy sets, as:
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Fig. 1 Examples of quantifier T T T T
mappings 1F- ~
: > -
050y &f . -
K S
i O ) Q,I
03 (- : ,:tl ; ~
0 J.I | 1
0 0.1 0.25 0.4 0.75 1
- (|ANB|
o ®)
|A]
where A N B is a fuzzy set defined as:
ANB:X —[0,1]:x — A(X)AB(x) 9)

Remark 4 The cardinality of a fuzzy set S : X — [0, 1] is defined as:
NEDIIES (10)
xeX

Definition 10 For a given interpretation 7, the interpretation of a grounded quantifier expres-
sion Q(V, Fi[V], F»[V)) is defined as

~ [ Xxepy, [F1() AL (F2(x))
1 V, F1[V], F2[V])) =
(Q(V, F1[V], /2[V]) Q( S IR

with Q a quantifier mapping modelling Q.

Example 4 Let’s consider an interpretation / in a sample trust network as shown in Fig. 2.
Nodes represent users and each edge represents the trust relation between two users.
Since a trust relation is asymmetric, the direction of the trust relation is shown with an
arrow. The degree of the trust links are shown with a value under/above the links, e.g.,
I(Trusts(Alice, Ann)) = 0.9.

To calculate I (Most(X, Trusts(Alice, X), Trusts(X, Bob))), i.e. the degree to which most
trustees of Alice trust Bob under the interpretation / shown in Fig. 2, we calculate

Fig. 2 Sample trust network

1.0 1.0
between five users 1.0
% 1.0
0.9 0.9
. 0.8

Ann —> Bob

Alice
0.3

Danny 0.6
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> cep{(Trusts(Alice, x))A I(Trusts(x, Bob))) = 1.3 and )", . p I(Trusts(Alice, x)) = 3.2 so 0 (%) ~
0(0.41). By using the quantifier expression mapping of “most” in Fig. 1 we obtain
Q[0_25,0.75](0.41) = 0.32. Thus, I(Most(X, Trusts(Alice, X), Trusts(X, Bob))) states that “most
trustees of Alice trust Bob” to degree 0.32.

4 Inference and weight learning in PSL ¢

Expressing soft quantifiers pushes beyond the capabilities of inference and weight learning
methods in PSL. In this section, we introduce new methods for inference based on the most
probable explanation inference method (MPE inference) and weight learning with maximum-
likelihood estimation (MLE) in PSL€.

4.1 Inference

The goal of MPE “most probable explanation” inference is to find the most probable truth
assignments /s pr of unknown ground atoms given the evidence which is defined by the
interpretation /. Let X be all the evidence, i.e., X is the set of ground atoms such that
Vx € X, I(x) is known, and let Y be the set of ground atoms such that Vy € ¥, I(y) is unknown.
Then we have

Iupp(Y) = argrln(%?)iP(l(Y)ll(X)) (11)

and by Eq. 4 it follows that the goal of optimization is to minimize the weighted sum of the
distances to satisfaction of all rules.

Remark 5 Suppose we want to optimize a f : [0, 1]" — [0, 1] function consisting of
applications of only piecewise linear functions, fractions of piecewise linear functions, min :
[0, 11> — [0, 1] and max : [0, 1]> — [0, 1]. We can transform such an optimization problem
as follows. For every expression of the form min(¢, ), we introduce a variable vmin(g,y) and
add the constraints 0 < ¢, ¥, Uming,y) < 1, Uminp,y) < @ and vming,y) < V. Similarly,
for every expression of the form max(¢, ¥), we introduce a variable vmax(p,y) and add the
constraints: 0 < @, ¥, Vmax(¢,y) < L, Umax(g,y) = @, and vmax(g,y) = V.

Define the function g as the original function f but all minima and maxima are replaced
by their corresponding variables. Optimizing f is then equivalent to optimizing g under these
constraints.

Proposition 1 MPE inference for a PSL program is equivalent to solving a linear optimiza-
tion problem.

Proof The goal of optimization in PSL is to minimize the weighted sum of the distances to
satisfaction of all rules, therefore we have:

InpE(Y) = arg max — > A (dr(I(X, Y))) (12)
rer

By the particular piecewise linear form of d, (1) (see Definition 6) and Remark 5, finding
an MPE assignment is a linear optimization problem, which is solvable in polynomial time.
Note that we consider the linear form which is p = 1 in Eq. 4 throughout this section.
However, PSL supports p = 2 where finding an MPE assignment is a convex optimization
problem, which is solvable in polynomial time.

PSL also supports aggregates, i.e., random variables with values determined by other
variables. To preserve convexity, however, standard PSL only supports linear aggregates. O
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Definition 11 An aggregate is a [0, 1] — [0, 1] mapping. If it is a linear mapping, it is called
a linear aggregate, otherwise it is called a non-linear aggregate.

As an example, f: [0, 1]" — [0,1]: (#1, ..., th) — W is a linear aggregate. A PSLY
program allows expressions that contain quantifier expressions. Since the interpretation of a
grounded quantifier expression (See Definition 10) is based on a non-linear aggregate, finding
a MPE assignment of a PSL program with quantifier expressions is beyond the capabilities
of the standard PSL MPE-solver. To deal with this, we will first categorize different types of
grounded quantifier expressions, given the interpretation / denoting the evidence.

Definition 12 A grounded quantifier expression Q(V, F[V], F»[V]), where for every s € Dy,
it holds that all ground atoms in the formulas Fi[s] and F»[s] are in X, is called a fully
observed grounded quantifier expression (FOQE).

For instance, in a social network where the age and the friends of all users are known,
by grounding Most(B, Friend(A, B), Young(B)), we obtain FOQEs. Note that for a FOQE
Q(V, Fi[V], F»[V]), we have that 1(Q(V, F;[V], F>[V])) is a known value in [0, 1].

Proposition 2 MPE inference for a PSL2 program with grounded quantifier expressions
limited to type FOQE is equivalent to solving a linear optimization problem.

Proof By replacing all the FOQEs in the program with new variables, where the value of
these variables are known and are in [0, 1], there is no difference between MPE inference for
a PSL? program without any quantifier expressions and for a PSL program with grounded
quantifier expressions of type FOQE. The only difference is the processing time needed to
calculate the value of each quantifier expressions, which is O (| X|). O

Definition 13 A grounded quantifier expression Q(V, F[V], F[V]), where for every s € Dy,
it holds that all ground atoms in the formula F[s] are in X and there exists ¢+ € Dy such that at
least one ground atom in the formula F,[¢] is in Y, is called a partially observed grounded
quantifier expression of type one (POQE").

Suppose all friendship relations are known and the goal is to infer the age of all users
based on the age of some, then by grounding Most(B, Friend(A, B), Young(B)), we obtain
POQE(s. By grounding the rules 58 in Table 8, we obtain examples of POQE"s. Note
that for a POQE"") Q(Vv, Fi[V1, F2[V1), we have that 1(Q(V, F{[V], F2[V])) = O(f(Y)) where f
is a piecewise linear function in variables belonging to Y.

Definition 14 A grounded quantifier expression Q(V, Fi[V], F»[V]), for which there exists
t € Dy such that at least one ground atom in the formula Fy[7] is in Y, is called a partially
observed grounded quantifier expression of type two (POQE®).

Note that for a POQE® oV, F{[V], F2[V]), we have that 1(Q(V, F1[V], F[V]) = O(f(Y))
where f is a fraction of piecewise linear functions in variables belonging to Y. In link
prediction applications, such as trust link prediction, we mostly deal with POQE®s. By
grounding the rules 10-14 in Table 2 using unknown trust relations, we obtain complex
examples of POQE®s.

In the following proposition we give an equivalent definition for the membership function
in Eq. 7. By applying Remark 5 we will then be able to show that a PSL? program can be
transformed to an optimization program with an objective function that is a weighted sum of
linear and fractional linear functions.
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Proposition 3 The membership-function defined in Eq. 7 where o € [0, 1], B € [0, 1], and
o < B can be rewritten as:

Ola.p1(x) = max (0, ;%Z) + min (;:Zl> - ;:Z (13)
Proof By checking the boundary conditions x < o, @ < x <  and x > B, one can show
that Eq. 13 is equivalent to Eq. 7. O

Proposition 4 MPE inference for a PSLC program with grounded quantifier expressions
limited to type FOQE and POQEW is equivalent to solving a linear optimization problem.

Proof A grounded quantifier expression Q(V, Fi[V], F»[V]) of type POQE(” is of the form:

o > ven, Max(0, Cx + I (Fy(x)) — 1)
ZXEDV Cx

where C, is the outcome of calculating the value of the grounded formula F; (x), i.e., Cx =
I(F1(x)). Since all ground atoms in the formula F; (x) are in X, Cy is a constant value in [0, 1].

Let’s assume A = % and y = ﬁ%a Both A and y are constant values. By using

C.
xeDy ~X
Proposition 3 the POQE! is converted to:

=max |0,y X A X Z max(0,Cy + I(Fa(x)) — 1)) | —«

xeDy

4+ min | y X A X Zmax(O,Cx—i—I(Fz(x))—l)) —al,l1

xeDy

—y x [ [ A x Y] max(0. C + I(F2(x) = 1) | —«

xeDy

By using Remark 5, we first introduce new variables for all the inner expressions of the
form max(0, Cx + I (F>(x)) — 1)) and replace them by their corresponding variables. Then we
introduce new variables for the two outer maxima and minima expressions and replace them
with their corresponding variables. As a result, each grounded quantifier expression of type
POQEWY is replaced with a linear expression and a set of linear constraints. MPE inference
for the PSLY program limited to quantifier expressions of type FOQE and POQE(! is then
equivalent to minimizing a linear function under a set of linear constraints coming from
replacing the minima and maxima in calculating the distance to satisfaction of grounded
rules. O

MPE inference for a PSL? program with grounded quantifier expressions of type POQE?®
is solved with a sequence of linear optimization problems. Note that this is only a worst
case scenario: if the grounded PSLZ program has no POQE®s then we obtain a linear
program. In the presence of POQE®s, we use a transformation similar to the approach of
Isbell and Marlow (1956) to replace a linear fractional program (LFP) by a set of linear
programs by establishing a convergent iterative process. The linear program at each iteration
is determined by optimization of the linear program at the previous iteration. Note that
our PSL? program with grounded quantifier expressions of type POQE® has an objective
function that is a weighted sum linear and fractional linear functions, and is subject to linear
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equality and inequality constraints. Transformations of a LFP to a LP such as Charnes/Cooper
transformation (Charnes and Cooper 1962) are not suitable for our problem domain.

Algorithm 1 Iterative MPE inference in PSL2

Require: pSL? program P, evidence variables X and random variables Y
I:R<0

2: 10(y) <0

3: fori:=1tokdo

4: forr e Pdo

5 Rg < ground(r)

6 for rg € Ry do

7 for every Q of type POQE® in rg do
8 1(0) < QU X)) U I (¥))

9 end for

10 dr,(I) < 1 =1(rg)

11: if not drg (I) = 0 then

12: R < RUrg
13

14

15

16

17

18

end if
end for
end for
f(I) < generate(R)
G(I) < transform(f (1))
. 1D(Y) < optimize(G (1))
19: end for

The algorithm we propose for MPE inference (Algorithm 1) starts by initializing the set
of all grounded rules (i.e., R) to an empty set and all random variables to zero (i.e., line 2).
Then, an iterative process starts by grounding all rules in the PSLC program (i.e., line 3-5).
For every grounded quantifier expression Q of type POQE?, the value of Q is initialized
by calculating the value over the known values (7 (X)) and the current setting of the unknown
values (1 (v)). In the algorithm, we use the notation Q (I (X) U I'~1(Y)) to denote this new
interpretation of Q atiterationi (i.e., line 7-9). For each rule r, we then calculate the distance
to satisfaction (i.e., line 10). Note that / (rg) and hence also dy, (1) can be piecewise linear
functions in Y, but here d;, (1) does not contain fractions of piecewise linear functions since
we calculate values for the POQE(Q)S. Next, we exclude the satisfied grounded rules (i.e., we
exclude rules r¢ such that dry (1) = 0) from the optimization since their values will not change
the optimization task (i.e., line 11-13). For the optimization task, f (/) (Eq. 4) is calculated
using the distance to satisfaction of all grounded rules (i.e., line 16). Since f (/) does not
contain fractions of piecewise linear functions, it can be transformed to a linear program (i.e.,
line 17). Finally, the inner optimization in PSL2 is solved with PSL’s scalable, parallelizable
message-passing inference algorithm (Bach et al. 2013) (i.e., line 18). In each iteration, the
values of the Os get updated by the most probable assignment of random variables in the
previous iteration (1(x) U 1¢=D(¥)) (i.e., line 8). This process is iteratively repeated for a
fixed number of times (i.e., k).

Note that by considering the quadratic form which is p = 2 in Eq. 4, MPE inference for
a PSL? program with grounded quantifier expressions of type FOQE is similar to the MPE
inference in a PSL program. However, MPE inference for a PSLZ program with grounded
quantifier expressions of either type POQE(" or type POQE® is based on our proposed
iterative MPE algorithm. The inner optimization in PSL? of the quadratic form is solved
with PSL’s inference algorithm (Bach et al. 2013) with squared hinge-loss functions.
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4.2 Weight learning

The goal of weight learning based on maximum likelihood estimation (MLE) is to maximize
the log likelihood of the rules’ weight based on the training data in Eq. 4. Hence, the partial
derivatives of log likelihood with respect to A; of rule r; € R are

~ Slog(f(1) _

o Ep| > @) | = > e (1)” (14)

reRgi reRgi

with Ej the expected value under the distribution defined by A, and Ry is the set of grounded
rules of rule ;. The optimization is based on the voted perception algorithm (Collins 2002),
in which approximation is done by taking fixed-length steps in the direction of gradient and
averaging the points after all steps; out of the scope steps are projected back into the feasible
region. To make the approximation tractable, a MPE approximation is used that replaces
the expectation in the gradient with the corresponding values in the MPE state. We use our
proposed MPE approach for transforming POQE"s and POQE®'s in our MLE algorithm.
We omit the pseudocode of the MLE algorithm for a PSLZ program to save space.

To investigate the effects of using soft quantifiers on real-world applications, we explore
two applications. The first application is a link prediction task in which we have grounded
quantifier expressions of type POQE and test our iterative MPE inference in Sect. 5. The
second application is a node labeling application in which we apply our transformed MPE
inference using grounded quantifier expressions of type POQE(! in Sect. 6.

5 Link prediction: social trust link prediction

Studies have shown that people tend to rely more on recommendations from people they trust
than on online recommender systems which generate recommendations based on anonymous
people similar to them. This observation has generated a rising interest in trust-enhanced rec-
ommendation systems (Victor et al. 2011). The recommendations generated by these systems
are based on an (online) trust network, in which members of the community express whether
they trust or distrust each other. In practice these networks are sparse because most people
are connected to relatively few others. Trust-enhanced recommendation systems therefore
rely on link prediction.

InHuangetal. (2013), trust relations between social media users are modeled and predicted
using a PSL program based on the structural balance theory (Heider 1958). Structural balance
theory implies the transitivity of a relation between users. Based on this theory, users are more
prone to trust their neighbors in the network rather than unknown other users. Bach et al.
(2013)! evaluated the PSL program based on the structural balance theory on data from
Epinions,2 an online consumer review site in which users can indicate whether they trust
or distrust each other. Throughout this section, we will use the same sample of Epinions
(Leskovec et al. 2010). The sample dataset includes 2000 users with 8675 relations, namely
7974 trust relations and only 701 distrust relations.

We perform eightfold cross-validation and to evaluate the results, we use three metrics,
AUC: the area under the receiver operating characteristic curve, PR+: the area under the
precision-recall curves for trust relations, and PR—: the area under the precision-recall curves

I Source code available at http://psl.lings.org/.

2 www.epinions.com.
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Table 1 PSL rules for social trust link prediction

Transitive rules

R#1 Knows(A, B) A Trusts(A, B) A Knows(B, C) A Trusts(B, C) A Knows(A, C) —
Trusts(A, C)

R#2 Knows(A, B) A =Trusts(A, B) A Knows(B, C) A Trusts(B, C) A Knows(A, C) —
—Trusts(A, C)

R#3 Knows(A, B) A Trusts(A, B) A Knows(B, C) A =Trusts(B, C) A Knows(A, C) —
—Trusts(A, C)

R#4 Knows (A, B) A =~Trusts(A, B) A Knows(B, C) A —~Trusts(B, C) A Knows(A, C) —

Trusts(A, C)

Cyclic rule

s Knows(A, B)ATrusts(A, ByAKnows(B, C)ATrusts(B, C)AKnows(C, A) — Trusts(C, A)
Complementary rules

R#6 Knows(A, B) A Knows(B, A) A Trusts(B, A) — Trusts(A, B)

R#7 Knows (A, B) A Knows(B, A) A =Trusts(B, A) — —Trusts(A, B)

R#8 Knows(A, B) N Average({Trusts}) — Trusts(A, B)

R#9 Knows(A, B) A Trusts(A, B) — Average({Trusts})

for distrust relations. In each fold, we first learn the weights of the rules based on 7/8 of the
trust network and then apply the learned model on the remaining 1/8 to infer the trust/distrust
relations. Bach et al. used the program of Huang et al. (2013) which is composed of twenty
PSL rules in order to predict the degree of trust between two individuals. Sixteen rules from
these rules encode possible stable triangular structures involving the two individuals and a
third one. For example, an individual is likely to trust people his or her friends trust. The
program of Huang et al. (2013) is used to predict unobserved truth-values of Trusts(A, B) for
pairs of individuals. The results of this program are shown in the first line in Table 3.

In this paper, we propose a program based on 4 transitive rules (rules 1-4 in Table 1) and
one rule which models the cyclic relation between 3 users (rule 5 in Table 1). Rules 6-9
in Table 1 are complementary rules for which we refer to Huang et al. (2013) for further
explanation. The atom Average({Trusts}) inrules 8 and 9 is a constant which refers to the
global average value of observed trust scores. This atom is useful for the disconnected parts
of the trust network without any known trust relation. These four rules are also used in the
PSL program of Bach et al. (2013).

To investigate whether we can improve the accuracy of the predictions by introducing
rules with soft quantifier expressions, we construct PSLZ rules based on a triad relation over
a set of users instead of a third party (rules 10-14) in Table 2. The full PSL€ program then
consists of all rules displayed in Tables 1 and 2 .

We examine what happens when changing the thresholds for the quantifier mappings 0
(Eq. 7). We have investigated ten different quantifier mappings by changing the values of
« and g by steps of 0.25. In this way, we obtain ten different PSLC programs. For every
program, we applied Algorithm 1 for all k¥ € {1,2,..., 10}. Note that for k = 1, since our
PSL? program only contains quantifier expressions of type POQE?, the output of the MPE
inference is equivalent to the output generated by a PSL2 program with only FOQEs by
ignoring the unknown values. Figure 3 presents changes of the three metrics of these ten
PSL? programs with different quantifier mappings. All ten PSLC programs outperform the
PSL program (shown with a line) in all iterations and in all three metrics, except for the
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Table 2 PSLZ rules for social trust link prediction

Transitive rules using soft quantifier

R#10 Q(X, Knows (A, X) A Trusts(A, X), Knows(X, C) A Trusts(X, C)) A Knows(A, C) —
Trusts(A, C)

R#11 Q(X, Knows(A, X) A—Trusts(A, X), Knows(X, C) ATrusts(X, C)) AKnows(A, C) —
—Trusts(A, C)

R#12 Q(X, Knows(A, X) ATrusts(A, X), Knows(X, C) A—=Trusts(X, C)) AKnows(A, C) —

—Trusts(A, C)
R#13
Q(X, Knows (A, X)A—Trusts(A, X), Knows(X, C)A—Trusts(X, C)) AKnows(A, C) —
Trusts(A, C)
Cyclic rules using soft quantifier
R#14 Q(X, Knows(A, X) A Trusts(A, X), Knows(X, C) A Trusts(X, C)) A Knows(C, A) —
Trusts(C, A)

0.9795 — 047 0.826
0.824 3
0.465
0.822
0.46 082}
+ , 1)
¥ o978 1 & 0455 {30818}
0816}
09775 | 1 o4s)
0814}
0.977 0.445 - 0812}
0785534 5 6 7 8 910 °Mi 55 456 7 690 0¥ 33 45 6 7 8 910
Iteratlon Iteration Iteration
QOO —— Q2505 —w— Q51 —A— Q025 —— Q2505 —w— Q51 —A— QU025 —— Q02505 —w— Q51 —a—
Q(QD5)+ 0(025075]+ Q(0.75,1) —— Q(0,0.5) —»— Q(025075)+ Q(0.75,1) —o— (005)4»1— G(U25075)+ Q(0.75,1) —o—
mrahs wr  (msdir ey [(EEiE e
5 005075 —a 0.1 5 005075 —a W5 o avs0rs —a-

(a) (b) (c)

Fig. 3 a PR+, b PR—, and ¢ AUC when changing « and $8 in the quantifier mapping O

Table 3 Values with a x are statistically significant with a rejection threshold of 0.05 and values in bold are
statistically significant with a rejection threshold of 0.1 using a paired ¢ test w.r.t. the PSL program (Bach et al.
2013; Huang et al. 2013)

Method PR+ PR— AUC
PSL (Bach et al. 2013; Huang et al. 2013) 0.977 0.446 0.812

PSL (00,025 (k = 1) 0.979* 0.467* 0.825*
PSLY (Q(0,0.25))- (k = 10) 0.979* 0.463 0.824

Distrust prediction is more challenging than trust prediction (i.e., PR— values are overall lower than PR+
values) because of the unbalanced nature of the data (7974 trust vs. 701 distrust relations)

PSL? program with Qg 75.1; in PR— after the first two iterations. An explanation for this is
the fact that people trust/distrust a third party as soon as a few/some of their trusted/distrusted
friends trust/distrust that person and not most of them, i.e., more than 75%. Interestingly,
by decreasing both o and B values, results get better. The program with the best predicting
scores is PSLC with Q[o,o,gsl as a quantifier mapping representing “a few” (see Table 3).
Figure 4 presents the convergence curve of the 8 PSLZ programs with quantifier mapping
Q[o,o.zs] based on eightfold for 50 iterations during training. At each iteration k, all the
grounded rules in the PSL program are generated and then the weighted sum of distance to
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Fig. 4 Visualizing the weighted sum of the distance to satisfaction of grounded rules for eightfold in 50
iterations of MPE inference for social trust PSL2 program
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Fig. 5 Learned values of the weight of the 14 rules of the PSLY program

satisfaction of all grounded rules is calculated. As shown in Fig. 4, MPE inference converges
for all eightfold. After k = 10 the variation rate in the outcome of calculating the weighted
sum of distance to satisfaction value is very low. Note that the range of the weighted sum of
the distance to satisfaction of each fold is different from each other because the program is
completely different.

Figure 5 emphasizes the importance of the PSL? rules with quantifier expressions (rules
10-14) after the weight learning phase. Bars represent average and error bars represent
minimum and maximum weights of the rules learned in eightfold for the PSL program with
quantifier mapping Q[o,o.zs]- These results show that using soft quantifiers not only improves
the accuracy of trust and distrust predictions but also that the rules containing soft quantifiers,
i.e. rules 10-14, play a major part in this by dominating all other rules in terms of weight. In
these experiments, we used one quantifier mapping for all the quantifiers in a PSLC program;
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Table 4 Details about the Netlog data sample

Data #Users #Female #Male #Young #Non-young

Core 3015 1,097 36% 1918 64% 1,501 50% 1514 50%
Public core 2241 697 31% 1544 69% 946 42% 1295 58%
Private core 765 399 52% 366 48% 553 2% 212 28%
Background 171,439 81,290  47% 90,149  53% 91,588 53% 79,860  47%
Sample 174,454 82387  47% 92,067 53% 93,000 53% 81,364  47%

The age groups Young and Non-young were created around a split threshold of 25

however it is possible to use different mapping functions for each quantifier expression in a
PSL? program, which is an interesting direction for future research.

Training and predicting with PSL takes little time. In our experiments, training each model
takes about a few minutes, while predicting takes under a second per trust/distrust relation.
For the case of the PSL2 program, training takes almost k times (i.e, number of iterations)
the time of training our baseline PSL program.

6 Node labeling: user profiling in social networks

Many applications benefit from reliable approaches of user profiling in social networks.
Such applications exist in various fields, from personalized advertising to reputation man-
agement (Dijkmans et al. 2015; Ha et al. 2015). In this section, we present and evaluate a
PSLZ program for inferring age and gender of social network users.

We collected user profiles from Netlog, an early social network that had over 90 million
users worldwide at its peak. By applying snowball sampling, and starting from one user,
we crawled the profiles of 3015 users, called the core users henceforth. Out of these 3015
profiles, 765 users (25%) have private profiles (the private core users) and 2241 (75%) have
public profiles (the public core users). Next we crawled the user profiles of all the friends of
the public core users, resulting in 171,439 additional profiles, referred to as the background
users. Note that we could not do the same for the private core users, as their friend lists are
not publicly accessible. We ended up with a sample network including 174,454 users and
277,191 friendship links. For all users in the sample, we extracted their age and gender, which
is publicly available for all users in Netlog. Table 4 describes detailed information regarding
the sample.>

The gender classes are fairly imbalanced among the core users (64% male vs. 36% female)
and even more so among the public core users (69% male vs. 31% female). The average age
of users in the overall sample is 29 years old, and the median is 25 years old. We choose the
threshold of being 25 years old to divide users into two age groups of Young and Non-young
users. The resulting age groups in the sample are uniform with 53% Young users and 47%
Non-young users. Interestingly, the majority of private core users (i.e., 72%) are Young users,
which indicates that Young users are more concerned about their privacy.

Table 5 includes a description of the social graph. Since we used snowball sampling, the
graph consists of a single connected component. The average degree of the public core users
is substantially higher than the average degree of users in the sample overall because for each

3 The Netlog dataset is available at: http://www.cwi.ugent.be/NetlogDataSet.html.
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Table 5 Description of the network properties of the Netlog sample graph

Attribute #Nodes Avg degree Min degree Max degree
All users 174,454 3 1 1183
Public core users 2241 125 1 480

Table 6 Analysis of users’ age

N,
and gender given their friends age pL.p2 gém ale Male
and gender clearly indicate the
age homoph.ily and gender P Female 25% 75%
heterophily in the graph Mal 61% 399
ale o o
Npi.p P2
Young Non-young
P1 Young 89% 11%
Non-young 37% 63%

public core user we purposely crawled and included all their friends, which we did not do
for the background users.

Given an interpretation /, and P; and P, predicate symbols such as Female, Male,
Young or Non-young, we explore the relation between the public core users age and gender
and the age and gender of their friends by calculating Np, p, as:

L [{v[P2(v) A (u,v) € E}|
ICp | [{vl(u, v) € E}

Np,.p, =

where IT = {u|u is a public core user}, Cp = {ulu € I1 A P(u)}, and E denoted the friend-
ship relations in the Netlog sample graph. The results are presented in Table 6 which gives a
firstinsight on how gender of users are structured within the Netlog network. Users’ behaviour
in Netlog is of the type gender heterophily, which indicates the tendency of users to connect
with the opposite gender, deriving from the particular usage of this social network site for
flirting and dating purposes. The age results in Table 6 on the other hand clearly indicate
that users have a strong tendency to connect within their same age group, i.e., age homophily
behaviour. These results are in line with the properties of the Netlog network in Farnadi et al.
(2015), and are apparent from Fig. 6 as well.

In the gender graph (Fig. 6), blue (i.e., male) and red (i.e., female) users are mostly
connected to the opposite color, while in the age graph (Fig. 6) there is a clear tendency of
connecting with the same color.

Below we present PSL and PSL€ programs to be used in scenarios where we only have the
age and gender of some users and our aim is to infer the age and gender of the remaining users
given the social relations between them. We perform tenfold cross validation by randomly
dividing the public core users in 10 parts. In each fold, one part is used for testing and the
other 9 parts are added to the background and private core users and used as the training set
for that fold.

We built a PSL program as shown in Table 7 based on our observation that the Netlog
network exhibits gender heterophily and age homophily property. For example, the first PSL
rule indicates that if two users are friends and one of them is female, it is more probable that the
other user is male. Since being female and being male is mutual exclusive, where Female(A) =
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(b)

Fig. 6 Visualizing the Netlog sample graph with Gephi (Bastian et al. 2009) using OpenOrd layout. Red
nodes represent female users and blue nodes represent male users in (a) and similarly, green nodes represent
Young users and orange nodes represent Non-young users in (b). a Gender graph. b Age graph

Table 7 PSL rules for user .
Gender heterophily rules

profiling
R#1 Friend(A, B) A Female(A) — —Female(B)
R#2 Friend(A, B) A —=Female(A) — Female(B)
Age homophily rules
R#3 Friend(A, B) A Young(A) — Young(B)
R#4 Friend(A, B) A —=Young(A) — —Young(B)

Table 8 PSL rules for user profiling

Gender heterophily rules using soft quantifier

R#5 Q(X, Friend(A, X), Female(X)) — —Female(A)

R#6 Q(X, Friend(A, X), ~Female(X)) — Female(A)
Age homophily rules using soft quantifier

R#7 Q(X, Friend(A, X), Young(X)) — Young(A)

R#8 Q(X, Friend(A, X), =Young(X)) — —Young(A)

—Male(A), we only need to consider one predicate for gender. For example, 7 (Female(X)) = 1
indicates that user X is Female and 7 (Female(X)) = 0 indicates that user X is male. Similarly,
we only consider one predicate for the age group. For example, I (Young(X)) = 1 indicates
that user X is young. Since friendship relations in Netlog are undirected and symmetric,
I(Friend(A, B)) = I(Friend(B, A)). To include both directions in the program, we populate
both friendship directions in our graph, which produces 554,374 friendship relations in our
dataset.

To examine the effects of using soft quantifiers, we built a PSLC program as shown in
Table 8. The first two rules express the intuition behind gender heterophily, meaning that if
most of A’s friends are female, then A is male (rule R#5), and that if most of A’s friends
are male, then A is female (rule R#6). Along those lines, rule R#7 and R#8 express age
homophily.
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Table 9 Result of age and gender prediction in Netlog

Method Gender prediction Age prediction

PR+ PR- AUC Accuracy PR+ PR— AUC Accuracy
Majority baseline 0 1 0.53 0.53 0 1 0.53 0.53
PSL 0.31 0.70 0.50 0.69 0.42 0.59 0.51 0.57
PSLZ( 010.0.25]) 0.63 0.88 0.80 0.80 0.64 0.79 0.76 0.79
PSLEZ( Q10.0.5]) 0.66 0.91 0.84 0.72 0.67 0.83 0.81 0.74

Values in bold are statistically significant with a rejection threshold of 0.01 using a paired ¢ test w.r.t. the PSL
program and majority baseline

We examine different quantifier mappings to find the best o and B values. We choose a
step of 0.25 to produce 10 different quantifier mappings and evaluate them based on PR—,
PR+, AUC and overall accuracy (i.e., the number of correct predictions made divided by the
total number of predictions made). As shown in Table 9, the best AUC scores are obtained
with the PSL? program with Q(0,0.5] as a quantifier mapping representing “most”. The pPSL?
program with Qjo,0.25] as a quantifier mapping, which indicates “a few”, gets the best overall
accuracy for both the age and the gender prediction task. Both PSL€ programs significantly
outperform their sibling PSL program and the majority baseline. The PSLC programs owe
their high performance to their local averaging behaviour for each user while the behaviour
of the PSL program is less local, and, for the PSL rules presented in this paper, approximates
global averaging behaviour.

7 Conclusion

In this paper, we have introduced PSLZ, the first SRL framework that supports reasoning
with soft quantifiers, such as “most” and “a few”. PSL€ is a powerful and expressive lan-
guage to model uncertain relational data in an intuitive way. Since this expressivity pushed
beyond the capabilities of existing PSL-MPE solvers, we have introduced and implemented
new inference and weight learning algorithms that can handle rules with soft quantifiers. We
have shown how the higher expressivity of PSLZ can lead to better results in practice by
extending an existing PSL program for link prediction in social trust networks with rules
that contain soft quantifiers. Similarly, we have presented results for both PSL and PSLZ
programs for user profiling in a social network. We have presented the effects of using dif-
ferent interpretations of soft quantifiers in both applications. As a next step, we want to
include an automatic way of learning the best interpretation for each quantifier expression
in a PSL2 program. Besides trust link prediction and user profiling, many other applications
could benefit from the use of soft quantifiers. Exploring the effects of using soft quantifiers in
PSL2 programs for various applications in different domains is therefore another promising
research direction. Furthermore, in addition to the approach of Zadeh that we have used in this
paper, other approaches for soft quantifiers have been proposed (Delgado et al. 2014), most
notably Yager’s OWA-operators (Yager 1988); we plan to investigate them in our future work.
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