
Entity Resolution: Tutorial

Lise Getoor

University of Maryland
College Park, MD

Ashwin Machanavajjhala
Duke University

Durham, NC

http://www.cs.umd.edu/~getoor/Tutorials/ER_ASONAM2012.pdf

What is Entity Resolution?

Problem of identifying and linking/grouping different
manifestations of the same real world object.

Examples of manifestations and objects:

• Different ways of addressing (names, email addresses, FaceBook
accounts) the same person in text.

• Web pages with differing descriptions of the same business.

• Different photos of the same object.

• …

What is Entity Resolution?

Ironically, Entity Resolution has many duplicate names

Doubles
Duplicate detection

Record linkage

Deduplication

Object identification

Object consolidation

Entity resolution
Entity clustering

Reference reconciliation

Reference matching
Householding

Household matching

Match

Fuzzy match

Approximate match

Merge/purge
Hardening soft databases

Identity uncertainty

Mixed and split citation problem

ER Motivating Examples

• Linking Census Records

• Public Health

• Web search

• Comparison shopping

• Counter-terrorism

• Spam detection

• Machine Reading

• …

before after

ER and Network Analysis

Motivation: Network Science

• Measuring the topology of the internet … using
traceroute

IP Aliasing Problem [Willinger et al. 2009]

IP Aliasing Problem [Willinger et al. 2009]

Traditional Challenges in ER

• Name/Attribute ambiguity

Thomas Cruise

Michael Jordan

Traditional Challenges in ER

• Name/Attribute ambiguity

• Errors due to data entry

Traditional Challenges in ER

• Name/Attribute ambiguity

• Errors due to data entry

• Missing Values

[Gill et al; Univ of Oxford 2003]

Traditional Challenges in ER

• Name/Attribute ambiguity

• Errors due to data entry

• Missing Values

• Changing Attributes

• Data formatting

• Abbreviations / Data Truncation

Big-Data ER Challenges

Big-Data ER Challenges
• Larger and more Datasets

– Need efficient parallel techniques

• More Heterogeneity

– Unstructured, Unclean and Incomplete data. Diverse data types.

– No longer just matching names with names, but Amazon profiles with
browsing history on Google and friends network in Facebook.

Big-Data ER Challenges
• Larger and more Datasets

– Need efficient parallel techniques

• More Heterogeneity

– Unstructured, Unclean and Incomplete data. Diverse data types.

• More linked

– Need to infer relationships in addition to “equality”

• Multi-Relational

– Deal with structure of entities (Are Walmart and Walmart Pharmacy
the same?)

• Multi-domain

– Customizable methods that span across domains

• Multiple applications (web search versus comparison shopping)

– Serve diverse application with different accuracy requirements

Outline

1. Classical Single Entity ER

2. Relational & MultiEntity ER

3. Efficiency: Blocking/Canopies

4. Challenges & Future Directions

CLASSICAL SINGLE ENTITY ER

PART 1

Outline

1. Classical Single Entity ER

a) Problem Statement

b) Data Preparation & Matching Features

c) Algorithms for Single-Entity ER

d) Canonicalization

2. Relational & MultiEntity ER

3. Efficiency: Blocking/Canopies

4. Challenges & Future Directions

ER PROBLEM STATEMENT

PART 1-a

Abstract Problem Statement

Real World Digital World

Records /
Mentions

Deduplication Problem Statement

• Cluster the records/mentions that correspond to same
entity

Deduplication Problem Statement

• Cluster the records/mentions that correspond to same
entity

– Intensional Variant: Compute cluster representative

Record Linkage Problem Statement

• Link records that match across databases

A
B

Reference Matching Problem

• Match noisy records to clean records in a reference table

Reference
Table

Notation & Assumptions

• R: set of records / mentions

• M: set of matches (record pairs that correspond to same entity)

• N: set of non-matches (record pairs corresponding to different entities)

• E: set of entities

• True (Mtrue, Ntrue, Etrue): according to real world
vs Predicted (Mpred, Npred, Epred): by algorithm

Relationship between Mtrue and Mpred

• Mtrue (SameAs , Equivalence)

• Mpred (Similar representations and similar attributes)

Mtrue
RxR Mpred

Metrics

• Pairwise metrics

– Precision/Recall, F1

– # of predicted matching pairs

• Cluster level metrics

– purity, completeness, complexity

– Precision/Recall/F1: Cluster-level, closest cluster, MUC, B3 ,
Rand Index

– Generalized merge distance [Menestrina et al, PVLDB10]

Typical Assumptions Made

• Each record/mention is associated with a single real
world entity.

• In record linkage, no duplicates in the same source

• If two records/mentions are identical, then they are true
matches

 (,) ε Mtrue

ER versus Classification

Finding matches vs non-matches is a classification problem

• Imbalanced: typically O(R) matches, O(R^2) non-matches

• Instances are pairs of records. Pairs are not IID

(,) ε Mtrue

(,) ε Mtrue

(,) ε Mtrue AND

ER vs Clustering

Computing entities from records is a clustering problem

• In typical clustering algorithms (k-means, LDA, etc.)
number of clusters is a constant or sub linear in R.

• In ER: number of clusters is linear in R, and average
cluster size is a constant. Significant fraction of clusters
are singletons.

DATA PREPARATION &
MATCH FEATURES

PART 1-b

Normalization

• Schema normalization

– Schema Matching – e.g., contact number and phone number

– Compound attributes – full address vs str,city,state,zip

– Nested attributes

• List of features in one dataset (air conditioning, parking) vs each feature a
boolean attribute

– Set valued attributes

• Set of phones vs primary/secondary phone

– Record segmentation from text

• Data normalization

– Often convert to all lower/all upper; remove whitespace

– detecting and correcting values that contain known typographical errors or
variations,

– expanding abbreviations and replacing them with standard forms; replacing
nicknames with their proper name forms

– Usually done based on dictionaries (e.g., commercial dictionaries, postal addresses,
etc.)

Matching Functions

• For two references x and y, compute a “comparison” vector,
typically similarity of each component attribute.

• Distance metric:
– Idempotent

– Non-negative

– Symmetric

– Triangle inequality

• Not all commonly used ER distance functions are metrics
– non-linear elastic matching (NEM)

• From distance, can convert to similarity:
– S = 1 / d, or if d is normalized, s = 1-d

Summary of Matching Functions

• Equality on a boolean predicate

• Edit distance

– Levenstein, Smith-Waterman, Affine

• Set similarity

– Jaccard, Dice

• Vector Based
– Cosine similarity, TFIDF

• Useful packages:

– SecondString, http://secondstring.sourceforge.net/

– Simmetrics: http://sourceforge.net/projects/simmetrics/

– LingPipe, http://alias-i.com/lingpipe/index.html

• Alignment-based or Two-tiered

– Jaro-Winkler, Soft-TFIDF, Monge-Elkan

• Phonetic Similarity

– Soundex

• Translation-based

• Numeric distance between values

• Domain-specific

Good for Names

Good for Text like
reviews/ tweets

Useful for
abbreviations,

alternate names.

Handle
Typographical errors

ALGORITHMS FOR SINGLE-ENTITY ER

PART 1-c

Matching Algorithms

• Pairwise Matching
– Given a vector of comparison scores,

Independently compute a (probability) score indicative of
whether a pair of records/mentions match.

• Record Linkage
– Each record from one database matches at most one record

from other database.

– Weighted k-partite matching

• Deduplication
– Transitivity constraints must be satisfied.

– Correlation Clustering

PAIRWISE MATCHING

Pairwise Match Score

Problem: Given a vector of component-wise similarities for a pair of
records (x,y), compute P(x and y match).

Solutions:

1. Weighted sum or average of component-wise similarity scores.
Threshold determines match or non-match.

– 0.5*Last-name-match-score + 0.2*address-match-score + 0.3*login-match-score.

– Hard to pick weights.
• Match on last name match more predictive than login name.

• Match on “Smith” less predictive than match on “Getoor”.

– Hard to tune a threshold.

Pairwise Match Score

Problem: Given a vector of component-wise similarities for a pair of
records (x,y), compute P(x and y match).

Solutions:

1. Weighted sum or average of component-wise similarity scores.
Threshold determines match or non-match.

2. Formulate rules about what constitutes a match.
– (Last-name-score > 0.7 AND address-match-score > 0.8)

OR (login-match-score > 0.9 AND address-match-score > 0.9)

– Manually formulating the right set of rules is hard.

ML Pairwise Approaches

• Supervised machine learning algorithms
– Decision trees

• [Cochinwala et al, IS01]

– Support vector machines
• [Bilenko & Mooney, KDD03]; [Christen, KDD08]

– Ensembles of classifiers
• [Chen et al., SIGMOD09]

– Conditional Random Fields (CRF)
• [Wellner & McCallum, NIPS04]

• Issues:
– Training set generation
– Imbalanced classes – many more negatives than positives (even after

eliminating obvious non-matches … using Blocking)
– Misclassification cost

Creating a Training Set is a key issue

• Constructing a training set is hard – since most pairs of
records are “easy non-matches”.

– 100 records from 100 cities.

– Only 106 pairs out of total 108 (1%) come from the same city

• Some pairs are hard to judge even by humans

– Inherently ambiguous
• E.g., Paris Hilton (person or business)

– Missing attributes
• Starbucks, Toronto vs Starbucks, Queen Street ,Toronto

Avoiding Training Set Generation

• Unsupervised / Semi-supervised Techniques

– Fellegi-Sunter Model
• [Newcombe et al Science ‘59, Fellegi & Sunter JASA 69,

 Winkler ‘06, Herzog et al ’07]

– Generative Models
• [Ravikumar & Cohen, UAI04]

Fellegi & Sunter Model

• r = (x,y) is record pair, is comparison vector, M matches, U
non-matches

• In the original work, is binary, 0/1, match/not match

• Decision rule

• Thresholds tu and tl determined by apriori bounds on false
matches and false non-matches

)|(

)|(

UrP

MrP
R

Match-Non

Match Potential

Match

rtR

rtRt

rtR

u

ul

u

Fellegi & Sunter Model

)|(

)|(

UrP

MrP
R

[Winkler 2006]

Computing Probabilities

• Typically make an independence assumption

• Agreement weight wi is calculated for each attribute i
based on m and u probabilities:

– mi = P(xi = yi | r M)

– ui = P(xi = yi | r U)

• Probabilities can be estimated using EM

– See [Winkler 2006] for a survey of techniques used in the US
Census.

Avoiding Training Set Generation

• Unsupervised / Semi-supervised Techniques

– Fellegi-Sunter Model
• [Newcombe Science ‘59, Fellegi & Sunter JASS 69,

 Winkler ‘99, Herzog et al ’07]

– Generative Models
• [Ravikumar & Cohen, UAI04]

• Active Learning

– Committee of Classifiers
• [Sarawagi et al KDD ’00, Tajeda et al IS ‘01]

– Provably optimizing precision/recall
• [Arasu et al SIGMOD ‘10, Bellare et al KDD ‘12]

Committee of Classifiers [Tejada et al, IS ‘01]

Active Learning with Provable Guarantees

• Most active learning techniques minimize 0-1 loss
[Beygelzimer et al NIPS 2010].

• However, ER is very imbalanced:
– Number of non-matches >> number of matches.

– Classifying all pairs as “non-matches” has low 0-1 loss.

• Hence, need active learning techniques that minimize
precision/recall.

Active Learning with Provable Guarantees

• Monotonicity of Precision [Arasu et al SIGMOD ‘10]

There is a larger fraction of
matches in C1 than in C2.

Algorithm searches for the
optimal classifier using binary

search on each dimension

Active Learning with Provable Guarantees

[Bellare et al KDD ‘12]

1. Precision Constrained Weighted 0-1 Loss Problem
(using a Lagrange Multiplier λ).

2. Given a fixed value for λ, weighted 0-1 Loss can be optimized by a balckbox
active learning classifier.

3. Right value of λ is computed by searching over all optimal classifiers.

– Classifiers are embedded in a 2-d plane (precision/recall)

– Search is along the convex hull of the embedded classifiers

O (log2 n) calls to a blackbox 0-1 loss active learning algorithm.

Exponentially smaller label complexity than [Arasu et al SIGMOD ‘10]

(in the worst case).

Open challenge

• Handling errors in human judgements:

– In an experiment on Amazon Mechanical Turk:
• Each pairwise judgment given to 5 different people

– Majority of workers agreed on truth on only 90% of pairwise
judgements.

Using pairwise ER

• ER applications need more than independent
classification of pairs of records as match/non-match.

• Record Linkage

• Deduplication

RECORD LINKAGE

1-1 assumption

• Matching between (almost) deduplicated databases.

• Each record in one database matches at most one record
in another database.

• Pairwise ER may match a record in one database with
more than one record in second database

Weighted K-Partite Matching

…
Weighted

 Edges
Weighted

 Edges

• Edges between pairs of records from different databases

• Edge weights

o Pairwise match score

o Log odds of matching

Weighted K-Partite Matching

…

• Find a matching (each record matches at most one other record
from other database) that maximize the sum of weights.

• General problem is NP-hard (3D matching)

• Successive bipartite matching is typically used. [Gupta & Sarawagi, VLDB

‘09]

DEDUPLICATION

Deduplication => Transitivity

• Often pairwise ER algorithm output “inconsistent” results
– (x, y) ε Mpred , (y,z) ε Mpred , but (y,z) ε Mpred

• Idea: Correct this by adding additional matches using transitive
closure

• In certain cases, this is a bad idea.
– Graphs resulting from pairwise ER have

diameter > 20
[Rastogi et al Corr‘12]

• Need clustering solutions that deal with this problem directly by
reasoning about records jointly.

Added by
Transitive

Closure

Clustering-based ER

• Resolution decisions are not made independently for
each pair of records

• Based on variety of clustering algorithms, but
– Number of clusters unknown aprioiri

– Many, many small (possibly singleton) clusters

• Often take a pair-wise similarity graph as input

• May require the construction of a cluster representative
or canonical entity

Clustering Methods for ER

• Hierarchical Clustering
– [Bilenko et al, ICDM 05]

• Nearest Neighbor based methods
– [Chaudhuri et al, ICDE 05]

• Correlation Clustering
– [Soon et al CL’01, Bansal et al ML’04, Ng et al ACL’02,

Ailon et al JACM’08, Elsner et al ACL’08, Elsner et al ILP-NLP’09]

Integer Linear Programming view of ER

• rxy ε {0,1}, rxy = 1 if records x and y are in the same cluster.

• w+
xy ε [0,1], cost of clustering x and y together

• w –
xy ε [0,1], cost of placing x and y in different clusters

Transitive
closure

Correlation Clustering

• Cluster mentions such that
total cost is minimized
Solid edges contribute w+

xy to the objective

Dashed edges contribute w –
xy to the objective

• Cost based on pairwise similarities

– Additive: w+

xy = pxy and w –
xy = (1-pxy)

– Logarithmic: w+
xy = log(pxy) and w –

xy = log(1-pxy)

4

3

2

5

1

Correlation Clustering

• Solving the ILP is NP-hard [Ailon et al 2008 JACM]

• A number of heuristics [Elsner et al 2009 ILP-NLP]

– Greedy BEST/FIRST/VOTE algorithms

– Greedy PIVOT algorithm (5-approximation)

– Local Search

Greedy Algorithms
Step 1: Permute the nodes according a random π

Step 2: Assign record x to the cluster that maximizes Quality
 Start a new cluster if Quality < 0

Quality:

• BEST: Cluster containing the closest match
– [Ng et al 2002 ACL]

• FIRST: Cluster contains the most recent vertex y with w+
xy > 0

– [Soon et al 2001 CL]

• VOTE: Assign to cluster that minimizes objective function.
– [Elsner et al 08 ACL]

Practical Note:

• Run the algorithm for many random permutations , and pick the clustering with
best objective value (better than average run)

Greedy with approximation guarantees

PIVOT Algorithm [Ailon et al 2008 JACM]

• Pick a random (pivot) record p.

• New cluster =

• π = {1,2,3,4} C = {{1,2,3,4}}

• π = {2,4,1,3} C = {{1,2}, {4}, {3}}

• π = {3,2,4,1} C = {{1,3}, {2}, {4}}

When weights are 0/1, E(cost(greedy)) < 3 OPT

 For w+
xy + w–

xy = 1, E(cost(greedy)) < 5 OPT

1

4

3

2

[Elsner et al, ILP-NLP ‘09] : Comparison of various correlation clustering algorithms

Summary of Single-Entity ER Algorithms

• Many algorithms for independent classification of pairs of records
as match/non-match
– ML based classification & Fellegi-Sunter

– Pro: Advanced state of the art

– Con: Building a training set is an open problem

– Active learning is becoming popular

• ER applications need more than pairwise classification
– Record linkage: each record matched to at most one record from other

database.

• Weighted K-Partite Matching

– Deduplication: transitivity requires clustering based algorithms.

• Correlation Clustering

CANONICALIZATION

PART 1-d

Canonicalization

• Merge information from duplicate mentions to construct
a cluster representative with maximal information

• Starbucks,
123 Queen St, Toronto
Ph: null

• Starbacks,
null, Toronto
Ph: 333-4444

Starbucks,
123 Queen St, Toronto
Ph: 333-4444

Canonicalization

• Critically important in Web portals where users must be
shown a consolidated view of the duplicate cluster.

– Each mention only contains a subset of the attributes.

– Mentions contain variations (of names, addresses).

– Some of the mentions can have wrong values.

Canonicalization Algorithms

• Rule based:

– For names: typically longest names are used.

– For set values attributes: UNION is used.

• For strings, [Culotta et al KDD07] learn an edit distance for finding the most
representative “centroid”.

• Can use “majority rule” to fix errors
(if 4 out of 5 say a business is closed, then business is closed).

– This may not always work due to copying [Dong et al VLDB09], or when underlying
data changes [Pal et al WWW11]

Canonicalization for Efficiency

• Stanford Entity Resolution Framework [Benjelloun VLDBJ09]

– Consider a blackbox match and merge function

– Match is a pairwise boolean operator

– Merge: construct canonical version of a matching pair

• Can minimize time to compute matches by interleaving matching
and merging
– esp., when match and merge functions

satisfy monotonicity properties.

r1 r2 r3 r4 r5

r12 r45

r345

Summary of Canonicalization

• Critically important in Web portals where users must be
shown a consolidated view of the duplicate cluster.

• Canonicalization can also help speed up ER in certain
cases.

RELATIONAL & MULTIENTITY ER

PART 2

Outline

1. Classical Single Entity ER

2. Relational & MultiEntity ER

a) Problem Statement

b) Relational Features & Constraints

c) Non-Probabilistic Approaches: Similarity Propagation

d) Non-Probabilistic Approaches: Constraint Optimization

e) Probabilistic Approaches: Generative Models

f) Probabilistic Approaches: Undirected Models

3. Efficiency: Blocking/Canopy Generation

4. Challenges & Future Directions

PROBLEM DEFINITION

PART 2-a

Abstract Problem Statement

Real World Digital World

Deduplication Problem Statement

Deduplication with Canonicalization

Graph Alignment (& motif search)

Graph 1 Graph 2

Relationships are crucial

Notation & Assumptions

• R: set of records / mentions (typed)

• H: set of relations / hyperedges (typed)

• M: set of matches (record pairs that correspond to same entity)

• N: set of non-matches (record pairs corresponding to different entities)

• E: set of entities

• L: set of links

• True (Mtrue, Ntrue, Etrue, Ltrue): according to real world
vs Predicted (Mpred, Npred, Epred, Lpred): by algorithm

Metrics

• Most algorithms use pairwise and cluster-based
measures on each entity type

• Little work that evaluations correct prediction of links

MOTIVATING EXAMPLE:
BIBLIOGRAPHIC DOMAIN

Bibliography Domain

• Entities:
– Papers
– Authors
– Organizations/Author Affiliations
– Venues
– Conference Locations

• Relations:
– Author-Of
– Associated-With
– AppearsIn
– Cites

• Co-occurrence relationships
– Co-authors
– Papers in same conference
– Papers by same author
– etc.

RELATIONAL FEATURES &
CONSTRAINTS

PART 2-b

Relational Features

• There are a variety of ways of improving ER performance
when data is richer than a single table/entity type

• One of the simplest is to use additional information, to
enrich model with relational features that will provide
richer context for matching

– This will often lead to increased precision
• Relational information can help to distinguish references, add avoid false

positives

– It may also lead to increased recall
• The best threshold will be different, and it may be, with the additional

information, one can get increased recall as well.

Set-based Relational Features

• Relational features are often set-based

– Set of coauthors for a paper

– Set of cities in a country

– Set of products manufactured by manufacturer

• Can use set similarity functions mentioned earlier

– Common Neighbors: Intersection size

– Jaccard’s Coefficient: Normalize by union size

– Adar Coefficient: Weighted set similarity

• Can reason about similarity in sets of values

– Average or Max

– Other aggregates

Constraints

• In single entity case, we already saw two important forms
of constraints:

– Transitivity: If M1 and M2 match, M2 and M3 match, then M1
and M3 match

– Exclusivity: If M1 matches with M2, then M3 cannot match
with M2

• Transitivity is key to deduplication

• Exclusivity is key to record linkage

Relational Constraints

• In multi-relational domains, matching decisions often propagate

– Constraints may be hard constraints

• If M1, M2 match then M3, M4 must match
– If two papers match, their venues match

– If two cities match, then their countries match

• If M1, M2 don’t match then M3, M4 cannot match
– If two venues don’t match, then their papers don’t match

– Or soft constraints

• If M1, M2 match then M3, M4 more likely to match
– If two venues match, then their papers are more likely to match

• If M1, M2 don’t match then M3, M4 less likely to match
– If institutions don’t match, then authors less likely to match

Terminology

• Positive evidence: If M1, M2 match then M3, M4 match

• Negative evidence: If M1, M2 match then M3, M4 don’t
match

• When matching decisions depend on other matching
decisions (in other words, matching decisions are not
made independently), we refer to the approach as
collective

Match Propagation

• Global: In two papers match, then their venues match

– This constraint can be applied to all instances of venue
mentions

• All occurrences of ‘SIGMOD’ can be matched to ‘International
Conference on Management of Data’

• Local: If two papers match, then their authors match

– This constraint can only be applied locally
• Don’t want to match all occurrences of ‘J. Smith’ with ‘Jeff Smith’, only in

the context of the current paper

Additional Relational Constraints

• Constraints can also encode a variety of additional forms
of integrity constraints

– Uniqueness Constraints
• Mention M1 and M2 must refer to distinct entities

– Coauthors are distinct

– Count Constraints
• Entity A can link to at most N Bs

– Authors have at most 5 papers at any conference

• Again, these can be either hard or soft constraints

Ex. Semantic Integrity Constraints

Type Example

Aggregate C1 = No researcher has published more than five AAAI papers in a year

Subsumption C2 = If a citation X from DBLP matches a citation Y in a homepage, then
each author mentioned in Y matches some author mentioned in X

Neighborhood C3 = If authors X and Y share similar names and some co-authors, they
are likely to match

Incompatible C4 = No researcher exists who has published in both HCI and numerical
analysis

Layout C5 = If two mentions in the same document share similar names, they
are likely to match

Key/Uniqueness C6 = Mentions in the PC listing of a conference is to different
researchers

Ordering C7 = If two citations match, then their authors will be matched in order

Individual C8 = The researcher with the name “Mayssam Saria” has fewer than
five mentions in DBLP (new graduate student)

[Shen, Li & Doan, AAAI05]

COLLECTIVE APPROACHES

Collective Approaches

• Decisions for cluster-membership depends on other clusters

– Non-probabilistic approaches
• Similarity Propagation

• Constraint Optimization

– Probabilistic Models
• Generative Models

• Undirected Models

NON-PROBABILISTIC APPROACHES:
SIMILARITY PROPAGATION

PART 2-c

Similarity Propagation Approaches

• Similarity propagation algorithms define a graph which
encodes the entity mentions and matching decisions, and
compute matching decisions by propagating similarity values.
– Details of what type of graph is constructed, and how the similarity is

computed varies

– Algorithms are usually defined procedurally

– While probabilities may be encoded in various ways in the algorithms,
there is no global probabilistic model defined

• Approaches often more scalable than global probabilistic
models

• Examples
– Dependency Graphs [Dong et al, SIGMOD05]

– Collective Relational Clustering [Bhattacharya & Getoor, TKDD07]

Dependency Graph

(“Distributed…”, “Distributed …”)

(“169-180”, “169-180”)

(a1, a2)

(“Michael Stonebraker”, “Stonebraker, M.”)

(p2, p5)

(“Eugene Wong”, “Wong, E.”)

(p3, p6)
(c1, c2)

(“ACM …”, “ACM SIGMOD”) (“1978”, “1978”)

Reference similarity Attribute similarity

(“Robert S. Epstein”, “Epstein, R.S.”)

(p1, p4)

[Dong et al., SIGMOD05]

Slides courtesy of [Dong et al.]

Dependency Graph Example II

(“Distributed…”, “Distributed …”)

(“169-180”, “169-180”)

(a1, a2)

(“Michael Stonebraker”, “Stonebraker, M.”)

(p2, p5)

(“Eugene Wong”, “Wong, E.”)

(p3, p6)
(c1, c2)

(“ACM …”, “ACM SIGMOD”) (“1978”, “1978”)

Reference similarity Attribute similarity

(“Robert S. Epstein”, “Epstein, R.S.”)

(p1, p4)

Compare
authored papers

Exploit the Dependency Graph

(“Distributed…”, “Distributed …”)

(“169-180”, “169-180”)

(a1, a2)

(“Michael Stonebraker”, “Stonebraker, M.”)

(p2, p5)

(“Eugene Wong”, “Wong, E.”)

(p3, p6)
(c1, c2)

(“ACM …”, “ACM SIGMOD”) (“1978”, “1978”)

Reference similarity Attribute similarity

(“Robert S. Epstein”, “Epstein, R.S.”)

(p1, p4)

Exploit the Dependency Graph

(“Distributed…”, “Distributed …”)

(“169-180”, “169-180”)

(a1, a2)

(“Michael Stonebraker”, “Stonebraker, M.”)

(p2, p5)

(“Eugene Wong”, “Wong, E.”)

(p3, p6)
(c1, c2)

(“ACM …”, “ACM SIGMOD”) (“1978”, “1978”)

(“Robert S. Epstein”, “Epstein, R.S.”)

(p1, p4)

Reconciled Similar

Exploit the Dependency Graph

(“Distributed…”, “Distributed …”)

(“169-180”, “169-180”)

(a1, a2)

(“Michael Stonebraker”, “Stonebraker, M.”)

(p2, p5)

(“Eugene Wong”, “Wong, E.”)

(p3, p6)
(c1, c2)

(“ACM …”, “ACM SIGMOD”) (“1978”, “1978”)

(“Robert S. Epstein”, “Epstein, R.S.”)

(p1, p4)

Reconciled Similar

Exploit the Dependency Graph

(“Distributed…”, “Distributed …”)

(“169-180”, “169-180”)

(a1, a2)

(“Michael Stonebraker”, “Stonebraker, M.”)

(p2, p5)

(“Eugene Wong”, “Wong, E.”)

(p3, p6)
(c1, c2)

(“ACM …”, “ACM SIGMOD”) (“1978”, “1978”)

(“Robert S. Epstein”, “Epstein, R.S.”)

(p1, p4)

Reconciled Similar

Exploit the Dependency Graph

(“Distributed…”, “Distributed …”)

(“169-180”, “169-180”)

(a1, a2)

(“Michael Stonebraker”, “Stonebraker, M.”)

(p2, p5)

(“Eugene Wong”, “Wong, E.”)

(p3, p6)
(c1, c2)

(“ACM …”, “ACM SIGMOD”) (“1978”, “1978”)

(“Robert S. Epstein”, “Epstein, R.S.”)

(p1, p4)

Reconciled Similar

Exploit the Dependency Graph

(“Distributed…”, “Distributed …”)

(“169-180”, “169-180”)

(a1, a2)

(“Michael Stonebraker”, “Stonebraker, M.”)

(p2, p5)

(“Eugene Wong”, “Wong, E.”)

(p3, p6)
(c1, c2)

(“ACM …”, “ACM SIGMOD”) (“1978”, “1978”)

(“Robert S. Epstein”, “Epstein, R.S.”)

(p1, p4)

Reconciled Similar

P5

C. Walshaw M. G. Everett S. Johnson M. Cross P1

K. McManus C. Walshaw M. Everett S. Johnson M. Cross P2

Alfred V. Aho Stephen C. Johnson Jefferey D. Ullman P4

A. Aho S. Johnson J. Ullman

Relational Clustering for ER (RC-ER)

[Bhattacharya & Getoor, TKDD07]

P5

C. Walshaw M. G. Everett S. Johnson M. Cross P1

K. McManus C. Walshaw M. Everett S. Johnson M. Cross P2

Alfred V. Aho Stephen C. Johnson Jefferey D. Ullman P4

A. Aho S. Johnson J. Ullman

Relational Clustering for ER (RC-ER)

P5

C. Walshaw M. G. Everett S. Johnson M. Cross P1

K. McManus C. Walshaw M. Everett S. Johnson M. Cross P2

Alfred V. Aho Stephen C. Johnson Jefferey D. Ullman P4

A. Aho S. Johnson J. Ullman

Relational Clustering for ER (RC-ER)

P5

C. Walshaw M. G. Everett S. Johnson M. Cross P1

K. McManus C. Walshaw M. Everett S. Johnson M. Cross P2

Alfred V. Aho Stephen C. Johnson Jefferey D. Ullman P4

A. Aho S. Johnson J. Ullman

Relational Clustering for ER (RC-ER)

Collective Relational Clustering: Motivation

S. Johnson

S. Johnson

Stephen C.
Johnson

S. Johnson

M. G. Everett

M. Everett

Alfred V. Aho

A. Aho

S. Johnson

S. Johnson

Stephen C.
Johnson

S. Johnson

M. G. Everett

M. Everett

Alfred V. Aho

A. Aho

Good separation of attributes
Many cluster-cluster relationships
 Aho-Johnson1, Aho-Johnson2, Everett-

Johnson1

Worse in terms of attributes
Fewer cluster-cluster relationships
 Aho-Johnson1, Everett-Johnson2

Objective Function

 Greedy clustering algorithm: merge cluster pair with max

reduction in objective function

Common cluster neighborhood Similarity of attributes

weight for
attributes

weight for
relations

similarity of
attributes

Similarity based on relational edges
between ci and cj

 Minimize:

 (,) (,) (| ()| | ()|)c c w sim c c w N c N ci j A A i j R i j

),(),(jiRRj

i j

iAA ccsimwccsimw

Similarity Measures

• Attribute Similarity
– Use best available measure for each attribute

– Name Strings: Soft TF-IDF, Levestein, Jaro

– Textual Attributes: TF-IDF

• Aggregate to find similarity between clusters
– Single link, Average link, Complete link

– Cluster representative

• Relational Similarity
– Measures of set similarity

– Higher order similarity: Consider nbrs of nbrs

– Can also consider neighborhood as multi-set

Relational Clustering Algorithm

1. Find similar references using ‘blocking’

2. Bootstrap clusters using attributes and relations

3. Compute similarities for cluster pairs and insert into priority
queue

4. Repeat until priority queue is empty

5. Find ‘closest’ cluster pair

6. Stop if similarity below threshold

7. Merge to create new cluster

8. Update similarity for ‘related’ clusters

• O(n k log n) algorithm w/ efficient implementation

Similarity-propagation Approaches
Method Notes Constraints Evaluation

RelDC
[Kalashnikov et
al, TODS06]

Reference
disambiguation
using using
Relationship-
based data
cleaning (RelDC)

Model choice
nodes identified
using feature-
based similarity

Context
attraction
measures the
relational
similarity

Accuracy and
runtime for Author
resolution and
director resolution
in Movie database

Reference
Reconciliation
[Dong et al,
SIGMOD05]

Dependency
Graph for
propagating
similarities +
enforce non-
match
constraints

Reference
enrichment
Explicitly handle
missing values
Parameters set
by hand

Both positive
and negative
constraints

Precision/Recall,
F1 on personal
information
management data
(PIM), Cora dataset

Collective
Relational
Clustering
[Bhattacharya &
Getoor, TKDD07]

Modified
hierarchical
agglomerative
clustering
approach

Constructs
canonical entity
as merges are
made

Focus on
coauthor
resolution and
propagation

F1 on three
bibliographic
datasets: CiteSeer,
ArXiv, and BioBase

CONSTRAINT OPTIMIZATION
APPROACHES

PART 2-d

Constraint-based Approaches

• Constraint-based approaches explicitly encode relational
constraints

– They can be formulated as hybrid of constraints and
probabilistic models

– Or as constraint optimization problem

• Examples

– Constraint-based Entity Matching [Shen, Li & Doan, AAAI05]

– Dedupalog [Arasu, Re, Suciu, ICDE09]

CME

• Two layer model:
– Layer 1: Generative model for data sets that satisfy constraints;

builds on (Li, Morie, & Roth, AI Mag 2004).

– Layer 2: EM algorithm and the relaxation labeling algorithm to
perform matching. Matching process is carried out in multiple
iterations. In each iteration, use EM to estimate parameters of
the generative model and a matching assignment, then
employs relaxation labeling to exploit the constraints

• First layer clusters mentions into groups (such that all
matching mentions belong to the same group) and
exploits constraints at the group level. Once this is done,
the second layer exploits additional constraints at the
level of individual matching mention pairs.

[Shen, Li & Doan, AAAI05]

Clustering
with Dedupalog

PaperRef(id, title, conference, publisher, year)

Wrote(id, authorName, Position)

Data to be
deduplicated

TitleSimilar(title1,title2)

AuthorSimilar(author1,author2)
(Thresholded) Fuzzy-

Join Output

Step (0) Create Fuzzy Matches; this is input to Dedupalog.

Step (1) Declare the entities

Paper!(id) :- PaperRef(id,-,-,-)

Publisher!(p) :- PaperRef(-,-,-,p,-)

Author!(a) :- Wrote(-,a,-)
Publishers (UNA) and Papers (NOT UNA)

Dedupalog is flexible:
Unique Names Assumption (UNA)

“Cluster Papers, Publishers, & Authors”

Slides from [Arasu, Re, Suciu, ICDE09]

Step (2) Declare Clusters

PaperRef(id, title, conference, publisher, year)

Wrote(id, authorName, Position)

TitleSimilar(title1,title2)

AuthorSimilar(author1,author2)

Paper!(id) :- PaperRef(id,-,-,-)

Publisher!(p) :- PaperRef(-,-,-,p,-)

Author!(a) :- Wrote(-,a,-)

Author*(a1,a2) <-> AuthorSimilar(a1,a2)

Clusters are declared using * (like IDBs or Views): These are output

*IDBs are equivalence relations:
Symmetric, Reflexive , & Transitively-
Closed Relations: i.e., Clusters

Input in the DB

A Dedupalog program is a
set of datalog-like rules

“Cluster authors with similar names”

“Cluster papers,
publishers, and authors”

123

Author1 Author2

AA Arvind Arasu

Arvind A Arvind Arasu

Simple Constraints

Paper*(id1,id2) <-> PaperRef(id1,t1,-), PaperRef(id2,t2,-),TitleSimilar(t1,t2)

Author*(a1,a2) <-> AuthorSimilar(a1,a2) (<->) Soft-constraints:
 Pay a cost if violated.

 Paper*(id1,id2) <= PaperEq(id1,id2)

¬ Paper*(id1,id2) <= PaperNeq(id1,id2)

(<=) Hard-constraints: Any
clustering must satisfy these

1. PaperEQ, PaperNEQ are relations (EDBS)
2. ¬ denotes Negation here.

“Papers with similar titles should likely be clustered together”

“Papers in PaperEQ must be clustered together,
those in PaperNEQ must not be clustered together”

Hard constraints
are challenging!

Advanced Constraints

“if two authors do not share coauthors, then do not cluster them”

Author*(a1,a2) <= Paper*(id1,id2), Wrote(id1,a1,1), Wrote(id2,a2,1)

“Clustering two papers, then must cluster their first authors”

Publisher*(x,y) <- Publishes(x,p1), Publishes(x,p2),Paper*(p1,p2)

“Clustering two papers makes it likely we should cluster their publisher”

¬ Author∗ (x, y) <- ¬ (Wrote(x, p1,−), Wrote(y, p2,−), Wrote(z, p1,−),

 Wrote(z, p2,−), Author∗(x, y))

Dedupalog via CC

127

Nodes are references (in the ! Relation) Entity References: Conference!(c)

Semantics: Translate a Dedupalog Program to a set of graphs

Conference*(c1,c2) <-> ConfSim(c1,c2)

Positive edges

Negative edges are implicit [-]

VLDBJ

VLDB conf

ICDE

International Conf. DE
ICDT

VLDB

For a single graph w.o. hard constraints
we can reuse prior work for O(1) apx.

Correlation Clustering

VLDBJ

VLDB conf

ICDE

International Conf. DE ICDT

Conference*(c1,c2) <- ConfSim(c1,c2)

VLDB

1. Pick a random order of edges

2. While there is a soft edge do

1. Pick first soft edge in order

2. If turn into

3. Else is [-] turn into

4. Deduce labels

3. Return Transitively closed subsets

Simple, Combinatorial
algorithm is easy to scale!

Thm: This is a 3-apx!

Positive Equal

Not Equal [-] Negative

Soft Hard

Conference*(c1,c2) <= ConfEQ(c1,c2)

¬Conference*(c1,c2) <= ConfNEQ(c1,c2)

Voting

Thm: A recursive-hard
constraints no O(1) apx

Features: Support for weights, reference tables
(partially), and corresponding hardness results.

System properties:
 (1) Streaming algorithm
 (2) linear in # of matches (not n2)
 (3) User interaction

Many dedupalog programs
have an O(1)-apx

Extend algorithm to whole language via voting technique.
 Support many entities, recursive programs, etc.

 Thm: All “soft” programs O(1) Expert: multiway-cut hard

PROBABILISTIC MODELS:
GENERATIVE APPROACHES

PART 4-d

Generative Probabilistic Approaches

• Probabilistic semantics based on Directed Models

– Advantage: generative semantics, can “generate” new
instances

– Disadvantage: acyclicity requirement

• Variety of approaches

– Based on Bayesian Network semantics, Latent Dirichlet
Allocation, etc.

• Examples

– Latent Dirichlet Allocation [Bhattacharya & Getoor, SDM07]

– Probabilistic Relational Models [Pasula et al, NIPS02]

• Model how entity references co-occur in data

1. Generation of references from entities

2. Relationships between underlying entities
• Groups of entities instead of pair-wise relations

LDA-ER Probabilistic Generative Model

Discovering Groups from Relations

Bell Labs Group

Alfred V Aho

Jeffrey D Ullman

Ravi Sethi

Stephen C Johnson

Parallel Processing Research Group

Mark Cross

Chris Walshaw Kevin McManus

Stephen P Johnson

Martin Everett

P1: C. Walshaw, M. Cross, M. G. Everett,
 S. Johnson

P2: C. Walshaw, M. Cross, M. G. Everett,
 S. Johnson, K. McManus

P3: C. Walshaw, M. Cross, M. G. Everett

P4: Alfred V. Aho, Stephen C. Johnson,
 Jefferey D. Ullman

P5: A. Aho, S. Johnson, J. Ullman

P6: A. Aho, R. Sethi, J. Ullman

LDA-ER Model

 P
 R

r

θ

z

a

 T

Φ

 A

V

α

β

 Entity label a and group label
z for each reference r

 Θ: ‘mixture’ of groups for
each co-occurrence

 Φz: multinomial for choosing
entity a for each group z

 Va: multinomial for choosing
reference r from entity a

 Dirichlet priors with α and β

Generating References from Entities
• Entities are not directly observed

1. Hidden attribute for each entity

2. Similarity measure for pairs of attributes

• A distribution over attributes for each entity

S C Johnson Stephen C Johnson S Johnson Alfred Aho M. Cross

Stephen C Johnson

0.2 0.6 0.2 0.0 0.0

Approx. Inference Using Gibbs Sampling

• Conditional distribution over labels for each ref.

• Sample next labels from conditional distribution

• Repeat over all references until convergence

 Converges to most likely number of entities

P(z t)
n T

n

n A

ni i

dit
DT

di*
DT

ait
AT

*t
AT

|z ,a,r

P(a a)
n A

n
Sim(r ,v)i i

a t
AT

*t
AT i a

i

|z,a ,r

Faster Inference: Split-Merge Sampling

• Naïve strategy reassigns references individually

• Alternative: allow entities to merge or split

• For entity ai, find conditional probabilities for
1. Merging with existing entity aj

2. Splitting back to last merged entities

3. Remaining unchanged

• Sample next state for ai from distribution

• O(n g + e) time per iteration compared to O(n g + n e)

Probabilistic Relational Models for ER

Wrote

Paper
Title

of Authors

Topic

Word1

Word 2

…

WordN

Cites

Author
Name

Research Area

Author Mention
NameString

Paper Mention
TitleString

Institution
Name

Institute Mention
NameString

Venue
Name

Venue Mention
NameString

WorksAt

AppearsIn

: co-occurrence relationships
: resolution relationships

: entity relationships

Probabilistic Relational Models

Wrote

Paper
Title

of Authors

Topic

Word1

Word 2

…

WordN

Cites

Author
Name

Research Area

Author Mention
NameString

Paper Mention
TitleString

Institution
Name

Institute Mention
NameString

Venue
Name

Venue Mention
NameString

WorksAt

AppearsIn

: co-occurrence relationships
: resolution relationships

: entity relationships

P(Paper.Topic | Author.ResearchArea)

P(AuthorMention.NameString | Author.Name)

P(Cites(P1,P2) | P1.Topic, P2.Topic)

PRM Semantics

)).(|.(),,|(,

.

AxparentsAxPP S

x Ax

SI

Attributes Objects

probability distribution over completions I:

PRM relational skeleton + =

AuthorM

 A1

Paper

 P2

Paper

 P1 VenueM

V2

VenueM

V1

AuthorM

 A2

Paper

Author Author Mention

Paper Mention

Instituti
on

Institute
Mention

Venue Venue Mention
AuthorM

 A3

142

Inference in PRMs for Citation Matching

• Parameter estimation

– Priors for names, titles, citation formats learned offline from
labeled data

– String corruption parameters learned with Monte Carlo EM

• Inference

– MCMC with cluster recombination proposals

– Guided by “canopies” of similar citations

– Accuracy stabilizes after ~20 minutes

[Pasula et al., NIPS 2002]

Generative Approaches

Method Learning/Inference
Method

Evaluation

[Li, Morie, &
Roth, AAAI 04]

Generative
model for
mentions in
documents

Truncated EM to learn
parameters and MAP
inference for entities
(unsupervised)

F1 on person
names,
locations and
organizations in
TREC dataset

Probabilistic
Relational
Models [Pasula
et al., NIPS03]

Probabilistic
Relational
Models

Parameters learned
on separated corpora,
inference done using
MCMC

% of correctly
identified
clusters on
subsets of
CiteSeer data

Latent Dirichlet
Allocation
[Bhattacharya
& Getoor,
SDM06]

Latent-Dirichlet
Allocation
Model

Blocked Gibbs
Sampling

Precision/Recall
/F1 on CiteSeer
and HEP data

PROBABILISTIC MODELS:
UNDIRECTED APPROACHES

PART 4-e

Undirected Probabilistic Approaches

• Probabilistic semantics based on Markov Networks

– Advantage: no acyclicity requirements

• In some cases, syntax based on first-order logic

– Advantage: declarative

• Examples

– Conditional Random Fields (CRFs) [McCallum & Wellner,
NIPS04]

– Markov Logic Networks (MLNs) [Singla & Domingos, ICDM06]

– Probabilistic Similarity Logic [Broecheler & Getoor, UAI10]

Conditional Random Field (CRF)
Undirected graphical model, conditioned on some data variables

c d

a b
output

predicted

variables

input

observed

variables

[Lafferty, McCallum, Pereira, ICML01]

[Slides coutesy of Andrew McCallum]

Conditional Random Field (CRF)
Undirected graphical model, conditioned on some data variables

c d

a b
output

predicted

variables

input

observed

variables

 + Tremendous freedom to use arbitrary features of input.
 + Predict multiple dependent variables (“structured output”)

Information Extraction with Linear-chain
CRFs

Finite state model

Today Morgan Stanley Inc announced Mr. Friday’s

appointment.

s1 s2 s3 s4 s5 s6 s7 s8

person name

organization name

background

Graphical
model

state

 sequence

observation

 sequence

Logistic Regression analogue of a hidden Markov model

CRF for ER

• CRF with random variables for each mention pair

• Factors capture dependence among mentions assigned
to the same cluster

• Show that inference in above CRF is equivalent to graph
partitioning in graph where nodes are mentions and
edges weights are log clique potentials over nodes

• Learn weights from training data; variety of weight
learning approaches, here use voted perceptron

• Graph partitioning performed using correlation clustering

[McCallum & Wellner, NIPS04]

Markov Logic

• A logical KB is a set of hard constraints on the set of
possible worlds

• Make them soft constraints; when a world violates a
formula, it becomes less probable but not impossible

• Give each formula a weight

– Higher weight Stronger constraint

 isfies s it satf formulaweights oP(world) exp

[Richardson & Domingos, 06]

Markov Logic

• A Markov Logic Network (MLN) is a set of pairs (F, w)
where

– F is a formula in first-order logic

– w is a real number

Fi

ii xnw
Z

XP)(exp
1

)(

Iterate over all first-order MLN formulas

true groundings

of ith clause

Normalization Constant

[Richardson & Domingos, 06]

Problem Formulation

• Given

– A database of records representing entities in the real world
e.g. citations

– A set of fields e.g. author, title, venue

– Each record represented as a set of typed predicates e.g.
HasAuthor(citation,author), HasVenue(citation,venue)

• Goal

– To determine which of the records/fields refer to the same
underlying entity

Slides from [Singla & Domingos, ICDM 06]

Problem Formulation

• Given

– DB of mentions of entities in the real world, e.g. citations

– A set of fields, e.g. author, title, venue

– Each record represented as a set of typed predicates e.g.
HasAuthor(citation,author), HasVenue(citation,venue)

• Entities in the real world represented by one or more
strings appearing in the DB, e.g. ”J. Cox”, ”Cox J.”

• String constant for each record, e.g. ”C1”, ”C2”

• Goal: for each pair of string constants <x1, x2> of the
same type, is x1 = x2?

Slides based on [Singla & Domingos, ICDM 06]

Handling Equality

• Introduce Equals(x,y) or x = y

• Introduce the axioms of equality

– Reflexivity: x = x

– Symmetry: x = y y = x

– Transitivity: x = y y = z z = x

– Predicate Equivalence:

 x1 = x2 y1 y2 (R(x1, y1) R(x2,y2))

Handling Equality

• Introduce reverse predicate equivalence

• Same relation with the same entity gives evidence about
two entities being same

 R(x1,y1) R(x2,y2) x1 = x2 y2 = y2

• Not true logically, but gives useful information

• Example

 HasAuthor(C1, J. Cox) HasAuthor(C2, Cox J.) C1 = C2
(J. Cox = Cox J.)

Model for Entity Resolution

• Model is in the form of an MLN

• Query predicate is Equality

• Evidence predicates are relations which hold according to
the DB

• Introduce axioms of equality

• First-order rules for field comparison, Fellegi-Sunter
model, relational models

Field Comparison

• Each field is a string composed of tokens

• Introduce HasWord(field, word)

• Use reverse predicate equivalence

 HasWord(f1,w1) HasWord(f2,w2) w1 = w2 f1 = f2

• Example

 HasWord(J. Cox, Cox) HasWord(Cox J., Cox) (Cox = Cox)
(J. Cox = Cox J.)

• Different weight for each word : learnable similarity measure
of Bilenko & Mooney [2003]

Two-level Similarity

• Individual words as units: Can’t deal with spelling
mistakes

• Break each word into ngrams: Introduce
HasNgram(word, ngram)

• Use reverse predicate equivalence for word comparisons

• Gives a two level similarity measure as proposed by
Cohen et al. [2003]

Fellegi-Sunter Model

• Uses Naïve Bayes for match decisions with field
comparisons used as predictors

• Simplest Version: Field similarities measured by
presence/absence of words in common

 HasWord(f1, w1) HasWord(f2,w2) HasField(r1, f1)
HasField(r2, f2) w1 = w2 r1 = r2

• Example

 HasWord(J. Cox, Cox) HasWord(Cox J., Cox) HasAuthor(C1,
J. Cox) HasAuthor(C2, Cox J.) (Cox = Cox) (C1 = C2)

Relational Models

• Fellegi-Sunter + transitivity [McCallum & Wellner 2005]

 (f1 = f2) (f2 = f3) (f3 = f1)

• Fellegi-Sunter + reverse predicate equivalence for
records/fields [Singla & Domingos 2005]
 HasField(r1, f1) HasField(r2, f2) f1 = f2 r1 = r2

 HasAuthor(C1, J. Cox) HasAuthor(C2, Cox J.) (J.
Cox = Cox J.) C1 = C2

Relational Models

• Co-authorship relation for entity resolution [Bhattacharya
& Getoor, DMKD04]

 HasAuthor(c,a1) HasAuthor(c,a2) Coauthor(a1,a2)

 Coauthor(a1, a2) Coauthor(a3, a4) a1 = a3 a2 = a4

Scalability

• O(n2) number of match decisions - too big even for small
databases

• Use cheap heuristics (e.g. TFIDF based similarity) to
identify plausible pairs

• Used the canopy approach [McCallum et al., KDD00]

• Inference/learning over plausible pairs

Probabilistic Soft Logic

• Declarative language for defining constrained continuous
Markov random field (CCMRF) using first-order logic
(FOL)

• Soft logic: truth values in [0,1]

• Logical operators relaxed using Lukasiewicz t-norms

• Mechanisms for incorporating similarity functions, and
reasoning about sets

• MAP inference is a convex optimization

• Efficient sampling method for marginal inference

[Broecheler & Getoor, UAI10]

Predicates and Atoms

• Predicates

– Describe relations

– Combined with arguments to make atoms

• Atoms

– Lifted: contains variables, e.g., Friends(X, Y)

– Ground: no variables, e.g., AuthorOf(author1, paper1)

• Each ground atom can have a truth value in [0,1]

• PSL programs define distributions over the truth values of
ground atoms

Weighted Rules

• A PSL program is a set of weighted, logical rules

• For example,

authorName(A1,N1) ^ authorName(A2,N2) ^ similarString(N1,N2)
=> sameAuthor(A1,A2) : 1.0

• Variable substitution produces a set of weighted ground
rules for a particular data set

Soft Logic Relaxation

• PSL uses the Lukasiewicz t-norm to relax hard logic
operators to work on soft truth values

• PSL converts rules to logical statements using above
operators

FOL to CCMRF

• PSL converts a weighted rule into potential functions by
penalizing its distance to satisfaction,

• is the truth value of ground rule under
interpretation x

• The distribution over truth values is

   : weight of rule r

   : all groundings of rule r

   : PSL program

PSL Inference

• PSL finds the most likely state by solving 

• The t-norms defining form linear constraints on x,
making inference a linear program

• PSL uses lazy activation to ground rules, thus reducing
the number of active variables and increasing efficiency

• Other distance metrics (e.g., Euclidean) for distance to
satisfaction produce other types of convex objectives
(e.g., quadratic programs)

CiteSeer Example

• Citation listings collected from CiteSeer:
– Pearl J. Probabilistic reasoning in intelligent systems.

Pearl, Judea. Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference.

• Duplicate authors and papers

• Base model: Levenstein string similarity
– authorName(A1,N1) ^ authorName(A2,N2) ^ similarString(N1,N2)

=> sameAuthor(A1,A2)

– paperTitle(P1, T1) ^ paperTitle(P2,T2) ^ similarString(T1,T2)

=> samePaper(P1,P2)

• Only activate rule on pairs with similarity > 0.5

Reasoning about Sets

• Multi-Relational rules:
– sameAuthorSet(P1,P2)

=> samePaper(P1,P2)

– samePaper(P1,P2) ^ authorOf(A1,P1) ^ authorOf(A2,P2) ^ authorName(A1,N1) ^

authorName(A2,N2) ^ sameInitials(N1,N2) => sameAuthor(A1,A2)

Undirected Approaches

Method Learning/Inference
Method

Evaluation

[McCallum &
Wellner,
NIPS04]

Conditional
Random Fields
(CRFs)
capturing
transitivity
constraints

Graph partitioning
(Boykov et al. 1999),
performed via
correlation clustering

F1 on DARPA
MUC & ACE
datasets

[Singla &
Domingos,
ICDM06]

Markov Logic
Networks
(MLNs)

Supervised learning
and inference using
MaxWalkSAT & MCMC

Conditional Log-
likelihood and
AUC on Cora
and BibServ
data

[Broecheler &
Getoor, UAI10]

Probabilistic
Similarity Logic
(PSL)

Supervised learning
and inference using
continuous
optimization

Precision/Recall
/F1 Ontology
Alignment

Summary: Collective Approaches

• Decisions for cluster-membership depends on other clusters

– Non-probabilistic approaches
• Similarity propagation approaches

• Constraint-based approaches

– Probabilistic Models
• Generative Models

• Undirected Models

• Advantages of non-probabilistic approaches is they often
scale better than generative probabilistic approaches

• Undirected Models are often easier to specify

• Scaling undirected models active area of research

BLOCKING/CANOPY GENERATION

PART 3

Blocking: Motivation

• Naïve pairwise: |R|2 pairwise comparisons

– 1000 business listings each from 1,000 different cities across
the world

– 1 trillion comparisons

– 11.6 days (if each comparison is 1 μs)

• Mentions from different cities are unlikely to be matches

– Blocking Criterion: City

– 10 million comparisons

– 10 seconds (if each comparison is 1 μs)

Blocking: Motivation

• Mentions from different cities are unlikely to be matches

– May miss potential matches

Blocking: Motivation

Set of all Pairs
of Records

Matching Pairs
of Records

Pairs of Records
satisfying

Blocking criterion

Blocking: Problem Statement

Input: Set of records R

Output: Set of blocks/canopies

Variants:

• Disjoint Blocking: Each mention appears in one block.

• Non-disjoint Blocking: Mentions can appear in more than
one block.

Blocking: Problem Statement

Metrics:

• Efficiency (or reduction ratio) :

• Recall* (or pairs completeness) :

*Need to know ground truth in order to compute this metric

Blocking: Problem Statement

Metrics:

• Efficiency (or reduction ratio) :

• Recall* (or pairs completeness) :

• Precision* (or pairs quality) :

• Max Canopy Size:

 *Need to know ground truth in order to compute this metric

Blocking Algorithms 1

• Hash based blocking
– Each block Ci is associated with a hash key hi.

– Mention x is hashed to Ci if hash(x) = hi.

– Within a block, all pairs are compared.

– Each hash function results in disjoint blocks.

• What hash function?
– Deterministic function of attribute values

– Boolean Functions over attribute values
[Bilenko et al ICDM’06, Michelson et al AAAI’06,
Das Sarma et al CIKM ‘12]

– minHash (min-wise independent permutations)
[Broder et al STOC’98]

Blocking Algorithms 2

• Pairwise Similarity/Neighborhood based blocking

– Nearby nodes according to a similarity metric are clustered
together

– Results in non-disjoint canopies.

• Techniques

– Sorted Neighborhood Approach [Hernandez et al SIGMOD’95]

– Canopy Clustering [McCallum et al KDD’00]

Simple Blocking: Inverted Index on a Key

Examples of blocking keys:

– First three characters of last name

– City + State + Zip

– Character or Token n-grams

– Minimum infrequent n-grams

Learning Optimal Blocking Functions

• Using one or more blocking keys may be insufficient

– 2,376,206 American’s shared the surname Smith in the 2000 US

– NULL values may create large blocks.

• Solution: Construct blocking functions by combining
simple functions

Complex Blocking Functions

• Conjunction of functions [Michelson et al AAAI’06, Bilenko et al ICDM’06]

– {City} AND {last four digits of phone}

• Chain-trees [Das Sarma et al CIKM‘12]

– If ({City} = NULL or LA) then {last four digits of phone} AND {area code}
 else {last four digits of phone} AND {City}

• BlkTrees [Das Sarma et al CIKM‘12]

Learning an Optimal function [Bilenko et al ICDM ‘06]

• Find k blocking functions that eliminate the most non-
matches, while retaining almost all matches.

– Need a training set of positive and negative pairs

• Algorithm Idea: Red-Blue Set Cover

Positive Examples

Negative Examples

Blocking Keys

Pick k Blocking keys such that
 (a) At most ε blue nodes are
not covered
 (b) Number of red nodes
covered is minimized

Learning an Optimal function [Bilenko et al ICDM ‘06]

• Algorithm Idea: Red-Blue Set Cover

• Greedy Algorithm:

– Construct “good” conjunctions of blocking keys {p1, p2, …}.

– Pick k conjunctions {pi1, pi2, …, pik}, such that the following is
minimized

Positive Examples

Negative Examples

Blocking Keys

Pick k Blocking keys such that
 (a) At most ε blue nodes are
not covered
 (b) Number of red nodes
covered is minimized

minHash (Minwise Independent Permutations)

• Let Fx be a set of features for mention x

– (functions of) attribute values

– character ngrams

– optimal blocking functions …

• Let π be a random permutation of features in Fx

– E.g., order imposed by a random hash function

• minHash(x) = minimum element in Fx according to π

Why minHash works?

 Surprising property: For a random permutation π,

 How to build a blocking scheme such that only pairs with
Jacquard similarity > s fall in the same block (with high prob)?

`
Probability that

(x,y) mentions are
blocked together

Similarity(x,y)

Blocking using minHashes

• Compute minHashes using r * k permutations (hash
functions)

• Signature’s that match on 1 out of k bands, go to the
same block.

…

k blocks

Band of r minHashes

minHash Analysis

False Negatives: (missing matches)

P(pair x,y not in the same block
 with Jacquard sim = s)

False Positives: (blocking non-matches)

P(pair x,y in the same block
 with Jacquard sim = s)

Sim(s) P(not same
block)

0.9 10-8

0.8 0.00035

0.7 0.025

0.6 0.2

0.5 0.52

0.4 0.81

0.3 0.95

0.2 0.994

0.1 0.9998

should be very low for high similarity pairs

Sorted Neighborhood [Hernandez et al SIGMOD’95]

• Compute a Key for each mention.

• Sort the mentions based on the key.

• Merge: Check whether a record
matches with (w-1) previous records.
– Efficient implementation using

Sort Merge Band Join [DeWitt et al VLDB’91]

• Perform multiple passes with
different keys

So
rt

e
d

 o
rd

e
r

Canopy Clustering [McCallum et al KDD’00]

Input: Mentions M,
 d(x,y), a distance metric,
 thresholds T1 > T2

Algorithm:

1. Pick a random element x from M

2. Create new canopy Cx using
mentions y s.t. d(x,y) < T1

3. Delete all mentions y from M
s.t. d(x,y) < T2

4. Return to Step 1 if M is not empty.

In multiple
canopies

Each element
has a single

primary canopy

SCALING COLLECTIVE ER

Scaling Collective ER [Rastogi et al VLDB11]

Current state-of-the-art: Collective Entity Matching

(+) High accuracy

(-) Often scale only to a few 1000 entities [SD06],
since runtime is quadratic in the number of pairs.

Slides adapted from [Rastogi et al VLDB11] talk

Example: Dedup papers and authors

 Id Author-1 Author-2 Paper

A1 John Smith Richard Johnson Indices and Views

A2 J Smith R Johnson SQL Queries

A3 Dr. Smyth R Johnson Indices and Views

Algorithm

• Generates overlapping canopies (e.g., Canopy clustering)

• Run collective matcher on each canopy

Efficiency: Use Canopies[McCallum et al KDD 00]

Reduces # of candidate pairs from:
O(|Mentions|2) to |Candidate pairs|

Pair-wise approach becomes efficient: O(|Candidate pairs|)

John
Smith Richard

Smith

J. Smith

Richard M.
Johnson

R. Smith

John S.

John Jacob

Canopy
for

Richard

Canopy
for Smith

Canopy
for

John

Richard
Johnson

Efficiency of Collective approach

Example for Collective methods[SD06]

• |References|= 1000,|Candidate pairs| = 15,000,
– Time ~ 5 minutes

• |References| = 50,000, |Candidate pairs| = 10 million

– Time required = 2,500 hours ~ 3 months

Collective methods still not efficient: Ω(|Candidate pairs|2)

Distribute

Partitioning into smaller chunks helps!

Run collective entity-matching in each canopy separately

Example for Collective methods[SD06]

• |References|= 1000,|Candidates| = 15,000,
– Time = 5 minutes

• One canopy: |References| = 100, |Candidates| ~ 1000,

− Time ~ 10 Seconds

• |References| = 50,000, # of canopies ~ 13k

− Time ~ 20 hours << 3 months!

Problem: Correlations across canopies will be lost

Example: CoAuthor rule grounds to the correlation

 match(Richard Johnson, R Johnson) => match(J. Smith, John Smith)

John
Smith

J. Smith

John S.

John Jacob

Steve
Johnson

R. Smith

Canopy
for

Johnson

Canopy
for Smith

Canopy
for

John

R
Johnson

Richard
Johnson

CoAuthor(A1,B1) ∧ CoAuthor(A2,B2) ∧ match(B1,B2) match(A1,A2)

Message Passing

Simple Message Passing (SMP)

1. Run entity matcher M locally in each canopy

2. If M finds a match(r1,r2) in some canopy, pass it as
evidence to all canopies

3. Rerun M within each canopy using new evidence

4. Repeat until no new matches found in each canopy

Runtime: O(k2 f(k) c)
– k : maximum size of a canopy

– f(k): Time taken by ER on canopy of size k

– c : number of canopies

Formal Properties

 for a well behaved ER method …

Convergence: No. of steps ≤ no. of matches

Soundness: Each output match is actually a true match

Consistency: Output independent of the canopy order

Completeness: Each true match is also a output match

John
Smith

J. Smith

John S.

John Jacob

Richard
Smith

R. Smith Richard M.
Johnson

Richard
Johnson

Completeness

Papers 2 and 3 match only if a canopy
knows that
 - match(a1,a2)
 - match(b2,b3)
 - match(c2,c3)

Simple message passing will not find any matches
 - thus, no messages are passed, no progress

Solution: Maximal message passing
 - Send a message if there is a potential for match

Summary of Blocking

• O(|R|2) pairwise computations can be prohibitive.
– Blocking eliminates comparisons on a large fraction of non-matches.

• Equality-based Blocking:
– Construct (one or more) blocking keys from features

– Records not matching on any key are not compared.

• Similarity based Blocking:
– Form overlapping canopies of records based on similarity.

– Only compare records within a cluster.

• Message Passing + blocking can help scale collective ER.

CHALLENGES AND FUTURE
DIRECTIONS

Part 4

Challenges

• So far, we have viewed ER as a one-time process applied to
entire database; none of these hold in real world.

• Temporal ER
– ER algorithms need to account for change in real world

– Reasoning about multiple sources [Pal & M et al. WWW 12]

– Model transitions [Li et al VLDB11]

• Reasoning about source quality
– Sources are not independent

– Copying Problem [Dong et al VLDB09]

• Query Time ER
– How do we selectively determine the smallest number of records to

resolve, so we get accurate results for a particular query?

– Collective resolution for queries [Bhattacharya & Getoor JAIR07]

Open Issues

• ER & User-generated data
– Deduplicated entities interact with users in the real world

• Users tag/associate photos/reviews with businesses on Google / Yahoo

– What should be done to support interactions?

• ER is often part of bigger inference problem
– Pipelined approaches and joint approaches to information extraction

and graph identification
– How can we characterize how ER errors affect overall quality of

results?

• ER Theory
– Need better support for theory which can give relational learning

bounds

• ER & Privacy
– ER enables record re-identification
– How do we develop a theory of privacy-preserving ER?

Summary

• Growing omnipresence of massive linked data, and the need
for creating knowledge bases from text and unstructured data
motivate a number of challenges in ER

• Especially interesting challenges and opportunities for ER and
social media data

• As data, noise, and knowledge grows, greater needs &
opportunities for intelligent reasoning about entity resolution

• Many other challenges
– Large scale identity management
– Understanding theoretical potentials & limits of ER

THANK YOU!

References – Intro

W. Willinger et al, “Mathematics and the Internet: A Source of Enormous Confusion and
Great Potential”, Notices of the AMS 56(5), 2009

L. Gill and M. Goldcare, “English National Record Linkage of Hospital Episode Statistics and
Death Registration Records”, Report to the Department of Health, 2003

References – Single Entity ER
D. Menestrina et al, “Evaluation Entity Resolution Results”, PVLDB 3(1-2), 2010

M. Cochinwala et al, “Efficient data reconciliation”, Information Sciences 137(1-4), 2001

M. Bilenko & R. Mooney, “Adaptive Duplicate Detection Using Learnable String Similarity
Measures”, KDD 2003

P. Christen, “Automatic record linkage using seeded nearest neighbour and support vector
machine classification.”, KDD 2008

Z. Chen et al, “Exploiting context analysis for combining multiple entity resolution systems”,
SIGMOD 2009

A. McCallum & B. Wellner, “Conditional Models of Identity Uncertainty with Application to Noun
Coreference”, NIPS 2004

H. Newcombe et al, “Automatic linkage of vital records”, Science 1959

I. Fellegi & A. Sunter, “A Theory for Record Linkage”, JASA 1969

W. Winkler, “Overview of Record Linkage and Current Research Directions”, Research Report
Series, US Census, 2006

T. Herzog et al, “Data Quality and Record Linkage Techniques”, Springer, 2007

P. Ravikumar & W. Cohen, “A Hierarchical Graphical Model for Record Linkage”, UAI 2004

S. Sarawagi et al, “Interactive Deduplication using Active Learning”, KDD 2000

S. Tejada et al, “Learning Object Identification Rules for Information Integration”, IS 2001

A. Arasu et al, “On active learning of record matching packages”, SIGMOD 2010

K. Bellare et al, “Active sampling for entity matching”, KDD 2012

A. Beygelzimer et al, “Agnostic Active Learning without Constraints”, NIPS 2010

References – Single Entity ER (contd.)
R. Gupta & S. Sarawagi, “Answering Table Augmentation Queries from Unstructured Lists on the Web”,

PVLDB 2(1), 2009

A. Das Sarma et al, “An Automatic Blocking Mechanism for Large-Scale De-duplication Tasks”, CIKM
2012

M. Bilenko et al, “Adaptive Product Normalization: Using Online Learning for Record Linkage in
Comparison Shopping”, ICDM 2005

S. Chaudhuri et al, “Robust Identification of Fuzzy Duplicates”, ICDE 2005

W. Soon et al, “A machine learning approach to coreference resolution of noun phrases”,
Computational Linguistics 27(4) 2001

N. Bansal et al, “Correlation Clustering”, Machine Learning 56(1-3), 2004

V. Ng & C. Cardie, “Improving machine learning approaches to coreference resolution”, ACL 2002

M. Elsner & E. Charnaik, “You talking to me? a corpus and algorithm for conversation
disentanglement”, ACL-HLT 2008

M. Elsner & W. Schudy, “Bounding and Comparing Methods for Correlation Clustering Beyond ILP”,
ILP-NLP 2009

N. Ailon et al, “Aggregating inconsistent information: Ranking and clustering”, JACM 55(5), 2008

X. Dong et al, “Integrating Conflicting Data: The Role of Source Dependence”, PVLDB 2(1), 2009

A. Pal et al, “Information Integration over Time in Unreliable and Uncertain Environments”, WWW
2012

A. Culotta et al, “Canonicalization of Database Records using Adaptive Similarity Measures”, KDD 2007

O. Benjelloun et al, “Swoosh: A generic approach to Entity Resolution”, VLDBJ 18(1), 2009

References – Multi-Relational ER
A. Arasu et al, “Large-Scale Deduplication with Constraints using Dedupalog”, ICDE 2009

X. Dong et al, “Reference Recounciliation in Complex Information Spaces”, SIGMOD 2005

I. Bhattacharya & L. Getoor, “Collective Entity Resolution in Relational Data”, TKDD 2007

I. Bhattacharya & L. Getoor, “A Latent Dirichlet Model for Unsupervised Entity Resolution “, SDM
2007

M. Broecheler & L. Getoor , “Probabilistic Similarity Logic”, UAI 2010

H. Pasula et al , “Identity Uncertainty and Citation Matching”, NIPS 2002

D. Kalashnikov et al, “Domain-Independent Data Cleaning via Analysis of Entity-Relationship
Graph”, TODS06

J. Lafferty et al, “Conditional Random Fields: Probabilistic Models for Segmenting and Labeling
Sequence Data.”, ICML 2001

X. Li et al, “Identification and Tracing of Ambiguous Names: Discriminative and Generative
Approaches”, AAAI 2004

A. McCallum & B. Wellner, “Conditional Models of Identity Uncertainty with Application to Noun
Coreference”, NIPS 2004

M. Richardson & P. Domingos, “Markov Logic”, Machine Learning 62, 2006

W. Shen et al, “Constraint-based Entity Matching”, AAAI 2005

P. Singla & P. Domingos, “Entity Resolution with Markov Logic”, ICDM 2006

References – Blocking

M. Bilenko et al, “Adaptive Blocking: Learning to Scale Up Record Linkage and Clustering”, ICDM
2006

M. Michelson & C. Knoblock, “Learning Blocking Schemes for Record Linkage”, AAAI 2006

A. Das Sarma et al, “An Automatic Blocking Mechanism for Large-Scale De-duplication Tasks”,
CIKM 2012

A. Broder et al, “Min-Wise Independent Permutations”, STOC 1998

M. Hernandez & S. Stolfo, “The merge/purge problem for large databases”, SIGMOD 1995

A. McCallum et al, “Efficient clustering of high-dimensional data sets with application to
reference matching”, KDD 2000

V. Rastogi et al, “Large-Scale Collective Entity Matching”, PVLDB 4(4), 2011

References – Challenges & Future Directions

I. Bhattacharya and L. Getoor, "Query-time Entity Resolution", JAIR 2007

X. Dong, L. Berti-Equille, D. Srivastava, ”Truth discovery and copying detection in a dynamic
world”, VLDB 2009

P. Li, X. Dong, A. Maurino, D. Srivastava, “Linking Temporal Records”, VLDB 2011

A. Pal, V. Rastogi, A. Machanavajjhala, P. Bohannon, “Information integration over time in
unreliable and uncertain environments”, WWW 2012

