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What is Entity Resolution? 

Problem of identifying and linking/grouping  different 
manifestations of the same real world object.  

 

Examples of manifestations and objects:  

• Different ways of addressing (names, email addresses, FaceBook 
accounts) the same person in text. 

• Web pages with differing descriptions of the same business. 

• Different photos of the same object. 

• … 



What is Entity Resolution?  



Ironically, Entity Resolution has many duplicate names 

Doubles 
Duplicate detection 

Record linkage 

Deduplication 

Object identification 

Object consolidation 

Entity resolution 
Entity clustering 

Reference reconciliation 

Reference matching 
Householding 

Household matching 

Match 

Fuzzy match 

Approximate match 

Merge/purge 
Hardening soft databases 

Identity uncertainty 

Mixed and split citation problem 



ER Motivating Examples 

• Linking Census Records 

• Public Health 

• Web search 

• Comparison shopping 

• Counter-terrorism 

• Spam detection 

• Machine Reading 

• … 



before after 

ER and Network Analysis 



Motivation: Network Science 

• Measuring the topology of the internet … using 
traceroute 



IP Aliasing Problem   [Willinger et al. 2009] 



IP Aliasing Problem   [Willinger et al. 2009] 



Traditional Challenges in ER 

• Name/Attribute ambiguity 

 

 

Thomas Cruise  

Michael Jordan 



Traditional Challenges in ER 

• Name/Attribute ambiguity 

• Errors due to data entry 



Traditional Challenges in ER 

• Name/Attribute ambiguity 

• Errors due to data entry 

• Missing Values 

[Gill et al; Univ of Oxford 2003] 



Traditional Challenges in ER 

• Name/Attribute ambiguity 

• Errors due to data entry 

• Missing Values 

• Changing Attributes 

 

 

• Data formatting 

 

 

• Abbreviations / Data Truncation 

 



Big-Data ER Challenges 



Big-Data ER Challenges 
• Larger and more Datasets 

– Need efficient parallel techniques 

• More Heterogeneity  

– Unstructured, Unclean and Incomplete data. Diverse data types. 

– No longer just matching names with names, but Amazon profiles with 
browsing history on Google and friends network in Facebook. 

 



Big-Data ER Challenges 
• Larger and more Datasets 

– Need efficient parallel techniques 

• More Heterogeneity  

– Unstructured, Unclean and Incomplete data. Diverse data types. 

• More linked 

– Need to infer relationships in addition to “equality” 

• Multi-Relational  

– Deal with structure of entities (Are Walmart and Walmart Pharmacy 
the same?) 

• Multi-domain 

– Customizable methods that span across domains 

• Multiple applications  (web search versus comparison shopping) 

– Serve diverse application with different accuracy requirements 

 



Outline 

1. Classical Single Entity ER 

2. Relational & MultiEntity ER 

3. Efficiency: Blocking/Canopies 

4. Challenges & Future Directions 



CLASSICAL SINGLE ENTITY ER 

PART 1 



Outline 

1. Classical Single Entity ER 

a) Problem Statement 

b) Data Preparation & Matching Features 

c) Algorithms for Single-Entity ER 

d) Canonicalization 

2. Relational & MultiEntity ER 

3. Efficiency: Blocking/Canopies 

4. Challenges & Future Directions 



ER PROBLEM STATEMENT 

PART 1-a 



Abstract Problem Statement 

Real World Digital World 

Records / 
Mentions 



Deduplication Problem Statement 

• Cluster the records/mentions that correspond to same 
entity  



Deduplication Problem Statement 

• Cluster the records/mentions that correspond to same 
entity  

– Intensional Variant: Compute cluster representative 



Record Linkage Problem Statement 

• Link records that match across databases 

A 
B 



Reference Matching Problem 

• Match noisy records to clean records in a reference table 

Reference 
Table 



Notation & Assumptions 

• R: set of records / mentions 

• M: set of matches (record pairs that correspond to same entity ) 

• N: set of non-matches (record pairs corresponding to different entities) 

• E: set of entities 

 

• True (Mtrue, Ntrue, Etrue): according to real world 
vs Predicted (Mpred, Npred, Epred): by algorithm 

 



Relationship between Mtrue and Mpred 

• Mtrue  (SameAs , Equivalence) 

• Mpred (Similar representations and similar attributes) 

Mtrue 
RxR Mpred 



Metrics 

• Pairwise metrics 

– Precision/Recall, F1 

– # of predicted matching pairs 

 

• Cluster level metrics 

– purity, completeness, complexity  

– Precision/Recall/F1: Cluster-level, closest cluster, MUC, B3 , 
Rand Index 

– Generalized merge distance [Menestrina et al, PVLDB10] 

 

 



Typical Assumptions Made 

• Each record/mention is associated with a single real 
world entity. 

 

 

 

 

• In record linkage, no duplicates in the same source 

• If two records/mentions are identical, then they are true 
matches 

 (     ,     ) ε  Mtrue 



ER versus Classification 

Finding matches vs non-matches is a classification problem 

 

• Imbalanced: typically O(R) matches, O(R^2) non-matches 

 

• Instances are pairs of records. Pairs are not IID 

 

(     ,     ) ε  Mtrue 

(     ,     ) ε  Mtrue 

(     ,     ) ε  Mtrue AND 



ER vs Clustering 

Computing entities from records is a clustering problem 

 

• In typical clustering algorithms (k-means, LDA, etc.) 
number of clusters is a constant or sub linear in R. 

 

• In ER: number of clusters is linear in R, and average 
cluster size is a constant. Significant fraction of clusters 
are singletons. 



DATA PREPARATION &  
MATCH FEATURES 

PART 1-b 



Normalization 

• Schema normalization 

– Schema Matching – e.g., contact number and phone number 

– Compound attributes – full address vs str,city,state,zip 

– Nested attributes 

• List of features in one dataset (air conditioning, parking)  vs each feature a 
boolean attribute 

– Set valued attributes 

• Set of phones vs primary/secondary phone 

– Record segmentation from text 

• Data  normalization 

– Often convert to all lower/all upper; remove whitespace 

– detecting and correcting values that contain known typographical errors or 
variations,  

– expanding abbreviations and replacing them with standard forms; replacing 
nicknames with their proper name forms 

– Usually done based on dictionaries (e.g., commercial dictionaries, postal addresses, 
etc.) 



Matching Functions 

• For two references x and y, compute a “comparison” vector, 
typically similarity of each component attribute.  

 

• Distance metric:  
– Idempotent 

– Non-negative 

– Symmetric 

– Triangle inequality 

• Not all commonly used ER distance functions are metrics 
– non-linear elastic matching (NEM) 

 

• From distance, can convert to similarity: 
– S = 1 / d, or if d is normalized, s = 1-d 

 



Summary of Matching Functions 

 

• Equality on a boolean predicate 

• Edit distance 

– Levenstein, Smith-Waterman, Affine 

• Set similarity 

– Jaccard, Dice 

• Vector Based 
– Cosine similarity, TFIDF 

 

 

• Useful packages: 

– SecondString, http://secondstring.sourceforge.net/ 

– Simmetrics: http://sourceforge.net/projects/simmetrics/ 

– LingPipe, http://alias-i.com/lingpipe/index.html 

 

• Alignment-based or Two-tiered 

– Jaro-Winkler, Soft-TFIDF, Monge-Elkan 

• Phonetic Similarity 

– Soundex 

• Translation-based 

• Numeric distance between values 

• Domain-specific 

Good for Names 

Good for Text like 
reviews/ tweets 

Useful for 
abbreviations, 

alternate names. 

Handle 
Typographical errors 



ALGORITHMS FOR SINGLE-ENTITY ER 

PART 1-c 



Matching Algorithms 

• Pairwise Matching 
– Given a vector of comparison scores,  

Independently compute a (probability) score indicative of 
whether a pair of records/mentions match.  

 

• Record Linkage  
– Each record from one database matches at most one record 

from other database.  

– Weighted k-partite matching 

 

• Deduplication 
– Transitivity constraints must be satisfied.  

– Correlation Clustering 

 



PAIRWISE MATCHING 



Pairwise Match Score 

Problem: Given a vector of component-wise similarities for a pair of 
records (x,y), compute P(x and y match).  

 

Solutions: 

1. Weighted sum or average of component-wise similarity scores. 
Threshold determines match or non-match.  

– 0.5*Last-name-match-score + 0.2*address-match-score + 0.3*login-match-score.  

– Hard to pick weights. 
• Match on last name match more predictive than login name. 

• Match on “Smith” less predictive than match on “Getoor”. 

– Hard to tune a threshold.  

 



Pairwise Match Score 

Problem: Given a vector of component-wise similarities for a pair of 
records (x,y), compute P(x and y match).  

 

Solutions: 

1. Weighted sum or average of component-wise similarity scores. 
Threshold determines match or non-match.  

2. Formulate rules about what constitutes a match. 
– (Last-name-score > 0.7 AND address-match-score > 0.8)  

OR (login-match-score > 0.9 AND address-match-score > 0.9) 

– Manually formulating the right set of rules is hard.  

 



ML Pairwise Approaches 

• Supervised machine learning algorithms 
– Decision trees 

• [Cochinwala et al, IS01] 

– Support vector machines 
• [Bilenko & Mooney, KDD03]; [Christen, KDD08] 

– Ensembles of classifiers 
• [Chen et al., SIGMOD09] 

– Conditional Random Fields (CRF) 
• [Wellner & McCallum, NIPS04] 

 

• Issues: 
– Training set generation 
– Imbalanced classes – many more negatives than positives (even after 

eliminating obvious non-matches … using Blocking) 
– Misclassification cost 
 



Creating a Training Set is a key issue 

• Constructing a training set is hard – since most pairs of 
records are “easy non-matches”.  

– 100 records from 100 cities.  

– Only 106 pairs out of total 108 (1%) come from the same city 

 

• Some pairs are hard to judge even by humans 

– Inherently ambiguous  
• E.g., Paris Hilton (person or business) 

– Missing attributes  
• Starbucks, Toronto vs Starbucks, Queen Street ,Toronto 



Avoiding Training Set Generation 

• Unsupervised / Semi-supervised Techniques 

– Fellegi-Sunter Model 
• [Newcombe et al Science ‘59, Fellegi & Sunter JASA 69,  

 Winkler ‘06, Herzog et al ’07] 

– Generative Models 
• [Ravikumar & Cohen, UAI04] 

 



Fellegi & Sunter Model 

• r = (x,y) is record pair,  is comparison vector, M matches, U 
non-matches 

• In the original work,  is binary, 0/1, match/not match 

 

• Decision rule 

 

 

 

 

 

• Thresholds tu and tl determined by apriori bounds on false 
matches and false non-matches 
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[Winkler 2006] 



Computing Probabilities 

• Typically make an independence assumption 

• Agreement weight wi is calculated for each attribute i 
based on m and u probabilities: 

– mi = P(xi = yi | r  M) 

– ui = P(xi = yi  | r  U) 

 

• Probabilities can be estimated using EM   

– See [Winkler 2006] for a survey of techniques used in the US 
Census.  



Avoiding Training Set Generation 

• Unsupervised / Semi-supervised Techniques 

– Fellegi-Sunter Model 
• [Newcombe Science ‘59, Fellegi & Sunter JASS 69,  

 Winkler ‘99, Herzog et al ’07] 

– Generative Models 
• [Ravikumar & Cohen, UAI04] 

 

• Active Learning 

– Committee of Classifiers 
• [Sarawagi et al KDD ’00, Tajeda et al IS ‘01] 

– Provably optimizing precision/recall 
• [Arasu et al SIGMOD ‘10, Bellare et al KDD ‘12] 



Committee of Classifiers [Tejada et al, IS ‘01] 



Active Learning with Provable Guarantees 

• Most active learning techniques minimize 0-1 loss  
[Beygelzimer et al NIPS 2010]. 

 

 

• However, ER is very imbalanced: 
– Number of non-matches >> number of matches. 

– Classifying all pairs as “non-matches” has low 0-1 loss. 

 

• Hence, need active learning techniques that minimize 
precision/recall.  



Active Learning with Provable Guarantees 

• Monotonicity of Precision [Arasu et al SIGMOD ‘10] 

 

There is a larger fraction of 
matches in C1 than in C2.  

Algorithm searches for the 
optimal classifier using binary 

search on each dimension 



Active Learning with Provable Guarantees 

[Bellare et al KDD ‘12] 
 

 

 

 

 

1. Precision Constrained  Weighted 0-1 Loss Problem  
(using a Lagrange Multiplier λ). 

2. Given a fixed value for λ, weighted 0-1 Loss can be optimized by a balckbox 
active learning classifier. 

3. Right value of λ is computed by searching over all optimal classifiers. 

– Classifiers are embedded in a 2-d plane (precision/recall) 

–  Search is along the convex hull of the embedded classifiers 

 

 

 

O (log2 n) calls to a blackbox 0-1 loss active learning algorithm. 
 

Exponentially smaller label complexity than [Arasu et al SIGMOD ‘10]  

(in the worst case).  



Open challenge 

• Handling errors in human judgements: 

– In an experiment on Amazon Mechanical Turk:  
• Each pairwise judgment given to 5 different people 

– Majority of workers agreed on truth on only 90% of pairwise 
judgements.  

 



Using pairwise ER 

• ER applications need more than independent 
classification of pairs of records as match/non-match.  

 

• Record Linkage 

• Deduplication 



RECORD LINKAGE 



1-1 assumption 

• Matching between (almost) deduplicated databases.  

• Each record in one database matches at most one record 
in another database.  

 

• Pairwise ER may match a record in one database with 
more than one record in second database 



Weighted K-Partite Matching 

…  
Weighted 

 Edges 
Weighted 

 Edges 

• Edges between pairs of records from different databases 

• Edge weights  

o Pairwise match score 

o Log odds of matching 



Weighted K-Partite Matching 

…  

• Find a matching (each record matches at most one other record 
from other database) that maximize the sum of weights.  

• General problem is NP-hard (3D matching) 

• Successive bipartite matching is typically used.  [Gupta & Sarawagi, VLDB 

‘09] 



DEDUPLICATION 



Deduplication => Transitivity 

• Often pairwise ER algorithm output “inconsistent” results 
– (x, y) ε Mpred , (y,z) ε Mpred , but (y,z) ε Mpred  

 

• Idea: Correct this by adding additional matches using transitive 
closure 

 

• In certain cases, this is a bad idea. 
– Graphs resulting from pairwise ER have  

diameter > 20 
[Rastogi et al Corr‘12] 

 

• Need clustering solutions that deal with this problem directly by 
reasoning about records jointly. 

Added by 
Transitive 

Closure 



Clustering-based ER 

• Resolution decisions are not made independently for 
each pair of records 

 

• Based on variety of clustering algorithms, but 
– Number of clusters unknown aprioiri 

– Many, many small (possibly singleton) clusters 

 

• Often take a pair-wise similarity graph as input 

 

• May require the construction of a cluster representative 
or canonical entity 



Clustering Methods for ER 

• Hierarchical Clustering 
– [Bilenko et al, ICDM 05] 

• Nearest Neighbor based methods 
– [Chaudhuri et al, ICDE 05] 

• Correlation Clustering 
– [Soon et al CL’01, Bansal et al ML’04, Ng et al ACL’02,  

Ailon et al JACM’08, Elsner et al ACL’08, Elsner et al ILP-NLP’09] 

 



Integer Linear Programming view of ER 

• rxy ε {0,1}, rxy = 1 if records x and y are in the same cluster. 

• w+
xy ε [0,1], cost of clustering x and y together  

• w –
xy ε [0,1], cost of placing x and y in different clusters 

 

Transitive 
closure 



Correlation Clustering 

 

 

• Cluster mentions such that  
total cost is minimized 
Solid edges contribute w+

xy  to the objective 

Dashed edges contribute w –
xy  to the objective 

 

• Cost based on pairwise similarities 

 
– Additive:  w+

xy = pxy and w –
xy = (1-pxy) 

– Logarithmic:  w+
xy = log(pxy)   and  w –

xy = log(1-pxy) 

 

4 

3 

2 

5 

1 



Correlation Clustering 

• Solving the ILP is NP-hard [Ailon et al 2008 JACM] 

 

• A number of heuristics [Elsner et al 2009 ILP-NLP] 

– Greedy BEST/FIRST/VOTE algorithms 

– Greedy PIVOT algorithm (5-approximation) 

– Local Search 



Greedy Algorithms 
Step 1: Permute the nodes according a random π 

Step 2: Assign record x to the cluster that maximizes Quality 
        Start a new cluster if Quality < 0 

Quality:  

• BEST: Cluster containing the closest match 
– [Ng et al 2002 ACL] 

• FIRST: Cluster contains the most recent vertex y with w+
xy > 0 

– [Soon et al 2001 CL] 

• VOTE: Assign to cluster that minimizes objective function.  
– [Elsner et al 08 ACL] 

 
Practical Note:  

• Run the algorithm for many random permutations , and pick the clustering with 
best objective value (better than average run) 



Greedy with approximation guarantees 

PIVOT Algorithm  [Ailon et al 2008 JACM] 

• Pick a random (pivot) record p.  

• New cluster =  

 
•  π = {1,2,3,4}  C = {{1,2,3,4}} 

•  π = {2,4,1,3}  C = {{1,2}, {4}, {3}} 

•  π = {3,2,4,1}  C = {{1,3}, {2}, {4}} 

 

When weights are 0/1,  E(cost(greedy)) < 3 OPT 

        For w+
xy + w–

xy = 1,  E(cost(greedy)) < 5 OPT 

 

 

1 

4 

3 

2 

[Elsner et al, ILP-NLP ‘09] : Comparison of various correlation clustering algorithms 



Summary of Single-Entity ER Algorithms 

• Many algorithms for independent classification of pairs of records 
as match/non-match 
– ML based classification & Fellegi-Sunter  

– Pro: Advanced state of the art 

– Con: Building a training set is an open problem 

– Active learning is becoming popular 

• ER applications need more than pairwise classification 
– Record linkage: each record matched to at most one record from other 

database.  

• Weighted K-Partite Matching 

– Deduplication: transitivity requires clustering based algorithms. 

• Correlation Clustering 



CANONICALIZATION 

PART 1-d 



Canonicalization 

• Merge information from duplicate mentions to construct 
a cluster representative with maximal information 

 
 

• Starbucks, 
123 Queen St, Toronto 
Ph: null 

 

• Starbacks, 
null, Toronto 
Ph: 333-4444 

 

Starbucks, 
123 Queen St, Toronto 
Ph: 333-4444 



Canonicalization 

• Critically important in Web portals where users must be 
shown a consolidated view of the duplicate cluster.  

 

– Each mention only contains a subset of the attributes. 

– Mentions contain variations (of names, addresses). 

– Some of the mentions can have wrong values. 



Canonicalization Algorithms 

• Rule based:  

– For names: typically longest names are used. 

– For set values attributes: UNION is used. 

 

• For strings, [Culotta et al KDD07] learn an edit distance for finding the most 
representative “centroid”.  

 

• Can use “majority rule” to fix errors  
(if 4 out of 5 say a business is closed, then business is closed). 

– This may not always work due to copying [Dong et al VLDB09], or when underlying 
data changes [Pal et al WWW11] 

 



Canonicalization for Efficiency 

• Stanford Entity Resolution Framework [Benjelloun VLDBJ09] 

– Consider a blackbox match and merge function 

– Match is a pairwise boolean operator  

– Merge: construct canonical version of a matching pair 

 

• Can minimize time to compute matches by interleaving matching 
and merging  
–  esp., when match and merge functions  

satisfy monotonicity properties. 

r1 r2 r3 r4 r5 

r12 r45 

r345 



Summary of Canonicalization 

• Critically important in Web portals where users must be 
shown a consolidated view of the duplicate cluster.  

 

• Canonicalization can also help speed up ER in certain 
cases. 



RELATIONAL & MULTIENTITY ER 

PART 2 



Outline 
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PROBLEM DEFINITION 

PART 2-a 



Abstract Problem Statement 

Real World Digital World 



Deduplication Problem Statement 



Deduplication with Canonicalization 



Graph Alignment (& motif search) 

Graph 1 Graph 2 



Relationships are crucial 



Notation & Assumptions 

• R: set of records / mentions (typed) 

• H: set of relations / hyperedges (typed) 

• M: set of matches (record pairs that correspond to same entity ) 

• N: set of non-matches (record pairs corresponding to different entities) 

• E: set of entities 

• L: set of links 

 

• True (Mtrue, Ntrue, Etrue, Ltrue): according to real world 
vs Predicted (Mpred, Npred, Epred, Lpred ): by algorithm 

 



Metrics 

• Most algorithms use pairwise and cluster-based 
measures on each entity type 

• Little work that evaluations correct prediction of links 



MOTIVATING EXAMPLE: 
BIBLIOGRAPHIC DOMAIN 



Bibliography Domain 

• Entities: 
– Papers 
– Authors 
– Organizations/Author Affiliations 
– Venues 
– Conference Locations 

• Relations: 
– Author-Of 
– Associated-With 
– AppearsIn 
– Cites 

• Co-occurrence relationships 
– Co-authors 
– Papers in same conference 
– Papers by same author 
– etc. 



RELATIONAL FEATURES & 
CONSTRAINTS 

PART 2-b 



Relational Features 

• There are a variety of ways of improving ER performance 
when data is richer than a single table/entity type 

• One of the simplest is to use additional information, to 
enrich model with relational features that will provide 
richer context for matching 

– This will often lead to increased precision 
• Relational information can help to distinguish references, add avoid false 

positives 

– It may also lead to increased recall 
• The best threshold will be different, and it may be, with the additional 

information, one can get increased recall as well. 



Set-based Relational Features 

• Relational features are often set-based 

– Set of coauthors for a paper 

– Set of cities in a country 

– Set of products manufactured by manufacturer 

• Can use set similarity functions mentioned earlier 

– Common Neighbors:          Intersection size 

– Jaccard’s Coefficient:      Normalize by union size 

– Adar Coefficient:             Weighted set similarity 

• Can reason about similarity in sets of values 

– Average or Max 

– Other aggregates 

 



Constraints 

• In single entity case, we already saw two important forms 
of constraints: 

– Transitivity:  If M1 and M2 match, M2 and M3 match, then M1 
and M3 match 

– Exclusivity:   If M1 matches with M2, then M3 cannot match 
with M2 

 

• Transitivity is key to deduplication 

• Exclusivity is key to record linkage 



Relational Constraints 

• In multi-relational domains, matching decisions often propagate 

– Constraints may be hard constraints 

• If M1, M2 match then M3, M4 must match 
– If two papers match, their venues match 

– If two cities match, then their countries match 

• If M1, M2  don’t match then M3, M4 cannot match 
– If two venues don’t match, then their papers don’t match 

– Or soft constraints 

• If M1, M2 match then M3, M4 more likely to match 
– If two venues match, then their papers are more likely to match 

• If M1, M2  don’t match then M3, M4 less likely to match 
– If institutions don’t match, then authors less likely to match 



Terminology 

• Positive evidence: If M1, M2 match then M3, M4 match 

• Negative evidence:  If M1, M2  match then M3, M4 don’t 
match  

 

• When matching decisions depend on other matching 
decisions (in other words, matching decisions are not 
made independently), we refer to the approach as 
collective 

 



Match Propagation 

• Global:  In  two papers match, then their venues match 

– This constraint can be applied to all instances of venue 
mentions 

• All occurrences of ‘SIGMOD’ can be matched to ‘International 
Conference on Management of Data’ 

• Local:  If two papers match, then their authors match 

– This constraint can only be applied locally 
• Don’t want to match all occurrences of ‘J. Smith’ with ‘Jeff Smith’, only in 

the context of the current paper  



Additional Relational Constraints 

• Constraints can also encode a variety of additional forms 
of integrity constraints 

– Uniqueness Constraints 
• Mention M1 and M2 must refer to distinct entities 

– Coauthors are distinct 

– Count Constraints 
• Entity A can link to at most N Bs 

– Authors have at most 5 papers at any conference 

 

• Again, these can be either hard or soft constraints 
 

 



Ex.  Semantic Integrity Constraints 

Type Example 

Aggregate C1 = No researcher has published more than five AAAI papers in a year 

Subsumption C2 = If a citation X from DBLP matches a citation Y in a homepage, then 
each author mentioned in Y matches some author mentioned in X 

Neighborhood C3 = If authors X and Y share similar names and some co-authors, they 
are likely to match 

Incompatible  C4 = No researcher exists who has published in both HCI and numerical 
analysis 

Layout C5 = If two mentions in the same document share similar names, they 
are likely to match 

Key/Uniqueness C6 = Mentions in the PC listing of a conference is to different 
researchers 

Ordering C7 = If two citations match, then their authors will be matched in order 

Individual C8 = The researcher with the name “Mayssam Saria” has fewer than 
five mentions in DBLP (new graduate student) 

[Shen, Li & Doan, AAAI05] 



COLLECTIVE APPROACHES 



Collective Approaches 

• Decisions for cluster-membership depends on other clusters 

– Non-probabilistic approaches 
• Similarity Propagation 

• Constraint Optimization 

– Probabilistic Models 
• Generative Models 

• Undirected Models 

 



NON-PROBABILISTIC APPROACHES: 
SIMILARITY PROPAGATION 

PART 2-c 



Similarity Propagation Approaches 

• Similarity propagation algorithms define a graph which 
encodes the entity mentions and matching decisions, and 
compute matching decisions by propagating similarity values. 
– Details of what type of graph is constructed, and how the similarity is 

computed varies 

– Algorithms are usually defined procedurally 

– While probabilities may be encoded in various ways in the algorithms, 
there is no global probabilistic model defined 

• Approaches often more scalable than global probabilistic 
models 

• Examples 
– Dependency Graphs [Dong et al, SIGMOD05]  

– Collective Relational Clustering [Bhattacharya & Getoor, TKDD07] 

 



Dependency Graph 

(“Distributed…”, “Distributed …”) 

(“169-180”, “169-180”) 

(a1, a2) 

(“Michael Stonebraker”, “Stonebraker, M.”) 

(p2, p5) 

(“Eugene Wong”, “Wong, E.”) 

(p3, p6) 
(c1, c2) 

(“ACM …”, “ACM SIGMOD”) (“1978”, “1978”) 

Reference similarity Attribute similarity 

(“Robert S. Epstein”, “Epstein, R.S.”) 

(p1, p4) 

[Dong et al., SIGMOD05 ] 

Slides courtesy of [Dong et al.] 



Dependency Graph Example II 

(“Distributed…”, “Distributed …”) 

(“169-180”, “169-180”) 

(a1, a2) 

(“Michael Stonebraker”, “Stonebraker, M.”) 

(p2, p5) 

(“Eugene Wong”, “Wong, E.”) 

(p3, p6) 
(c1, c2) 

(“ACM …”, “ACM SIGMOD”) (“1978”, “1978”) 

Reference similarity Attribute similarity 

(“Robert S. Epstein”, “Epstein, R.S.”) 

(p1, p4) 

Compare  
authored papers 



Exploit the Dependency Graph 

(“Distributed…”, “Distributed …”) 

(“169-180”, “169-180”) 

(a1, a2) 
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A. Aho S. Johnson J. Ullman 

Relational Clustering for ER (RC-ER) 

[Bhattacharya & Getoor, TKDD07] 
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Collective Relational Clustering:  Motivation 

S. Johnson 

S. Johnson 

Stephen C.  
Johnson 

S. Johnson 

M. G. Everett 

M. Everett 

Alfred V. Aho 

A. Aho 

S. Johnson 

S. Johnson 

Stephen C.  
Johnson 

S. Johnson 

M. G. Everett 

M. Everett 

Alfred V. Aho 

A. Aho 

Good separation of attributes 
Many cluster-cluster relationships 
 Aho-Johnson1, Aho-Johnson2, Everett-

Johnson1 

Worse in terms of attributes 
Fewer cluster-cluster relationships 
 Aho-Johnson1, Everett-Johnson2  



Objective Function 

 Greedy clustering algorithm: merge cluster pair with max 

reduction in objective function 

Common cluster neighborhood  Similarity of attributes 

weight for  
attributes 

weight for  
relations 

similarity of 
attributes 

Similarity based on relational edges 
between ci and cj 

 Minimize: 

 ( , ) ( , ) (| ( )| | ( )|)c c w sim c c w N c N ci j A A i j R i j  

),(),( jiRRj

i j

iAA ccsimwccsimw 



Similarity Measures 

• Attribute Similarity 
– Use best available measure for each attribute 

– Name Strings: Soft TF-IDF, Levestein, Jaro 

– Textual Attributes: TF-IDF 

 

• Aggregate to find similarity between clusters 
– Single link, Average link, Complete link 

–  Cluster representative 

 

• Relational Similarity 
– Measures of set similarity 

– Higher order similarity:    Consider nbrs of nbrs 

– Can also consider neighborhood as multi-set 

 



Relational Clustering Algorithm 

1. Find similar references using ‘blocking’ 

2. Bootstrap clusters using attributes and relations 

3. Compute similarities for cluster pairs and insert into priority 
queue 

 

4. Repeat until priority queue is empty 

5.            Find ‘closest’ cluster pair 

6.            Stop if similarity below threshold 

7.            Merge to create new cluster 

8.            Update similarity for ‘related’ clusters 
 

 

• O(n k log n) algorithm w/ efficient implementation  



Similarity-propagation Approaches 
Method Notes Constraints  Evaluation 

RelDC 
[Kalashnikov et 
al, TODS06] 

Reference 
disambiguation 
using using 
Relationship-
based data 
cleaning (RelDC) 

Model choice 
nodes identified 
using feature-
based similarity 

Context 
attraction  
measures the 
relational 
similarity 

Accuracy and 
runtime for Author 
resolution and 
director resolution 
in Movie database 

Reference 
Reconciliation 
[Dong et al, 
SIGMOD05]  

Dependency 
Graph for 
propagating 
similarities + 
enforce non-
match 
constraints 

Reference 
enrichment 
Explicitly handle 
missing values 
Parameters set 
by hand 

Both positive 
and negative 
constraints 

Precision/Recall, 
F1 on personal 
information 
management data 
(PIM), Cora dataset  

Collective 
Relational 
Clustering 
[Bhattacharya & 
Getoor, TKDD07] 

Modified 
hierarchical 
agglomerative 
clustering 
approach 

Constructs 
canonical entity 
as merges are 
made  

Focus on 
coauthor 
resolution and 
propagation 

F1 on three 
bibliographic 
datasets: CiteSeer, 
ArXiv, and BioBase 



CONSTRAINT OPTIMIZATION 
APPROACHES 

PART 2-d 



Constraint-based Approaches 

• Constraint-based approaches explicitly encode relational 
constraints 

– They can be formulated as hybrid of constraints and 
probabilistic models 

– Or as constraint optimization problem 

• Examples 

– Constraint-based Entity Matching [Shen, Li & Doan, AAAI05] 

– Dedupalog [Arasu, Re, Suciu, ICDE09] 

 



CME 

• Two layer model: 
– Layer 1: Generative model  for data sets that satisfy constraints; 

builds on (Li, Morie, & Roth, AI Mag 2004). 

– Layer 2: EM algorithm and the relaxation labeling algorithm to 
perform matching.  Matching process is carried out in multiple 
iterations. In each iteration, use EM to estimate parameters of 
the generative model and a matching assignment, then 
employs relaxation labeling to exploit the constraints 

• First layer clusters mentions into groups (such that all 
matching mentions belong to the same group) and 
exploits constraints at the group level. Once this is done, 
the second layer exploits additional constraints at the 
level of individual matching mention pairs. 

[Shen, Li & Doan, AAAI05] 
 



Clustering 
with Dedupalog 

PaperRef(id, title, conference, publisher, year) 

Wrote(id, authorName, Position) 

Data to be 
deduplicated 

TitleSimilar(title1,title2) 

AuthorSimilar(author1,author2) 
(Thresholded) Fuzzy-

Join Output 

Step (0) Create Fuzzy Matches; this is input to Dedupalog. 

Step (1) Declare the entities 

Paper!(id)     :- PaperRef(id,-,-,-) 

Publisher!(p) :- PaperRef(-,-,-,p,-) 

Author!(a)     :- Wrote(-,a,-) 
Publishers (UNA) and Papers (NOT UNA) 

Dedupalog is flexible:  
Unique Names Assumption (UNA) 

“Cluster Papers, Publishers, & Authors” 

Slides from [Arasu, Re, Suciu, ICDE09] 



Step (2) Declare Clusters 

PaperRef(id, title, conference, publisher, year) 

Wrote(id, authorName, Position) 

TitleSimilar(title1,title2) 

AuthorSimilar(author1,author2) 

Paper!(id)     :- PaperRef(id,-,-,-) 

Publisher!(p) :- PaperRef(-,-,-,p,-) 

Author!(a)     :- Wrote(-,a,-) 

Author*(a1,a2) <-> AuthorSimilar(a1,a2) 

Clusters are declared using * (like IDBs or Views): These are output 

*IDBs are equivalence relations: 
Symmetric, Reflexive , & Transitively- 
Closed Relations: i.e., Clusters 

Input in the DB 

A Dedupalog program is a 
set of datalog-like rules  

“Cluster authors with similar names” 

“Cluster papers, 
publishers, and authors” 
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Author1 Author2 

AA Arvind Arasu 

Arvind A Arvind Arasu 



Simple Constraints 

Paper*(id1,id2) <-> PaperRef(id1,t1,-), PaperRef(id2,t2,-),TitleSimilar(t1,t2) 

Author*(a1,a2) <-> AuthorSimilar(a1,a2) (<->) Soft-constraints: 
 Pay a cost if violated. 

   Paper*(id1,id2) <= PaperEq(id1,id2 ) 

¬ Paper*(id1,id2) <= PaperNeq(id1,id2) 

(<=) Hard-constraints: Any 
clustering must satisfy these 

1. PaperEQ, PaperNEQ are relations (EDBS) 
2. ¬  denotes Negation here. 

“Papers with similar titles should likely be clustered together” 

“Papers in PaperEQ must be clustered together, 
those in PaperNEQ must not be clustered together” 

Hard constraints 
are challenging!  



Advanced Constraints 

“if two authors do not share coauthors, then do not cluster them” 

Author*(a1,a2) <= Paper*(id1,id2), Wrote(id1,a1,1), Wrote(id2,a2,1) 

“Clustering two papers, then must cluster their first authors” 

Publisher*(x,y) <- Publishes(x,p1), Publishes(x,p2),Paper*(p1,p2) 

“Clustering two papers makes it likely we should cluster their publisher” 

¬ Author∗ (x, y) <- ¬ (Wrote(x, p1,−), Wrote(y, p2,−), Wrote(z, p1,−),   

        Wrote(z, p2,−), Author∗(x, y)) 



Dedupalog via CC 
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Nodes are references (in the ! Relation) Entity References: Conference!(c) 

Semantics: Translate a Dedupalog Program to a set of graphs 

Conference*(c1,c2) <-> ConfSim(c1,c2) 

Positive edges 

Negative edges are implicit [-] 

VLDBJ 

VLDB conf 

ICDE 

International Conf. DE 
ICDT 

VLDB 

For a single graph w.o. hard constraints 
we can reuse prior work for O(1) apx. 



Correlation Clustering 
 

VLDBJ 

VLDB conf 

ICDE 

International Conf. DE ICDT 

Conference*(c1,c2) <- ConfSim(c1,c2) 

VLDB 

1. Pick a random order of edges 

2. While there is a soft edge do 

1. Pick first soft edge in order 

2. If    turn into 

3. Else is [-] turn into 

4. Deduce labels  

3. Return Transitively closed subsets 

Simple, Combinatorial 
algorithm is easy to scale! 

Thm: This is a 3-apx! 

Positive Equal  

Not Equal [-]     Negative 

Soft Hard 

Conference*(c1,c2) <= ConfEQ(c1,c2) 

¬Conference*(c1,c2) <= ConfNEQ(c1,c2) 



Voting 

Thm:  A recursive-hard 
constraints no O(1) apx  

Features: Support for weights, reference tables 
(partially), and corresponding hardness results. 

System properties:  
  (1) Streaming algorithm 
  (2) linear in # of matches (not n2)  
  (3) User interaction 

Many dedupalog programs 
have an O(1)-apx 

Extend algorithm to whole language via voting technique. 
 Support many entities, recursive programs, etc.  

 Thm: All “soft” programs  O(1) Expert: multiway-cut hard 



PROBABILISTIC MODELS: 
GENERATIVE APPROACHES 

PART 4-d 



Generative Probabilistic Approaches 

• Probabilistic semantics based on Directed Models 

– Advantage:  generative semantics, can “generate” new 
instances 

– Disadvantage: acyclicity requirement 

• Variety of approaches 

– Based on Bayesian Network semantics, Latent Dirichlet 
Allocation, etc. 

• Examples 

– Latent Dirichlet Allocation [Bhattacharya & Getoor, SDM07] 

– Probabilistic Relational Models [Pasula et al, NIPS02] 

 

 



• Model how entity references co-occur in data 

 

1. Generation of references from entities 

 

2. Relationships between underlying entities 
• Groups of entities instead of pair-wise relations 

LDA-ER Probabilistic Generative Model  



Discovering Groups from Relations 

Bell Labs Group 

Alfred V Aho 

Jeffrey D Ullman 

Ravi Sethi 

Stephen C Johnson 

Parallel Processing Research Group 

Mark Cross 

Chris Walshaw Kevin McManus 

Stephen P Johnson 

Martin Everett 

P1: C. Walshaw, M. Cross, M. G. Everett,  
     S. Johnson 

P2: C. Walshaw, M. Cross, M. G. Everett,  
     S. Johnson, K. McManus 

P3: C. Walshaw, M. Cross, M. G. Everett 

P4: Alfred V. Aho, Stephen C. Johnson,  
     Jefferey D. Ullman 

P5: A. Aho, S. Johnson, J. Ullman 

P6: A. Aho, R. Sethi, J. Ullman 



LDA-ER Model 

             P 
       R 

r 

θ 

z 

a 

     T 

Φ 

     A 

V 

α 

β 

 Entity label a and group label 
z for each reference r 

 Θ: ‘mixture’ of groups for 
each co-occurrence 

 Φz: multinomial for choosing 
entity a for each group z 

 Va: multinomial for choosing 
reference r from entity a 

 Dirichlet priors with α and β 



Generating References from Entities 
• Entities are not directly observed 

 

1. Hidden attribute for each entity 

2. Similarity measure for pairs of attributes 

 

• A distribution over attributes for each entity 

S C Johnson Stephen C Johnson S Johnson Alfred Aho M. Cross 

Stephen C Johnson 

0.2 0.6 0.2 0.0 0.0 



Approx. Inference Using Gibbs Sampling 

• Conditional distribution over labels for each ref. 

• Sample next labels from conditional distribution  

• Repeat over all references until convergence 

 Converges to most likely number of entities 
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Faster Inference: Split-Merge Sampling 

• Naïve strategy reassigns references individually 

 

• Alternative: allow entities to merge or split 
 

• For entity ai, find conditional probabilities for 
1. Merging with existing entity aj 

2. Splitting back to last merged entities 

3. Remaining unchanged 

 

• Sample next state for ai from distribution 

 

• O(n g + e) time per iteration compared to O(n g + n e) 



Probabilistic Relational Models for ER  

Wrote 

Paper 
Title 

# of Authors 

Topic 

Word1 

Word 2 

… 

WordN 

Cites 

Author 
Name 

Research Area 

Author Mention 
NameString 

Paper Mention 
TitleString 

Institution 
Name 

Institute Mention 
NameString 

Venue 
Name 

Venue Mention 
NameString 

WorksAt 

AppearsIn 

: co-occurrence relationships 
: resolution relationships 

: entity relationships 



Probabilistic Relational Models 

Wrote 

Paper 
Title 

# of Authors 

Topic 

Word1 

Word 2 

… 

WordN 

Cites 

Author 
Name 

Research Area 

Author Mention 
NameString 

Paper Mention 
TitleString 

Institution 
Name 

Institute Mention 
NameString 

Venue 
Name 

Venue Mention 
NameString 

WorksAt 

AppearsIn 

: co-occurrence relationships 
: resolution relationships 

: entity relationships 

P(Paper.Topic | Author.ResearchArea) 

P(AuthorMention.NameString | Author.Name) 

P(Cites(P1,P2) | P1.Topic, P2.Topic) 



PRM Semantics 

)).(|.(),,|( ,

.

AxparentsAxPP S

x Ax




 


SI

Attributes Objects 
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AuthorM 

 A1 

Paper 

 P2 
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 P1 VenueM 

V2 

VenueM 

V1 

AuthorM 

 A2 

Paper 

Author Author Mention 

Paper Mention 

Instituti
on 

Institute 
Mention 

Venue Venue Mention 
AuthorM 

 A3 
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Inference in PRMs for Citation Matching 

• Parameter estimation 

– Priors for names, titles, citation formats learned offline from 
labeled data 

– String corruption parameters learned with Monte Carlo EM 

• Inference 

– MCMC with cluster recombination proposals 

– Guided by “canopies” of similar citations 

– Accuracy stabilizes after ~20 minutes 

[Pasula et al., NIPS 2002] 



Generative Approaches 

Method Learning/Inference 
Method 

Evaluation 

[Li, Morie, & 
Roth,  AAAI 04] 

Generative 
model for 
mentions in 
documents 

Truncated EM to learn 
parameters and MAP 
inference for entities 
(unsupervised) 

F1 on person 
names, 
locations and 
organizations in 
TREC dataset 

Probabilistic 
Relational 
Models [Pasula 
et al., NIPS03] 

Probabilistic 
Relational 
Models 

Parameters learned 
on separated corpora, 
inference done using 
MCMC  

% of correctly 
identified 
clusters on 
subsets of 
CiteSeer data 

Latent Dirichlet 
Allocation 
[Bhattacharya 
& Getoor, 
SDM06] 

Latent-Dirichlet 
Allocation 
Model 

Blocked Gibbs 
Sampling 
 

Precision/Recall
/F1 on CiteSeer 
and HEP data 



PROBABILISTIC MODELS: 
UNDIRECTED APPROACHES 

PART 4-e 



Undirected Probabilistic Approaches 

• Probabilistic semantics based on Markov Networks 

– Advantage:  no acyclicity requirements 

• In some cases, syntax based on first-order logic 

– Advantage: declarative  

 

• Examples 

– Conditional Random Fields (CRFs) [McCallum & Wellner, 
NIPS04] 

– Markov Logic Networks (MLNs) [Singla & Domingos, ICDM06] 

– Probabilistic Similarity Logic [Broecheler & Getoor, UAI10] 

 



Conditional Random Field (CRF) 
Undirected graphical model, conditioned on some data variables 

c d 

a b 
output 

predicted 

variables 

input 

observed 

variables 

[Lafferty, McCallum, Pereira, ICML01] 

[Slides coutesy of Andrew McCallum] 



Conditional Random Field (CRF) 
Undirected graphical model, conditioned on some data variables 

c d 

a b 
output 

predicted 

variables 

input 

observed 

variables 

 + Tremendous freedom to use arbitrary features of input. 
 + Predict multiple dependent variables (“structured output”) 



Information Extraction with Linear-chain 
CRFs  

Finite state model 

Today   Morgan  Stanley   Inc   announced  Mr.     Friday’s  

appointment.  

s1          s2          s3          s4           s5          s6            s7           s8 

person name 

organization name 

background 

Graphical 
model 

state 

  sequence 

observation 

   sequence 

Logistic Regression analogue of a hidden Markov model 



CRF for ER 

• CRF with random variables  for each mention pair 

• Factors capture dependence among mentions assigned 
to the same cluster 

• Show that inference in above CRF is equivalent to graph 
partitioning in graph where nodes are mentions and 
edges weights are log clique potentials over nodes 

• Learn weights from training data; variety of weight 
learning approaches, here use voted perceptron 

• Graph partitioning performed using correlation clustering 

 

[McCallum & Wellner, NIPS04] 
 



Markov Logic 

• A logical KB is a set of hard constraints on the set of 
possible worlds 

• Make them soft constraints;  when a world violates a 
formula, it becomes less probable but not impossible 

• Give each formula a weight 

– Higher weight  Stronger constraint 

  isfies s  it  satf  formulaweights  oP(world) exp

[Richardson & Domingos, 06] 



Markov Logic 

• A Markov Logic Network (MLN) is a set of pairs (F, w) 
where 

– F is a formula in first-order logic 

– w is a real number 

 









 

Fi

ii xnw
Z

XP )(exp
1

)(

Iterate over all first-order MLN formulas 

# true groundings  

of ith clause 

Normalization Constant 

[Richardson & Domingos, 06] 



Problem Formulation 

• Given  

– A database of records representing entities in the real world 
e.g. citations 

– A set of fields e.g. author, title, venue 

– Each record represented as a set of typed predicates e.g. 
HasAuthor(citation,author), HasVenue(citation,venue)  

• Goal 

– To determine which of the records/fields refer to the same 
underlying entity  

Slides from [Singla & Domingos, ICDM 06] 



Problem Formulation 

• Given  

– DB of mentions of entities in the real world, e.g. citations 

– A set of fields, e.g. author, title, venue 

– Each record represented as a set of typed predicates e.g. 
HasAuthor(citation,author), HasVenue(citation,venue)  

• Entities in the real world represented by one or more 
strings appearing in the DB, e.g. ”J. Cox”, ”Cox J.” 

• String constant for each record, e.g. ”C1”, ”C2”  

• Goal: for each pair of string constants <x1, x2> of the 
same type,  is x1 = x2? 

Slides based on [Singla & Domingos, ICDM 06] 



Handling Equality 

• Introduce Equals(x,y) or x = y 

• Introduce the axioms of equality 

– Reflexivity: x = x  

– Symmetry: x = y  y  = x  

– Transitivity: x = y  y = z  z = x 

– Predicate Equivalence: 

 x1 = x2  y1  y2  (R(x1, y1)  R(x2,y2)) 



Handling Equality 

• Introduce reverse predicate equivalence 

• Same relation with the same entity gives evidence about 
two entities being same 

 R(x1,y1)  R(x2,y2)  x1 = x2    y2 = y2 

• Not true logically, but gives useful information 

• Example 

 HasAuthor(C1, J. Cox)  HasAuthor(C2, Cox J.)         C1 = C2  
(J. Cox = Cox J.) 



Model for Entity Resolution 

• Model is in the form of an MLN 

• Query predicate is Equality 

• Evidence predicates are relations which hold according to 
the DB 

• Introduce axioms of equality  

• First-order rules for field comparison, Fellegi-Sunter 
model, relational models 



Field Comparison 

• Each field is a string composed of tokens 

• Introduce HasWord(field, word) 

• Use reverse predicate equivalence 

 HasWord(f1,w1)  HasWord(f2,w2)  w1 = w2   f1 = f2 

• Example 

 HasWord(J. Cox, Cox)  HasWord(Cox J., Cox)  (Cox = Cox)  
(J. Cox = Cox J.) 

• Different weight for each word : learnable similarity measure 
of Bilenko & Mooney [2003] 



Two-level Similarity 

• Individual words as units: Can’t deal with spelling 
mistakes 

• Break each word into ngrams: Introduce 
HasNgram(word, ngram) 

• Use reverse predicate equivalence for word comparisons 

• Gives a two level similarity measure as proposed by 
Cohen et al. [2003] 



Fellegi-Sunter Model 

• Uses Naïve Bayes for match decisions with field 
comparisons used as predictors  

• Simplest Version: Field similarities measured by 
presence/absence of words in common 

 HasWord(f1, w1)  HasWord(f2,w2)   HasField(r1,  f1)  
HasField(r2, f2)  w1 = w2   r1 = r2 

• Example 

 HasWord(J. Cox, Cox)  HasWord(Cox J., Cox)  HasAuthor(C1, 
J. Cox)  HasAuthor(C2, Cox J.)     (Cox = Cox)    (C1 = C2) 



Relational Models 

• Fellegi-Sunter + transitivity [McCallum & Wellner 2005] 

 (f1 = f2)   (f2 = f3)    ( f3 = f1) 

• Fellegi-Sunter + reverse predicate equivalence for 
records/fields [Singla & Domingos 2005] 
 HasField(r1, f1)  HasField(r2, f2)  f1 = f2  r1 = r2 

 HasAuthor(C1, J. Cox)  HasAuthor(C2, Cox J.)     (J. 
Cox = Cox J.)  C1 = C2  



Relational Models 

• Co-authorship relation for entity resolution [Bhattacharya 
& Getoor, DMKD04] 

 HasAuthor(c,a1)  HasAuthor(c,a2)  Coauthor(a1,a2) 

 Coauthor(a1, a2)  Coauthor(a3, a4)  a1 = a3   a2 = a4 



Scalability 

• O(n2) number of match decisions - too big even for small 
databases 

• Use cheap heuristics (e.g. TFIDF based similarity) to 
identify plausible pairs  

• Used the canopy approach [McCallum et al., KDD00] 

• Inference/learning over plausible pairs 

 



Probabilistic Soft Logic 

• Declarative language for defining constrained continuous 
Markov random field (CCMRF) using first-order logic 
(FOL) 

• Soft logic: truth values in [0,1] 

• Logical operators relaxed using Lukasiewicz t-norms 

• Mechanisms for incorporating similarity functions, and 
reasoning about sets  

• MAP inference is a convex optimization 

• Efficient sampling method for marginal inference  

[Broecheler & Getoor, UAI10] 



Predicates and Atoms 

• Predicates 

– Describe relations 

– Combined with arguments to make atoms 

• Atoms 

– Lifted: contains variables, e.g., Friends(X, Y) 

– Ground: no variables, e.g., AuthorOf(author1, paper1) 

• Each ground atom can have a truth value in [0,1] 

• PSL programs define distributions over the truth values of 
ground atoms 



Weighted Rules 

• A PSL program is a set of weighted, logical rules 

• For example, 
 

authorName(A1,N1) ^ authorName(A2,N2) ^ similarString(N1,N2)  
=> sameAuthor(A1,A2) : 1.0 

• Variable substitution produces a set of weighted ground 
rules for a particular data set 



Soft Logic Relaxation 

• PSL uses the Lukasiewicz t-norm to relax hard logic 
operators to work on soft truth values 

 

 

 

 

• PSL converts rules to logical statements using above 
operators 



FOL to CCMRF 

• PSL converts a weighted rule into potential functions by 
penalizing its distance to satisfaction,  

•            is the truth value of ground rule     under 
interpretation x 

• The distribution over truth values is 

 
 
 
            : weight of rule r 

             : all groundings of rule r 

             : PSL program 



PSL Inference 

• PSL finds the most likely state by solving  
 

 

• The t-norms defining           form linear constraints on x, 
making inference a linear program 

• PSL uses lazy activation to ground rules, thus reducing 
the number of active variables and increasing efficiency 

• Other distance metrics (e.g., Euclidean) for distance to 
satisfaction produce other types of convex objectives 
(e.g., quadratic programs) 



CiteSeer Example 

• Citation listings collected from CiteSeer: 
– Pearl J. Probabilistic reasoning in intelligent systems.  

Pearl, Judea. Probabilistic Reasoning in Intelligent Systems: Networks of 

Plausible Inference.  

• Duplicate authors and papers 

• Base model: Levenstein string similarity 
– authorName(A1,N1) ^ authorName(A2,N2) ^ similarString(N1,N2)  

=> sameAuthor(A1,A2) 

 

– paperTitle(P1, T1) ^ paperTitle(P2,T2) ^ similarString(T1,T2)  

=> samePaper(P1,P2) 

• Only activate rule on pairs with similarity > 0.5 



Reasoning about Sets 

• Multi-Relational rules: 
– sameAuthorSet(P1,P2)  

=> samePaper(P1,P2) 

 

 

 

 

 

 

 

 

– samePaper(P1,P2) ^ authorOf(A1,P1) ^ authorOf(A2,P2) ^ authorName(A1,N1) ^ 

authorName(A2,N2) ^ sameInitials(N1,N2) => sameAuthor(A1,A2) 



Undirected Approaches 

Method Learning/Inference 
Method 

Evaluation 

[McCallum & 
Wellner, 
NIPS04] 

Conditional 
Random Fields 
(CRFs) 
capturing 
transitivity 
constraints 

Graph partitioning 
(Boykov et al. 1999), 
performed via 
correlation clustering 

F1 on DARPA 
MUC & ACE 
datasets 

[Singla & 
Domingos, 
ICDM06] 

Markov Logic 
Networks 
(MLNs)  

Supervised learning 
and inference using 
MaxWalkSAT & MCMC 

Conditional Log-
likelihood and 
AUC on Cora 
and BibServ 
data 
 

[Broecheler & 
Getoor, UAI10] 

Probabilistic 
Similarity Logic 
(PSL) 

Supervised learning 
and inference using 
continuous 
optimization 

Precision/Recall
/F1 Ontology 
Alignment 



Summary: Collective Approaches 

• Decisions for cluster-membership depends on other clusters 

– Non-probabilistic approaches 
• Similarity propagation approaches 

• Constraint-based approaches 

– Probabilistic Models 
• Generative Models 

• Undirected Models 

 

• Advantages of non-probabilistic approaches is they often 
scale better than generative probabilistic approaches 

• Undirected Models are often easier to specify 

• Scaling undirected models active area of research 



BLOCKING/CANOPY GENERATION 

PART 3 



Blocking: Motivation 

• Naïve pairwise: |R|2 pairwise comparisons 

– 1000 business listings each from 1,000 different cities across 
the world 

– 1 trillion comparisons 

– 11.6 days (if each comparison is 1 μs) 

 

• Mentions from different cities are unlikely to be matches 

– Blocking Criterion: City 

– 10 million comparisons 

– 10 seconds (if each comparison is 1 μs) 



Blocking: Motivation 

• Mentions from different cities are unlikely to be matches 

– May miss potential matches 

 

 



Blocking: Motivation 

Set of all Pairs 
of Records  

Matching Pairs 
of Records  

Pairs of Records  
satisfying  

Blocking criterion 



Blocking: Problem Statement 

Input:  Set of records R 

Output: Set of blocks/canopies 

 

 

Variants:  

• Disjoint Blocking: Each mention appears in one block. 

 

• Non-disjoint Blocking: Mentions can appear in more than 
one block.  



Blocking: Problem Statement 

 

Metrics:  

• Efficiency (or reduction ratio) : 

 

 

 

• Recall* (or pairs completeness) : 

 

 

*Need to know ground truth in order to compute this metric 



Blocking: Problem Statement 

Metrics:  

• Efficiency (or reduction ratio) : 

 

• Recall* (or pairs completeness) : 

 

• Precision* (or pairs quality) : 

 

• Max Canopy Size:  

 

 *Need to know ground truth in order to compute this metric 



Blocking Algorithms 1 

• Hash based blocking 
– Each block Ci is associated with a hash key hi. 

– Mention x is hashed to Ci if hash(x) = hi. 

– Within a block, all pairs are compared. 

– Each hash function results in disjoint blocks. 

 

• What hash function?  
– Deterministic function of attribute values 

– Boolean Functions over attribute values  
[Bilenko et al ICDM’06, Michelson et al AAAI’06,  
Das Sarma et al CIKM ‘12] 

– minHash (min-wise independent permutations)  
[Broder et al STOC’98] 

 
 



Blocking Algorithms 2 

• Pairwise Similarity/Neighborhood based blocking 

– Nearby nodes according to a similarity metric are clustered 
together 

– Results in non-disjoint canopies. 

 

• Techniques 

– Sorted Neighborhood Approach [Hernandez et al SIGMOD’95] 

– Canopy Clustering [McCallum et al KDD’00] 



Simple Blocking: Inverted Index on a Key 

Examples of blocking keys: 

– First three characters of last name 

– City + State + Zip 

– Character or Token n-grams 

– Minimum infrequent n-grams 



Learning Optimal Blocking Functions 

• Using one or more blocking keys may be insufficient 

– 2,376,206 American’s shared the surname Smith in the 2000 US 

– NULL values may create large blocks. 

 

• Solution: Construct blocking functions by combining 
simple functions 

 



Complex Blocking Functions 

• Conjunction of functions [Michelson et al AAAI’06, Bilenko et al ICDM’06] 

– {City} AND {last four digits of phone}  

 

• Chain-trees [Das Sarma et al CIKM‘12] 

– If ({City} = NULL or LA) then  {last four digits of phone} AND {area code}  
                                         else   {last four digits of phone} AND {City} 

 

• BlkTrees [Das Sarma et al CIKM‘12] 

 



Learning an Optimal function [Bilenko et al ICDM ‘06] 

• Find k blocking functions that eliminate the most non-
matches, while retaining almost all matches. 

– Need a training set of positive and negative pairs 

 

• Algorithm Idea: Red-Blue Set Cover 

Positive Examples 

Negative Examples 

Blocking Keys 

Pick k Blocking keys such that  
 (a) At most ε blue nodes are 
not covered 
 (b)  Number of red nodes 
covered is minimized 



Learning an Optimal function [Bilenko et al ICDM ‘06] 

• Algorithm Idea: Red-Blue Set Cover 

 

 

 

 

• Greedy Algorithm: 

– Construct “good” conjunctions of blocking keys {p1, p2, …}. 

– Pick k conjunctions {pi1, pi2, …, pik}, such that the following is 
minimized 

Positive Examples 

Negative Examples 

Blocking Keys 

Pick k Blocking keys such that  
 (a) At most ε blue nodes are 
not covered 
 (b)  Number of red nodes 
covered is minimized 



minHash (Minwise Independent Permutations) 

• Let Fx be a set of features for mention x 

– (functions of) attribute values 

– character ngrams 

– optimal blocking functions …  

• Let π be a random permutation of features in Fx 

– E.g., order imposed by a random hash function 

 

• minHash(x) = minimum element in Fx according to π 

 



Why minHash works? 

 Surprising property: For a random permutation π,   

 

 

 How to build a blocking scheme such that only pairs with 
Jacquard similarity > s fall in the same block (with high prob)?  

` 
Probability that  

(x,y) mentions are  
blocked together 

Similarity(x,y) 



Blocking using minHashes 

• Compute minHashes using r * k permutations (hash 
functions)  

 

 

 

 

 

• Signature’s that match on 1 out of k bands, go to the 
same block.  

… 

k blocks 

Band of r minHashes 



minHash Analysis 

False Negatives: (missing matches)  

P(pair x,y not in the same block  
      with Jacquard sim = s) 

 

 

False Positives: (blocking non-matches) 

P(pair x,y in the same block  
      with Jacquard sim = s) 

 

Sim(s) P(not same 
block) 

0.9 10-8 

0.8 0.00035 

0.7 0.025 

0.6 0.2 

0.5 0.52 

0.4 0.81 

0.3 0.95 

0.2 0.994 

0.1 0.9998 

should be very low for high similarity pairs 



Sorted Neighborhood [Hernandez et al SIGMOD’95] 

• Compute a Key for each mention.  

 

• Sort the mentions based on the key.  

 

• Merge: Check whether a record  
matches with (w-1) previous records. 
– Efficient implementation using  

Sort Merge Band Join [DeWitt et al VLDB’91] 

 

• Perform multiple passes with  
different  keys 

So
rt

e
d

 o
rd

e
r 



Canopy Clustering [McCallum et al KDD’00] 

Input: Mentions M,  
       d(x,y), a distance metric, 
       thresholds T1 > T2 

Algorithm: 

1. Pick a random element x from M 

2. Create new canopy Cx using  
mentions y s.t. d(x,y) < T1 

3. Delete all mentions y from M 
s.t. d(x,y) < T2 

4. Return to Step 1 if M is not empty. 

 

In multiple 
canopies 

Each element 
has a single 

primary canopy 



SCALING COLLECTIVE ER 



Scaling Collective ER [Rastogi et al VLDB11] 

Current state-of-the-art: Collective Entity Matching 

(+) High accuracy 

(-) Often scale only to a few 1000 entities [SD06],  
since runtime is quadratic in the number of pairs. 

Slides adapted from [Rastogi et al VLDB11] talk 

Example: Dedup papers and authors 

  Id Author-1 Author-2 Paper 

A1 John Smith Richard Johnson Indices and Views 

A2 J Smith R Johnson SQL Queries 

A3 Dr. Smyth R Johnson Indices and Views 



Algorithm 

• Generates overlapping canopies (e.g., Canopy clustering) 

 

• Run collective matcher on each canopy 

 

 

 



Efficiency: Use Canopies[McCallum et al KDD 00] 

Reduces # of candidate pairs from:  
O(|Mentions|2 ) to |Candidate pairs| 

 

Pair-wise approach becomes efficient: O(|Candidate pairs|) 
 

 

John  
Smith Richard 

Smith 

J. Smith 
 
 
 
     

Richard M. 
Johnson 

R. Smith 

John S. 
 
John Jacob 
 

Canopy 
for 

Richard 

Canopy 
for Smith 

Canopy 
for  

John 

Richard 
Johnson 



Efficiency of Collective approach 

Example for Collective methods[SD06] 

• |References|= 1000,|Candidate pairs| = 15,000,  
– Time ~ 5 minutes 

• |References| = 50,000, |Candidate pairs| = 10 million 

– Time required = 2,500 hours ~ 3 months  

 

Collective methods still not efficient: Ω(|Candidate pairs|2)  

 



Distribute 

Partitioning into smaller chunks helps! 

Run collective entity-matching in each canopy separately 

 
Example for Collective methods[SD06] 

• |References|= 1000,|Candidates| = 15,000,  
– Time = 5 minutes 

•  One canopy: |References| = 100, |Candidates| ~ 1000, 

− Time ~ 10 Seconds 

• |References| = 50,000,  # of canopies ~ 13k 

− Time ~ 20 hours << 3 months! 



Problem: Correlations across canopies will be lost 

Example: CoAuthor rule grounds to the correlation 

 match(Richard Johnson, R Johnson) =>  match(J. Smith, John Smith) 

 

John  
Smith 

J. Smith 
 
 
 
     

John S. 
 
John Jacob 
 

Steve 
Johnson 

R. Smith 

Canopy 
for 

Johnson 

Canopy 
for Smith 

Canopy 
for  

John 

R 
Johnson 

Richard 
Johnson 

CoAuthor(A1,B1) ∧ CoAuthor(A2,B2)  ∧ match(B1,B2)  match(A1,A2) 



Message Passing 

Simple Message Passing (SMP) 

1. Run entity matcher M locally in each canopy 

2. If M finds a match(r1,r2) in some canopy, pass it as 
evidence to all canopies  

3. Rerun M within each canopy using new evidence 

4. Repeat until no new matches found in each canopy 

 

Runtime: O(k2 f(k) c) 
–  k : maximum size of a canopy 

–  f(k): Time taken by ER on canopy of size k 

–  c : number of canopies 



Formal Properties 

 for a well behaved ER method … 

Convergence: No. of steps ≤ no. of matches 

Soundness: Each output match is actually a true match 

Consistency: Output independent of the canopy order 

Completeness: Each true match is also a output match 

John  
Smith 

J. Smith 
 
 
 
     

John S. 
 
John Jacob 
 

Richard 
Smith 

R. Smith Richard M. 
Johnson 

Richard 
Johnson 



Completeness 

Papers 2 and 3 match only if a canopy  
knows that  
 - match(a1,a2) 
 - match(b2,b3) 
 - match(c2,c3) 
 
 
Simple message passing will not find any matches 
 - thus, no messages are passed, no progress 
 
Solution: Maximal message passing 
 - Send a message if there is a potential for match 



Summary of Blocking 

• O(|R|2) pairwise computations can be prohibitive.  
– Blocking eliminates comparisons on a large fraction of non-matches. 

• Equality-based Blocking: 
– Construct (one or more) blocking keys from features 

– Records not matching on any key are not compared.  

• Similarity based Blocking:   
– Form overlapping canopies of records based on similarity.  

– Only compare records within a cluster. 

• Message Passing + blocking can help scale collective ER. 

 



CHALLENGES AND FUTURE 
DIRECTIONS 

Part 4 



Challenges 

• So far, we have viewed ER as a one-time process applied to 
entire database; none of these hold in real world. 

• Temporal ER 
– ER algorithms need to account for change in real world 

– Reasoning about multiple sources [Pal & M et al. WWW 12] 

– Model transitions [Li et al VLDB11] 

• Reasoning about source quality 
– Sources are not independent 

– Copying Problem [Dong et al VLDB09] 

• Query Time ER 
– How do we selectively determine the smallest number of records to 

resolve, so we get accurate results for a particular query?  

– Collective resolution for queries [Bhattacharya & Getoor JAIR07] 

 



Open Issues 

• ER & User-generated data 
– Deduplicated entities interact with users in the real world 

• Users tag/associate photos/reviews with businesses on Google / Yahoo 

– What should be done to support interactions? 

• ER is often part of bigger inference problem 
– Pipelined approaches and joint approaches to information extraction 

and graph identification 
– How can we characterize how ER errors affect overall quality of 

results? 

• ER Theory 
– Need better support for theory which can give relational learning 

bounds 

• ER & Privacy 
– ER enables record re-identification 
– How do we develop a theory of privacy-preserving ER? 



Summary 

• Growing omnipresence of massive linked data, and the need 
for creating knowledge bases from text and unstructured data 
motivate a number of challenges in ER 
 

• Especially interesting challenges and opportunities for ER and 
social media data 
 

• As data, noise, and knowledge grows, greater needs & 
opportunities for intelligent reasoning about entity resolution 
 

• Many other challenges 
– Large scale identity management 
– Understanding  theoretical potentials & limits of ER 

 



THANK YOU! 
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