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Link-based Classification

Lise Getoor

Summary. A key challenge for machine learning is the problem of mining richly
structured data sets, where the objects are linked in some way due to either an
explicit or implicit relationship that exists between the objects. Links among the
objects demonstrate certain patterns, which can be helpful for many machine learn-
ing tasks and are usually hard to capture with traditional statistical models. Re-
cently there has been a surge of interest in this area, fuelled largely by interest in
web and hypertext mining, but also by interest in mining social networks, biblio-
graphic citation data, epidemiological data and other domains best described using
a linked or graph structure. In this chapter we propose a framework for modeling
link distributions, a link-based model that supports discriminative models describing
both the link distributions and the attributes of linked objects. We use a structured
logistic regression model, capturing both content and links. We systematically eval-
uate several variants of our link-based model on a range of data sets including both
web and citation collections. In all cases, the use of the link distribution improves
classification performance.

7.1 Introduction

Traditional data mining tasks such as association rule mining, market basket
analysis and cluster analysis commonly attempt to find patterns in a data set
characterized by a collection of independent instances of a single relation. This
is consistent with the classical statistical inference problem of trying to identify
a model given a random sample from a common underlying distribution.

A key challenge for machine learning is to tackle the problem of mining
more richly structured data sets, for example multi-relational data sets in
which there are record linkages. In this case, the instances in the data set are
linked in some way, either by an explicit link, such as a URL, or a constructed
link, such as join between tables stored in a database. Naively applying tradi-
tional statistical inference procedures, which assume that instances are inde-
pendent, can lead to inappropriate conclusions [15]. Care must be taken that
potential correlations due to links are handled appropriately. Clearly, this is
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information that should be exploited to improve the predictive accuracy of
the learned models.

Link mining is a newly emerging research area that is at the intersection
of the work in link analysis [10, 16], hypertext and web mining [3], relational
learning and inductive logic programming [9] and graph mining [5]. Link min-
ing is potentially useful in a wide range of application areas including bio-
informatics, bibliographic citations, financial analysis, national security, and
the Internet. Link mining includes tasks such as predicting the strength of
links, predicting the existence of links, and clustering objects based on similar
link patterns.

The link mining task that we focus on in this chapter is link-based clas-
sification. Link-based classification is the problem of labeling, or classifying,
objects in a graph, based in part on properties of the objects, and based in
part on the properties of neighboring objects. Examples of link-based classifi-
cation include web-page classification based both on content of the web page
and also on the categories of linked web pages, and document classification
based both on the content of a document and also the properties of cited,
citing and co-cited documents.

Three elements fundamental to link-based classification are:

• link-based feature construction – how do we represent and make use
of properties of the neighborhood of an object to help with prediction?

• collective classification – the classifications of linked objects are usu-
ally correlated, in other words the classification of an object depends on
the classification of neighboring objects. This means we cannot optimize
each classification independently, rather we must find a globally optimal
classification.

• use of labeled and unlabeled data – The use of labeled and unlabeled
data is especially important to link-based classification. A principled ap-
proach to collective classification easily supports the use of labeled and
unlabeled data.

In this chapter we examine each of these elements and propose a statistical
framework for modeling link distributions and study its properties in detail.
Rather than an ad hoc collection of methods, the proposed framework extends
classical statistical approaches to more complex and richly structured domains
than commonly studied.

The framework we propose stems from our earlier work on link uncertainty
in probabilistic relational models [12]. However in this work, we do not con-
struct explicit models for link existence. Instead we model link distributions,
which describe the neighborhood of links around an object, and can capture
the correlations among links. With these link distributions, we propose algo-
rithms for link-based classification. In order to capture the joint distributions
of the links, we use a logistic regression model for both the content and the
links. A key challenge is structuring the model appropriately; simply throwing
both links and content attributes into a “flat” logistic regression model does
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not perform as well as a structured logistic regression model that combines one
logistic regression model built over content with a separate logistic regression
model built over links.

Having learned a model, the next challenge is classification using the
learned model. A learned link-based model specifies a distribution over link
and content attributes and, unlike traditional statistical models, these at-
tributes may be correlated. Intuitively, for linked objects, updating the cat-
egory of one object can influence our inference about the categories of its
linked neighbors. This requires a more complex classification algorithm. Iter-
ative classification and inference algorithms have been proposed for hypertext
categorization [4, 28] and for relational learning [17, 25, 31, 32]. Here, we
also use an iterative classification algorithm. One novel aspect is that un-
like approaches that make assumptions about the influence of the neighbor’s
categories (such as that linked objects have similar categories), we explicitly
learn how the link distribution affects the category. We also examine a range
of ordering strategies for the inference and evaluate their impact on overall
classification accuracy.

7.2 Background

There has been a growing interest in learning from structured data. By struc-
tured data, we simply mean data best described by a graph where the nodes
in the graph are objects and the edges/hyper-edges in the graph are links or
relations between objects. Tasks include hypertext classification, segmenta-
tion, information extraction, searching and information retrieval, discovery of
authorities and link discovery. Domains include the world-wide web, biblio-
graphic citations, criminology, bio-informatics to name just a few. Learning
tasks range from predictive tasks, such as classification, to descriptive tasks,
such as the discovery of frequently occurring sub-patterns.

Here, we describe some of the most closely related work to ours, however
because of the surge of interest in recent years, and the wide range of venues
where research is reported (including the International World Wide Web Con-
ference (WWW), the Conference on Neural Information Processing (NIPS),
the International Conference on Machine Learning (ICML), the International
ACM conference on Information Retrieval (SIGIR), the International Confer-
ence of Management of Data (SIGMOD) and the International Conference on
Very Large Databases (VLDB)), our list is sure to be incomplete.

Probably the most famous example of exploiting link structure is the use
of links to improve information retrieval results. Both the well-known page
rank [29] and hubs and authority scores [19] are based on the link-structure
of the web. These algorithms work using in-links and out-links of the web
pages to evaluated the importance or relevance of a web-page. Other work,
such Dean and Henzinger [8] propose an algorithm based on co-citation to find
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related web pages. Our work is not directly related to this class of link-based
algorithms.

One line of work more closely related to link-based classification is the
work on hypertext and web page classification. This work has its roots in the
information retrieval community. A hypertext collection has a rich structure
beyond that of a collection of text documents. In addition to words, hyper-
text has both incoming and outgoing links. Traditional bag-of-words models
discard this rich structure of hypertext and do not make full use of the link
structure of hypertext.

Beyond making use of links, another important aspect of link-based classi-
fication is the use of unlabeled data. In supervised learning, it is expensive and
labor-intensive to construct a large, labeled set of examples. However in many
domains it is relatively inexpensive to collect unlabeled examples. Recently
several algorithms have been developed to learn a model from both labeled
and unlabeled examples [1, 27, 34]. Successful applications in a number of ar-
eas, especially text classification, have been reported. Interestingly, a number
of results show that while careful use of unlabeled data is helpful, it is not
always the case that more unlabeled data improves performance [26].

Blum and Mitchell [2] propose a co-training algorithm to make use of un-
labeled data to boost the performance of a learning algorithm. They assume
that the data can be described by two separate feature sets which are not
completely correlated, and each of which is predictive enough for a weak pre-
dictor. The co-training procedure works to augment the labeled sample with
data from unlabeled data using these two weak predictors. Their experiments
show positive results on the use of unlabeled examples to improve the per-
formance of the learned model. In [24], the author states that many natural
learning problems fit the problem class where the features describing the ex-
amples are redundantly sufficient for classifying the examples. In this case, the
unlabeled data can significantly improve learning accuracy. There are many
problems falling into this category: web page classification; semantic classifi-
cation of noun phrases; learning to select word sense and object recognition
in multimedia data.

Nigam et al. [27] introduce an EM algorithm for learning a naive Bayes
classifier from labeled and unlabeled examples. The algorithm first trains a
classifier based on labeled documents and then probabilistically classifies the
unlabeled documents. Then both labeled and unlabeled documents participate
in the learning procedure. This process repeats until it converges. The ideas of
using co-training and EM algorithms for learning from labeled and unlabeled
data are fully investigated in [13].

Joachims et al. [18] proposes a transductive support vector machine
(TSVM) for text classification. A TSVM takes into account a particular test
set and tries to optimize the classification accuracy for that particular test
set. This also is an important means of using labeled and unlabeled examples
for learning.
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In other recent work on link mining [12, 25, 31], models are learned from
fully labeled training examples and evaluated on a disjoint test set. In some
cases, the separation occurs naturally, for example in the WebKB data set
[6]. This data set describes the web pages at four different universities, and
one can naturally split the data into a collection of training schools and a test
school, and there are no links from the test school web pages to the training
school pages. But in other cases, the data sets are either manipulated to
extract disconnected components, or the links between the training and test
sets are simply ignored. One major disadvantage of this approach is that it
discards links between labeled and unlabeled data which may be very helpful
for making predictions or may artificially create skewed training and test sets.

Chakrabarti et al. [4] proposed an iterative relaxation labeling algorithm
to classify a patent database and a small web collection. They examine us-
ing text, neighboring text and neighbor class labels for classification in a
rather realistic setting wherein some portion of the neighbor class labels are
known. In the start of their iteration, a bootstrap mechanism is introduced
to classify unlabeled documents. After that, classes from labeled and unla-
beled documents participate in the relaxation labeling iteration. They showed
that naively incorporating words from neighboring pages reduces performance,
while incorporating category information, such has hierarchical category pre-
fixes, improves performance.

Oh et al. [28] also suggest an incremental categorization method, where the
classified documents can take part in the categorization of other documents in
the neighborhood. In contrast to the approach used in Chakrabarti et al., they
do not introduce a bootstrap stage to classify all unlabeled documents. In-
stead they incrementally classify documents and take into account the classes
of unlabeled documents as they become available in the categorization process.
They report similar results on a collection of encyclopedia articles: merely in-
corporating words from neighboring documents was not helpful, while making
use of the predicted class of neighboring documents was helpful.

Popescul et al. [30] study the use of inductive logic programming (ILP) to
combine text and link features for classification. In contrast to Chakrabarti
et al. and Oh et al., where class labels are used as features, they incorporate
the unique document IDs of the neighborhood as features. Their results also
demonstrate that the combination of text and link features often improves
performance.

These results indicate that simply assuming that link documents are on the
same topic and incorporating the features of linked neighbors is not generally
effective. One approach is to identify certain types of hypertext regularities
such as encyclopedic regularity (linked objects typically have the same class)
and co-citation regularity (linked objects do not share the same class, but
objects that are cited by the same object tend to have the same class). Yang et
al. [33] compare several well-known categorization learning algorithms: naive
Bayes [22], kNN [7], and FOIL on three data sets. They find that adding words
from linked neighbors is sometimes helpful for categorization and sometimes
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harmful. They define five hypertext regularities for hypertext categorization.
Their experiments indicate that application of this knowledge to classifier
design is crucial for real-world categorization. However, the issue of discovering
the regularity is still an open issue.

Here, we propose a probabilistic method that can learn a variety of dif-
ferent regularities among the categories of linked objects using labeled and
unlabeled examples. Our method differs from the previous work in several
ways. First, instead of assuming a naive Bayes model [4] for the class labels
in the neighborhood, we adopt a logistic regression model to capture the con-
ditional probability of the class labels given the object attributes and link
descriptions. In this way our method is able to learn a variety of different
regularities and is not limited to a self-reinforcing encyclopedic regularity. We
examine a number of different types of links and methods for representing
the link neighborhood of an object. We propose an algorithm to make pre-
dictions using both labeled and unlabeled data. Our approach makes use of
the description of unlabeled data and all of the links between unlabeled and
labeled data in an iterative algorithm for finding the collective labeling which
maximizes the posterior probability for the class labels of all of the unlabeled
data given the observed labeled data and links.

7.3 Link-based Models

Here we propose a general notion of a link-based model that supports rich
probabilistic models based on the distribution of links and based on attributes
of linked objects.

7.3.1 Definitions

The generic link-based data we consider is essentially a directed graph, in
which the nodes are objects and edges are links between objects.

• O – The collection of objects, O = {X1, . . . , XN} where Xi is an object,
or node in the graph. O is the set of nodes in the graph.

• L – The collections of links between objects. Li→j is a link between object
Xi and object Xj . L is the set of edges in the graph.

• G(O,L) – The directed graph defined over O by L.

Our model supports classification of objects based both on features of the
object and on properties of its links. The object classifications are a finite set
of categories {c1, . . . , ck} where c(X) is the category c of object X. We will
consider the neighbors of an object Xi via the following relations:

• In(Xi) – the set of incoming neighbors of object Xi, {Xj | Lj→i ∈ L}.
• Out(Xi) – the set of outgoing neighbors of object Xi, {Xj | Li→j ∈ L}.
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• Co-In(Xi) – The set of objects co-cited with object Xi, {Xj | Xj �= Xi

and there is a third object Xk that links to both Xi and Xj}. We can think
of these as the co-citation in-links (Co-In), because there is an object Xk

with in-links to both Xi and Xj .
• Co-Out(Xi) – The set of objects co-cited by object Xi, {Xj | Xj �= Xi

and there is a third object Xk to which both Xi and Xj link}. We can
think of these as the co-citation out-links (Co-Out), because both Xi and
Xj have out links to some object Xk.

7.3.2 Object Features

The attributes of an object provide a basic description of the object. Tra-
ditional classification algorithms are based on object attributes. In a linked-
based approach, it may also make sense to use attributes of linked objects.
Furthermore, if the links themselves have attributes, these may also be used.1

However, in this paper, we simply use object attributes, and we use the no-
tation OA(X) for the attributes of object X. As an example, in the scientific
literature domain, the object features might consist of a variety of text in-
formation such as title, abstract, authorship and content. In the domains we
examined, the objects are text documents and the object features we use are
word occurrences.

7.3.3 Link Features

To capture the link patterns, we introduce the notion of link features as a
way of capturing the salient characteristics of the objects’ links. We examine
a variety of simple mechanisms for doing this. All are based on statistics com-
puted from the linked objects rather than the identity of the linked objects.
Describing only the limited collection of statistics computed from the links
can be significantly more compact than storing the link incidence matrix. In
addition, these models can accommodate the introduction of new objects, and
thus are applicable in a wider range of situations.

We examine several ways of constructing link features. All are constructed
from the collection of the categories of the linked objects. We use LD(X) to
denote the link description.

The simplest statistic to compute is a single feature, the mode, from each
set of linked objects from the in-links, out-links and both in and out co-citation
links. We call this the mode-link model.

We can use the frequency of the categories of the linked objects; we refer
to this as the count-link model. In this case, while we have lost the information

1Essentially this is a propositionalization [11, 20] of the aspects of the neighbor-
hood of an object in the graph. This is a technique that has been proposed in the
inductive logic programming community and is applicable here.
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Fig. 7.1. Assuming there are three possible categories for objects, A, B and C, the
figure shows examples of the mode, binary and count link features constructed for
the object labeled with ?.

about the individual entity to which the object is connected, we maintain the
frequencies of the different categories.

A middle ground between these two is a simple binary feature vector; for
each category, if a link to an object of that category occurs at least once,
the corresponding feature is 1; the feature is 0 if there are no links to this
category. In this case, we use the term binary-link model. Figure 7.1 shows
examples of the three types of link features computed for an object for each
category of links (In links, Out links, Co-In links and Co-Out links).

7.4 Predictive Model for Object Classification

Clearly we may make use of the object and link features in a variety of models
such as naive Bayes classifiers, SVMs and logistic regression models. For the
domains that we have examined, logistic regression models have outperformed
naive Bayes models, so these are the models we have focused on.

For our predictive model, we used a regularized logistic regression model.
Given a training set of labeled data (xi, ci), where i = 1, 2, . . . , n and ci ∈
{−1,+1}, to compute the conditional probability P (c | w, x) is to find the
optimal w for the discriminative function, which is equivalent to the following
regularized logistic regression formulation [35]:

ŵ = arginfw
1
n

n∑
i=1

ln(1 + exp(−wT xici)) + λw2

where we use a zero-mean independent Gaussian prior for the parameter w:
P (w) = exp(λw2).
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The simplest model is a flat model, which uses a single logistic regression
model over both the object attributes and link features. We found that this
model did not perform well, and instead we found that a structured logistic
regression model, which uses separate logistic regression models (with differ-
ent regularization parameters) for the object features and the link features,
outperformed the flat model. Now the MAP estimation for categorization be-
comes

Ĉ(X) = argmaxc∈C

P (c | OA(X))
∏

t∈{In,Out,Co-In,Co-Out} P (c | LDt(X))

P (c)

where OA(X) are the object features and LDt(X) are the link features for
each of the different types of links t and we make the (probably incorrect)
assumption that they are independent. P (c | OA(X)) and P (c | LDt(X)) are
defined as

P (c | OA(X)) =
1

exp(−wT
o OA(X)c) + 1

P (c | LDt(X)) =
1

exp(−wT
l LDt(X)c) + 1

where wo and wl are the parameters for the regularized logistic regression
models for P (c | OA(X)) and the P (c | LDt(X)) respectively.

7.5 Link-based Classification using Labeled and
Unlabeled Data

Given data D consisting of labeled data Dl and unlabeled data Du, we define
a posterior probability over Du as

P (c(X) : X ∈ Du | D) =∏
X∈Du

P (c(X) | OA(X), LDIn(X), LDOut(X), LDCo-In(X), LDCo-Out(X))

We use an EM-like iterative algorithm to make use of both labeled data
Dl = {(xi, c(xi) : i = 1, .., n} and unlabeled data Du = {(x∗

j , c(x
∗
j ) : j =

1, ..., m} to learn our model. Initally a structured logistic regression model is
built using labeled data Dl. First, we categorize data in Du

c(x∗
j ) = argmaxc∈C

P (c | OA(x∗
j ))
∏

t P (c | LDt(x∗
j ))

P (c)

where j = 1, ..., m. Next this categorized Du and labeled data Dl are used to
build a new model.

Step 1: (Initialization) Build an initial structured logistic regression classifier
using content and link features using only the labeled training data.
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Step 2: (Iteration) Loop while the posterior probability over the unlabeled
test data increases:
1. Classify unlabeled data using the current model.
2. Recompute the link features of each object. Re-estimate the parame-

ters of the logistic regression models.

In our above iterative algorithm, after we categorize the unlabeled data,
the link descriptions for all labeled and unlabeled data will change due to the
links between labeled and unlabeled data. The first step is to recompute the
link descriptions for all data based on the results from the current estimates
and the link graph over labeled and unlabeled data.

In the iterative step there are many possible orderings for objects. One
approach is based simply on the number of links; Oh et al. [28] report no
significant improvement using this method. Neville and Jensen [25] propose
an iterative classification algorithm where the ordering is based on the infer-
ence posterior probability of the categories. They report an improvement in
classification accuracy. We explore several alternate orderings based on the
estimated link statistics. We propose a range of link-based adaptive strategies
which we call Link Diversity. Link diversity measures the number of different
categories to which an object is linked. The idea is that, in some domains at
least, we may be more confident of categorizations of objects with low link –
diversity in essence, the object’s neighbors are all in agreement. So we may
wish to make these assignments first, and then move on to the rest of the
pages. In our experiments, we evaluate the effectiveness of different ordering
schemes based on link diversity.

7.6 Results

We evaluated our link-based classification algorithm on two variants of the
Cora data set [23], a data set that we constructed from CiteSeer entries [14]
and WebKB [6].

The first Cora data set, CoraI, contains 4187 machine learning papers,
each categorized into one of seven possible topics. We consider only the 3181
papers that are cited or cite other papers. There are 6185 citations in the data
set. After stemming and removing stop words and rare words, the dictionary
contains 1400 words.

The second Cora data set, CoraII,2 contains 30,000 papers, each catego-
rized into one of ten possible topics: information retrieval, databases, artifi-
cial intelligence, encryption and compression, operating systems, networking,
hardware and architecture, data structure algorithms and theory, program-
ming and human–computer interaction. We consider only the 3352 documents
that are cited or cite other papers. There are 8594 citations in the data set.

2www.cs.umass.edu/∼mccallum/code-data.html
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After stemming and removing stop words and rare words, the dictionary con-
tains 3174 words.

The CiteSeer data set has 3312 papers from six categories: Agents, Artifi-
cial Intelligence, Database, Human Computer Interaction, Machine Learning
and Information Retrieval. There are 7522 citations in the data set. After
stemming and removing stop words and rare words, the dictionary for Cite-
Seer contains 3703 words.

The WebKB data set contains web pages from four computer science de-
partments, categorized into topics such as faculty, student, project, course
and a catch-all category, other. In our experiments we discard pages in the
“other” category, which generates a data set with 700 pages. After stemming
and removing stop words, the dictionary contains 2338 words. For WebKB,
we train on three schools, plus 2/3 of the fourth school, and test on the last
1/3.

On Cora and CiteSeer, for each experiment, we take one split as a test
set, and the remaining two splits are used to train our model: one for training
and the other for a validation set used to find the appropriate regularization
parameter λ. Common values of λ were 10−4 or 10−5. On WebKB, we learned
models for a variety of λ; here we show the best result.

In our experiments, we compared a baseline classifier (Content) with our
link-based classifiers (Mode, Binary, Count). We compared the classifiers:

• Content: Uses only object attributes.
• Mode: Combines a logistic regression classifier over the object attributes

with separate logistic regression classifiers over the mode of the In Links,
Out Links, Co-In Links, and Co-Out Links.

• Binary: Combines a logistic regression classifier over the object attributes
with a separate logistic regression classifier over the binary link statistics
for all of the links.

• Count-Link: Combines a logistic regression classifier over the object at-
tributes with a separate logistic regression classifier over the counts link
statistics for all of the links.

7.6.1 Link Model Comparison

Table 7.1 shows details of our results using four different metrics (accuracy,
precision, recall and F1 measure)3 on the four data sets. Figure 7.2 shows a
summary of the results for the F1 measure.

3A true positive is a document that is correctly labeled. Let TP be the number
of true positives, FP be the number of false positive, TN be the number of true
negatives, FP be the number of false negatives. Accuracy is the percentage of cor-
rectly labeled documents, TP+TN

TP+FP+TN+FN
. Precision, recall and the F1 measure are

macro-averaged over each of the categories. Precision is the percentage of documents
that are predicted to be of a category, that actually are of that category TP

TP+FP
.

Recall is the percentage of documents that are predicted to be of a category, out of
all the documents of the category TP

TP+FN
. The F1 measure is 2PR

R+P
.
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Table 7.1. Results with Content, Mode, Binary and Count models on CoraI,
CoraII, CiteSeer and WebKB. Statistically significant results (at or above 90% con-
fidence level) for each row are shown in bold.

CoraI
Content Mode Binary Count

avg accuracy 68.14 82.35 77.53 83.14
avg precision 67.47 81.01 77.35 81.74
avg recall 63.08 80.08 76.34 81.20
avg F1 measure 64.17 80.0 75.69 81.14

CoraII
Content Mode Binary Count

avg accuracy 67.55 83.03 81.46 83.66
avg precision 65.87 78.62 74.54 80.62
avg recall 47.51 75.27 75.69 76.15
avg F1 measure 52.11 76.52 74.62 77.77

CiteSeer
Content Mode Binary Count

avg accuracy 60.59 71.01 69.83 71.52
avg precision 55.48 64.61 62.6 65.22
avg recall 55.33 60.09 60.3 61.22
avg F1 measure 53.08 60.68 60.28 61.87

WebKB
Content Mode Binary Count

avg accuracy 87.45 88.52 78.91 87.93
avg precision 78.67 77.27 70.48 77.71
avg recall 72.82 73.43 71.32 73.33
avg F1 measure 71.77 73.03 66.41 72.83
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Fig. 7.2. Average F1 measure for different models (Content, Mode, Binary and
Count) on four data sets (CoraI, CoraII, CiteSeer and WebKB).

In this set of experiments, all of the links (In Links, Out Links, Co-In
Links, Co-Out Links) are used and we use a fixed ordering for the iterative
classification algorithm.
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For all four data sets, the link-based models outperform the content only
models. For three of the four data sets, the difference is statistically significant
at the 99% significance level. For three of the four data sets, count outper-
forms mode at the 90% significance level or higher, for both accuracy and F1
measure. Both mode and count outperform binary; the difference is most
dramatic for CoraI and WebKB.

Clearly, the mode, binary and count link-based models are using infor-
mation from the description of the link neighborhood of an object to improve
classification performance. Mode and count seem to make the best use of
the information; one explanation is that while binary contains more informa-
tion in terms of which categories of links exist, it loses the information about
which link category is most frequent. In many domains one might think that
mode should be enough information, particulary bibliographic domains. So it
is somewhat surprising that the count model is the best for our three citation
data sets.

Our results on WebKB were less reliable. Small changes to the ways that
we structured the classifiers resulted in different outcomes. Overall, we felt
there were problems because the link distributions were quite different among
the different schools. Also, after removing the other pages, the data set is
rather small.

7.6.2 Effect of Link Types

Different Link Types
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Fig. 7.3. Average F1 measure for Count on four data sets (CoraI, CoraII, CiteSeer
and WebKB) for varying content and links (Content, Links, In Links & Content,
Out Links & Content, Co-In Links & Content, Co-Out links & Content and Links
& Content).

Next we examined the individual effect of the different categories of links:
In Links, Out Links, Co-In Links and Co-Out links. Using the count
model, we included in the comparision Content, with a model which used
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all the links, but no content (Links),4 and Link & Content (which gave
us the best results in the previous section). Figure 7.3 shows the average F1
accuracy for the four of the data sets using different link types.

Clearly using all of the links performs best. Individually, the Out Links
and Co-In Links seem to add the most information, although again, the
results for WebKB are less definitive.

More interesting is the difference in results when using only Links versus
Links & Content. For CoraI and Citeseer, Links only performs reasonably
well, while for the other two cases, CoraII and WebKB, it performs horribly.
Recall that the content helps give us an initial starting point for the iterative
classification algorithm. Our theory is that, for some data sets, especially
those with fewer links, getting a good initial starting point is very important.
In others, there is enough information in the links to overcome a bad starting
point for the iterative classification algorithm. This is an area that requires
further investigation.

7.6.3 Prediction with Links Between Training and Test Sets

Next we were interested in investigating the issue of exploiting the links be-
tween test and training data for predictions. In other work, Neville and Jensen
[25], Getoor et al. [12] and Taskar et al. [31] used link distributions for cate-
gorization; the experimental data set are split into training set and test set,
and any links across training and test sets are ignored.

In reality, in domains such as web and scientific literature, document col-
lections are constantly expanding. There are new papers published and new
web sites created. New objects and edges are being added to the existing
graph. A more realistic evaluation, such as that done in Chakrabarti et al. [4],
exploits the links between test and training.

In an effort to understand this phenomenon more fully, we examined the
effect of ignoring links between training and test sets. Here we compared a
method which discards all link information across training set and test set,
which is denoted as “Test Links Only”, with a more realistic method which
keeps all the links between test and training sets which is denoted as “Com-
plete Links”. The results are shown in Table 7.2. With “Test Links Only”, in
our iterative classification process, the link descriptions of test data are con-
structed based only on the link graph over test data, while with “Complete
Links” link descriptions of test data are formulated over the link graph using
both training and test data. These results demonstrate that the complete link
structure is informative and can be used to improve overall performance.

7.6.4 Link-based Classification using Labeled and Unlabeled Data

In the previous section we experimented with making use of labeled data
from the training set during testing. Next we explore the more general setting

4This model was inspired by results in [21].
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Table 7.2. Avg F1 results using “Test Links Only” and “Complete Links” on CoraI,
CoraII, CiteSeer and WebKB.

Test Links Only Complete Links
Mode Binary Count Mode Binary Count

CoraI 75.85 71.57 79.16 80.00 75.69 81.14
CoraII 58.70 58.19 61.50 76.52 74.62 77.77
CiteSeer 59.06 60.03 60.74 60.68 60.28 61.87
WebKB 73.02 67.29 71.79 73.03 66.41 72.83

of learning with labeled and unlabeled data using the iterative algorithm
proposed in Section 7.5. To better understand the effects of unlabeled data, we
compared the performance of our algorithm with varying amounts of labeled
and unlabeled data.

For two of the domains, CoraII and CiteSeer, we randomly choose 20%
of the data as test data. We compared the performance of the algorithms
when different percentages (20%, 40%, 60%, 80%) of the remaining data is
labeled. We compared the accuracy when only the labeled data is used for
training (Labeled only) with the case where both labeled and the remaining
unlabeled data is used for training (Labeled and Unlabeled).

• Content: Uses only object attributes.
• Labeled Only: The link model is learned on labeled data only. The only

unlabeled data used is the test set.
• Labeled and Unlabeled: The link model is learned on both labeled and

all of the unlabeled data.

Figure 7.4 shows the results averaged over five different runs. The algo-
rithm which makes use of all of the unlabeled data gives better performance
than the model which uses only the labeled data.

For both data sets, the algorithm which uses both labeled and unlabeled
data outperforms the algorithm which uses Labeled Only data; even with 80%
of the data labeled and only 20% of the data unlabeled, the improvement in
error on the test set using unlabeled data is statistically significant at the 95%
confidence level for both Cora and Citeseer.

7.6.5 Ordering Strategies

In the last set of experiments, we examined various ICA ordering strategies.
Our experiments indicate that final test errors with different ordering strategy
have a standard deviation around 0.001. There is no significant difference
with various link diversity to order the predictions. We also compared with
an ordering based on the posterior probability of the categories as done in
Neville and Jensen [25], denoted PP.

While the different iteration schemes converge to about the same accuracy,
their convergence rate varies. To understand the effect of the ordering scheme
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Fig. 7.4. (a) Results varying the amount of labeled and unlabeled data used for
training on CoraII (b) and on CiteSeer. The results are averages of five runs.
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Fig. 7.5. The convergence rates of different iteration methods on the CoraII data
set.

at a finer level of detail, Figure 7.5 shows an example of the accuracy of
the different iteration schemes for the CoraII data set (to make the graph
readable, we show only ordering by increasing diversity of out links (INC-Out)
and decreasing diversity of out-links (DEC-Out); the results for in links, co-in
links and co-out links are similar). Our experiments indicate that ordering
by increasing link diversity converges faster than ordering by decreasing link
diversity, and the RAND ordering converges the most quickly at the start.
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7.7 Conclusions

Many real-world data sets have rich structures, where the objects are linked
in some way. Link mining targets data-mining tasks on this richly-structured
data. One major task of link mining is to model and exploit the link distribu-
tions among objects. Here we focus on using the link structure to help improve
classification accuracy.

In this chapter we have proposed a simple framework for modeling link
distributions, based on link statistics. We have seen that for the domains we
examined, a combined logistic classifier built over the object attributes and
link statistics outperforms a simple content-only classifier. We found the ef-
fect of different link types is significant. More surprisingly, the mode of the
link statistics is not always enough to capture the dependence. Avoiding the
assumption of homogeneity of labels and modeling the distribution of the link
categories at a finer grain is useful.
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