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Probabilistic relational models (PRMs) are a rich representation language for struc-
tured statistical models. They combine a frame-based logical representation with
probabilistic semantics based on directed graphical models (Bayesian networks).
This chapter gives an introduction to probabilistic relational models, describing se-
mantics for attribute uncertainty, structural uncertainty, and class uncertainty. For
each case, learning algorithms and some sample results are presented.

5.1 Introduction

Over the last decade, Bayesian networks have been used with great success in
a wide variety of real-world and research applications. However, despite their
success, Bayesian networks are often inadequate for representing large and complex
domains. A Bayesian network for a given domain involves a prespecified set of
random variables, whose relationship to each other is fixed in advance. Hence, a
Bayesian network cannot be used to deal with domains where we might encounter a
varying number of entities in a variety of configurations. This limitation of Bayesian
networks is a direct consequence of the fact that they lack the concept of an “object”
(or domain entity). Hence, they cannot represent general principles about multiple
similar objects which can then be applied in multiple contexts.

Probabilistic relational models (PRMs) [13, 18] extend Bayesian networks with
the concepts of objects, their properties, and relations between them. In a way,
they are to Bayesian networks as relational logic is to propositional logic. A PRM
specifies a template for a probability distribution over a database. The template
includes a relational component that describes the relational schema for our domain,
and a probabilistic component that describes the probabilistic dependencies that
hold in our domain. A PRM has a coherent formal semantics in terms of probability
distributions over sets of relational logic interpretations. Given a set of ground
objects, a PRM specifies a probability distribution over a set of interpretations
involving these objects (and perhaps other objects as well). A PRM, together with
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a particular database of objects and relations, defines a probability distribution
over the attributes of the objects.

In this chapter, we describe the semantics for PRMs with different types of
uncertainty, and at the same time we describe the basic learning algorithms for
PRMs. We propose an algorithm for automatically constructing or learning a PRM
from an existing database. The learned PRM describes the patterns of interactions
between attributes. In the learning problem, our input contains a relational schema
that specifies the basic vocabulary in the domain — the set of classes, the attributes
associated with the different classes, and the possible types of relations between
objects in the different classes. The training data consists of a fully specified instance
of that schema in the form of a relational database. Once we have learned a PRM,
it serves as a tool for exploratory data analysis and can be used to make predictions
and complex inferences in new situations. For additional details, including proofs
of all of the theorems, see [9].

5.2 PRM Representation

The two components of PRM syntax are a logical description of the domain
of discourse and a probabilistic graphical model template which describes the
probabilistic dependencies in the domain. Here we describe the logical description
of the domain as a relational schema, although it can be transformed into either a
frame-based representation or a logic-based syntax is a relatively straightforward
manner. Our probabilistic graphical component is depicted pictorially, although
it can also be represented in a logical formalism; for example in the probabilistic
relational language of [10]. We begin by describing the syntax and semantics for
PRMs which have the simplest form of uncertainty, attribute uncertainty, and then
move on to describing various forms of structural uncertainty.

5.2.1 Relational Language

The relational language allows us to describe the kinds of objects in our domain.
For example, figure 5.1(a) shows the schema for a simple domain that we will be
using as our running example. The domain is that of a university, and contains
professors, students, courses, and course registrations. The classes in the schema
are Professor, Student, Course, and Registration.

More formally, a schema for a relational model describes a set of classes, X =
{X1, . . . , Xn}. Each class is associated with a set of descriptive attributes . For
example, professors may have descriptive attributes such as popularity and teaching
ability; courses may have descriptive attributes such as rating and difficulty.

The set of descriptive attributes of a class X is denoted A(X). Attribute A of
class X is denoted X.A, and its space of values is denoted V(X.A). We assume
here that value spaces are finite. For example, the Student class has the descriptive



5.2 PRM Representation 131

Professor

Popularity

Teaching-Ability

Course

Difficulty

Rating

Instructor

Registration

Course

Student

Grade

Satisfaction

Student

Intelligence

Ranking

Professor
Prof. Gump

Popularity
high

Teaching Ability
medium

Course
Phil142

Difficulty     
low

Rating
high

Course
Phil101

Difficulty       
low

Rating
high

Registration
#5639

Grade
A

Satisfaction  
3

Registration
#5639

Grade
A

Satisfaction  
3

Registration
#5639

Grade
A

Satisfaction  
3

Student
John Doe

Intelligence       
high

Performance  
average

Student
Jane Doe

Intelligence       
high

Ranking  
average

(a) (b)

Figure 5.1 (a) A relational schema for a simple university domain. The underlined
attributes are reference slots of the class and the dashed lines indicate the types
of objects referenced. (b) An example instance of this schema. Here we do not
show the values of the reference slots; we simply use dashed lines to indicate the
relationships that hold between objects.

attributes Intelligence and Ranking. The value space for Student.Intelligence in this
example is {high, low}.

In addition, we need a method for allowing an object to refer to another object.
For example we may want a course to have a reference to the instructor of the
course. And a registration record should refer both to the associated course and to
the student taking the course.

The simplest way of achieving this effect is using reference slots. Specifically, each
class is associated with a set of reference slots. The set of reference slots of a class X
is denotedR(X). We use X.ρ to denote the reference slot ρ ofX . Each reference slot
ρ is typed, i.e., the schema specifies the range type of object that may be referenced.
More formally, for each ρ in X , the domain type Dom[ρ] is X and the range type
Range[ρ] is Y for some class Y in X . For example, the class Course has reference
slot Instructor with range type Professor, and class Registration has reference slots
Course and Student. In figure 5.1(a) the reference slots are underlined.

There is a direct mapping between our representation and that of relational
databases. Each class corresponds to a single table and each attribute corresponds
to a column. Our descriptive attributes correspond to standard attributes in the
table, and our reference slots correspond to attributes that are foreign keys (key
attributes of another table).

For each reference slot ρ, we can define an inverse slot ρ−1, which is interpreted
as the inverse function of ρ. For example, we can define an inverse slot for the
Student slot of Registration and call it Registered-In. Note that this is not a one-
to-one relation, but returns a set of Registration objects. More formally, if Dom[ρ]
is X and Range[ρ] is Y , then Dom[ρ−1] is Y and Range[ρ−1] is X .

Finally, we define the notion of a slot chain, which allows us to compose slots,
defining functions from objects to other objects to which they are indirectly re-
lated. More precisely, we define a slot chain ρ1, . . . , ρk to be a sequence of slots
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(inverse or otherwise) such that for all i, Range[ρi] = Dom[ρi+1]. For example,
Student.Registered-In.Course.Instructor can be used to denote a student’s instruc-
tors. Note that a slot chain describes a set of objects from a class.1

The relational framework we have just described is motivated primarily by the
concepts of relational databases, although some of the notation is derived from
frame-based and object-oriented systems. However, the framework is a fully general
one, and is equivalent to the standard vocabulary and semantics of relational logic.

5.2.2 Schema Instantiation

An instance I of a schema is simply a standard relational logic interpretation of
this vocabulary. It specifies: for each class X , the set of objects in the class, I(X);
a value for each attribute x.A (in the appropriate domain) for each object x; and
a value y for each reference slot x.ρ, which is an object in the appropriate range
type, i.e., y ∈ Range[ρ]. Conversely, y.ρ−1 = {x | x.ρ = y}. We use A(x) as a
shorthand for A(X), where x is of class X . For each object x in the instance and
each of its attributes A, we use Ix.A to denote the value of x.A in I. For example,
figure 5.1(b) shows an instance of the schema from our running example. In this
(simple) instance there is one Professor, two Classes, three Registrations, and two
Students. The relations between them show that the professor is the instructor in
both classes, and that one student (“Jane Doe”) is registered only for one class
(“Phil101”), while the other student is registered for both classes.

5.2.3 Probabilistic Model

A PRM defines a probability distribution over a set of instances of a schema. Most
simply, we assume that the set of objects and the relations between them are fixed,
i.e., external to the probabilistic model. Then, the PRM defines only a probability
distribution over the attributes of the objects in the model. The relational skeleton
defines the possible instantiations that we consider; the PRM defines a distribution
over the possible worlds consistent with the relational skeleton.

Definition 5.1

A relational skeleton σr of a relational schema is a partial specification of an
instance of the schema. It specifies the set of objects σr(Xi) for each class and
the relations that hold between the objects. However, it leaves the values of the
attributes unspecified.

Figure 5.2(a) shows a relational skeleton for our running example. The relational
skeleton defines the random variables in our domain; we have a random variable for

1. It is also possible to define slot chains as multi-sets of objects; here we have found it
sufficient to make them sets of objects, but there may be domains where multi-sets are
desirable.
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Figure 5.2 (a) The relational skeleton for the university domain. (b) The PRM
dependency structure for our university example.

each attribute of each object in the skeleton. A PRM then specifies a probability
distribution over completions I of the skeleton.

A PRM consists of two components: the qualitative dependency structure, S,
and the parameters associated with it, θS . The dependency structure is defined by
associating with each attribute X.A a set of parents Pa(X.A). These correspond
to formal parents; they will be instantiated in different ways for different objects
in X . Intuitively, the parents are attributes that are “direct influences” on X.A. In
figure 5.2(b), the arrows define the dependency structure.

We distinguish between two types of formal parents. The attribute X.A can de-
pend on another probabilistic attribute B of X . This formal dependence induces
a corresponding dependency for individual objects: for any object x in σr(X), x.A
will depend probabilistically on x.B. For example, in figure 5.2(b), a professor’s
Popularity depends on her Teaching-Ability. The attribute X.A can also depend
on attributes of related objects X.K.B, where K is a slot chain. In figure 5.2(b),
the grade of a student depends on Registration.Student .Intelligence and Registra-

tion.Course.Difficulty. Or we can have a longer slot chain, for example, the depen-
dence of student satisfaction on Registration.Course.Instructor .Teaching-Ability.

In addition, we can have a dependence of student ranking on Student.Registered-
In.Grade. To understand the semantics of this formal dependence for an individual
object x, recall that x.K represents the set of objects that are K-relatives of x.
Except in cases where the slot chain is guaranteed to be single-valued, we must
specify the probabilistic dependence of x.A on the multiset {y.B : y ∈ x.K}.
For example, a student’s rank depends on the grades in the courses in which he
or she are registered. However each student may be enrolled in a different number
of courses, and we will need a method of compactly representing these complex
dependencies.

The notion of aggregation from database theory gives us an appropriate tool to
address this issue: x.A will depend probabilistically on some aggregate property of
this multiset. There are many natural and useful notions of aggregation of a set: its
mode (most frequently occurring value); its mean value (if values are numerical);
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Figure 5.3 (a) The CPD for Registration.Grade (b) The CPD for an aggregate
dependency of Student.Ranking on Student.Registered-In.Grade.

its median, maximum, or minimum (if values are ordered); its cardinality; etc.
In the preceding example, we can have a student’s ranking depend on her grade
point average (GPA), or the average grade in her courses (or in the case where the
grades are represented as letters, we may use median; in our example we blur the
distinction and assume that average is defined appropriately).

More formally, our language allows a notion of an aggregate γ; γ takes a multiset
of values of some ground type, and returns a summary of it. The type of the
aggregate can be the same as that of its arguments. However, we allow other types
as well, e.g., an aggregate that reports the size of the set. We allow X.A to have
as a parent γ(X.K.B); the semantics is that for any x ∈ X , x.A will depend on
the value of γ(x.K.B). In our example PRM, there are two aggregate dependencies
defined, one that specifies that the ranking of a student depends on the average of
her grades and one that specifies that the rating of a course depends on the average
satisfaction of students in the course.

Given a set of parents Pa(X.A) for X.A, we can define a local probability model
for X.A. We associate X.A with a conditional probability distribution (CPD) that
specifies P (X.A | Pa(X.A)). We require that the CPDs are legal. Figure 5.3 shows
two CPDs. Let U be the set of parents of X.A, U = Pa(X.A). Each of these parents
Ui — whether a simple attribute in the same relation or an aggregate of a set of K

relatives — has a set of values V(Ui) in some ground type. For each tuple of values
u ∈ V(U), we specify a distribution P (X.A | u) over V(X.A). This entire set of
parameters comprises θS .

Definition 5.2

A probabilistic relational model (PRM) Π for a relational schema R is defined as
follows. For each class X ∈ X and each descriptive attribute A ∈ A(X), we have:

a set of parents Pa(X.A) = {U1, . . . , Ul}, where each Ui has the form X.B or
γ(X.K.B), where K is a slot chain and γ is an aggregate of X.K.B;
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a legal conditional probability distribution (CPD), P (X.A | Pa(X.A)).

5.2.4 PRM Semantics

As mentioned in the introduction, PRMs define a distribution over possible worlds.
The possible worlds are instantiations of the database that are consistent with the
relational skeleton. Given any skeleton, we have a set of random variables of interest:
the attributes x.A of the objects in the skeleton. Formally, let σr(X) denote the
set of objects in skeleton σr whose class in X . The set of random variables for
σr is the set of attributes of the form x.A where x ∈ σr(Xi) and A ∈ A(Xi) for
some class Xi. The PRM specifies a probability distribution over the possible joint
assignments of values to all of these random variables.

For a given skeleton σr , the PRM structure induces a ground Bayesian network
over the random variables x.A.

Definition 5.3

A PRM Π together with a skeleton σr defines the following ground Bayesian
network:

There is a node for every attribute of every object x ∈ σr(X), x.A.

Each x.A depends probabilistically on parents of the form x.B or x.K.B. If K

is not single-valued, then the parent is the aggregate computed from the set of
random variables {y | y ∈ x.K}, γ(x.K.B).

The CPD for x.A is P (X.A | Pa(X.A)).

As with Bayesian networks, the joint distribution over these assignments is
factored. That is, we take the product, over all x.A, of the probability in the CPD of
the specific value assigned by the instance to the attribute given the values assigned
to its parents. Formally, this is written as follows:

P (I | σr ,S, θS) =
∏
x∈σr

∏
A∈A(x)

P (Ix.A | IPa(x.A))

=
∏
Xi

∏
A∈A(Xi)

∏
x∈σr(Xi)

P (Ix.A | IPa(x.A)). (5.1)

This expression is very similar to the chain rule for Bayesian networks. There
are three primary differences. First, our random variables are the attributes of a
set of objects. Second, the set of parents of a random variable can vary according
to the relational context of the object — the set of objects to which it is related.
Third, the parameters are shared; the parameters of the local probability models
for attributes of objects in the same class are identical.

5.2.5 Coherence of Probabilistic Model

As in any definition of this type, we have to take care that the resulting function
from instances to numbers does indeed define a coherent probability distribution,
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i.e., where the sum of the probability of all instances is 1. In Bayesian networks,
where the joint probability is also a product of CPDs, this requirement is satisfied
if the dependency graph is acyclic: a variable is not an ancestor of itself. A similar
condition is sufficient to ensure coherence in PRMs as well.

5.2.5.1 Instance Dependency Graph

We want to ensure that our probabilistic dependencies are acyclic, so that a random
variable does not depend, directly or indirectly, on its own value. To do so, we can
consider the graph of dependencies among attributes of objects in the skeleton,
which we will call the instance dependency graph, Gσr .

Definition 5.4

The instance dependency graph Gσr for a PRM Π and a relational skeleton σr has
a node for each descriptive attribute of each object x ∈ σr(X) in each class X ∈ X .
Each x.A has the following edges:

1. Type I edges: For each formal parent of x.A, X.B, we introduce an edge from
x.B to x.A.

2. Type II edges: For each formal parent X.K.B, and for each y ∈ x.K, we define
an edge from y.B to x.A.

Type I edges correspond to intra-object dependencies and type II edges correspond
to inter-object dependencies. We say that a dependency structure S is acyclic
relative to a relational skeleton σr if the instance dependency graph Gσr over the
variables x.A is acyclic. In this case, we are guaranteed that the PRM defines a
coherent probabilistic model over complete instantiations I consistent with σr:

Theorem 5.5

Let Π be a PRM whose dependency structure S is acyclic relative to a relational
skeleton σr. Then Π and σr define a coherent probability distribution over instan-
tiations I that extend σr via (5.1).

5.2.5.2 Class Dependency Graph

The instance dependency graph we just described allows us to check whether a
dependency structure S is acyclic relative to a fixed skeleton σr . However, we often
want stronger guarantees: we want to ensure that our dependency structure is
acyclic for any skeleton that we are likely to encounter. How do we guarantee
this property based only on the class-level PRM? To do so, we consider potential
dependencies at the class level. More precisely, we define a class dependency graph,
which reflects these dependencies.

Definition 5.6

The class dependency graph GΠ for a PRM Π has a node for each descriptive
attribute X.A, and the following edges:
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1. Type I edges: For any attribute X.A and any of its parents X.B, we introduce an
edge from X.B to X.A.

2. Type II edges: For any attribute X.A and any of its parents X.K.B we introduce
an edge from Y.B to X.A, where Y = Range[X.K].

Figure 5.4 shows the dependency graph for our school domain.
The most obvious approach for using the class dependency graph is simply to

require that it be acyclic. This requirement is equivalent to assuming a stratification
among the attributes of the different classes, and requiring that the parents of an
attribute precede it in the stratification ordering. As theorem 5.7 shows, if the
class dependency graph is acyclic, we can never have that x.A depends (directly or
indirectly) on itself.

Theorem 5.7

If the class dependency graph GΠ is acyclic for a PRM Π, then for any skeleton σr ,
the instance dependency graph is acyclic.

The following corollary follows immediately:

Corollary 5.8

Let Π be a PRM whose class dependency structure S is acyclic. For any relational
skeleton σr, Π, and σr define a coherent probability distribution over instantiations
I that extend σr via (5.1).

For example, if we examine the PRM of figure 5.2(b), we can easily convince our-
selves that we cannot create a cycle in any instance. Indeed, as we saw in figure 5.4,
the class dependency graph is acyclic. Note, however, that if we introduce additional
dependencies we can create cycles. For example, if we make Professor.Teaching-
Ability depend on the rating of courses she teaches (e.g., if high teaching ratings
increase her motivation), then the resulting class dependency graph is cyclic, and
there is no stratification order that is consistent with the PRM structure. An in-
ability to stratify the class dependency graph implies that there are skeletons for
which the PRM will induce a distribution with cyclic dependencies.
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Figure 5.5 (a) A simple PRM for the genetics domain. (b) The corresponding de-
pendency graph. Dashed edges correspond to “green” dependencies, dotted edges
correspond to “yellow” dependencies, and solid edges correspond to “red” depen-
dencies.

5.2.5.3 Guaranteed Acyclic Relationships

In some important cases, a cycle in the class dependency graph is not problematic,
it will not result in a cyclic instance dependency graph. This can be the case when
we have additional domain constraints on the form of skeletons we may encounter.
Consider, for example, a simple genetic model of the inheritance of a single gene
that determines a person’s blood type, shown in figure 5.5(a). Each person has
two copies of the chromosome containing this gene, one inherited from her mother,
and one inherited from her father. There is also a possibly contaminated test that
attempts to recognize the person’s blood type. Our schema contains two classes:
Person and BloodTest. Class Person has reference slots Mother and Father and
descriptive attributes Gender, P-Chromosome (the chromosome inherited from the
father), and M-Chromosome (inherited from the mother). BloodTest has a reference
slot Test-Of (not shown explicitly in the figure) that points to the owner of the test,
and descriptive attributes Contaminated and Result.

In our genetic model, the genotype of a person depends on the genotype of
her parents; thus, at the class level, we have Person .P-Chromosome depending
directly on Person .P-Chromosome . As we can see in figure 5.5(b), this dependency
results in a cycle that clearly violates the acyclicity requirements of our simple class
dependency graph. However, it is clear to us that the dependencies in this model are
not actually cyclic for any skeleton that we will actually encounter in this domain.
The reason is that, in “legitimate” skeletons for this schema, a person cannot be
his own ancestor, which disallows the situation of the person’s genotype depending
(directly or indirectly) on itself. In other words, although the model appears to be
cyclic at the class level, we know that this cyclicity is always resolved at the level
of individual objects.



5.2 PRM Representation 139

Our ability to guarantee that the cyclicity is resolved relies on some prior
knowledge that we have about the domain. We want to allow the user to give us
information such as this, so that we can make stronger guarantees about acyclicity
and allow richer dependency structures in the PRM. In particular, the user can
specify that certain reference slots are guaranteed acyclic. In our genetics example,
Father and Mother are guaranteed acyclic; cycles involving these attributes may in
fact be legal. Moreover, they are mutually guaranteed acyclic, so that compositions
of the slots are also guaranteed acyclic. Figure 5.5(b) shows the class dependency
graph for the genetics domain, with guaranteed acyclic edges shown as dashed
edges.

We allow the user to assert that certain reference slots Rga = {ρ1, . . . , ρk} are
guaranteed acyclic; i.e., we are guaranteed that there is a partial ordering ≺ga such
that if y is a ρ-relative for some ρ ∈ Rga of x, then y ≺ga x. We say that a slot
chain K is guaranteed acyclic if each of its component ρ’s is guaranteed acyclic.

This prior knowledge allows us to guarantee the legality of certain dependency
models. We start by building a colored class dependency graph that describes the
direct dependencies between the attributes.

Definition 5.9

The colored class dependency graph GΠ for a PRM Π has the following edges:

1. Yellow edges: If X.B is a parent of X.A, we have a yellow edge X.B → X.A.

2. Green edges: If γ(X.K.B) is a parent of X.A, Y = Range[X.K], and K is
guaranteed acyclic, we have a green edge Y.B → X.A.

3. Red edges: If γ(X.K.B) is a parent of X.A, Y = Range[X.K], and K is not
guaranteed acyclic, we have a red edge Y.B → X.A.

Note that there might be several edges, perhaps of different colors, between two
attributes.

The intuition is that dependency along green edges relates objects that are
ordered by an acyclic order. Thus, these edges by themselves or combined with
intra-object dependencies (yellow edges) cannot cause a cyclic dependency. We
must, however, take care with other dependencies, for which we do not have
prior knowledge, as these might form a cycle. This intuition suggests the following
definition:

Definition 5.10

A (colored) dependency graph is stratified if every cycle in the graph contains at
least one green edge and no red edges.

Theorem 5.11

If the colored class dependency graph is stratified for a PRM Π, then for any
skeleton σr, the instance dependency graph is acyclic.
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In other words, if the colored dependency graph of S and Rga is stratified, then
for any skeleton σr for which the slots inRga are jointly acyclic, S defines a coherent
probability distribution over assignments to σr .

This notion of stratification generalizes the two special cases we considered
above. When we do not have any guaranteed acyclic relations, all the edges in
the dependency graph are colored either yellow or red. Then the graph is stratified
if and only if it is acyclic. In the genetics example, all the parent relations would
be in Rga. The only edges involved in cycles are green edges.

We can also support multiple guaranteed acyclic relations by using different
shades of green for each set of guaranteed acyclic relations. Then a cycle is safe
as long as it contains at most one shade of green edge.

5.3 The Difference between PRMs and Bayesian Networks

The PRM specifies a probability distribution using the same underlying principles
used in specifying Bayesian networks. The assumption is that each of the random
variables in the PRM — in this case the attributes x.A of the individual objects x
— is directly influenced by only a few others. The PRM therefore defines for each
x.A a set of parents, which are the direct influences on it, and a local probabilistic
model that specifies the dependence on these parents. In this way, the PRM is like
a Bayesian Network.

However, there are two primary differences between PRMs and Bayesian net-
works. First, a PRM defines the dependency model at the class level, allowing it to
be used for any object in the class. In some sense, it is analogous to a universally
quantified statement. Second, the PRM explicitly uses the relational structure of
the skeleton, in that it allows the probabilistic model of an attribute of an object to
depend also on attributes of related objects. The specific set of related objects can
vary with the skeleton σr; the PRM specifies the dependency in a generic enough
way that it can apply to an arbitrary relational structure.

One can understand the semantics of a PRM together with a particular relational
skeleton σr by examining the ground Bayesian network defined earlier. The network
has a node for each attribute of the objects in the skeleton. The local probability
models for attributes of objects in the same class are identical (we can view the
parameters as being shared); however, the distribution for a node will depend on the
values of its parents, and the parents of each node are determined by the skeleton.

It is important to note the construction of the ground Bayesian Network is just a
thought experiment; in many cases there is no need to actually construct this large
underlying Bayesian network.
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5.4 PRMs with Structural Uncertainty

The previous section gave the syntax and semantics for the most basic type of
PRM, a PRM in which there is uncertainty over the the attributes of the objects in
the relational skeleton. As discussed in the last section, this is already a significant
generalization beyond propositional Bayesian networks. In this section, we propose
probabilistic models for the attributes of the objects in a relational model and also
for the relational or link structure itself. In other words, we model the probability
that certain relationships hold between objects. We propose two mechanisms for
modeling link uncertainty: reference uncertainty and existence uncertainty.

The PRM framework presented so far focuses on modeling the distribution over
the attributes of the objects in the model. It takes the relational structure itself —
the objects and the relational links between entities — to be background knowledge,
determined outside the probabilistic model. This assumption implies that the model
cannot be used to predict the relational structure itself. A more subtle yet very
important point is that the relational structure is informative in and of itself. For
example, the links from and to a webpage are very informative about the type of
webpage [6], and the citation links between papers are very informative about the
paper topics [5].

By making objects and links first-class citizens in the model, our language easily
allows us to place a probabilistic model directly over them. In other words, we
can extend our framework to define probability distributions over the presence of
relational links between objects in our model. By introducing these aspects of the
world into the model, and correlating them with other attributes, we can both
predict the link structure and use the presence of links to reach conclusions about
attribute values.

5.5 Probabilistic Model of Link Structure

In our discussion so far, all relations between attributes are determined by the
relational skeleton σr ; only the descriptive attributes are uncertain. The relational
skeleton specifies the set of objects in all classes, as well as all the relationships
that hold between them (in other words, it specifies the values for all of the
reference slots). Consider the simple university domain of section 5.2 describing
professors, courses, students, and registrations. The relational skeleton specifies the
complete relational structure in the model: it specifies which professor teaches each
course, and it specifies all of the registrations of students in courses. In our simple
university example, the relational skeleton (shown in figure 5.2(a)) contains all of
the information except for the values for the descriptive attributes.

There is one distinction we will add to our relational schema. It is useful to
distinguish between an entity and a relationship, as in entity-relationship diagrams.
In our language, classes are used to represent both entities and relationships. We
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Figure 5.6 Reference uncertainty in a simple citation domain.

introduce XE to denote the set of classes that represent entities, and XR to denote
those that represent relationships. We note that the distinctions are prior knowledge
about the domain, and are therefore part of the domain specification. We use the
generic term object to refer both to entities and to relationships.

5.5.1 Reference Uncertainty

Consider a simple citation domain illustrated in figure 5.6. Here we have a document
collection. Each document has a bibliography that references some of the other
documents in the collection. We may know the number of citations made by each
document (i.e., it is outside the probabilistic model). By observing the citations
that are made, we can use the links to reach conclusions about other attributes in
the model. For example, by observing the number of citations to papers of various
topics, we may be able to infer something about the topic of the citing paper.

figure 5.7(a) shows a simple schema for this domain. We have two classes, Paper

and Cites. The Paper class has information about the topic of the paper and the
words contained in the paper. For now, we simply have an attribute for each word
that is true if the word occurs in the page and false otherwise. The Cites class
represents the citation of one paper, the Cited paper, by another paper, the Citing
paper. (In the figure, for readability, we show the Paper class twice.) In this model,
we assume that the set of objects is prespecified, but relations among them, i.e.,
reference slots, are subject to probabilistic choices. Thus, rather than being given
a full relational skeleton σr, we assume that we are given an object skeleton σo.
The object skeleton specifies only the objects σo(X) in each class X ∈ X , but
not the values of the reference slots. In our example, the object skeleton specifies
the objects in class Paper and the objects in class Cites, but the reference slots of
the Cites relation, Cites.Cited and Cites.Citing are unspecified. In other words, the
probabilistic model does not provide a model of the total number of citation links,
but only a distribution over their “endpoints.” figure 5.7 shows an object skeleton
for the citation domain.
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Figure 5.7 (a) A relational schema for the citation domain. (b) An object skeleton
for the citation domain.

5.5.1.1 Probabilistic Model

In the case of reference uncertainty, we specify a probabilistic model for the value
of the reference slots X.ρ. The domain of a reference slot X.ρ is the set of keys
(unique identifiers) of the objects in the class Y to which X.ρ refers. Thus, we need
to specify a probability distribution over the set of all objects in Y . For example,
for Cites.Cited, we must specify a distribution over the objects in class Paper.

A naive approach is to simply have the PRM specify a probability distribution
directly over the objects σo(Y ) in Y . For example, for Cites.Cited, we would have
to specify a distribution over the primary keys of Paper. This approach has two
major flaws. Most obviously, this distribution would require a parameter for each
object in Y , leading to a very large number of parameters. This is a problem both
from a computational perspective — the model becomes very large — and from
a statistical perspective — we often would not have enough data to make robust
estimates for the parameters. More importantly, we want our dependency model
to be general enough to apply over all possible object skeletons σo; a distribution
defined in terms of the objects within a specific object skeleton would not apply to
others.

In order to achieve a general and compact representation, we use the attributes
of Y to define the probability distribution. In this model, we partition the class Y
into subsets labeled ψ1, . . . , ψm according to the values of some of its attributes,
and specify a probability for choosing each partition, i.e., a distribution over the
partitions. We then select an object within that partition uniformly.

For example, consider a description of movie theater showings as in figure 5.8(a).
For the foreign key Shows.Movie, we can partition the class Movie by Genre,
indicating that a movie theater first selects the genre of movie it wants to show,
and then selects uniformly among the movies with the selected genre. For example,
a movie theater may be much more likely to show a movie which is a thriller
than a foreign movie. Having selected, for example, to show a thriller, the theater
then selects the actual movie to show uniformly from within the set of thrillers.
In addition, just as in the case of descriptive attributes, the partition choice can
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Figure 5.8 (a) An example of reference uncertainty for a movie theater’s showings.
(b) A simple example of reference uncertainty in the citation domain

depend on other attributes in our model. Thus, the selector attribute can have
parents. As illustrated in the figure, the choice of movie genre might depend on
the type of theater. Consider another example in our citation domain. As shown in
figure 5.8(b), we can partition the class Paper by Topic, indicating that the topic
of a citing paper determines the topics of the papers it cites; and then the cited
paper is chosen uniformly among the papers with the selected topic.

We make this intuition precise by defining, for each slot ρ, a partition function
Ψρ. We place several restrictions on the partition function which are captured in
the following definition:

Definition 5.12

Let X.ρ be a reference slot with domain Y . Let Ψρ : Y → Dom[Ψρ] be a function
where Dom[Ψρ] is a finite set of labels. We say that Ψρ is a partition function for
ρ if there is a subset of the attributes of Y , P [ρ] ⊆ A(Y ), such that for any y ∈ Y
and any y′ ∈ Y , if the values of the attributes P [ρ] of y and y′ are the same, i.e., for
each A ∈ P [ρ], y.A = y′.A, then Ψρ(y) = Ψρ(y′). We refer to P [ρ] as the partition
attributes for ρ.

Thus, the values of the partition attributes are all that is required to determine the
partition to which an object belongs.

In our first example, ΨShows.Movie : Movie → {foreign, thriller} and the partition
attributes are P [Shows.Movie] = {Genre}. In the second example, ΨCites.Cited :
Paper→ {AI,Theory} and the partition attributes are P [Cites.Cited] = {Topic}.

There are a number of natural methods for specifying the partition function.
It can be defined simply by having one partition for each possible combination
of values of the partition attributes, i.e., one partition for each value in the cross
product of the partition attribute values. Our examples above take this approach.
In both cases, there is only a single partition attribute, so specifying the partition
function in this manner is not too unwieldy, but for larger collections of partition
attributes or for partition attributes with large domains, this method for defining
the partitioning function may be problematic. A more flexible and scalable approach
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is to define the partition function using a decision tree built over the partition
attributes. In this case, there is one partition for each of the leaves in the decision
tree.

Each possible value ψ determines a subset of Y from which the value of ρ (the
referent) will be selected. For a particular instantiation I of the database, we use
I(Yψ) to represent the set of objects in I(Y ) that fall into the partition ψ.

We now represent a probabilistic model over the values of ρ by specifying a
distribution over possible partitions, which encodes how likely the reference value
of ρ is to fall into one partition versus another. We formalize our intuition above
by introducing a selector attribute Sρ, whose domain is Dom[Ψρ]. The specification
of the probabilistic model for the selector attribute Sρ is the same as that of any
other attribute: it has a set of parents and a CPD. In our earlier example, the CPD
of Show.SMovie might have as a parent Theater.Type. For each instantiation of the
parents, we have a distribution over Dom[Sρ]. The choice of value for Sρ determines
the partition Yψ from which the reference value of ρ is chosen; the choice of reference
value for ρ is uniformly distributed within this set.

Definition 5.13

A probabilistic relational model Π with reference uncertainty over a relational
schema R has the same components as in definition 5.2. In addition, for each
reference slot ρ ∈ R(X) with Range[ρ] = Y , we have:

a partition function Ψρ with a set of partition attributes P [ρ] ⊆ A(Y );
a new selector attribute Sρ within X which takes on values in the range of Ψρ;
a set of parents and a CPD for Sρ.

To define the semantics of this extension, we must define the probability of
reference slots as well as descriptive attributes:

P (I | σo,Π) =
∏
X∈X

∏
x∈σo(X)

∏
A∈A(X)

P (x.A | Pa(x.A))

∏
ρ∈R(X),y=x.ρ

P (x.Sρ = ψ[y] | Pa(x.Sρ))
|I(Yψ[y])|

, (5.2)

where ψ[y] refers to Ψρ(y) — the partition that the partition function assigns y.
Note that the last term in (5.2) depends on I in three ways: the interpretation of
x.ρ = y, the values of the attributes P [ρ] within the object y, and the size of Yψ[y].
The above probability is not well-defined if there are no objects in a partition, so
in that case we define it to be zero.

5.5.2 Coherence of the Probabilistic Model

As in the case of PRMs with attribute uncertainty, we must be careful to guarantee
that our probability distribution is in fact coherent. In this case, the object
skeleton does not specify which objects are related to which, and therefore the
mapping of formal to actual parents depends on probabilistic choices made in the
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model. The associated ground Bayesian network will therefore be cumbersome and
not particularly intuitive. We define our coherence constraints using an instance
dependency graph, relative to our PRM and object skeleton.

Definition 5.14

The instance dependency graph for a PRM Π and an object skeleton σo is a
graph Gσo with the nodes and edges described below. For each class X and each
x ∈ σo(X), we have the following nodes:

a node x.A for every descriptive attribute X.A;

a node x.ρ and a node x.Sρ, for every reference slot X.ρ.

The dependency graph contains five types of edges:

Type I edges: Consider any attribute (descriptive or selector) X.A and formal
parent X.B. We define an edge x.B → x.A, for every x ∈ σo(X).
Type II edges: Consider any attribute (descriptive or selector) X.A and formal
parent X.K.B where Dom[X.K] = Y . We define an edge y.B → x.A, for every
x ∈ σo(X) and y ∈ σo(Y ).
Type III edges: Consider any attribute X.A and formal parent X.K.B, where
K = ρ1, . . . , ρk, and Dom[ρi] = Xi. We define an edge x.ρ1 → x.A, for every
x ∈ σo(X). In addition, for each i > 1, we add an edge xi.ρi → x.A for every
xi ∈ σo(Xi) and for every x ∈ σo(X).
Type IV edges: Consider any slot X.ρ and partition attribute Y.B ∈ P [ρ] for
Y = Range[ρ]. We define an edge y.B → x.Sρ for every x ∈ σo(X) and y ∈ σo(Y ).
Type V edges: Consider any slot X.ρ. We define an edge x.Sρ → x.ρ for every
x ∈ σo(X).

We say that a dependency structure S is acyclic relative to an object skeleton σo
if the directed graph Gσo is acyclic.

Intuitively, type I edges correspond to intra-object dependencies and type II edges
to inter-object dependencies. These are the same edges that we had in the depen-
dency graph for regular PRMs, except that they also apply to selector attributes.
Moreover, there is an important difference in our treatment of type II edges. In this
case, the skeleton does not specify the value of x.ρ, and hence we cannot determine
from the skeleton on which object y the attribute x.A actually depends. Therefore,
our instance dependency graph must include an edge from every attribute y.B.

Type III edges represent the fact that the actual choice of parent for x.A depends
on the value of the slots used to define it. When the parent is defined via a slot
chain, the actual choice depends on the values of all the slots along the chain. Since
we cannot determine the particular object from the skeleton, we must include an
edge from every slot xi.ρi potentially included in the chain.

Type V edges represent the dependency of a slot on the attributes defining the
associated partition. To see why this dependence is required, we observe that our
choice of reference value for x.ρ depends on the values of the partition attributes
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P [x.ρ] of all of the different objects y in Y . Thus, these attributes must be
determined before x.ρ is determined. Finally, type V edges represent the fact that
the actual choice of parent for x.A depends on the value of the selector attributes
for the slots used to define it. In our example, as P [Shows.Movie] = {Movie.Genre},
the genres of all movies must be determined before we can select the value of the
reference slot Shows.Movie.

Based on this definition, we can specify conditions under which (5.2) specifies a
coherent probability distribution.

Theorem 5.15

Let Π be a PRM with reference uncertainty whose dependency structure S is acyclic
relative to an object skeleton σo. Then Π and σo define a coherent probability
distribution over instantiations I that extend σo via (5.2).

This theorem is limited in that it is very specific to the constraints of a given
object skeleton. As in the case of PRMs without relational uncertainty, we want to
learn a model in one setting, and be assured that it will be acyclic for any skeleton
we might encounter. We accomplish this goal by extending our definition of class
dependency graph. We do so by extending the class dependency graph to contain
edges that correspond to the edges we defined in the instance dependency graph.

Definition 5.16

The class dependency graph GΠ for a PRM with reference uncertainty Π has a node
for each descriptive or selector attribute X.A and each reference slot X.ρ, and the
following edges:

Type I edges: For any attribute X.A and formal parent X.B, we have an edge
X.B → X.A.
Type II edges: For any attribute X.A and formal parent X.ρ.B where
Range[ρ] = Y , we have an edge Y.B → X.A.
Type III edges: For any attribute X.A and formal parent Y.K.B, where
K = ρ1, . . . , ρk, and Dom[ρi] = Xi, we define an edge X.ρ1 → X.A. In addition,
for each i > 1, we add an edge X.ρi → X.A.
Type IV edges: For any slot X.ρ and partition attribute Y.B for Y = Range[ρ],
we have an edge Y.B → X.Sρ.
Type V edges: For any slot X.ρ, we have an edge X.Sρ → X.ρ.

Figure 5.9 shows the class dependency graph for our extended movie example.
While the proof is a bit more complex than in the attribute uncertainty case, the

following analogous theorem holds:

Theorem 5.17

Let Π be a PRM with reference uncertainty whose class dependency structure
S is acyclic. For any object skeleton σo, Π and σo define a coherent probability
distribution over instantiations I that extend σo via (5.2).
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Figure 5.10 Existence uncertainty in a simple citation domain.

5.5.3 Existence Uncertainty

The second form of structural uncertainty we introduce is called existence uncer-
tainty. In this case, we make no assumptions about the number of links that exist.
The number of links that exist and the identity of the links are all part of the
probabilistic model and can be used to make inferences about other attributes in
our model. In our citation example above, we might assume that the set of papers
is part of our background knowledge, but we want to provide an explicit model for
the presence or absence of citations. Unlike the reference uncertainty model of the
previous section, we do not assume that the total number of citations is fixed, but
rather that each potential citation can be present or absent.
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Figure 5.11 (a) An entity skeleton for the citation domain. (b) A CPD for the
Exists attribute of Cites.

5.5.3.1 Semantics of Relational Model

The object skeleton used for reference uncertainty assumes that the number of
objects in each relation is known. Thus, if we consider a division of objects into
entities and relations, the number of objects in classes of both types is fixed.
Existence uncertainty assumes even less background information than specified by
the object skeleton. Specifically, we assume that the number of relationship objects
is not fixed in advance. This situation is illustrated in figure 5.10.

We assume that we are given only an entity skeleton σe, which specifies the set
of objects in our domain only for the entity classes. Figure 5.11(a) shows an entity
skeleton for the citation example. Our basic approach is to allow other objects
within the model — those in the relationship classes — to be undetermined, i.e.,
their existence can be uncertain. In other words, we introduce into the model all
of the objects that can potentially exist in it; with each of them, we associate a
special binary variable that tells us whether the object actually exists or not. We
call entity classes determined and relationship classes undetermined.

To specify the set of potential objects, we note that relationship classes typically
represent many-many relationships; they have at least two reference slots, which
refer to determined classes. For example, our Cite class has the two reference
slots, Citing and Cited . Thus the potential domain of the Cites class in a given
instantiation I is I(Paper) × I(Paper). Each “potential” object x in this class has
the form Cite[y1, y2]. Each such object is associated with a binary attribute x.E
that specifies whether paper y1 did or did not cite paper y2.

Definition 5.18

Consider a schema with determined and undetermined classes, and let σe be an
entity skeleton over this schema. We define the induced relational skeleton, σr[σe],
to be the relational skeleton that contains the following objects:

If X is a determined class, then σr[σe](X) = σe(X).
Let X be an undetermined class with reference slots ρ1, . . . , ρk whose range types
are Y1, . . . , Yk respectively. Then σr [σe](X) contains an object X [y1, . . . , yk] for
all tuples 〈y1, . . . , yk〉 ∈ σr[σe](Y1)× · · · × σr[σe](Yk).
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The relations in σr[σe] are defined in the obvious way: Slots of objects of determined
classes are taken from the entity skeleton. Slots of objects of undetermined classes
are induced from the object definition: X [y1, . . . , yk].ρi is yi.

To ensure that the semantics of schemata with undetermined classes is well-
defined, we need a few tools. Specifically, we need to ensure that the set of potential
objects is well-defined and finite. It is clear that if we allow cyclic references (e.g.,
an undetermined class with a reference to itself), then the set of potential objects
is not finite. To avoid such situations, we need to put some requirements on the
schema.

Definition 5.19

A set of classes X is stratified if there exists a partial ordering over the classes ≺
such that for any reference slot X.ρ with range type Y , Y ≺ X .

Lemma 5.20

If the set of undetermined classes in a schema is stratified, then given any entity
skeleton σe the number of potential objects in any undetermined class is finite.

As discussed, each undetermined X has a special existence attribute X.E whose
values are V(E) = {true, false}. For uniformity of notation, we introduce an E

attribute for all classes; for classes that are determined, the E value is defined to
be always true. We require that all of the reference slots of a determined class X
have a range type which is also a determined class.

For a PRM with stratified undetermined classes, we define an instantiation to
be an assignment of values to the attributes, including the Exists attribute, of all
potential objects.

5.5.3.2 Probabilistic Model

We now specify the probabilistic model defined by the PRM. By treating the Exists
attributes as standard descriptive attributes, we can essentially build our definition
directly on top of the definition of standard PRMs.

Specifically, the existence attribute for an undetermined class is treated in the
same way as a descriptive attribute in our dependency model, in that it can have
parents and children, and has an associated CPD. figure 5.11(b) illustrates a CPD
for the Cites.Exists attribute. In this example, the existence of a citation depends
on the topic of the citing paper and the topic of the cited paper; e.g., it is more
likely that citations will exist between papers with the same topic.

Using the induced relational skeleton and treating the existence events as de-
scriptive attributes, we have set things up so that (5.1) applies with minor changes.
There are two important changes to the definition of the distribution:

We want to enforce that x.E = false if x.ρ.E = false for one of the slots ρ of X .
Suppose that X has the slots ρ1, . . . , ρk, we define the effective CPD for X.E as
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follows. Let Pa∗(X.E) = Pa(X.E) ∪ {X.ρ1.E, . . . , X.ρk.E}, and define

P ∗(X.E | Pa∗(X.E)) =

{
P (X.E | Pa(X.E)) if X.ρi.E = true, ∀i = 1, . . . , k,

0 otherwise

We want to “decouple” the attributes of nonexistent objects from the rest
of the PRM. Thus, if X.A is a descriptive attribute, we define Pa∗(X.A) =
Pa(X.A) ∪ {X.E}, and

P ∗(X.A | Pa∗(X.A)) =

{
P (X.A | Pa(X.A)) if X.E = true,

1
|V(X.A)| otherwise

It is easy to verify that in both cases P ∗(X.A | Pa∗(X.A)) is a legal conditional
distribution.

In effect, these constraints specify a new PRM Π∗, in which we treat X.E as a
standard descriptive attribute. For each attribute (including the Exists attribute),
we define the parents of X.A in Π∗ to be Pa∗(X.A) and the associated CPD to be
P ∗(X.A | Pa∗(X.A)).

Given an entity skeleton σe, a PRM with exists uncertainty Π specifies a distri-
bution over a set of instantiations I consistent with σr[σe]:

P (I | σe,Π) = P (I | σr[σe],Π∗) =
∏
X∈X

∏
x∈σr [σe](X)

∏
A∈A(x)

P ∗(x.A | Pa∗(x.A))

(5.3)
We can similarly define the the class dependency graph for a PRM Π with exists

uncertainty using the corresponding notions for the standard PRM Π∗. As there, we
require that the class dependency graphGΠ∗ is acyclic. One immediate consequence
of this requirement is that the schema is stratified.

Lemma 5.21

If the class dependency graph GΠ∗ is acyclic, then there is a stratification of the
undetermined classes.

Based on this definition, we can prove the following result:

Theorem 5.22

Let Π be a PRM with existence uncertainty and an acyclic class dependency graph.
Let σe be an entity skeleton. Then (5.3) defines a coherent distribution on all
instantiations I of the induced relational skeleton σr[σe].

5.6 PRMs with Class Hierarchies

Next we propose methods for discovering useful refinements of a PRM’s dependency
model. We begin by introducing probabilistic relational models with class hierarchies
(PRMs-CH). PRMs-CH extend PRMs by including class hierarchies over the ob-
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jects. Subclasses allow us to specialize the probabilistic model for some instances
of a class. For example, if we have a class movie in our relational schema, we
might consider subclasses of movies, such as documentaries, action movies, British
comedies, etc. The popularity of an action movie (a subclass of movies) may de-
pend on its budget, whereas the popularity of a documentary (another subclass
of movies) may depend on the reputation of the director. Subclassing allows us to
model probabilistic dependencies at the appropriate level of detail. For example,
we can have the parents of the popularity attribute in the action movie subclass
be different than the parents of the same attribute in the documentary subclass. In
addition, subclassing allows additional dependency paths to be represented in the
model that would not be allowed in a PRM that does not support subclasses. For
example, whether a person enjoys action movies may depend on whether she enjoys
documentaries. PRMs-CH provide a general mechanism that allow us to define a
rich set of dependencies.

To motivate our extensions, consider a simple PRM for the movie domain. Let
us restrict attention to the three classes, Person, Movie, and Vote. We can have
the attributes of Vote depending on attributes of the person voting (via the slot
Vote.Voter) and on attributes of the movie (via the slot Vote.Movie). However,
given the attributes of all the people and the movie in the model, the different
votes are (conditionally) i.i.d.

5.6.1 Class Hierarchies

Our aim is to refine the notion of a class, such as Movie, into finer subclasses,
such as action movies, comedy, documentaries, etc. Moreover, we want to allow
recursive refinements of this structure, so that we might refine action movies into
the subclasses spy movies, car chase movies, and kung-fu movies.

A class hierarchy for a class X defines an IS-A hierarchy for objects from class
X . The root of the class hierarchy is simply class X itself. The subclasses of X are
organized into an inheritance hierarchy. The leaves of the class hierarchy describe
basic classes—these are the most specific characterization of objects that occur
in the database. The interior nodes describe abstractions of the base-level classes.
The intent is that the class hierarchy is designed to capture useful and meaningful
abstractions in a particular domain.

More formally, a hierarchy H [X ] for a class X is a rooted directed acyclic graph
defined by a subclass relation ≺ over a finite set of subclasses C[X ]. For c, d ∈ C[X ],
if c ≺ d, we say that Xc is a direct subclass of Xd, and Xd is a direct superclass of
Xc. The root of the tree is the class X . Class
 corresponds to the original class
X . We define ≺∗ to be the transitive closure of ≺; if c ≺∗ d, we say that Xc is a
subclass of Xd. For example, figure 5.12 shows the simple class hierarchy for the
Movie class.

We denote the sublcasses of the hierarchy by C[(]H [X ]). We achieve subclassing
for a class X by requiring that there be an additional subclass indicator attribute
X.Class that determines the subclass to which an object belongs. Thus, if c is a
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Movie

DocumentaryComedy Action-Movie

Spy-Movie Car-Chase-Movie Kung-Fu-Movie

Figure 5.12 A simple class hierarchy for Movie.

subclass, then I(Xc) contains all objects x ∈ X for which x.Class ≺∗ c, i.e., all
objects that are in some class which is a subclass of c. In our example, Movie has
a subclass indicator variable Movie.Class with possible values

{Comedy,Action-Movie,Documentary,Spy-Movie,Car-Chase-Movie,Kung-Fu-Movie}

.
Subclasses allow us to make finer distinctions when constructing a probabilistic

model. In particular, they allow us to specialize CPDs for different subclasses in
the hierarchy.

Definition 5.23

A probabilistic relational model with subclass hierarchy is defined as follows. For
each class X ∈ X , we have

a class hierarchy H [X ] = (C[X ],≺);
a subclass indicator attribute X.Class such that V(X.Class) = C[(]H [X ]);
a CPD for X.Class;
for each subclass c ∈ C[X ] and attribute A ∈ A(X) we have either

a set of parents Pac(X.A) and a CPD that describes P (X.A | Pac(X.A)); or
an inherited indicator that specifies that the CPD for X.A in c is inherited
from its direct superclass. The root of the hierarchy cannot have the inherited
indicator.

With the introduction of subclass hierarchies, we can refine our probabilistic
dependencies. Before each attribute X.A had an associated CPD. Now, if we like,
we can specialize the CPD for an attribute within a particular subclass. We can
associate a different CPD with the attributes of different subclasses. For example,
the attribute Action-Movie.Popularity may have a different conditional distribution
from the attribute Documentary.Popularity. Further, the distribution for each of
the attributes may depend on a completely different set of parents. Continuing
our earlier example, if the popularity of an action movie depends on its budget,
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then Action-Movie.Popularity would have as parents Action-Movie.Budget. However,
for documentaries, the popularity depends on the reputation of the director; then
Documentary.Popularity would have the parent Documentary.Director.Reputation.

We define P (X.A | Pac(X.A)) to be the CPD associated with A in Xd, where d
is the most specialized superclass of c (which may be c itself) such that the CPD
of X.A in d is not marked with the inherited indicator.

5.6.2 Refined Slot References

At first glance, the increase in representational power provided by supporting
subclasses is deceptively small. It seems that little more than an extra constructed
type variable has been added, and that the structure that is exploited by the new
subclassed CPDs could just as easily have been provided using structured CPDs,
such as the tree-structured CPDs or decision graphs [1, 4]. For example, the root
node in the tree-structured CPD for attribute X.A can split on the class attribute,
X.Class, and then the subtrees can define the appropriate specializations of the
CPD. In reality, it is not quite so simple; now X.A would need to have as parents
the union of all of the parents of its subclasses. However, the representational power
is quite similar.

However, the representational power has been extended in a very important way.
Certain dependency structures that would have been disallowed in the original
framework are now allowed. These dependencies appear circular when examined
only at the class level; however, when refined and modeled at the subclass level,
they are no longer cyclic. One way of understanding this phenomenon is that, once
we have refined the class, the subclass information allows us to disentangle and
order the dependencies.

Returning to our earlier example, suppose that we have the classes Voter, Movie,
and Vote. Vote has reference slots Person and Movie and an attribute Ranking
that gives the score that a person has given for a movie. Suppose we want to model
a correlation between a person’s votes for documentaries and her votes for action
movies. (This correlation might be a negative one.) In the unrefined model, we do
not have a way of referring to a person’s votes for some particular subset of movies;
we can only consider aggregates over a person’s entire set of votes. Furthermore,
even if we could introduce such a dependence, the dependency graph would show
a dependence of Vote.Rank on itself.

When we create subclasses of movie, we can also create specializations of any
classes that make reference to movies. For example Vote has a reference slot
Vote.Movie. Suppose we create subclasses of Movie: Comedy, Action-Movie, and
Documentary. Then we can create corresponding specializations of Vote: Comedy-

Vote, Action-Vote, and Documentary-Vote. Each of these subclasses refers only to a
particular category of votes.

The introduction of subclasses of votes provides us with a way of isolating a
person’s votes on some subset of movies. In particular, we can try to introduce
a dependence of Documentary-Vote.Rank on Action-Vote.Rank. In order to allow
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this dependency, we need a mechanism for constructing slot chains that restrict
the types of objects along the path to belong to specific subclasses. Recall that a
reference slot ρ is a function from Dom[ρ] to Range[ρ], i.e. from X to Y . We can
introduce refinements of a slot reference by restricting the types of the objects in
the range.

Definition 5.24

Let ρ be a slot (reference or inverse) of X with range Y . Let d be a subclass of Y .
A refined slot reference ρ〈d〉 for ρ to d is a relation between X and Y :

For x ∈ X, y ∈ Y, y ∈ x.ρ〈d〉 if x ∈ X and y ∈ Yd, then y ∈ x.ρ.

Returning to our earlier example, suppose that we have subclasses of Movie:
Comedy, Action-Movie, and Documentary. In addition, suppose we also have sub-
classes of Vote, Comedy-Vote and Action-Vote, and Documentary-Vote. To get from
a person to her votes, we use the inverse of slot reference Person.Votes. Now we
can construct refinements of Person.Votes, Votes〈Comedy-Vote〉, Votes〈Action-Vote〉, and
Votes〈Documentary-Vote〉.

Let us name these slots Comedy-Votes and Action-Votes, and Documentary-Votes.
To specify the dependency of a person’s rankings for documentaries on their rank-
ings for action movies we can say that Documentary-Vote.Rank has a parent which is
the person’s action movie rankings: γ(Documentary-Vote.Person.Action-Votes.Rank).

5.6.3 Support for Instance-Level Dependencies

The introduction of subclasses brings the benefit that we can now provide a smooth
transition from the PRM, a class-based probabilistic model, to models that are
more similar to Bayesian networks. To see this, suppose our subclass hierarchy
for movies is very “deep” and starts with the general class and ends in the most
refined levels with particular movie instances. Thus, at the most refined version
of the model we can define the preferences of a person by either class-based
dependency (the probability of enjoying documentary movies depends on whether
the individual enjoys action movies) or instance-based dependency (the probability
of enjoying Terminator II depends on whether the individual enjoys The Hunt for
Red October). The latter model is essentially the same as the Bayesian network
models learned by Breese et al. [2] in the context of collaborative filtering for TV
programs.

In addition, the new flexibility in defining refined slot references allows us to
make interesting combinations of these types of dependencies. For example, whether
an individual enjoys a particular movie(e.g., True Lies) can be enough to predict
whether she watches a whole other category of movies (e.g., James Bond movies).
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5.6.4 Semantics

Using this definition, the semantics for PRM-CH are given by the following equa-
tion:

P (I | σr,Π) =
∏
X

∏
x∈σr(X)

P (x.Class)
∏

A∈A(X)

P (x.A | Pax.c(x.A)). (5.4)

As before, the probability of an instantiation of the database is the product of
CPDs of the instance attributes; the key difference is that here, in addition to the
skeleton determining the parents on an attribute, the subclass to which the object
belongs determines which local probability model is used.

5.6.5 Coherence of Probabilistic Model

As in the case of PRMs with attribute uncertainty, we must be careful to guarantee
that our probability distribution is in fact coherent. In this case, while the relational
skeleton specifies which objects are related to which, it does not specify the subclass
indicator for each object, so the mapping of formal to actual parents depends on
the probabilistic choice for the subclass for the object. In addition, for refined slot
references, the existence of the edge will depend on the subclass of the object.
We will indicate edge existence by the coloring of an edge: a black edge exists in
the graph, a gray edge may exist in the graph, and a white edge is invisible in
the graph. As in previous sections, we define our coherence constraints using an
instance dependency graph, relative to our PRM and relational skeleton.

Definition 5.25

The colored instance dependency graph for a CH-PRM ΠCH and a relational
skeleton σr is a graph Gσr . The graph has the following nodes, for each class X
and for each x ∈ σr(X):

A descriptive attribute node x.A, for every descriptive attribute X.A ∈ A(X);
a subclass indicator node x.Class.

Let Pa∗(X.A) =
⋃
c∈C[X] Pac(X.A). The dependency graph contains four types

of edges. For each attribute X.A (both descriptive attributes and the subclass
indicator), we add the following edges:

Type I edges: For every x ∈ σr(X) and for each formal parentX.B ∈ Pa∗(X.A),
we define an edge x.B → x.A. This edge is black if the parents have not been
specialized (which will be the case for the subclass indicator, x.Class, and possibly
other attributes as well). All the other edges are colored gray.
Type II edges: For every x ∈ σr(X) and for each formal parent X.K.B ∈
Pa∗(X.A), if y ∈ x.K in σr, we define an edge y.B → x.A. If the CPD has been
specialized, or if K contains any refined slot references this edge is colored gray;
otherwise is is colored black.
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As before, type I edges correspond to intra-object dependencies and type II edges
to inter-object dependencies. But since an object may be from any subclass, even
though the relational skeleton specifies the objects to which it is related, until we
know the subclass of an object, we do not know which of the local probability
models applies. In addition, in the case where a parent of an object is defined via a
refined slot reference, we also do not know the set of related objects until we know
their subclasses. Thus, we add edges for every possible parent and color the edges
used in defining parents gray. Type I and type II edges are gray when they are
parents in a specialized CPD. In addition, type II edges may be gray if a refined
slot reference is used in the definition of a parent.

At this point, the problem with our instance dependency graph is that there are
some edges which are known to occur (the black edges) and some edges that may
or may not exist (depending on the subclass of an object). How do we ensure our
instance dependency graph is acyclic? In this case, we must ensure that the instance
dependency graph is acyclic for any setting of the subclass indicators. Note that
this is a probabilistic event. First, we extend our notion of acyclicity for our colored
instance dependency graph.

Definition 5.26

A colored instance dependency graph is acyclic if, for any instantiation of the
subclass indicators, there is an acyclic ordering of the nodes relative to the black
edges in the graph. Given any a particular assignment of subclass indicators, we
determine the black edges as follows:

Given a subclass assignment y.Class, all of the edges involving this object are
colored either black or white. Let y.Class = d. The edges for any parent nodes
are colored black if they are defined by the CPD Pad(X.A), and white otherwise.
In addition, the edges corresponding to any refined slot references, ρ〈d〉(x, y), are
set: If y.Class = d, the edge is colored black; otherwise it is painted white.

Based on this definition, we can specify conditions under which (5.4) specifies a
coherent probability distribution.

Theorem 5.27

Let ΠCH be a PRM with class hierarchies whose colored dependency structure S
is acyclic relative to a relational skeleton σr. Then ΠCH and σr define a coherent
probability distribution over instantiations I that extend σr via (5.4).

As in the previous case of PRMs with attribute uncertainty and PRMs with
structural uncertainty, we want to learn a model in one setting, and be assured
that it will be acyclic for any skeleton we might encounter. Again we achieve this
goal through our definition of class dependency graph. We do so by extending the
class dependency graph to contain edges that correspond to the edges we defined
in the instance dependency graph.
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Figure 5.13 (a) A simple PRM with class hierarchies for the movie domain. (b)
The class dependency graph for this PRM.

Definition 5.28

The class dependency graph for a PRM with class hierarchy ΠCH has the following
set of nodes for each X ∈ X :

for each subclass c ∈ C[X ] and attribute A ∈ A(X), a node Xc.A;
a node for the subclass indicator X.Class;

and the following edges:

Type I edges: For any node Xc.A and formal parent Xc.B ∈ Pac(Xc.A) we have
an edge Xc.B → Xc.A.
Type II edges: For any attribute Xc.A and formal parent Xc.ρ.B ∈ Pac(Xc.A),
where Range[ρ] = Y , we have an edge Y.B → Xc.A.
Type III edges: For any attribute Xc.A, and for any direct superclass d, c ≺ d,
we add an edge Xc.A→ Xd.A.

Figure 5.13 shows a simple class dependency graph for our movie example. The
PRM-CH is given in figure 5.13(a) and the class dependency graph is shown in
figure 5.13(b).

It is now easy to show that if this class dependency graph is acyclic, then the
instance dependency graph is acyclic.

Lemma 5.29

If the class dependency graph is acyclic for a PRM with class hierarchies ΠCH , then
for any relational skeleton σr, the colored instance dependency graph is acyclic.

And again we have the following corollary:

Corollary 5.30

Let ΠCH be a PRM with class hierarchies whose class dependency structure S is
acyclic. For any relational skeleton σr, ΠCH and σr define a coherent probability
distribution over instantiations I that extend σr via (5.4).
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5.7 Inference in PRMs

An important aspect of any probabilistic representation is the support for making
inferences; having made some observations, how do we condition on these obser-
vations and update our probabilistic model? Inference in PRMs supports many
interesting patterns of reasoning. Oftentimes we can view the inference as influence
flowing between the interrelated objects. Consider a simple example of inference
about a particular student in our school PRM. A priori we may believe a student
is likely to be smart. We may observe his grades in several courses and see that
for the most part he received As, but in one class he received a C. This may cause
us to slightly reduce our belief that the student is smart, but it will not change
it significantly. However, if we find that most of the other students that took the
course received high grades, we then may believe that the course is an easy course.
Since it is unlikely that a smart student got a low grade in an easy course, our
probability for the student being smart now goes down substantially.

There are several potential approaches for performing inference effectively in
PRMs. In a few cases, particularly when the skeleton is small, or it results in a
network with low tree width, we can do exact inference in the ground Bayesian
network. In other cases, when there are certain types of regularities in the ground
Bayesian network, we can still perform exact inference by carefully exploiting and
reusing computations. And in cases where the ground Bayesian network is very
large and we cannot exploit regularities in its structure, we resort to approximate
inference.

5.7.1 Exact Inference

We can always resort to exact inference on the ground Bayesian Network, but
the ground Bayesian Network may be very large and thus this inference may
prove intractable. Under certain circumstances, inference algorithms can exploit
the model structure to make inference tractable. Previous work on inference in
structured probabilistic models [14, 19, 18] shows how effective inference can be
done for a number of different structured probabilistic models. The algorithms make
use of the structure imposed by the class hierarchy to decompose the distribution
and effectively reuse computation.

There are two ways in which aspects of the structure can be used to make
inference more efficient. The first structural aspect is the natural encapsulation
of objects that occurs in a well-designed class hierarchy. Ideally, the interactions
between objects will occur via a small number of object attributes, and the majority
of interactions between attributes will be encapsulated within the class. This can
provide a natural decomposition of the model suitable for inference. The complexity
of the inference will depend on the “width” of the connections between objects; if
the width is small, we are guaranteed an efficient procedure.
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The second structural aspect that is used to make inference efficient is the fact
that similar objects occur many times in the model. Pfeffer et al. [19] describe
a recursive inference algorithm that caches the computations that are done for
fragments of the model; these computations then need only be performed once; we
can reuse them for another object occurring in the same context. We can think of
this object as a generic object, which occurs repeatedly in the model. Exploiting
these structural aspects of the model allow Pfeffer et al. [19] to achieve impressive
speedups; in a military battlespace domain the structured inference was orders of
magnitudes faster than the standard Bayesian Network exact inference algorithm.

5.7.2 Approximate Inference

Unfortunately the methods used in the inference algorithm above often are not
applicable for the PRMs we study. In the majority of cases, there are no generic
objects that can be exploited. Unlike standard Bayesian Network inference, we
cannot decompose this task into separate inference tasks over the objects in the
model, as they are typically all correlated. Thus, inference in the PRM requires
inference over the ground network defined by instantiating a PRM for a particular
skeleton.

In general, the ground network can be fairly complex, involving many objects that
are linked in various ways. (For example, in some of our experiments, the networks
involve hundreds of thousands of nodes.) Exact inference over these networks is
clearly impractical, so we must resort to approximate inference. We use belief
propagation (BP), a local message-passing algorithm, introduced by Pearl [17]. The
algorithm is guaranteed to converge to the correct marginal probabilities for each
node only for singly connected Bayesian networks. However, empirical results [16]
show that it often converges in general networks, and when it does the marginals
are a good approximation to the correct posterior.

We provide a brief outline of one variant of BP, and refer the reader to [20, 16, 15]
for more details. Consider a Bayesian network over some set of nodes (which in our
case would be the variables x.A). We first convert the graph into a family graph,
with a node Fi for each variable Vi in the Bayesian network, containing Vi and its
parents. Two nodes are connected if they have some variable in common. The CPD
of Vi is associated with Fi. Let φi represent the factor defined by the CPD; i.e., if Fi
contains the variables V, Y1, . . . , Yk, then φi is a function from the domains of these
variables to [0, 1]. We also define ψi to be a factor over Vi that encompasses our
evidence about Vi: ψi(Vi) ≡ 1 if Vi is not observed. If we observe Vi = v, we have
that ψi(v) = 1 and 0 elsewhere. Our posterior distribution is then α

∏
i φi ×

∏
i ψi,

where α is a normalizing constant.
The BP algorithm is now very simple. At each iteration, all the family nodes

simultaneously send messages to all others, as follows:

mij(Fi ∩ Fj)← α
∑
Fi−Fj

φi · ψi ·
∏

k∈N(i)−{j}
mki,
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where α is a (different) normalizing constant and N(i) is the set of families that
are neighbors of Fi in the family graph. This process is repeated until the beliefs
converge. At any point in the algorithm, our marginal distribution about any family
Fi is bi = α·φi ·ψi·

∏
k∈N(i)mki. Each iteration is linear in the number of edges in the

Bayesian network. While the algorithm is not guaranteed to converge, it typically
converges after just a few iterations. After convergence, the bi give us approximate
marginal distributions over each of the families in the ground network.

5.8 Learning

Next, we turn our attention to learning a PRM. In the learning problem, our input
contains a relational schema that describes the basic vocabulary in the domain
— the set of classes, the attributes associated with the different classes, and the
possible types of relations between objects in the different classes. For simplicity,
in the description that follows, we assume the training data consists of a fully
specified instance of that schema; if there are missing values, then an expectation
maximization (EM) algorithm is needed as well. We begin by describing learning
PRMs with attribute uncertainty, next describe the extensions to support learning
PRMs with structural uncertainty, and then describe support for learning PRMs
with class hierarchies.

We assume that the training instance is given in the form of a relational database.
Although our approach would also work with other representations (e.g., a set of
ground facts completed using the closed-world assumption), the efficient querying
ability of relational databases is particularly helpful in our framework, and makes
it possible to apply our algorithms to large data sets.

There are two components of the learning task: parameter estimation and struc-
ture learning. In the parameter estimation task, we assume that the qualitative
dependency structure of the PRM is known; i.e., the input consists of the schema
and training database (as above), as well as a qualitative dependency structure
S. The learning task is only to fill in the parameters that define the CPDs of the
attributes. In the structure learning task, the dependency structure is not provided
(although the user can, if available, provide prior knowledge about the structure,
e.g., in the form of constraints) and the goal is to extract an entire PRM, structure
as well as parameters, from the training database alone. We discuss each of these
problems in turn.

5.8.1 Parameter Estimation

We begin with learning the parameters for a PRM where the dependency structure
is known. In other words, we are given the structure S that determines the set of
parents for each attribute, and our task is to learn the parameters θS that define the
CPDs for this structure. Our learning is based on a particular training set, which we
will take to be a complete instance I. While this task is relatively straightforward, it
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is of interest in and of itself. In addition, it is a crucial component in the structure-
learning algorithm described in the next section.

The key ingredient in parameter estimation is the likelihood function: the prob-
ability of the data given the model. This function captures the response of the
probability distribution to changes in the parameters. The likelihood of a param-
eter set is defined to be the probability of the data given the model. For a PRM,
the likelihood of a parameter set θS is: L(θS | I, σ,S) = P (I | σ,S, θS). As usual,
we typically work with the log of this function:

l(θS | I, σ,S) = logP (I | σ,S, θS)

=
∑
Xi

∑
A∈A(Xi)

⎡
⎣ ∑
x∈σ(Xi)

logP (Ix.A | IPa(x.A))

⎤
⎦ . (5.5)

The key insight is that this equation is very similar to the log-likelihood of data
given a Bayesian network [11]. In fact, it is the likelihood function of the Bayesian
network induced by the PRM given the skeleton. The main difference from standard
Bayesian network parameter learning is that parameters for different nodes in the
network are forced to be identical—the parameters are shared or tied.

5.8.1.1 Maximum Likelihood Parameter Estimation

We can still use the well-understood theory of learning from Bayesian networks.
Consider the task of performing maximum likelihood parameter estimation. Here,
our goal is to find the parameter setting θS that maximizes the likelihood L(θS |
I, σ,S) for a given I, σ and S. This estimation is simplified by the decomposition
of log-likelihood function into a summation of terms corresponding to the various
attributes of the different classes:

l(θS | I, σ,S) =
∑
Xi

∑
A∈A(Xi)

⎡
⎣ ∑
x∈σ(Xi)

logP (Ix.A | IPa(x.A))

⎤
⎦

=
∑
Xi

∑
A∈A(Xi)

∑
v∈V(X.A)

∑
u∈V(PaX.A)

CX.A[v,u] · log θv|u (5.6)

where CX.A[v,u] is the number of times we observe Ix.A = v and IPa(x.A) = u Each
of the terms in the above sum can be maximized independently of the rest. Hence,
maximum likelihood estimation reduces to independent maximization problems,
one for each CPD.

For many parametric models, such as the exponential family, maximum likelihood
estimation can be done via sufficient statistics that summarize the data. In the case
of multinomial CPDs, these are just the counts we described above, CX.A[v,u], the
number of times we observe each of the different values v,u that the attribute X.A
and its parents can jointly take.

An important property of the database setting is that we can easily compute
sufficient statistics. To compute CX.A[v, v1, . . . , vk], we simply query over the class
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X and its parents’ classes, and project onto the appropriate set of attributes. For
example, to learn the parameters for the grade CPD from our school example, we
can compute the sufficient statistics with the following SQL query:

SELECT grade, intelligence, difficulty, count(*)
FROM from registration, student, course
GROUP BY grade, intelligence, difficulty

In some cases, it is useful to materialize a view that can be used to compute
the sufficient statistics. This is beneficial when the relationship between the child
attribute and the parent attribute is many-one rather than one-one or one-many.
For example, consider the dependence of attributes of Student on attributes of
Registration. In our example PRM, a student’s ranking depends on the student’s
grades. In this case we would construct a view using the following SQL query:

CREATE VIEW v1
SELECT student.*, AVERAGE(grade) AS ave grade,

AVERAGE(satisfaction) as ave satisfaction
FROM student s, registration r
WHERE s.student id = r.student

To compute the statistics we would then project on the appropriate attributes
from view v1:

SELECT ranking, ave grade, COUNT(*)
FROM v1
GROUP BY ranking, ave grade

Thus both the creation of the view and the process of counting occurrences can
be computed using simple database queries, and can be executed efficiently. The
view creation for each combination of classes is done once during the full learning
algorithm (we will see exactly at which point this is done in the next section when
we describe the search). If the tables being joined are indexed on the appropriate
set of foreign keys, the construction of this view is efficient: the number of rows
in the resulting table is the size of the child attribute’s table; in our example this
is |Student|. Computing the sufficient statistics can be done in one pass over the
resulting table. The size of the resulting table is simply the number of unique
combinations of attribute values. We are careful to cache sufficient statistics so they
are only computed once. In some cases, we can compute new sufficient statistics
from a previously cached set of sufficient statistics; we make use of this in our
algorithm as well.
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5.8.1.2 Bayesian Parameter Estimation

In many cases, maximum likelihood parameter estimation is not robust: it overfits
the training data. The Bayesian approach uses a prior distribution over the param-
eters to smooth the irregularities in the training data, and is therefore significantly
more robust. As we will see in Section 5.8.2, the Bayesian framework also gives us
a good metric for evaluating the quality of different candidate structures.

Roughly speaking, the Bayesian approach introduces a prior over the unknown
parameters, and performs Bayesian conditioning, using the data as evidence, to
compute a posterior distribution over these parameters. To apply this idea in our
setting, recall that the PRM parameters θS are composed of a set of individ-
ual probability distributions θX.A|u for each conditional distribution of the form
P (X.A | Pa(X.A) = u). Following the work on Bayesian approaches for learning
Bayesian networks [11], we make two assumptions. First, we assume parameter in-
dependence: the priors over the parameters θX.A|u for the different X.A and u are
independent. Second, we assume that the prior over θX.A|u is a Dirichlet distri-
bution. Briefly, a Dirichlet prior for a multinomial distribution of a variable V is
specified by a set of hyperparameters {α[v] : v ∈ V(V ))}. A distribution on the
parameters of P (V ) is Dirichlet if

P (θV ) ∝
∏
v

θα[v]−1
v .

(For more details see [7].) If X.A can take on k values, then the prior is

P (θX.A|u) = Dir(θX.A|u | α1, . . . , αk).

For a parameter prior satisfying these two assumptions, the posterior also has
this form. That is, it is a product of independent Dirichlet distributions over the
parameters θX.A|u. In other words,

P (θX.A|u | I, σ,S) = Dir(θX.A|u|αX.A[v1,u]+CX.A[v1,u], . . . , αX.A[vk,u]+CX.A[vk,u]).

Now that we have the posterior, we can compute the probability of new data. In
the case where the new instance is conditionally independent of the old instances
given the parameter values (which is always the case in Bayesian network models,
but may not be true here), then the probability of the new data case can be
conveniently rewritten using the expected parameters:

Proposition 5.31

Assuming multinomial CPDs, prior independence, and Dirichlet priors, with hyper-
parameters αX.A[v,u], we have that

Eθ[P (X.A = v | Pa(X.A) = u) | I] =
CX.A[v,u] + αX.A[v,u]∑k

i=1 CX.A[vi,u] + αX.A[vi,u]
.
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This suggests that the Bayesian estimate for θS should be estimated using this
formula as well. Unfortunately, the expected parameter is not the proper Bayesian
solution for computing probability of new data in the case where the new data
instance is not independent of previous data given the parameters. Suppose that
we want to use the posterior to evaluate the probability of an instance I′ of
another skeleton σ′. If there are two instances x and x′ of the class X such that
vI

′
(Pa(x.A)) = vI

′
(Pa(x′.A)), then we will be relying on the same multinomial

parameter vector twice. Using the chain rule, we see that the second probability
depends on the posterior of the parameters after seeing the training data, and
the first instance. In other words, the probability of a relational database given a
distribution over parameter values is not identical to the probability of the data set
when we have a point estimate of the parameters (i.e., when we act as though we
know their values). However if the posterior is sharply peaked (i.e., we have a strong
prior, or we have seen many training instances), we can approximate the solution
using the expected parameters of proposition 5.31. We use this approximation in
our computation of the estimates for the parameters.

5.8.1.3 Structure Learning

We now move to the more challenging problem of learning a dependency structure
automatically, as opposed to having it given by the user. There are three important
issues that need to be addressed. We must determine which dependency structures
are legal; we need to evaluate the “goodness” of different candidate structures; and
we need to define an effective search procedure that finds a good structure.

5.8.1.4 Legal Structures

We saw in section 5.2.5.2 that we could construct a class dependency graph for
a PRM, and the PRM defined a coherent probability distribution if the class
dependency graph was stratified. During learning it is straightforward to maintain
this structure, and consider only models whose dependency structure passes this
test.

Maintaining a stratified class dependency graph Given a stratified class
dependency graph G(V,E), we can check whether local changes to the structure
destroy the stratification. The operations we are concerned with are ones which add
an edge (u, v) into the structure (clearly deleting an edge cannot introduce a cycle).
We can check whether a new edge will introduce a cycle in time O(|V |+ |E|).

Let G(V,E) be our stratified class dependency graph and let G′(V,E ∪ {(u, v)})
be the class dependency graph with edge (u, v) added. Clearly if there is a cycle in
G′, it must contain (u, v).

We can check whether the new edge introduces a cycle by checking to see if, using
this edge, there is a path u, v, . . . , u. This reduces to checking to see if there is a
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path in the graph from v to u. We can do a a simple depth-first search to explore
the graph to check for a path in O(|V |+ |E|).

5.8.2 Evaluating Different Structures

Now that we know which structures are legal, we need to decide how to evaluate
different structures in order to pick one that fits the data well. We adapt Bayesian
model selection methods to our framework. We would like to find the MAP
(maximum a posteriori) structure. Formally, we want to compute the posterior
probability of a structure S given an instantiation I. Using Bayes rule we have that

P (S | I, σ) ∝ P (I | S, σ)P (S | σ).

This score is composed of two parts: the prior probability of the structure, and the
probability of the data assuming that structure.

The first component is P (S | σ), which defines a prior over structures. We
assume that the choice of structure is independent of the skeleton, and thus
P (S | σ) = P (S). In the context of Bayesian networks, we often use a simple
uniform prior over possible dependency structures. Unfortunately, this assumption
does not work in our setting. The problem is that there may be infinitely many
possible structures.2 In our genetics example, a person’s genotype can depend on
the genotype of his parents, or of his grandparents, or of his great-grandparents,
etc. A simple and natural solution penalizes long indirect slot chains, by having
logP (S) proportional to the sum of the lengths of the chains K appearing in S.

The second component is the marginal likelihood :

P (I | S, σ) =
∫
P (I | S, θS , σ)P (θS | S) dθS .

If we use a parameter-independent Dirichlet prior (as above), this integral decom-
poses into a product of integrals each of which has a simple closed-form solution.
This is a simple generalization of the ideas used in the Bayesian score for Bayesian
networks [12].

Proposition 5.32

If I is a complete assignment, and P (θS | S) satisfies parameter independence and
is a Dirichlet with hyperparameters αX.A[v,u], then the marginal likelihood of I

2. Although there are only a finite number that are reasonable to consider for a given
skeleton.
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given S is

P (I | S, σ) =

∏
i

∏
A∈A(Xi)

⎡
⎣ ∏

u∈V(()Pa(Xi.A))

DM({CXi.A[v,u]}, {αXi.A[v,u]})

⎤
⎦ , (5.7)

where DM({C [v]}, {α[v]}) = Γ(
P

v α[v])

Γ(
P

v(α[v]+C [v])

∏
v

Γ(α[v]+C [v])
Γ(α[v]) , and Γ(x) =

∫∞
0
tx−1e−tdt

is the Gamma function.

Hence, the marginal likelihood is a product of simple terms, each of which
corresponds to a distribution P (X.A | u) where u ∈ V(Pa(X.A)). Moreover, the
term for P (X.A | u) depends only on the hyperparameters αX.A[v,u] and the
sufficient statistics CX.A[v,u] for v ∈ V(X.A).

The marginal likelihood term is the dominant term in the probability of a
structure. It balances the complexity of the structure with its fit to the data. This
balance can be seen explicitly in the asymptotic relation of the marginal likelihood
to explicit penalization, such as the minimum description length (MDL) score (see,
e.g., [11]).

Finally, we note that the Bayesian score requires that we assign a prior over pa-
rameter values for each possible structure. Since there are many (perhaps infinitely
many) alternative structures, this is a formidable task. In the case of Bayesian
networks, there is a class of priors that can be described by a single network [12].
These priors have the additional property of being structure equivalent, that is, they
guarantee that the marginal likelihood is the same for structures that are, in some
strong sense, equivalent. These notions have not yet been defined for our richer
structures, so we defer the issue to future work. Instead, we simply assume that
some simple Dirichlet prior (e.g., a uniform one) has been defined for each attribute
and parent set.

5.8.3 Structure Search

Now that we have both a test for determining whether a structure is legal, and
a scoring function that allows us to evaluate different structures, we need only
provide a procedure for finding legal high-scoring structures. For Bayesian networks,
we know that this task is NP-hard [3]. As PRM learning is at least as hard as
Bayesian network learning (a Bayesian network is simply a PRM with one class
and no relations), we cannot hope to find an efficient procedure that always finds
the highest-scoring structure. Thus, we must resort to heuristic search.

As is standard in Bayesian network learning [11], we use a greedy local search
procedure that maintains a “current” candidate structure and iteratively modifies
it to increase the score. At each iteration, we consider a set of simple local
transformations to the current structure, score all of them, and pick the one with
the highest score. In the case where we are learning multinomial CPDs, the three
operators we use are: add edge, delete edge, and reverse edge. In the case where we
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are learning tree CPDs, following [4], our operators consider only transformations to
the CPD trees. The tree structure induces the dependency structure, as the parents
of X.A are simply those attributes that appear in its CPD tree. In this case, the
two operators we use are: split — replaces a leaf in a CPD tree by an internal node
with two leafs; and trim — replaces the subtree at an internal node by a single leaf.

The simplest heuristic search algorithm is a greedy hill-climbing search, using our
score as a metric. We maintain our current candidate structure and iteratively im-
prove it. At each iteration, we consider the appropriate set of local transformations
to that structure, score all of them, and pick the one with highest score.

We refer to this simple algorithm as the greedy algorithm. There are several
common variants to improve the robustness of hill-climbing methods. One is is to
make use of random restarts to deal with local maxima. In this algorithm, when we
reach a local maximum, we take some fixed number of random steps, and then we
restart our search process. Another common approach is to make use of a tabulist,
which keeps track of the most recent states visited, and allows only steps which do
not return to a recently visited state. A more sophisticated approach is to make use
of a simulated annealing style of algorithm which uses the following procedure: in
the early phases of the search we are likely to take random steps (rather than the
best step), but as the search proceeds (i.e., the temperature cools) we are less likely
to take random steps and more likely to take the best greedy step. The algorithms we
have used are either the simple greedy algorithm or a simple randomized algorithm.

Regardless of the specific heuristic search algorithm used, an important compo-
nent of the search is the scoring of candidate structures. As in Bayesian networks,
the decomposability property of the score has significant impact on the computa-
tional efficiency of the search algorithm. First, we decompose the score into a sum
of local scores corresponding to individual attributes and their parents. (This lo-
cal score of an individual attribute is exactly the logarithm of the term in square
brackets in (5.7).) Now, if our search algorithm considers a modification to our
current structure where the parent set of a single attribute X.A is different, only
the component of the score associated with X.A will change. Thus, we need only
reevaluate this particular component, leaving the others unchanged; this results in
major computational savings.

However, there are still a very large number of possible structures to consider.
We propose a heuristic search algorithm that addresses this issue. At a high level,
the algorithm proceeds in phases. At each phase k, we have a set of potential
parents Potk(X.A) for each attribute X.A. We then do a standard structure search
restricted to the space of structures in which the parents of each X.A are in
Potk(X.A). The advantage of this approach is that we can precompute the view
corresponding to X.A,Potk(X.A); most of the expensive computations — the joins
and the aggregation required in the definition of the parents — are precomputed in
these views. The sufficient statistics for any subset of potential parents can easily be
derived from this view. The above construction, together with the decomposability
of the score, allows the steps of the search (say, greedy hill-climbing) to be done
very efficiently.
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The success of this approach depends on the choice of the potential parents.
Clearly, a bad initial choice can result to poor structures. Following [8], which
examines a similar approach in the context of learning Bayesian networks, we
propose an iterative approach that starts with some structure (possibly one where
each attribute does not have any parents), and select the sets Potk(X.A) based
on this structure. We then apply the search procedure and get a new, higher-
scoring, structure. We choose new potential parents based on this new structure
and reiterate, stopping when no further improvement is made.

It remains only to discuss the choice of Potk(X.A) at the different phases. Perhaps
the simplest approach is to begin by setting Pot1(X.A) to be the set of attributes
in X . In successive phases, Potk+1(X.A) would consist of all of Pak(X.A), as well
as all attributes that are related to X via slot chains of length < k. Of course, these
new attrributes may require aggregation; we may either specify the appropriate
aggregator or search over the space of possible aggregators.

This scheme expands the set of potential parents at each iteration. In some cases,
however, it may result in large set of potential parents. In such cases we may want to
use a more refined algorithm that only adds parents to Potk+1(X.A) if they seem to
“add value” beyond Pak(X.A). There are several reasonable ways of evaluating the
additional value provided by new parents. Some of these are discussed by Friedman
et al. [8] in the context of learning Bayesian networks. These results suggest that
we should evaluate a new potential parent by measuring the change of score for
the family of X.A if we add γ(X.K.B) to its current parents. We can then choose
the highest scoring of these, as well as the current parents, to be the new set of
potential parents. This approach would allow us to significantly reduce the size of
the potential parent set, and thereby of the resulting view, while typically causing
insignificant degradation in the quality of the learned model.

5.8.4 Learning PRMs with Structural Uncertainty

Next, we describe how to extend the basic PRM learning algorithm to deal with
structural uncertainty. For PRMs with reference uncertainty, in addition we also
attempt to learn the rules that govern the link models. For PRMs with existence
uncertainty we learn the probability of existence of relationship objects.

5.8.4.1 Learning with Reference Uncertainty

The extension to scoring required to deal with reference uncertainty is not a difficult
one. Once we fix the partitions defined by the attributes P [ρ], a CPD for Sρ
compactly defines a distribution over values of ρ. Thus, scoring the success in
predicting the value of ρ can be done efficiently using standard Bayesian methods
used for attribute uncertainty (e.g., using a standard Dirichlet prior over values of
ρ).

The extension to search the model space for incorporating reference uncertainty
involves expanding our search operators to allow the addition (and deletion) of
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attributes to partition definition for each reference slot. Initially, the partition of
the range class for a slot X.ρ is not given in the model. Therefore, we must also
search for the appropriate set of attributes P [ρ]. We introduce two new operators,
refine and abstract, which modify the partition by adding and deleting attributes
from P [ρ]. Initially, P [ρ] is empty for each ρ. The refine operator adds an attribute
into P [ρ]; the abstract operator deletes one. As mentioned earlier, we can define
the partition simply by looking at the cross product of the values for each of
the partition attributes, or using a decision tree. In the case of a decision tree,
refine adds a split to one of the leaves and abstract removes a split. These newly
introduced operators are treated by the search algorithm in exactly the same way
as the standard edge-manipulation operators: the change in the score is evaluated
for each possible operator, and the algorithm selects the best one to execute.

We note that, as usual, the decomposition of the score can be exploited to
substantially speed up the search. In general, the score change resulting from an
operator ω is reevaluated only after applying an operator ω′ that modifies the parent
or partition set of an attribute that ω modifies. This is also true when we consider
operators that modify the parent of selector attributes.

5.8.4.2 Learning with Existence Uncertainty

The extension of the Bayesian score to PRMs with existence uncertainty is straight
forward; the exists attribute is simply a new descriptive attribute. The only new
issue is how to compute sufficient statistics that include existence attributes x.E
without explicitly enumerating all the nonexistent entities. We perform this com-
putation by counting, for each possible instantiation of Pa(X.E), the number of
potential objects with that instantiation, and subtracting the actual number of
objects x with that parent instantiation.

Let u be a particular instantiation of Pa(X.E). To compute CX.E [true,u], we
can use a standard database query to compute how many objects x ∈ σ(X) have
Pa(x.E) = u. To compute CX.E [false,u], we need to compute the number of
potential entities. We can do this without explicitly considering each (x1, . . . , xk) ∈
I(Y1)× · · · I(Yk) by decomposing the computation as follows: Let ρ be a reference
slot of X with Range[ρ] = Y . Let Paρ(X.E) be the subset of parents of X.E along
slot ρ and let uρ be the corresponding instantiation. We count the number of y
consistent with uρ. If Paρ(X.E) is empty, this count is simply |I(Y )|. The product
of these counts is the number of potential entities. To compute CX.E [false,u], we
simply subtract CX.E [true,u] from this number.

No extensions to the search algorithm are required to handle existence uncer-
tainty. We simply introduce the new attributes X.E, and integrate them into the
search space. Our search algorithm now considers operators that add, delete, or
reverse edges involving the exist attributes. As usual, we enforce coherence using
the class dependency graph. In addition to having an edge from Y.E to X.E for
every slot ρ ∈ R(X) whose range type is Y , when we add an edge from Y.B to
X.A, we add an edge from Y.E to X.E and an edge from Y.E to X.A.
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5.8.5 Learning PRM-CHs

We now turn to learning PRMs with class hierarchies. We examine two scenarios:
in one case the class hierarchies are given as part of the input and in the other, in
addition to learning the PRM, we also must learn the class hierarchy. The learning
algorithms use the same criteria for scoring the models; however, the search space
is significantly different.

5.8.6 Class Hierarchies Provided in the Input

We begin with the simpler learning with class hierarchies scenario, where we assume
that the class hierarchy is given as part of the input. As in section 5.8, we restrict
attention to fully observable data sets. Hence, we assume that, in our training set,
the class of each object is given. Without this assumption, the subclass indicator
attribute would play the role of a hidden variable, greatly complicating the learning
algorithm.

As discussed above, we need a scoring function that allows us to evaluate different
candidate structures, and a search procedure that searches over the space of possible
structures. The scoring function remains largely unchanged. For each object x in
each class X , we have the basic subclass c to which it belongs. For each attribute A
of this object, the probabilistic model then specifies the subclass d of X from which
c inherits the CPD of X.A. Then x.A contributes only to the sufficient statistics for
the CPD of Xd.A. With that recomputation of the sufficient statistics, the Bayesian
score can now be computed unchanged.

Next we extend our search algorithm to make use of the subclass hierarchy. First,
we extend our phased search to allow the introduction of new subclasses. Then, we
introduce a new set of operators. The new operators allow us to refine and abstract
the CPDs of attributes in our model, using our class hierarchy to guide us.

5.8.6.1 Introducing New Subclasses

New subclasses can be introduced at any point in the search. We may construct
all the subclasses at the start of our search, or we may consider introducing them
more gradually, perhaps at each phase of the search. Regardless of when the new
subclasses are introduced, the search space is greatly expanded, and care must be
taken to avoid the construction of an intractable search problem. Here we describe
the mechanics of the introduction of the new subclasses.

For each new subclass introduced, each attribute for the subclass is associated
with a CPD. A CPD can be marked as either “inherited” or “specialized.” Initially,
only the CPD for attributes of X
 are marked as specialized; all the other CPDs
are inherited. Our original search operators — those that add and delete parents
— can be applied to attributes at all levels of the class hierarchy. However, we
only allow parents to be added and deleted from attributes whose CPDs have been
specialized. Note that any change to the parents of an attribute is propagated to
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any descendents of the attribute whose CPDs are marked as inherited from this
attribute.

Next, we introduce the operators Specialize and Inherit. If Xc.A currently has
an inherited CPD, we can apply Specialize(Xc.A). This has two effects. First, it
recomputes the parameters of that CPD to utilize only the sufficient statistics of
the subclass c. To understand this point, assume that Xc.A was being inherited
fromXd prior to the specialization. The CPD of Xd.A was being computed using all
objects in I(Xd). After the change, the CPD will be computed using just the objects
in I(Xc). The second effect of the operator is that it makes the CPD modifiable,
in that we can now add new parents or delete them. The Inherit operator has the
opposite effect.

In addition, when a new subclass is introduced, we construct new refined slot
references that make use of the subclass. Let D be a newly introduced subclass
of Y . For each reference slot ρ of some class X with range Y , we introduce a
new refined slot reference ρ〈D〉. In addition, we add each reference slot of Y to D;
however, we refine the domain from Y to D. In other words, if we have the new
reference slot ρ′, where Dom[ρ′] = D and Range[ρ′] = X .

5.8.6.2 Learning Subclass Hierarchies

We next examine the case where the subclass hierarchies are not given as part of
the input. In this case, we will learn them at the same time we are learning the
PRM.

As above, we wish to avoid the problem of learning from partially observable data.
Hence, we need to assume that the basic subclasses are observed in the training set.
At first glance, this requirement seems incompatible with our task definition: if the
class hierarchy is not known, how can we observe subclasses in the training data?
We resolve this problem by defining our class hierarchy based on the standard class
attributes. For example, movies might be associated with an attribute specifying the
genre — action, drama, or documentary. If our search algorithm decides that this
attribute is a useful basis for forming subclasses, we would define subclasses based in
a deterministic way on its values. Another attribute might be the reputation of the
director. The algorithm might choose to refine the class hierarchy by partitioning
sitcoms according to the values of this attribute. Note that, in this case, the class
hierarchy depends on an attribute of a related class, not the class itself.

We implement this approach by requiring that the subclass indicator attribute
be a deterministic function of its parents. These parents are the attributes used to
define the subclass hierarchy. In our example, Movie.Class would have as parents
Movie.Genre and Movie.Director.Reputation. Note that, as the function defining the
subclass indicator variable is required to be deterministic, the subclass is effectively
observed in the training data (due to the assumption that all other attributes are
observed).

We restrict attention to decision-tree CPDs. The leaves in the decision tree
represent the basic subclasses, and the attributes used for splitting the decision
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tree are the parents of the subclass indicator variable. We can allow binary splits
that test whether an attribute has a particular value, or, if we find it necessary, we
can allow a split on all possible values of an attribute.

The decision tree gives a simple algorithm for determining the subclass of an
object. In order to build the decision tree during our search, we introduce a new
operator Split(X, c,X.K.B), where c is a leaf in the current decision tree forX.Class
and X.K.B is the attribute on which we will split that subclass.

Note that this step expands the space of models that can be considered, but in
isolation does not change the score of the model. Thus, if we continue to use a purely
greedy search, we would never take these steps. There are several approaches for
addressing this problem. One is to use some lookahead for evaluating the quality of
such a step. Another is to use various heuristics for guiding us toward worthwhile
splits. For example, if an attribute is the common parent of many other attributes
within Xc, it may be a good candidate on which to split.

The other operators, Specialize and Inherit, remain the same; they simply use the
subclasses defined by the decision tree.

5.9 Conclusion

In this chapter we have described a comprehensive framework for learning a sta-
tistical model from relational data. We have presented a method for the automatic
construction of a PRM from an existing database. Our method learns a structured
statistical model directly from the relational database, without requiring the data
to be flattened into a fixed attribute-value format. We have shown how to perform
parameter estimation, developed a scoring criterion for use in structure selection,
and defined the model search space. We have also provided algorithms for guaran-
teeing the coherence of the learned model.
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