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Chapter 1
Introduction

Many large collections of structured information are stored in a relational format.
Most often they are stored in a relational database, but other relational representa-
tions include object-oriented databases and semi-structured representations such as
XML. These large collections of structured data are common: they occur in diverse
areas including retail sales, telecommunications, insurance, medicine and scientific
domains.

Recently there has been a growing interest in “mining” this data. In fact, this
is the impetus for the newly emerging discipline of data mining. The goal in data
mining is to discover unsuspected relationships and to summarize data in ways that
are both understandable and useful to the owner of the data [Hand et al., 2001].
One way in which this goal can be accomplished is by building a statistical model
describing the data.

The construction of statistical models is a task that has been well studied in both
statistics and machine learning communities. There is a huge body of work on building
both predictive models (models that are optimized for accurate prediction of a subset
of the features) and descriptive models (models that describe the data or describe
how the data is generated). Our focus here will be almost entirely on descriptive
modeling, in particular density estimation. Many algorithms for density estimations
exist. They vary in the types of models learned. Some algorithms construct paramet-

ric models, in that they assume a particular form for the distribution, and the task
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is parameter estimation. Examples include estimating the parameters of Gaussian
densities, Poisson distributions or multinomial distributions. Other algorithms, for
example kernel estimators, use non-parametric models and no assumptions are made
about the functional form. A third category of models are mixtures of parametric
models; most commonly these are mixtures of Gaussians but any parametric model

may be chosen.

However, few of these density estimation algorithms are capable of handling data
in its relational form. The input to the algorithm is assumed to be in the form of
a collection of instances all of which have the same set of attributes. Depending on
the problem, this input may be considered a random sample of the population, or
it may be the entire population. However, in both cases, the assumption is made
that the structure of the items in the input is identical. If the input is coming from
a relational database, then we see that the the algorithms essentially only work on
relational databases with a single table. However, the majority of relational databases

have more than one table!

This thesis describes our approach to learning statistical models from relational
data. Our goal is to build statistical models that are able to capture the important
inter-table correlations in the data and exploit the information available in relational
structure of the data. Our hope is that these statistical models will more accurately
capture the dependencies and correlations in the domain than previous approaches
and prove useful for both data exploration and summarization in relational domains.
Our contributions include a collection of statistical models applicable in relational
settings and automated induction algorithms for the models. In addition to the
theoretical descriptions of the models and learning algorithms, we demonstrate their
application on real-world databases and provide some evidence that our hope has

been met.
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1.1 Motivation

Consider a simple relational database that describes customer transactions. The
database may include a number of tables. Suppose we have a customer table contain-
ing customer information including demographic data such as income or education,
an item table describing the items that may be purchased, and a table describing
purchases, linking customers to the items that they have purchased. From this data,
we may be interested in figuring out which items customers tend to buy together
(basket analysis or affinity analysis), or the categories of customers that make certain
types of purchases (customer profiling). The data is clearly relational: there is a

many-many relationship between customers and the items they purchase.

Unfortunately, few inductive learning algorithms are capable of handling data in
its relational form. Most are restricted to dealing with a flat set of instances, with
a homogeneous set of attributes. To use these methods, one typically “flattens” the
relational data, removing its richer structure, treating it as a collection of fixed-length
vectors of attribute-value pairs stored in a single table. In our case, the data may
be flattened into a table that records for each purchase, the characteristics of the
customer and the characteristics of the item purchased. Alternatively, we may have
a single row for each customer with an attribute for each potential purchase. A
third alternative is to have a row for each item, and an attribute for each potential
consumer. These last two approaches have the disadvantage that we must fix either

the number of customers or the number of items in advance.

This flattening has several important adverse implications. From a database per-
spective, we will either need to materialize the flattened view, storing it as a single
table, or perform the required join operations each time we query the database for
statistics. Each of these has disadvantages. Converting the data to a single table is
undesirable because it means we cannot mine our database directly. It introduces
redundancy and potentially high consistency-maintenance overhead. Databases are
typically organized to avoid redundancy; in order to save space and reduce mainte-
nance overhead, tables are normalized to remove repeated information. Converting

a set of tables into a single table can introduce duplication and we lose our compact
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representation. Alternatively, executing the join each time we need to gather statis-
tics from the database can be expensive and time consuming. In addition, we may
need to build auxiliary indexes in order to perform the required joins repeatedly.
More importantly, however, this flattening process loses information which might
be crucial in understanding the data. From a statistical perspective, storing the data
in a single table can corrupt the integrity of our results. First there is the danger of
introducing statistical skew when we flatten the data. In our transaction data, if we
flatten the data into a vector of people and item attributes, then people who make a
lot of purchases will be over-represented in this data. If we try to infer characteristics
of people by computing statistics from this flattened data, we will get incorrect results.
Another form of information loss occurs if we lose the links between related objects;
we may be able to infer important properties of an object based on the objects to
which it is linked. For example, if two people live in the same household, they may
make similar purchases. Obviously we cannot make these inferences if the links are
not even modeled. A third form of information loss occurs when we repeatedly copy
related objects without maintaining their shared identity. Suppose two purchases are
made by the same person. If we simply make two copies of the person, we are making
a false independence assumption. If we make inferences about unobserved attributes
of the person, we have lost the requirement that these inferred attributes must be
equal for each copy of the person. All of these drawbacks severely limit the ability

of current statistical methods to mine relational databases.

1.2 Our Approach

In this thesis we provide the tools for constructing statistical models from relational
data. Our goal is to learn structured probabilistic models, that represent statistical
correlations both between the properties of an entity and between the properties of
related entities. These statistical models can then be used for a variety of tasks
including knowledge discovery, exploratory data analysis, data summarization and
anomaly detection.

The starting point for our work is the structured representation of probabilistic
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models, as exemplified in Bayesian networks (BNs) [Pearl, 1988]. A BN allows us
to provide a compact representation of a complex probability distribution over some
fixed set of attributes or random wvariables. The representation exploits the locality

of influence that is present in many domains.

Building on this foundation, we introduce two statistical models for relational
data: Probabilistic Relational Models and Statistical Relational Models. For each of
these representations, we give the semantics and learning algorithms and demonstrate

their applicability in a number real-world domains.

The Probabilistic Relational Model (PRM) knowledge representation framework
is based on the work of Koller and Pfeffer [1998]. The model allows us to describe a
template for a probability distribution. This, together with a set of domain objects,
defines a distribution over the attributes of the objects. Such a model can then be used
for reasoning about an entity using the entire rich structure of knowledge encoded
by the relational representation. We can make inferences about an individual based
on its particular relational context; these predictions will be different for a similar

individual that is in a significantly different relational context.

Here we make several extensions to the basic PRM semantics provided by Koller
and Pfeffer [1998] and Pfeffer [2000]. One extension allows us to represent new forms
of link uncertainty, for example uncertainty about whether a customer purchased an
item. We extend earlier definitions of structural uncertainty and give semantics for
two forms of link uncertainty. These allow us to probabilistically model alternative
relational contexts, extending the applicability of PRMs to domains in which the
relational structure is not known a priori. In fact, this extension can improve the
inductive performance of the model. In particular, making the relational structure
part of the probabilistic model can improve predictive accuracy over models which
base their prediction solely on the object’s attributes and do not consider the rela-
tional context. For example, by learning the probability that certain categories of
customers make certain types of purchases, we may be able to detect anomalies in
our data (a customer of that category who did not make the predicted purchases) or
improve our accuracy predicting attributes (predicting the customer category based

on the purchases made by the customer).
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We also extend the PRM semantics by providing further support for the use of
class hierarchies. This extension allows us to use specialization and inheritance to
learn more richly structured probabilistic models. For example we may learn that,
while a single model for the distribution of customer education is sufficient to capture
the patterns in the data, a specialized model for customer income is required. The
income distribution depends may depend on whether the consumer lives in a rural or
urban area. Thus we can specialize the class of customers into rural customer and
urban customers. More interestingly, by allowing this specialization, we can allow the
dependencies within the subclasses. For example, we can say that a rural person’s
purchase of a tractor accessories depends on the type of tractor they have purchased;
a John Deer tractor buyer is less likely to buy Honda tractor parts. On the other
hand, the city dweller may not know enough to match tractor parts, but perhaps their
purchase of software depends on what hardware they have purchased; a Macintosh
buyer is less likely to buy PC software. In addition, the class hierarchy mechanism

allows us to model both class level dependencies and instance level dependencies.

We also introduce statistical relational models (SRMs), a new category of struc-
tured statistical models. While on the surface PRMs and SRMs share many simi-
larities, an SRM has significantly different semantics from a PRM. Halpern [1990]
identified two distinct semantics for first-order logics of probability, which we will call
the possible-worlds approach and the domain-frequency approach. We will see that
PRMs are an instance of the possible-worlds approach, while an SRM is an instance

of the domain-frequency approach to first-order probabilistic logics.

In the possible-worlds approach, we put a distribution over possible worlds. The
distribution can be used to answer degree of belief questions such as “What is the
probability that a particular person, Joe Smith, has purchased a particular tractor
part, Widget Supreme?’. In this case, the semantics of the formula is defined by
summing up the probability over all of the possible worlds in which Joe Smith has
bought Widget Supremes. However, as many have noted [Bacchus, 1990, 1988], there
are difficulties with making statistical assertions, such as ‘75% of the purchases where

for widgets’.

The second approach, the domain-frequency approach, is appropriate for giving
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semantics to statistical queries such as, ‘What is the probability that a randomly
chosen individual has purchased a widget?’. In this case the semantics are defined
in terms of a particular world, and are the result of an experiment performed in
this world. In this approach, statements such as '80% of the purchases are made by
men’ make sense. Whereas questions such as, ‘What is the probability Joe Smith
purchased a Widget Supreme?’ do not make sense; the probability of the purchase,

in a particular world, is either 0 or 1.

An SRM supports answering the statistical queries of the domain-frequency ap-
proach. An SRM is a statistical model of a particular database instantiation and is
useful for summarizing and compressing the database. Further, rather than query the
database, we can use the SRM to give fast (approximate) answers to queries on this
database. Our algorithm is the first general approach to giving estimates for queries
over multiple tables that does not rely on a predefined restrictions on the structure

of the query.

The core contribution of this thesis is a suite of methods for automatically con-
structing structured statistical models (PRMs and SRMs) directly from relational
data. Typically, statistical models are constructed by first choosing a space of candi-
date models, next providing a scoring function that measures the quality of a fitted
model and then providing a search mechanism for searching over the possible models.
We show that many of the techniques of Bayesian network learning can be extended
to the task of learning these more complex models. We examine the problems of
parameter estimation and structure selection for this class of models. We deal with
some crucial technical issues that distinguish the problem of learning structured re-
lational models from that of learning Bayesian networks. We provide a formulation
of the likelihood function appropriate to this setting, and show how it interacts with

the standard assumptions of BN learning.

As in BN learning, the dependencies are required to be acyclic. The search over
coherent dependency structures is significantly more complex than in the case of
learning BN structure and we introduce the necessary tools and concepts to do this
effectively. Structure selection is made based on the score of the model and we

introduce two scoring functions: one that uses the posterior probability of the model
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(a Bayesian scoring function) and another that uses the posterior probability of the
data (a maximum likelihood scoring function). The first is appropriate in the case
where we are learning a model which we would like to use to generalize to other
situations (the most common goal in statistics). The latter is appropriate in the case
where we are constructing a compact model of a particular dataset, and we wish only
to capture the current data as precisely as possible, given a limited amount of space.

In addition to providing the basic learning framework for PRMs and SRMs, we
describe how the methods can be extended to handle structural uncertainty and
make use of class hierarchies. Throughout, we provide experimental validation of our
methods, including many examples of the application of our algorithms to real-world

data.

1.3 Contributions

In this thesis, we describe

e The first algorithm for automatically inducing a Probabilistic Relational Model
directly from a relational database. This includes:
— A definition for the likelihood of a model,;
— A method for guaranteeing the coherence of a model;
— Methods for estimating the parameters of a model from the database;

— An algorithm for searching the space of candidate models.
e Extensions to the basic PRM semantics to handle:

— Certain categories of potentially cyclic dependencies;
— Uncertainty over link structure;
— Class hierarchies.

e Statistical Relational Models, a new semantics for structured probabilistic rela-

tional models based on domain-frequencies.
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— A definition of the distribution induced by a database query;

— The formal semantics relating an SRM to the distribution of values in the

database;
— Methods for automatically constructing an SRM from a database;

— An evaluation of the use of SRMs to estimate the result size for select-join

queries over multiple tables.
e Validation of the algorithms on several domains including:

— A database describing Tuberculosis cases. The results have been submitted

to a journal of epidemiology.
— A database of scientific papers;
— A database of web pages;

— A database containing movies and peoples’ rankings of movies.

1.4 Outline of Thesis

This thesis is organized as follows. Chapter 2 reviews the basic PRM semantics,
including a brief review of Bayesian networks. Chapter 3 describes the algorithms for
automatically constructing a PRM from an existing database, addressing both the
task of choosing a model structure and estimating the parameters of the structure.
It includes results on both synthetic and real-world data. Chapter 4 describes both
the extension to the PRM semantics for handling link uncertainty and the necessary
extensions to the learning algorithms for learning this category of models. Chapter 5
looks at ways that class-based models and instance-based models can be combined.
This is done through the use of class-hierarchies. First we show how class hierarchies
can expand the representational power of PRMs in interesting ways and then we show
how they can either be used during learning or constructed as part of the learning
algorithm. In Chapter 6 we turn to SRMs. We describe their semantics and present a
learning algorithm, essentially the same as the learning algorithm for PRMs, but with

a few important changes. We also examine in detail an application of SRMs to the task
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of selectivity estimation of queries for a relational database. Chapter 7 describes some
of the related work; in particular we describe similarities and differences between our
work and work in Inductive Logic Programming (ILP) [Lavrac and Dzeroski, 1994,
Muggleton, 1992], one of the only subfields of machine learning which focuses on
learning from relational data.

Some of this material has appeared previously in workshop and conference papers
and book chapters. The material in Chapter 3 first appeared in Friedman et al.
[1999a]. It later appeared in Getoor et al. [2001a]. The material in Chapter 4 is based
largely on Getoor et al. [2001b], which in turn developed from the work presented in
Getoor et al. [2000b]. The material in Chapter 5 initially appeared in Getoor et al.
[2000a]. Some of the material is Chapter 6 also appeared in Getoor et al. [2001c].



Chapter 2

Probabilistic Relational Models

In this chapter, we review the definition of probabilistic relational models. We intro-
duce the basic relational model and the probabilistic model associated with it. The
ideas are based on the recent work of Koller and Pfeffer [1998] and Pfeffer [2000],
although we have generalized the terminology to be applicable to a wider range of
relational systems. The probabilistic models that we study exploit conditional inde-
pendence relationships that hold in many real-world distributions. We begin with
a discussion of conditional independence. Then, since Bayesian networks provide
the foundation for PRMs, we give a brief overview before introducing probabilistic

relational models.

2.1 Conditional Independence

Consider a simple domain describing information gathered from a census. Suppose we
have the following three attributes, each with its value domain shown in parentheses:
Education (high-school, college, advanced-degree), Income (low, medium, high), and
Home-Owner (false, true). As shorthand, we will use the first letter in each of these
names to denote the attribute, using capital letters for the attributes and lower case
letters for particular values of the attributes. We use P(A) to denote a probability
distribution over the possible values of attribute A, and P(a) to denote the probability

of the event A = qa.

11
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Figure 2.1: (a) The joint probability distribution for a simple example. (b) A rep-
resentation of the joint distribution that exploits conditional independence. (c) The
single-attribute probability histograms.

Assume that the joint distribution of attribute values in a database is as shown
in Figure 2.1(a). Using this joint distribution, we can compute the probability of any
instantiation of E, I, and H, Pp(e,i,h). However, to explicitly represent the joint
distribution we need to store 18 numbers, one for each possible combination of values
for the attributes. (In fact, we can get away with 17 numbers because we know that
the entries in the joint distribution must sum to 1.)

In many cases, however, our data will exhibit a certain structure that allows us to
(perhaps approximately) represent the distribution using a much more compact form.
The intuition is that some of the correlations between attributes might be indirect
ones, mediated by other attributes. For example, the effect of education on owning
a home might be mediated by income: a high-school dropout who owns a successful

Internet startup is more likely to own a home than a highly educated beach bum —
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the income is the dominant factor, not the education. This assertion is formalized
by the statement that Home-owner is conditionally independent of Education given

Income, i.e., for every combinations of values h, e, i, we have that:
PH=h|E=elI=1i)=PH=h|I=1).

This assumption holds for the distribution of Figure 2.1.

The conditional independence assumption allows us to represent the joint distri-
bution more compactly in a factored form. Rather than representing P(E, I, H), we
will represent: the marginal distribution over Education — P(FE); a conditional dis-
tribution of Income given Education —P(I | E); and a conditional distribution of
Home-owner given Income — P(H | I). It is easy to verify that this representation
contains all of the information in the original joint distribution, if the conditional

independence assumption holds:

P(H,E,I)=P(H | I,E)P(I | E)P(E) = P(H | I)P(I | E)P(E)

where the last equality follows from the conditional independence of F and H given
I. In our example, the joint distribution can be represented using the three tables
shown in Figure 2.1(b). It is easy to verify that they do encode precisely the same

joint distribution as in Figure 2.1(a).

The storage requirement for the factored representation seems to be 3+9+6 = 18,
as before. In fact, if we account for the fact that some of the parameters are redundant
because the numbers must add up to 1, we get 2+ 6 + 3 = 11, as compared to the
17 we had in the full joint. While the savings in this case may not seem particularly
impressive, the savings grow exponentially as the number of attributes increases, as

long as the number of direct dependencies remains small.

Note that the conditional independence assumption is very different from assum-
ing complete attribute independence. For example, the marginal distributions for the
three attributes are shown in Figure 2.1(c). It is easy to see that the joint distri-

bution that we would obtain from this strong attribute independence assumption in
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this case is very different from the true underlying joint distribution. It is also im-
portant to note that our conditional independence assumption is compatible with the
strong correlation that exists between Home-owner and Education in this distribu-
tion. Thus, conditional independence is a much weaker and more flexible assumption

than standard (marginal) independence.

2.2 Bayesian Networks

Figure 2.2: Bayesian network for the census domain.

Bayesian networks [Pearl, 1988| are compact graphical representations for high-
dimensional joint distributions. They exploit the the underlying conditional indepen-
dences in the domain — the fact that only a few aspects of the domain affect each
other directly. We define our probability space as the set of possible assignments to
the set a random variables A,, ..., A,. BNs can compactly represent a joint distribu-
tion over Ay,..., A, by utilizing a structure that captures conditional independences
among attributes, thereby taking advantage of the “locality” of probabilistic influ-
ences.

A Bayesian network B consists of two components. The first component, G, is
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income
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Figure 2.3: A tree-structured CPD for the Children node given its parents Income,
Age and Marital-Status.

a directed acyclic graph whose nodes correspond to the attributes A;,..., A,. The
edges in the graph denote a direct dependence of an attribute A; on its parents Pa(A;).
The graphical structure encodes a set of conditional independence assumptions: each

node A; is conditionally independent of its non-descendants given its parents.

Figure 2.2 shows a Bayesian network constructed (automatically, using a Bayesian
network learning algorithm) from data obtained from the 1993 Current Population
Survey of U.S. Census Bureau using their Data Extraction System [U.S., Census
Bureau, 1992-93]. In this case, the table contains 12 attributes: Age, Worker-Class,
Education, Marital-Status, Industry, Race, Sex, Child-Support, Earner, Children,
Income, and Employment-Type. We see, for example, that the Children attribute
(representing whether or not there are children in the household) depends on other
attributes only via the attributes Income, Age, and Marital-Status. Thus, Children
is conditionally independent of all other attributes given Income, Age, and Marital-
Status.

The second component of a BN describes the statistical relationship between
each node and its parents. It consists of a conditional probability distribution (CPD)
Pg(A; | Pa(A;)) for each attribute, which specifies the distribution over the values of

A; given any possible assignment of values to its parents. Let V(A;) denote the space
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of possible values for A; and V(Pa(A;)) denote the space of possible values for the
parents of A;. The CPD is legal if all of the conditional probabilities are positive,
and if, for any particular instantiation of A;, a; € V(A;), the sum over all possible

instantiations of A;, for any particalar instantition, w, of A;’s parents is 1, i.e.,

aiEV(Ai)

This CPD may be represented in a number of ways. It may be represented as
a table, as in our earlier example. Alternatively, it can be represented as a tree
[Boutilier et al., 1996], where the interior vertices represent splits on the value of
some parent of A;, and the leaves contain distributions over the values of A;. In
this representation, we find the conditional distribution over A; given a particular

choice of values Ay, = aq,..., A, = a, for its parents by following the appropriate

74
path in the tree down to a leaf: When we encounter a split on some variable Ay, we
go down the branch corresponding to the value of a;; we then use the distribution
stored at that leaf. The CPD tree for the Children attribute in the network of
Figure 2.2 is shown in Figure 2.3. The possible values for this attribute are N/A,
Yes and No. We can see, for example, that the distribution over Children given
Income > 17.5K, Age < 55, and Marital-Status = never-married is (0.19,0.04,0.77);
the distribution given Income > 17.5K, Age < 50, and Marital-Status = married
is (0.26,0.47,0.27), as is the distribution given Income > 17.5K, Age < 50, and
Marital-Status = widowed: the two instantiations lead to the same induced path

down the tree.

The conditional independence assumptions associated with the BN B, together
with the CPDs associated with the nodes, uniquely determine a joint probability

distribution over the attributes via the chain rule:

Ps(As, ..., An) = [T Ps(As | Pa(Ay)). (2.1)

i=1

Thus, from our compact model, we can recover the joint distribution; we do not need

to represent it explicitly. In our example above, the number of entries in the full joint
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distribution is approximately 7 billion, while the number of parameters in our BN is

951—a significant reduction!

2.3 Probabilistic Relational Models

Over the last decade, Bayesian networks have been used with great success in a
wide variety of real-world and research applications. However, despite their success,
Bayesian networks are often inadequate for representing large and complex domains.
A Bayesian network for a given domain involves a pre-specified set of random vari-
ables, whose relationship to each other is fixed in advance. Hence, a Bayesian network
cannot be used to deal with domains where we might encounter a varying number of
entities in a variety of configurations. This limitation of Bayesian networks is a direct
consequence of the fact that they lack the concept of an “object” (or domain entity).
Hence, they cannot represent general principles about multiple similar objects which

can then be applied in multiple contexts.

Probabilistic relational models (PRMs) [Koller and Pfeffer, 1998, Pfeffer, 2000]
extend Bayesian networks with the concepts of objects, their properties, and relations
between them. In a way, they are to Bayesian networks as relational logic is to
propositional logic. A PRM specifies a template for a probability distribution over a
database. The template includes a relational component, that describes the relational
schema for our domain, and a probabilistic component, that describes the probabilistic
dependencies that hold in our domain. A PRM has a coherent formal semantics in
terms of probability distributions over sets of relational logic interpretations. Given
a set of ground objects, a PRM specifies a probability distribution over a set of
interpretations involving these objects (and perhaps other objects as well). A PRM,
together with a particular database of objects and relations, defines a probability

distribution over the attributes of the objects.
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Figure 2.4: (a) A relational schema for a simple university domain. The underlined
attributes are reference slots of the class and the dashed lines indicate the types of
objects referenced. (b) An example instance of this schema. Here we do not show the
reference slots, we use dashed lines to indicate the relationships that hold between
objects.

2.3.1 Relational language

The relational language allows us to describe the kinds of objects in our domain. For
example, Figure 2.4(a) shows the schema for a simple domain that we will be using as
our running example in this chapter. The domain is that of a university, and contains
professors, students, courses, and course registrations. The classes in the schema are
Professor, Student, Course, and Registration.

More formally, a schema for a relational model describes a set of classes, X =
{Xi,..., X, }. Each class is associated with a set of descriptive attributes. For exam-
ple professors may have descriptive attributes such as popularity and teaching ability;
courses may have descriptive attributes such as rating and difficulty.

The set of descriptive attributes of a class X is denoted A(X). Attribute A of class
X is denoted X.A, and its space of values is denoted V(X.A). We assume here that
value spaces are finite. For example, the Student class has the descriptive attributes
Intelligence and Ranking. The value space for Student.Intelligence in this example is
{high, low}.

In addition, we need a method for allowing an object to refer to another object.

For example we may want a course to have a reference to the instructor of the course.
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And a registration record should refer both to the associated course and to the student
taking the course. We achieve this effect using reference slots. Specifically, each class
is associated with a set of reference slots. The set of reference slots of a class X is
denoted R(X). We use X.p to denote the reference slot p of X. Each reference slot
p is typed, i.e., the schema specifies the range type of object that may be referenced.
More formally, for each p in X, the domain type Domlp] is X and the range type
Range[p] is Y for some class Y in X'. For example, the class Course has reference slot
Instructor with range type Professor, and class Registration has reference slots Course
and Student. In Figure 2.4(a) the reference slots are underlined.

There is a direct mapping between our representation and that of relational
databases. Each class corresponds to a single table and each attribute corresponds to
a column. Our descriptive attributes correspond to standard attributes in the table,
and our reference slots correspond to attributes that are foreign keys (key attributes
of another table).

For each reference slot p, we can define an inverse slot p—*, which is interpreted as
the inverse function of p. For example, we can define an inverse slot for the Student
slot of Registration and call it Registered-In. Note that this is not a one-to-one relation,
but returns a set of Registration objects. More formally, if Dom|[p] is X and Range|[p]
is Y, then Dom[p~!] is Y and Range[p™!] is X.

Finally, we define the notion of a slot chain, which allows us to compose slots,
defining functions from objects to other objects to which they are indirectly re-
lated. More precisely, we define a slot chain pi,...,pr to be a sequence of slots
(inverse or otherwise) such that for all i, Range[p;] = Dom|p;;1]. For example,
Student. Registered-In. Course.Instructor can be used to denote a student’s instruc-
tors. Note that a slot chain describes a set of objects from a class.!

The relational framework we have just described is motivated primarily by the
concepts of relational databases, although some of the notation is derived from frame-
based and object-oriented systems. However, the framework is a fully general one,

and is equivalent to the standard vocabulary and semantics of relational logic.

Tt is also possible to define slot chains as multi-sets of objects; here we have found it sufficient
to make them sets of objects, but there may be domains where multi-sets are desirable.
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2.3.2 Schema Instantiation

An instance Z of a schema is simply a standard relational logic interpretation of this
vocabulary. It specifies: for each class X, the set of objects in the class, Z(X); a
value for each attribute z.A (in the appropriate domain) for each object z; and a
value y for each reference slot x.p, which is an object in the appropriate range type,
i.e., y € Range[p]. Conversely, y.o™t = {z | z.p = y}. We use A(z) as a shorthand
for A(X), where z is of class X. For each object x in the instance and each of its
attributes A, we use Z, 4 to denote the value of z.A in Z. For example, Figure 2.4(b)
shows an instance of the schema from our running example. In this (simple) instance
there is one Professor, two Classes, three Registrations, and two Students. The relations
between them show that the Professor is the instructor in both classes, and that one
student (“Jane Doe”) is registered only for one class (“Phil101”), while the other

student is registered for both classes.

2.3.3 Probabilistic Model

A PRM defines a probability distribution over a set of instances of a schema. Most
simply, we assume that the set of objects and the relations between them are fixed,
i.e., external to the probabilistic model. Then, the PRM defines only a probability
distribution over the attributes of the objects in the model. The relational skeleton
defines the possible instantiations that we consider; the PRM defines a distribution

over the possible worlds consistent with the relational skeleton.

Definition 2.1: A relational skeleton o, of a relational schema is a partial specifica-
tion of an instance of the schema. It specifies the set of objects o,(X;) for each class
and the relations that hold between the objects. However, it leaves the values of the

attributes unspecified. I

Figure 2.5(a) shows a relational skeleton for our running example. The relational
skeleton defines the random variables in our domain; we have a random variable for
each attribute of each object in the skeleton. A PRM then specifies a probability

distribution over completions Z of the skeleton.
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Figure 2.5: (a) The relational skeleton for the university domain. (b) The PRM
dependency structure for our university example.
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A PRM consists of two components: the qualitative dependency structure, S,
and the parameters associated with it, fs. The dependency structure is defined by
associating with each attribute X.A a set of parents Pa(X.A). These correspond to
formal parents; they will be instantiated in different ways for different objects in
X. Intuitively, the parents are attributes that are “direct influences” on X.A. In
Figure 2.5(b), the arrows define the dependency structure.

We distinguish between two types of formal parents. The attribute X.A can de-
pend on another probabilistic attribute B of X. This formal dependence induces a
corresponding dependency for individual objects: for any object z in 0, (X), z.A will
depend probabilistically on z.B. For example, in Figure 2.5(b), a professor’s Popular-
ity depends on her Teaching-Ability. The attribute X.A can also depend on attributes
of related objects X.7.B, where 7 is a slot chain. In Figure 2.5(b), the grade of a stu-
dent depends on Registration.Student.Intelligence and Registration. Course. Difficulty.
Or we can have a longer slot chain, for example the dependence of student satisfaction
on Registration. Course.Instructor. Teaching-Ability.

In addition, we can have a dependence of student ranking on Student.Registered-
In.Grade. To understand the semantics of this formal dependence for an individual
object x, recall that x.7 represents the set of objects that are 7-relatives of x. Except
in cases where the slot chain is guaranteed to be single-valued, we must specify the

probabilistic dependence of z.4 on the multi-set {y.B : y € z.7}. For example,
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a student’s rank depends on the grades in the courses in which they are registered.
However each student may be enrolled in a different number of courses, and we will
need a method of compactly representing these complex dependencies.

The notion of aggregation from database theory gives us an appropriate tool to
address this issue: z.A will depend probabilistically on some aggregate property of
this multi-set. There are many natural and useful notions of aggregation of a set:
its mode (most frequently occurring value); its mean value (if values are numerical);
its median, maximum, or minimum (if values are ordered); its cardinality; etc. In
the preceding example, we can have a student’s ranking depend on her GPA, or the
average grade in her courses (or in the case where the grades are represented as letters,
we may use median; in our example we blur the distinction and assume that average
is defined appropriately).

More formally, our language allows a notion of an aggregate v; v takes a multi-
set, of values of some ground type, and returns a summary of it. The type of the
aggregate can be the same as that of its arguments. However, we allow other types
as well, e.g., an aggregate that reports the size of the set. We allow X.A to have as a
parent (X.7.B); the semantics is that for any z € X, x.A will depend on the value
of y(z.7.B). In our example PRM, there are two aggregate dependencies defined, one
that specifies that the ranking of a student depends on the average of her grades and
one that specifies that the rating of a course depends on the average satisfaction of
students in the course.

Given a set of parents Pa(X.A) for X.A, we can define a local probability model
for X.A. We associate X.A with a CPD that specifies P(X.A | Pa(X.A)). We require
that the CPDs are legal. Figure 2.6 shows two CPDs. Let U be the set of parents
of X.A, U = Pa(X.A). Each of these parents U; — whether a simple attribute in
the same relation or an aggregate of a set of 7 relatives — has a set of values V(U;)
in some ground type. For each tuple of values u € V(U), we specify a distribution

P(X.A | u) over V(X.A). This entire set of parameters comprises fg.

Definition 2.2: A probabilistic relational model (PRM) II for a relational schema R
is defined as follows. For each class X € X and each descriptive attribute A € A(X),

we have:



2.3. PROBABILISTIC RELATIONAL MODELS 23

[T Professor greseeseensannas Professor

Teaching-Ability Teaching-Ability

Popularity

(a)

Figure 2.6: (a) The CPD for Registration.Grade (b) The CPD for an aggregate de-
pendency of Student.Ranking on Student. Registered-In.Grade.

e a set of parents Pa(X.A) = {Uy,...,U;}, where each U; has the form X.B or
v(X.7.B), where 7 is a slot chain and  is an aggregate of X.7.B.

e a legal conditional probability distribution (CPD), P(X.A | Pa(X.A)). I

2.3.4 PRM semantics

As mentioned in the introduction, PRMs define a distribution over possible worlds.
The possible worlds are instantiations of the database that are consistent with the
relational skeleton. Given any skeleton, we have a set of random variables of interest:
the attributes z.A of the objects in the skeleton. Formally, let 0,(X) denote the set
of objects in skeleton o, whose class in X. The set of random variables for o, is the
set of attributes of the form z.A where z € 0,(X;) and A € A(X;) for some class X;.
The PRM specifies a probability distribution over the possible joint assignments of
values to all of these random variables.

For a given skeleton o,, the PRM structure induces an ground Bayesian network

over the random variables z.A.

Definition 2.3: A PRM II together with a skeleton o, defines the following ground

Bayesian network:
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e There is a node for every attribute of every object z € 0,(X), z.A.

e Each z.A depends probabilistically on parents of the form z.B or z.7.B. If 7
is not single-valued, then the parent is the aggregate computed from the set of

random variables {y | y € z.7}, v(z.7.B).

e The CPD for z.A is P(X.A | Pa(X.A)). i

As with Bayesian networks, the joint distribution over these assignments is fac-
tored. That is, we take the product, over all x.A, of the probability in the CPD of
the specific value assigned by the instance to the attribute given the values assigned

to its parents. Formally, this is written as follows:

P(I | 0},8,03) = H H P(IJ:A |IPa(z.A))

z€or A€ A(x)

=1 II II P@oalZrawa) (2.2)

X; ACA(X;) z€0r(X;)

This expression is very similar to the chain rule for Bayesian networks Eq. (2.1).
There are three primary differences. First, our random variables are the attributes of
a set of objects. Second, the set of parents of a random variable can vary according
to the relational context of the object — the set of objects to which it is related.
Third, the parameters are shared; the parameters of the local probability models for

attributes of objects in the same class are the identical.

2.3.5 Coherence of Probabilistic Model

As in any definition of this type, we have to take care that the resulting function
from instances to numbers does indeed define a coherent probability distribution,
i.e., where the sum of the probability of all instances is 1. In Bayesian networks,
where the joint probability is also a product of CPDs, this requirement is satisfied
if the dependency graph is acyclic: a variable is not an ancestor of itself. A similar

condition is sufficient to ensure coherence in PRMs as well.
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2.3.5.1 Instance Dependency Graph

We want to ensure that our probabilistic dependencies are acyclic, so that a random
variable does not depend, directly or indirectly, on its own value. To do so, we can
consider the graph of dependencies among attributes of objects in the skeleton, which

we will call the instance dependency graph, G, .

Definition 2.4: The instance dependency graph G,, for a PRM II and a relational
skeleton o, has a node for each descriptive attribute of each object z € ¢,(X) in each

class X € X. Each z.A has the following edges:

1. Type I edges: For each formal parent of x.A, X.B, we introduce an edge from
x.B to x.A.

2. Type II edges: For each formal parent X.7.B, and for each y € z.7, we define
an edge from y.B to z.A. 1

Type I edges correspond to intra-object dependencies and type 11 edges correspond to
inter-object dependencies. We say that a dependency structure S is acyclic relative to
a relational skeleton o, if the instance dependency graph G, over the variables x.A is
acyclic. In this case, we are guaranteed that the PRM defines a coherent probabilistic

model over complete instantiations Z consistent with o,.:

Theorem 2.5: Let I be a PRM whose dependency structure S is acyclic relative to
a relational skeleton o,.. Then II and o, define a coherent probability distribution over
instantiations T that extend o, via Eq. (2.2).

Proof: The probability of an instantiation Z is the joint distribution over a set of
random variables defined via the relational skeleton. We have one random variable
x.A for each z € 0,(X) and each A € A(X). Let V1,..., Vy be the random variables
defined above. Because the instance dependency graph is acyclic, we can construct a
topological ordering Vi, ..., Vy via the instance dependency graph; in other words, if
V; = x.A, then all ancestors of z.A in the instance dependency graph appear before

it in the ordering.
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Our proof will use the following argument. Assume that we can construct a non-
negative function f(V;, Vi_1,..., Vi) which has the form of a conditional distribution

P(V; | Vi,...,Vi_1), i.e., for any assignment Vi,...,V;_1 to V4,...,V;_1, we have that
Zf(‘/;a‘/;fla'--avl) =1. (23)
Vi

Then, by the chain rule for probabilities, we can define

N
PV, Vi) = T Vi Vier,o s VA)
i=1
N
= HP(VHVl,...,VZ-_l).
i=1

If f satisfies Eq. (2.3), then P is a well-defined joint distribution.

All that remains is to define the function f in a way that it satisfies Eq. (2.3).
Specifically, the function f will be defined via Eq. (2.2).

Suppose that V; is z.A, and consider any parent of X.A. There are two cases:

e If the parent is of the form X.B, then by the existence of type I edges, we have
that x.B precedes x.A in G,,. Hence, the variable z.B precedes V;.

e If the parent is of the form X.7.B, then by the existence of type II edges, for
each y € x.7 y.B precedes z.A in G,,. Hence, each variable y.B precedes V;.

We can define
P(Vi|Vici,..., Vi) = P(z.A | Pa(z.4))

as in Eq. (2.2). As the right-hand-side is simply a CPD in the PRM, it specifies a
well-defined conditional distribution, as required. And thus Eq. (2.2) is a well-defined

joint distribution. i
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Figure 2.7: The class dependency graph for the school PRM.

2.3.5.2 Class Dependency Graph

The procedure we just described allows us to check whether a dependency structure &
is acyclic relative to a fixed skeleton o,. However, we often want stronger guarantees:
we want to ensure that our dependency structure is acyclic for any skeleton that we
are likely to encounter. How do we guarantee this property based only on the class-
level PRM? To do so, we consider potential dependencies at the class level. More

precisely, we define a class dependency graph, which reflects these dependencies.

Definition 2.6: The class dependency graph Gp for a PRM II has a node for each
descriptive attribute X.A, and the following edges:

1. Type I edges: For any attribute X.A and any of its parents X.B, we introduce
an edge from X.B to X.A.

2. Type Il edges: For any attribute X.A and any of its parents X.7.B we introduce
an edge from Y.B to X.A, where Y = Range[X.7]. I

Figure 2.7 shows the dependency graph for our school domain.

The most obvious approach for using the class dependency graph is simply to
require that it be acyclic. This requirement is equivalent to assuming a stratification
among the attributes of the different classes, and requiring that the parents of an

attribute precede it in the stratification ordering. As Theorem 2.7 shows, if the
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class dependency graph is acyclic, we can never have that z.A depends (directly or

indirectly) on itself.

Theorem 2.7: If the class dependency graph Gy s acyclic for a PRM 11, then for

any skeleton o,, the instance dependency graph is acyclic.

Proof: This is easy to show using proof by contradiction. Suppose there is a cycle
x1.A1 = x9. Ay - - -z Ay — 11.A;. Then, because each of these object edges corre-
sponds to an edge in the class dependency graph, we have the following cycle in the
class graph:

XA = X5 Ay - X AL — XA

which contradicts our hypothesis that the class dependency graph is acyclic. I

The following corollary follows immediately:

Corollary 2.8: Let Il be a PRM whose class dependency structure S is acyclic. For
for any relational skeleton o,, Il and o, define a coherent probability distribution over
instantiations I that extend o, via Eq. (2.2).

For example, if we examine the PRM of Figure 2.5(b), we can easily convince our-
selves that we cannot create a cycle in any instance. Indeed, as we saw in Figure 2.7,
the class dependency graph is acyclic. Note, however, that if we introduce additional
dependencies we can create cycles. For example, if we make Professor. Teaching-Ability
depend on the rating of courses she teaches (e.g., if high teaching ratings increase her
motivation), then the resulting class dependency graph is cyclic, and there is no strat-
ification order that is consistent with the PRM structure. An inability to stratify the
class dependency graph implies that there are skeletons for which the PRM will induce

a distribution with cyclic dependencies.

Theorem 2.9: If the class dependency graph Gy of the PRM is cyclic then there

exist relational skeletons for which the PRM would produce cyclic dependencies.

Proof: It is straight forward to construct a relational skeleton that induces a cyclic

instance dependency graph. The construction is as follows:
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Figure 2.8: (a) A simple PRM for the genetics domain. (b) the corresponding de-
pendency graph. Dashed edges correspond to “green” dependencies, dotted edges
correspond to “yellow” dependencies and solid edges correspond to “red” dependen-
cies.

e We have a single object x in each class X.

e For any slot Y.p where X = Range[p|, we have y.p = z.

Now for any cycle in the class dependency graph induced by the PRM
X1. A1 = X9 Ay -- X Ay — X1 Aq,
the underlying instance dependency graph must have the following edges:
T1.A1 = 19. A9+ xp A — 1. A1

Thus, our PRM induces a cyclic dependency in for this simple skeleton. 1

Thus our requirement that the class dependency graph is acyclic in order for the

PRM to define a coherent distribution is, in a sense, complete.

2.3.5.3 Guaranteed Acyclic Relationships

In some cases, however, a cycle in the class dependency graph is not problematic. This
can be the case when we have additional domain constraints on the form of skeletons

we may encounter. Consider, for example, a simple genetic model of the inheritance
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of a single gene that determines a person’s blood type, shown in Figure 2.8(a). Each
person has two copies of the chromosome containing this gene, one inherited from
her mother, and one inherited from her father. There is also a possibly contaminated
test that attempts to recognize the person’s blood type. Our schema contains two
classes: Person and BloodTest. Class Person has reference slots Mother and Father
and descriptive attributes Gender, P-Chromosome (the chromosome inherited from
the father), and M-Chromosome (inherited from the mother). BloodTest has a ref-
erence slot Test-Of that points to the owner of the test, and descriptive attributes

Contaminated and Result.

In our genetic model, the genotype of a person depends on the genotype of his
parents; thus, at the class level, we have Person.P-Chromosome depending directly
on Person.P-Chromosome. As we can see in Figure 2.8(b), this dependency results in
a cycle that clearly violates the acyclicity requirements of our simple class dependency
graph. However, it is clear to us that the dependencies in this model are not actually
cyclic for any skeleton that we will encounter in this domain. The reason is that, in
“legitimate” skeletons for this schema, a person cannot be his own ancestor, which
disallows the situation of the person’s genotype depending (directly or indirectly) on
itself. In other words, although the model appears to be cyclic at the class level, we

know that this cyclicity is always resolved at the level of individual objects.

Our ability to guarantee that the cyclicity is resolved relies on some prior knowl-
edge that we have about the domain. We want to allow the user to give us information
such as this, so that we can make stronger guarantees about acyclicity and allow richer
dependency structures in the PRM. In particular, the user can specify that certain
slots are guaranteed acyclic. In our genetics example, Father and Mother are guar-
anteed acyclic; cycles involving these attributes may in fact be legal. Moreover, they
are mutually guaranteed acyclic, so that compositions of the slots are also guaranteed
acyclic. Figure 2.8(b) shows the class dependency graph for the genetics domain,
with guaranteed acyclic edges shown as dashed edges.

We allow the user to assert that certain slots Ry, = {p1,...,px} are guaranteed
acyclic; i.e., we are guaranteed that there is a partial ordering <,, such that if y

is a p-relative for some p € Ry, of z, then y <y, x. We say that a slot chain 7 is
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guaranteed acyclic if each of its component p’s is guaranteed acyclic.
This prior knowledge allows us to guarantee the legality of certain dependency
models. We start by building a colored class dependency graph that describes the

direct dependencies between the attributes.

Definition 2.10: The colored class dependency graph Gy for a PRM II has the

following edges:
1. Yellow edges: If X.B is a parent of X.A, we have a yellow edge X.B — X.A.

2. Green edges: If y(X.7.B) is a parent of X.A, Y = Range[X.7], and 7 is

guaranteed acyclic, we have a green edge Y.B — X.A.

3. Red edges: If v(X.7.B) is a parent of X.A, Y = Range[X.7|, and 7 is not
guaranteed acyclic, we have a red edge Y.B — X.A. 1

Note that there might be several edges, perhaps of different colors, between two
attributes.

The intuition is that dependency along green edges relates objects that are ordered
by an acyclic order. Thus, these edges by themselves or combined with intra-object
dependencies (yellow edges) cannot cause a cyclic dependency. We must however
take care with other dependencies, for which we do not have prior knowledge, as

these might form a cycle. This intuition suggests the following definition:

Definition 2.11: A (colored) dependency graph is stratified if every cycle in the

graph contains at least one green edge and no red edges. 1

Theorem 2.12: If the colored class dependency graph s stratified for a PRM 11, then

for any skeleton o,, the instance dependency graph is acyclic.

Proof: Again we show this using proof by contradiction. Suppose there is a cycle
x1.A1 = x9.As - - - 2. Ay — 11.A; which contains at least one green edge and no red
edges. In other words the cycle consists of some combination of green and yellow

edges. From the cycle, we can reduce this to an ordering of the distinct objects
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in the cycle, z;, ...x;, by ignoring the yellow edges (since these are all within the
same object). Consider the green edges: z;,.41 — x;,.B1, 4. As — 2;,.Ba, ...,
x;, A, — x;,.B;, . Each of these green edges uses some guaranteed acyclic slot
chain 7;. Because of the guaranteed acyclic ordering, x;; <4, 7;;,,. But, in addition,
we have an edge from z;, to x;,. Thus we have both z;, <y, z;, and z;, <4 ;-
This contradicts the assumption that we have a guaranteed acyclic ordering. Thus

there can be no cycle of this type in the instance dependency graph. I

In other words, if the colored dependency graph of & and Ry, is stratified, then
for any skeleton o, for which the slots in R4, are jointly acyclic, S defines a coherent
probability distribution over assignments to o.

This notion of stratification generalizes the two special cases we considered above.
When we do not have any guaranteed acyclic relations, all the edges in the dependency
graph are colored either yellow or red. Then the graph is stratified if and only if it is
acyclic. In the genetics example, all the parent relations would be in Ry4,. The only
edges involved in cycles are green edges.

We can also support multiple guaranteed acyclic relations by using different shades
of green for each set of guaranteed acyclic relations. Then a cycle is safe as long as it

contains at most one shade of green edge.

2.4 The Difference between PRMs and BNs

The PRM specifies the probability distribution using the same underlying principles
used in specifying Bayesian networks. The assumption is that each of the random
variables in the PRM — in this case the attributes x.A of the individual objects x —
is directly influenced by only a few others. The PRM therefore defines for each x.A
a set of parents, which are the direct influences on it, and a local probabilistic model
that specifies the dependence on these parents. In this way, the PRM is like a BN.
However, there are two primary differences between PRMs and Bayesian networks.
First, a PRM defines the dependency model at the class level, allowing it to be used

for any object in the class. In some sense, it is analogous to a universally quantified
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statement. Second, the PRM explicitly uses the relational structure of the model,
in that it allows the probabilistic model of an attribute of an object to depend also
on attributes of related objects. The specific set of related objects can vary with the
skeleton o,; the PRM specifies the dependency in a generic enough way that it can
apply to an arbitrary relational structure.

One can understand the semantics of a PRM together with a particular relational
skeleton o, by examining the ground Bayesian network defined earlier. The network
has a node for each attribute of the objects in the skeleton. The local probability
models for attributes of objects in the same class are identical (we can view the
parameters as being shared); however, the distribution for a node will depend on the
values of its parents, and the parents of each node are determined by the skeleton.

It is important to note the construction of the ground BN is just a thought ex-
periment; in many cases there is no need to actually construct this large underlying
Bayesian network. For example, as we will see in the next chapter on learning, our
construction algorithms all work at the class level, and exploit this compact repre-

sentation.

2.5 Inference in PRMs

An important aspect of any probabilistic representation is the support for making
inferences; having made some observations, how do we condition on these observations
and update our probabilistic model?

Inference in a PRM supports many interesting patterns of reasoning. Often times
we can view the inference as influence flowing between the inter-related objects. Con-
sider a simple example of inference about a particular student in our school PRM.
A priori we may believe a student is likely to be smart. We may observe his grades
in several courses and see that for the most part he received ‘A’s, but in one class
he received a ‘C’. This may cause us to slightly reduce our belief that the student
is smart, but it will not change it significantly. However, if we find that most of
the other students that took the course received high grades, we then may believe

that the course is an easy course. Since it is unlikely that a smart student got a low
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grade in an easy course, our probability for the student being smart now goes down
substantially.

Although inference is an extremely important topic, in this thesis we do not de-
scribe new inference algorithms. Instead we make use of existing inference algorithms.
In a few cases, we can do exact inference in the ground Bayes net. In other cases,
when there are certain types of regularities in the ground Bayesian network, we can
still perform exact inference by carefully exploiting and reusing computations. In
cases where the ground Bayesian network is very large and we cannot exploit regular-
ities in its structure, we resort to approximate inference. Finally, for SRMs (e.g., in
Chapter 6), we show how we can efficiently answer queries by doing inference in a
much smaller network. We defer that discussion until Chapter 6. Here we briefly

describe efficient exact inference and approximate inference briefly.

2.5.1 Exact Inference

We can always resort to exact inference on the ground BN, but the ground BN may be
very large and thus this inference may prove intractable. Under certain circumstances,
inference algorithms can exploit the model structure to make inference tractable.
Previous work on inference in structured probabilistic models [Koller and Pfeffer,
1997, Pfeffer et al., 1999, Pfeffer, 2000] shows how effective inference can be done
for a number of different structured probabilistic models. The algorithms make use
of the structure imposed by the class hierarchy to decompose the distribution and
effectively reuse computation.

There are two ways in which aspects of the structure can be used to make inference
more efficient. The first structural aspect is the natural encapsulation of objects that
occurs in a well-designed class hierarchy. Ideally, the interactions between objects
will occur via a small number of object attributes, and the majority of interactions
between attributes will be encapsulated within the class. This can provide a natural
decomposition of the model suitable for inference. The complexity of the inference
will depend on the ‘width’ of the connections between objects; if the width is small,

we are guaranteed an efficient procedure.
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The second structural aspect that is used to make inference efficient is the fact
that similar objects occur many times in the model. Pfeffer et al. [1999] describes a re-
cursive inference algorithm that caches the computations that are done for fragments
of the model; these computations then need only be performed once, we can reuse
them for another object occurring in the same context. We can think of this object as
a generic object, which occurs repeatedly in the model. Exploiting these structural
aspects of the model allow Pfeffer et al. [1999] to achieve impressive speedups; in a
military battlespace domain the structured inference was orders of magnitudes faster

than the standard BN exact inference algorithm.

2.5.2 Approximate Inference

Unfortunately the methods used in the inference algorithm above often are not ap-
plicable for PRMs we study. In the majority of cases, there are no generic objects
that can be exploited. Unlike standard BN inference, we cannot decompose this task
into separate inference tasks over the objects in the model, as they are typically all
correlated. Thus, inference in the PRM requires inference over the ground network
defined by instantiating a PRM for a particular skeleton.

In general, the ground network can be fairly complex, involving many objects that
are linked in various ways. (For example, in our experiments in Chapter 4, the net-
works involve hundreds of thousands of nodes.) Exact inference over these networks is
clearly impractical, so we must resort to approximate inference. We use Belief Prop-
agation (BP), a local message passing algorithm, introduced by Pearl [1988]. The
algorithm is guaranteed to converge to the correct marginal probabilities for each
node only for singly connected Bayesian networks. However, empirical results [Mur-
phy and Weiss, 1999] show that it often converges in general networks, and when it
does, the marginals are a good approximation to the correct posterior.

We provide a brief outline of one variant of BP, referring to Weiss [2000], Murphy
and Weiss [1999], MacKay et al. [1997] for more details. Consider a Bayesian network
over some set of nodes (which in our case would be the variables xz.A4). We first

convert the graph into a family graph, with a node F; for each variable V; in the BN,
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containing V; and its parents. Two nodes are connected if they have some variable
in common. The CPD of V; is associated with F;. Let ¢; represent the factor defined
by the CPD:; i.e., if F; contains the variables V, Yy, ..., Yy, then ¢; is a function from
the domains of these variables to [0,1]. We also define v; to be a factor over V; that
encompasses our evidence about V;: ¢;(V;) = 1 if V; is not observed. If we observe
Vi = v, we have that ¢;(v) = 1 and 0 elsewhere. Our posterior distribution is then
all; ¢; x I1; s, where « is a normalizing constant.

The belief propagation algorithm is now very simple. At each iteration, all the

family nodes simultaneously send messages to all others, as follows:

my(F;NFy) <—a Y di-i- I
Fi—F; keN(3)—{5}
where « is a (different) normalizing constant and N(i) is the set of families that
are neighbors of F; in the family graph. This process is repeated until the beliefs
converge. At any point in the algorithm, our marginal distribution about any family
Fiis by = a - ¢; - ¥ - [Iken(i) mri- Each iteration is linear in the number of edges
in the BN. While the algorithm is not guaranteed to converge, it typically converges
after just a few iterations. After convergence, the b; give us approximate marginal

distributions over each of the families in the ground network.

2.6 Conclusion

In this chapter, we have reviewed the definition of probabilistic relational models,
originally introduced by Koller and Pfeffer [1998]. PRMs exploit both the compact
representation of a probability distribution afforded by a Bayesian network with the
expanded representational power provided by relational logic to define general yet
compact representations for joint distributions over objects in structured domains.
Here we have defined the major components of the model: the relational schema, the
probabilistic dependency structure and parameterization, and the relational skeleton.
We have shown the conditions under which these components together define a coher-

ent probabilistic semantics for a domain. In later chapters we will describe extensions
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to the basic model that will allow uncertainty over the link structure in the domain
(Chapter 4), and will make use of class hierarchies (Chapter 5). However, first we
turn to the important task of automatically constructing a PRM from an existing

database.
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Chapter 3

Learning Probabilistic Relational
Models

In the previous chapter, we defined the PRM language and its semantics. We now
move to the main contribution of this thesis: algorithms for learning a PRM from data.
This chapter describes our first framework and algorithms which learn a PRM with
attribute uncertainty. Following chapters examine extensions to the basic algorithms

to handle additional forms of uncertainty.

3.1 Introduction

As we saw in the previous chapter, PRMs support complex reasoning patterns and
can be used to make inferences about objects that are linked in many interesting
ways. But we have not yet shown where a PRM comes from.

One option is to have a domain expert construct the model by hand. This can be a
laborious and time-consuming process. It involves first determining the dependencies
between the object attributes. In general this task is challenging, but for some well-
understood domains the domain expert may be able to provide the model structure.
The next challenge is specifying the parameters of the model. Even for experts,
the elicitation of probabilities can be a very difficult task. Thus, this knowledge-

engineering approach has limited applicability. It will only be successful in domains

39
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in which there is an expert who thoroughly understands the domain.

But, as we stated at the outset of this thesis, we are particularly interested in do-
mains where we have limited knowledge. We are interested in the task of knowledge
discovery. So a method of constructing a PRM that does not rely on knowledge-
engineering is needed. In this chapter, we propose an algorithm for automatically
constructing or learning a PRM from an existing database. The learned PRM de-
scribes the patterns of interactions between attributes. Once we have learned a PRM,
it can be used to make predictions and complex inferences in new situations.

In the learning problem, our input contains a relational schema, that specifies the
basic vocabulary in the domain — the set of classes, the attributes associated with the
different classes, and the possible types of relations between objects in the different
classes. Our training data consists of a fully specified instance of that schema. We
assume that this instance is given in the form of a relational database. Although our
approach would also work with other representations (e.g., a set of ground facts com-
pleted using the closed world assumption), the efficient querying ability of relational
databases is particularly helpful in our framework, and makes it possible to apply our
algorithms to large datasets.

There are two variants of the learning task: parameter estimation and structure
learning. In the parameter estimation task, we assume that the qualitative depen-
dency structure of the PRM is known; i.e., the input consists of the schema and
training database (as above), as well as a qualitative dependency structure S. The
learning task is only to fill in the parameters that define the CPDs of the attributes.
In the structure learning task, there is no additional required input (although the
user can, if available, provide prior knowledge about the structure, e.g., in the form
of constraints). The goal is to extract an entire PRM, structure as well as parameters,

from the training database alone. We discuss each of these problems in turn.

3.2 Parameter Estimation

We begin with learning the parameters for a PRM where the dependency structure

is known. In other words, we are given the structure S that determines the set of
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parents for each attribute, and our task is to learn the parameters s that define the
CPDs for this structure. Our learning is based on a particular training set, which we
will take to be a complete instance Z. While this task is relatively straightforward,
it is of interest in and of itself. In addition, it is a crucial component in the structure

learning algorithm described in the next section.

The key ingredient in parameter estimation is the likelihood function: the prob-
ability of the data given the model. This function captures the response of the
probability distribution to changes in the parameters. The likelihood of a parameter
set, is defined to be the probability of the data given the model. For a PRM the
likelihood of a parameter set Os is: L(0s | Z,0,8) = P(Z | 0,8,0s). As usual, we
typically work with the log of this function:

Z(OS |Ia 0',8) = IOgP(I | O-aSaHS)

= > X Y. 108 P(Zpa | Trage.a)) | - (3.1)

X; AEA(Xl) ;UEU’(Xi)

The key insight is that this equation is very similar to the log-likelihood of data
given a Bayesian network [Heckerman, 1998]. In fact, it is the likelihood function of
the Bayesian network induced by the PRM given the skeleton. The main difference
from standard Bayesian network parameter learning is that parameters for different

nodes in the network are forced to be identical—the parameters are tied.

3.2.1 ML Parameter Estimation

We can still use the well-understood theory of learning from Bayesian networks. Con-
sider the task of performing mazimum likelihood parameter estimation. Here, our goal
is to find the parameter setting fs that maximizes the likelihood L(fs | Z, 0, S) for a
given Z, o0 and S. This estimation is simplified by the decomposition of log-likelihood

function into a summation of terms corresponding to the various attributes of the
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Figure 3.1: The dependency structure for the university PRM.

different classes:

(0s | Z,0,8) = > > > 1og P(Zy.a | Iraz.a))

X; AEA(Xl) :EEO’(Xi)

=2 > 2 Y. Cxualv,u]-logbyu  (3.2)

X; AEA(X;) vEV(X.A) ueV(PaX.A)

where Cx 4[v,u] is the number of times we observe Z, 4 = v and Zp,(;.4) = u Each
of the terms in the above sum can be maximized independently of the rest. Hence,
maximal likelihood estimation reduces to independent maximization problems, one
for each CPD.

For many parametric models, such as the exponential family, maximum likelihood
estimation can be done via sufficient statistics that summarize the data. In the case
of multinomial CPDs, these are just the counts we described above, Cx 4[v,u], the
number of times we observe each of the different values v, u that the attribute X.A

and its parents can jointly take.

Proposition 3.1: Assuming multinomial CPDs, the mazximum likelihood parameter

setting és 18

CX.A[Ua U]

P(X.A=v|Pa(X.A) =) S Cxalvul
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Proof: From Eq. (3.2) we see that we would like to maximize the multinomial dis-

tribution:

> > Cx.alv,u] - logbyu
vEV(X.A) ueV(PaClass.A)
It is straightforward to set the derivative of this function to zero and solve for the
parameters. It is well-known that the values of the parameters that maximize this

function are simply their frequencies in the data. B

As a consequence of this proposition, parameter learning in PRMs is reduced to
counting; the counts are the sufficient statistics. We need to count one vector of
sufficient statistics for each CPD.

Note that this proposition shows that learning parameters in PRMs is very similar
to learning parameters in Bayesian networks. In fact, we can view this as learning
parameters for the Bayesian network with tied parameters that the PRM induces
given the skeleton. However, as discussed above, the learned parameters can then be
used for reasoning about other skeletons, which induce completely different Bayesian
networks.

Consider our university example shown again in Figure 3.1. To compute the max-
imum likelihood parameters for Registration. Grade, we need to have counts for Regis-

tration. Grade, Registration.Student.Intelligence and Registration. Course. Difficulty.

3.2.2 Computing sufficient statistics from a DB

An important property of the database setting is that we can easily compute sufficient
statistics. To compute Cx a[v,v1,...,vx], we simply query over the class X and its
parents’ classes, and project onto the appropriate set of attributes. We can compute

the sufficient statistics with the following SQL query:

SELECT grade, intelligence, difficulty, count(*)
FROM from registration, student, course
GROUP BY grade, intelligence, difficulty
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In some cases, it is useful to construct a view that can be used to compute the
sufficient statistics. This is useful when the relationship between the child attribute
and the parent attribute is many-one rather than one-one or one-many. For example,
consider the dependence of attributes of Student on attributes of Registration. In our
example PRM, a student’s ranking depends on the student’s grades. In this case we

would construct a view using the following sql query:

CREATE VIEW vl

SELECT student.*, AVERAGE(grade) AS ave_grade,
AVERAGE(satisfaction) as ave_satisfaction

FROM student s, registration r

WHERE s.student_id = r.student

To compute the statistics we would then project on the appropriate attributes

from view v1:

SELECT ranking, ave_grade, COUNT(*)
FROM vl
GROUP BY ranking, ave_grade

Thus both the creation of the view and the process of counting occurrences can be
computed using simple database queries, and can be executed efficiently. The view
creation for each combination of classes is done once during the full learning algorithm
(we will see exactly at which point this is done in the next section when we describe the
search). If the tables being joined are indexed on the appropriate set of foreign keys,
the construction of this view is efficient: the number of rows in the resulting table
is the size of the child attribute’s table; in our example this is |Student|. Computing
the sufficient statistics can be done in one pass over the resulting table. The size of
the resulting table is simply the number of unique combinations of attribute values.
We are careful to cache sufficient statistics so they are only computed once. In
some cases, we can compute new sufficient statistics from a previously cached set of

sufficient statistics; we make use of this in our algorithm as well.
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3.2.3 Bayesian Parameter Estimation

In many cases, maximum likelihood parameter estimation is not robust, as it overfits
the training data. The Bayesian approach uses a prior distribution over the param-
eters to smooth the irregularities in the training data, and is therefore significantly
more robust. As we will see in Section 3.3.2, the Bayesian framework also gives us a
good metric for evaluating the quality of different candidate structures.

Roughly speaking, the Bayesian approach introduces a prior over the unknown
parameters, and performs Bayesian conditioning, using the data as evidence, to com-
pute a posterior distribution over these parameters. To apply this idea in our setting,
recall that the PRM parameters 05 are composed of a set of individual probability dis-
tribution fx 4, for each conditional distribution of the form P(X.A | Pa(X.A) = u).
Following the work on Bayesian approaches for learning Bayesian networks [Hecker-
man, 1998], we make two assumptions. First, we assume parameter independence:
the priors over the parameters fx 4 for the different X.A and u are independent.
Second, we assume that the prior over 0x 4, is a Dirichlet distribution. Briefly, a
Dirichlet prior for a multinomial distribution of a variable V is specified by a set of
hyperparameters {afv] : v € V(V))}. A distribution on the parameters of P(V) is
Dirichlet if

P(fy) o< J] 021
v
(For more details see [DeGroot, 1970].) If X.A can take on k values, then the prior
is:
P(0x.4ju) = Dir(Ox apu | 01, -, 0x).
For a parameter prior satisfying these two assumptions, the posterior also has this

form. That is, it is a product of independent Dirichlet distributions over the param-

eters 0x aju. In other words
P(GX.A\u | I, a, 5) = Dir(HX_A|u|aX_A[v1, u]+Cx_A[U1, 11], ceay OAX‘A[Uk, 11]+ CX‘A[’U]C, u])

Now that we have the posterior, we can compute the probability of new data.

In the case where the new instance is conditionally independent of the old instances
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given the parameter values (which is always the case in Bayesian network models, but
may not be true here), then the probability of the new data case can be conveniently

rewritten using the expected parameters:

Proposition 3.2: Assuming multinomial CPDs, prior independence, and Dirichlet

priors, with hyperparameters ax_alv, u], we have that:

EyP(X.A=v| Pa(X.A)=u) |I] =
Cx.alv,u] + ax.alv,u]

SF  Cx.alvi, u] + ax.alvi, u]

This suggests that the Bayesian estimate for s should be estimated using this
formula as well. Unfortunately, the expected parameters is not the proper Bayesian
solution for computing probability of new data in the case where the new data instance
is not independent of previous data given the parameters. Suppose that we want to
use the posterior to evaluate the probability of an instance Z’ of another skeleton o’. If
there are two instances z and 2’ of the class X such that v*' (Pa(z.4)) = v* (Pa(z'.4)),
then we will be relying on the same multinomial parameter vector twice. Using
the chain rule, we see that the second probability depends on the posterior of the
parameters after seeing the training data, and the first instance. In other words,
the probability of a relational database given a distribution over parameter values
is not identical to the probability of the dataset when we have a point estimate
of the parameters (i.e., when we act as though we know their values). However if
the posterior is sharply peaked (i.e., we have a strong prior, or we have seen many
training instances), we can approximate the solution using the expected parameters
of Proposition 3.2. We use this approximation in our computation of the estimates

for the parameters.

3.3 Structure Learning

We now move to the more challenging problem of learning a dependency structure
automatically, as opposed to having it given by the user. There are three important

issues that need to be addressed. We must determine which dependency structures
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are legal; we need to evaluate the “goodness” of different candidate structures; and

we need to define an effective search procedure that finds a good structure.

3.3.1 Legal structures

We saw in Section 2.3.5.2 that we could construct a class dependency graph for a
PRM, and the PRM defined a coherent probability distribution if the class dependency
graph was stratified. During learning it is straightforward to maintain this structure,

and consider only models whose dependency structure passes this test.

3.3.1.1 Maintaining a Stratified Class Dependency Graph

Given a stratified class dependency graph G(V, E), we can check whether local changes
to the structure destroy the stratification. The operations we are concerned with are
ones which add an edge (u,v) into the structure (clearly deleting an edge cannot
introduce a cycle). We can check whether a new edge will introduce a cycle in time
o(lV] + |E]).

Let G(V, E) be our stratified class dependency graph and let G'(V, E' U {(u,v)})
be the class dependency graph with edge (u,v) added. Clearly if there is a cycle in
G, it must contain (u, v).

We can check whether the new edge introduces a cycle by checking to see if, using
this edge, there is a path w,v,...,u. This reduces to checking to see if there is a
path in the graph from v to u. We can do a a simple depth-first search to explore the
graph to check for a path in O(|V| + |E|).

3.3.1.2 Maintaining a Stratified Colored Class Dependency Graph

In the case where we have a colored class dependency graph, the algorithm is only
slightly more complicated. Essentially we must consider all paths from (v, u) and
ensure that, together with the new edge (u,v), any cycle is legal. Recall from Sec-
tion 2.3.5.3 a cycle in a colored path dependency graph is legal if it contains at least

one green edge and no red edges.
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We will use a modification of Dijkstra’s single-source shortest paths algorithm to
determine the unsafe paths from v to any other node in GG. There are two categories
of unsafe paths possible. A path is unsafe if it contains no green edges or if contains

a red edge.

In order to check for paths with no green edges, we can simply ignore the green
edges in the graph, and apply our earlier DFS algorithm to see if there is a path from

v to u.

A similar algorithm can be used to determine is there is a path containing a red
edge from v to u. It is a bit more complicated, because we have to consider all possible
paths. In this case we maintain CRP[v;| which is true if there is a path from v to v;
which contains a red edge. We perform a breadth first search of the graph, starting
from node v. When we consider edge (w, ), we set CRP(z) to TRUE if there is either
a path with a red edge from v to w or if the edge from (w,z) is red. The running
time for this algorithm is also O(|V| + | E|).

With these two functions we can determine whether adding an edge (u,w) to G
results in an illegal colored dependency graph. An edge (u,v) introduces an illegal
cycle if (u,v) is not green and we can find a path from v to u using only red and

yellow edges, if CRP(u) is true or if (u,v) is red and there is a path from v to u.

3.3.1.3 Incremental Algorithms

The algorithms we have described do not save any information from one call to
another, although clearly there may be some benefit in keeping track of the paths
that exists in the graph from one call to the next. There are numerous incremental
graph maintenance algorithms and analysis [Ausiello et al., 1991, Italiano, 1988].
These may well be useful here (as they would be in Bayesian network learning). But,
in general, the time spent checking acyclicity is quite small compared with the time
required to score the models. This is particularly true in the case of PRMs, where
the number of nodes in the class dependency graph is relatively small. Thus, it is not

clear that an incremental approach is needed.



3.3. STRUCTURE LEARNING 49

3.3.2 Evaluating different structures

Now that we know which structures are legal, we need to decide how to evaluate
different structures in order to pick one that fits the data well. We adapt Bayesian
model selection methods to our framework. We would like to find the MAP (maximum
a posteriori) structure. Formally, we want to compute the posterior probability of a

structure S given an instantiation Z. Using Bayes rule we have that
P(S|Z,0) x P(ZT|S8,0)P(S|o0o)

This score is composed of two parts: the prior probability of the structure, and the
probability of the data assuming that structure.

The first component is P(S | o), which defines a prior over structures. We assume
that the choice of structure is independent of the skeleton, and thus P(S | o) =
P(S). In the context of Bayesian networks, we often use a simple uniform prior over
possible dependency structures. Unfortunately, this assumption does not work in our
setting. The problem is that there may be infinitely many possible structures.! In our
genetics example, a person’s genotype can depend on the genotype of his parents, or
of his grandparents, or of his great-grandparents, etc. A simple and natural solution
penalizes long indirect slot chains, by having log P(S) proportional to the sum of the
lengths of the chains 7 appearing in S.

The second component is the marginal likelihood:
P(T|S,0) = /P(I 1 8,0s,0)P(0s | S) dbs

If we use a parameter independent Dirichlet prior (as above), this integral decom-
poses into a product of integrals each of which has a simple closed form solution.
This is a simple generalization of the ideas used in the Bayesian score for Bayesian

networks [Heckerman et al., 1995].

Proposition 3.3: If 7 is a complete assignment, and P(fs | S) satisfies parame-

ter independence and is Dirichlet with hyperparameters ax a[v,u], then the marginal

L Although there are only a finite number that are reasonable to consider for a given skeleton.
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likelihood of T qiven S 1s:

P(T|S,0)=

II 1I II  DM({Cx,.alv,u]} {ox.alv,u]}) (3-3)

i A€ A(X;) UEV(()PG(X;A))

where DM({C[v]}, {a[u]}) = sxods2l) 1 L

Ty, (av+C D M) and T(z) = [t e tdt

F(a )
s the Gamma function.

Hence, the marginal likelihood is a product of simple terms, each of which cor-
responds to a distribution P(X.A | u) where u € V(Pa(X.A)). Moreover, the term
for P(X.A | u) depends only on the hyperparameters ax _4[v,u] and the sufficient
statistics Cx_a[v, u] for v € V(X.A).

The marginal likelihood term is the dominant term in the probability of a struc-
ture. It balances the complexity of the structure with its fit to the data. This balance
can be seen explicitly in the asymptotic relation of the marginal likelihood to explicit
penalization, such as the MDL score (see, e.g., [Heckerman, 1998]).

Finally, we note that the Bayesian score requires that we assign a prior over pa-
rameter values for each possible structure. Since there are many (perhaps infinitely
many) alternative structures, this is a formidable task. In the case of Bayesian net-
works, there is a class of priors that can be described by a single network [Heckerman
et al., 1995]. These priors have the additional property of being structure equivalent,
that is, they guarantee that the marginal likelihood is the same for structures that
are, in some strong sense, equivalent. These notions have not yet been defined for our
richer structures, so we defer the issue to future work. Instead, we simply assume that
some simple Dirichlet prior (e.g., a uniform one) has been defined for each attribute

and parent set.

3.3.3 Structure search

Now that we have both a test for determining whether a structure is “legal”, and a

scoring function that allows us to evaluate different structures, we need only provide
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Procedure Randomized Structure Search

Inputs:  random_step_prob — initial random step probability
RANDOM_STEP_RATE — rate at which we descrease the probability
of taking a random step
MAX_STEPS — maximum number of search steps taken
MAX_LOCAL_STEPS — maximum number of search steps
for each different random _step_prob

num_steps = 0
while num_steps < MAX_STEPS
num_local_steps = 0
repeat
if Random() < random_step_prob
next_step = GetRandomSearchStep()
else
next_step = GetBestSearchStep()
Apply next_step
num_local_steps++
until num_local_steps > MAX_LOCAL_STEPS or peak reached
random_step_prob x = RANDOM_STEP_RATE
num_steps + = num_local_steps
end
return current model

Figure 3.2: The randomized structure search (RSS).

a procedure for finding legal high-scoring structures. For Bayesian networks, we know
that this task is NP-hard [Chickering, 1996]. As PRM learning is at least as hard
as Bayesian network learning (a Bayesian network is simply a PRM with one class
and no relations), we cannot hope to find an efficient procedure that always finds the
highest scoring structure. Thus, we must resort to heuristic search.

As is standard in Bayesian network learning [Heckerman, 1998|, we use a greedy
local search procedure that maintains a “current” candidate structure and iteratively
modifies it to increase the score. At each iteration, we consider a set of simple
local transformations to the current structure, score all of them, and pick the one
with highest score. In the case where we are learning multinomial CPDs, the three

operators we use are: add edge, delete edge and reverse edge. In the case where we



52 CHAPTER 3. LEARNING PROBABILISTIC RELATIONAL MODELS

are learning tree CPDs, following [Chickering et al., 1997], our operators consider
only transformations to the CPD-trees. The tree structure induces the dependency
structure, as the parents of X.A are simply those attributes that appear in its CPD-
tree. In this case, the two operators we use are: split — replaces a leaf in a CPD tree
by an internal node with two leafs; and ¢rim — replaces the subtree at an internal

node by a single leaf.

The simplest heuristic search algorithm is a greedy hill-climbing search, using
our score as a metric. We maintain our current candidate structure and iteratively
improve it. At each iteration, we consider the appropriate set of local transformations

to that structure, score all of them, and pick the one with highest score.

We refer to this simple algorithm as the greedy algorithm. There are several
common variants to improve the robustness of hill-climbing methods. One is is to
make use of random restarts to deal with local maxima. In this algorithm, when we
reach a local maximum, we take some fixed number of random steps, and then we
restart our search process. Another common approach is to make use of a tabu-list,
which keeps track of the most recent states visited, and allow only steps which do
not return to a recently visited state. A more sophisticated approach is to make use
of a simulated annealing style of algorithm which uses the following procedure: in
early phases of the search we are likely to take random steps (rather than the best
step), but as the search proceeds (i.e., the temperature cools) we are less likely to
take random steps and more likely to take the best greedy step. One variant of such
an algorithm is shown in Figure 3.2. This algorithm is still relatively naive and a
number of improvements could be made such as having the random edge choice be
a function of the score of the step. The algorithms we use for our experiments are

either the simple greedy algorithm or the randomized algorithm RSS.

Regardless of the specific heuristic search algorithm used, an important compo-
nent of the search is the scoring of candidate structures. As in Bayesian networks, the
decomposability property of the score has significant impact on the computational
efficiency of the search algorithm. First, we decompose the score into a sum of local
scores corresponding to individual attributes and their parents. (This local score

of an individual attribute is exactly the logarithm of the term in square brackets in
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Eq. (3.3).) Now, if our search algorithm considers a modification to our current struc-
ture where the parent set of a single attribute X.A is different, only the component
of the score associated with X.A will change. Thus, we need only reevaluate this par-
ticular component, leaving the others unchanged; this results in major computational
savings.

However, there is still a very large number of possible structures to consider. We
propose a heuristic search algorithm that addresses this issue. At a high level, the
algorithm proceeds in phases. At each phase k, we have a set of potential parents
Poty(X.A) for each attribute X.A. We then do a standard structure search restricted
to the space of structures in which the parents of each X.A are in Poty(X.A). The
advantage of this approach is that we can precompute the view corresponding to
X.A, Poty(X.A); most of the expensive computations — the joins and the aggregation
required in the definition of the parents — are precomputed in these views. The
sufficient statistics for any subset of potential parents can easily be derived from this
view. The above construction, together with the decomposability of the score, allows
the steps of the search (say, greedy hill-climbing) to done very efficiently.

The success of this approach depends on the choice of the potential parents.
Clearly, a wrong initial choice can result to poor structures. Following [Friedman
et al., 1999b|, which examines a similar approach in the context of learning Bayesian
networks, we propose an iterative approach that starts with some structure (possibly
one where each attribute does not have any parents), and select the sets Poty(X.A)
based on this structure. We then apply the search procedure and get a new, higher
scoring, structure. We choose new potential parents based on this new structure and
reiterate, stopping when no further improvement is made.

It remains only to discuss the choice of Pot;(X.A) at the different phases. Perhaps
the simplest approach is to begin by setting Pot;(X.A) to be the set of attributes in
X. In successive phases, Poty,1(X.A) would consist of all of Pay(X.A), as well as all
attributes that are related to X via slot chains of length < k. Of course, these new
attributes would require aggregation; we sidestep the issue by predefining possible

aggregates for each attribute.

This scheme expands the set of potential parents at each iteration. It is the method
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Figure 3.3: (s) Learning curve showing the generalization performance of PRMs
learned in the genetic domain. The z-axis shows the training set size; the y-axis
shows the average log-likelihood on a test set of size 100,000. For each sample size,
we learned models for ten different independent training sets of that size. The curve
shows the general improvement in the average log-likelihood of the models as a func-
tion of the sample size. (b) Error (standard deviation) as a function of training set
size.

that we have used in all of our results. In some cases however it may result in large
set of potential parents. In such cases we may want to use a more refined algorithm
that only adds parents to Poty,1(X.A) if they seem to “add value” beyond Pa;(X.A).
There are several reasonable ways of evaluating the additional value provided by new
parents. Some of these are discussed by Friedman et al. [1999b] in the context of
learning Bayesian networks. These results suggest that we should evaluate a new
potential parent by measuring the change of score for the family of X.A if we add
v(X.7.B) to its current parents. We can then choose the highest scoring of these, as
well as the current parents, to be the new set of potential parents. This approach
would allow us to significantly reduce the size of the potential parent set, and thereby
of the resulting view, while typically causing insignificant degradation in the quality

of the learned model.
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Figure 3.4: Results showing the percentage of models learned with the correct struc-
ture.

3.4 Experimental Evaluation on Synthetic Data

We begin by evaluating our algorithm on synthetic data. This allows us to evaluate
the learned models against a ‘gold’ standard. We can then evaluate both the accuracy

of our model and how well we recover the underlying structure.

We used the genetic domain described earlier in the chapter (Figure 2.8(a)) to
generate the databases used in our experiments. Our sampling algorithm takes as
input the size of the first generation, the distribution of genotypes in this generation
and a birth rate and generates a family tree of size n. We generated various train-
ing databases, containing from 500 to 4300 individuals. For each size, we generated
10 different databases. For each training set, we test two different methods. In the
first case, our algorithm has as input the correct structure and it simply estimates
the parameters using the Bayesian parameter estimation methods described in Sec-

tion 3.2.3. For our tests, we used a uniform Dirichlet parameter prior with equivalent
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sample size & = 2. In the second case, our algorithm learns both the structure and
the parameters using the RSS algorithm described in the previous section. Again,
we use an equivalent sample size of & = 2 and a uniform structure prior.

We also generated an independent test database of size 100,000. We then tested
how well the learned PRMs predict the test data. For measuring the predictive ability,
we use the log-likelihood of the test data, the standard measure for evaluating density
estimation procedures. Figure 3.3(a) shows the learning curve with results for the
different training sets. The straight line at the top is the log-likelihood of the test
data given the gold standard model, the ‘true’ model that was used to generate the
data. Figure 3.3(b) shows the variance in log-likelihood (average error) for each of
the methods as a function of training set size.

Even for the smallest training set size, the models learned have an error range that
overlaps the average log-likelihood of the gold standard model, but the error ranges
are still large. In the case where we are doing parameter estimation only, we quickly
achieve a very accurate estimate—for training sets sizes as small as 1300 the model
we learn is virtually indistinguishable from the true model. When we are learning
structure as well, the required training set size is a little larger, but still for training
sets larger than about 1800, we are able to learn models whose performance is hard
to distinguish from the performance of the gold standard model.

Figure 3.4 shows the number of the learned models that have exactly the same
structure as the gold standard model. An important caveat here is that models with
a different structure from the gold standard model may have exactly the same score
as the gold standard model. Many dependency structures are score equivalent, so
that we cannot always distinguish between a model that has, for example, an edge
going one direction versus a model that has the same edge directed in the opposite
direction. However, in this case, there are no score equivalent models to the gold
model, so we can make an exact structure comparison. We can also characterize the
incorrect models as being either ‘too simple’, i.e., there are edges in the gold standard
model that are missing in the learned model, or as being ‘too complex’, i.e., there

are more edges in the learned model than required by the gold standard model.? In

2These overly complex models should be able to capture the underlying distribution: however,
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this simple scenario, model structure could always be categorized as equivalent, ‘too
simple’ or ‘too complex’.

Our results show that as we increase the size of the training database, we generally
learn more accurate structures. Examining the learned structures more closely, there
is a qualitative difference in the incorrect models learned from small training sets
versus large training sets. The incorrect models learned from small training sets
have incorrect dependencies, such as a person’s paternal genotype depending on a
person’s mother’s paternal genotype, and missing dependencies. On the other hand,
the incorrect models learned from the larger training sets capture the structure of
the gold standard model, but are sometimes overly complex and include extraneous
edges. While extra edges may indicate overfitting, this does not appear to be affecting
us here as the scores of these models on test data are still quite high, and eventually

we converge to the correct structure.

3.5 Application: Exploratory Data Analysis

We have also applied our PRM construction algorithm to various real-world domains.
The goal in these domains is to gain a preliminary understanding of the the most
important dependencies that hold in the domain. Once this exploratory phase is
done, we may then want to focus on and analyze certain interesting correlations that

we have discovered.

3.5.1 The TB Domain

One compelling domain that we have been fortunate to have the opportunity to
work with is a database of epidemiological data for patients from the San Francisco
tuberculosis (TB) clinic [Wilson et al., 1999].> The data collected describes TB
patients and includes the strain of the disease with which they are inffected and

information collected about people with whom the patients have been in contact.

in general a larger sample will be required to estimate the additional parameters accurately.
3We would like to thank Dr. Peter Small and Jeanne Rhee from the Stanford University Medical
Center for providing us with the TB data and with their expertise on this topic.
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Figure 3.5: The PRM structure learned for the TB domain using tree-structured
CPDs.

Of particular interest is whether a disease transmission chain between patients and

contacts is indicated. The database contains three tables: Patient, Strain and Contact.

For the patient table, the schema contains demographic attributes such as age,
gender, race, and place of birth (pob), as well as medical attributes such as HIV
status, disease site (for TB), whether the X-ray results indicate cavitary infection,
etc. The clustered attribute indicates whether this patient is a member of a cluster of
TB outbreaks (a number of patients with the same TB strain) or whether the patient
is infected with a unique strain of TB (often indicative of an independent reactivation

of latent infection and not part of a disease transmission chain).

The strain table represents the different TB strains that have been identified
among the patient population. The TB strains are identified using a genetic finger-

printing technique, in this case restriction fragment length polymorphism (RFLP), on
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patient.site <- patient.gender

patient.race <- patient.age

patient.clustered <- patient.pob

patient.clustered <- patient.age

patient.hiv <- patient.cavitary

contact.relationship <- contact.closeness

contact.care <- contact.infected

contact.treatment <- contact.care

patient.smear <- patient.cavitary

patient.care_provider <- patient.cavitary

patient.race <- patient.hiv

patient.care_provider <- patient.age

3 i
o strain.str <- strain.inh
©

(]

patient.hiv <- patient.gender

contact.treatment <- contact.infected

patient.clustered <- patient.race
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Figure 3.6: The edges with the highest strengths computed from 100 learned models.
The strength is measured by weighing each edge occurrence by the score of the model
it appears in.

bacterial isolates obtained from the patients. Epidemiologists assume that patients
with isolates that have matching DNA fingerprint have been involved in disease trans-
mission chains, while patients infected with a strain with a unique fingerprint have
the disease due to a reactivation of a latent infection. The strain table has attributes
for the isolate’s drug susceptibility results for streptomycin (str), isoniazid (inh),
rifampin (rif), ethambutol (emb), and pyrazinamide (pza). The fitness attribute re-
flects the relative prevalence of a particular strain of M. tuberculosis in the study
population: strains identified only once were considered to have low fitness, strains
isolated from 2-5 different patients were considered to have moderate fitness, and

strains found in more than 5 individuals were considered to have high fitness.

Each patient is also asked for a list of people with whom he has been in contact;

the contact table has attributes that specify the relationship of contact to the patient
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patient.age <- patient.contact.contage

patient.age <- patient.contact.relationship

contact.infected <- contact.patient.gender

patient.care_provider <- patient.contact.care ]
patient.site <- patient.contact.relationship
contact.closeness <- contact.patient.gender

patient.site <- patient.contact.subcase

patient.cavitary <- patient.contact.relationship ]

patient.site <- patient.contact.infected

patient.site <- patient.contact.household |
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contact.care <- contact.patient.gender
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patient.site <- patient.contact.treatment
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patient.cavitary <- patient.contact.treatment |
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Figure 3.7: The strongest inter-relational edges in 100 learned models.

(sibling, coworker, etc.), contact age, whether the contact is a household member, etc.;
in addition, the type of diagnostic procedure that the contact undergoes (care) and
the result of the diagnosis (infected) are also reported. The secondary_case attribute
indicates whether the contact later becomes a patient in the clinic.

The database contains information about 1879 patients. There are 1341 different

strains and there is information on 15,336 patient contacts.

3.5.2 The Learned TB PRM

Figure 3.5 shows the PRM learned from this database. For all of the runs presented
here, we learn a tree-structured CPD representation. We learn a rich dependency
structure both within entities and between attributes in different entities. We repro-

duced many known dependencies, for example: the dependence of age at diagnosis on
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Figure 3.8: The distribution of edge strengths in 100 learned models (Tree CPDs).

HIV status — typically, HIV-positive patients are younger, and are infected with TB
as a result of AIDS; the dependence of the contact’s age on the relationship of contact
with the patient — contacts who are coworkers are likely to be younger than contacts
who are parents and older than those who are school friends; or the dependence of
HIV status on race — Asian patients are rarely HIV positive whereas white patients
are much more likely to be HIV positive.

We also discovered dependencies that are clearly relational, and that would have
been difficult to detect using a non-relational learning algorithm. For example there
is a correlation between the race of the patient and the fitness of the strain. Patients
who are Asian are more likely to be infected with a strain which is unique in the
population (low fitness), whereas other ethnicities are more likely to have strains that
recur in several patients (high fitness). An explanation is that Asian patients are more
often immigrants, who immigrate to the U.S. with a new strain of TB, whereas others
are often infected locally. Another interesting relational correlation is between the
place of birth of the patient and whether or not their contacts become secondary cases.

US-born patients’ contacts are more likely to become secondary cases than foreign
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born patients. This phenomenon is also explained by the immigrant’s likelihood of
having a reactivated (non-infectious) TB case.

The model shown in Figure 3.5 shows the PRM learned using the greedy search
algorithm, Greedy. In order to get a better understanding of the robustness of
the learned dependencies, in the spirit of model averaging, we use RSS to learn a
number of different models, and looked at the occurrences of edges in the collection
of models. To compute the strength of an edge, we use the number of times it occurs
in the models, weighted by the score of the model in which it occurs.

Figure 3.8 shows the distribution of occurrences of edges in 100 learned models.
Of the possible 310 possible edges that can occur in our models, we see about two-
thirds of them occurring at least once.* Figure 3.6 shows the edges with the highest
strength. Looking at the edge strength supports our earlier discoveries. For example,
the strength of an edge going from hiv to age is 62% and the strength of an edge
going from age to hiv is 36%; together, these imply a strong coupling. The strength
of an edge between contact relationship and contact age is 61.9% and there is a 38%
strength of having the same edge in the reverse direction. There is a 82% strength of
having an edge hiv to race and 16% strength of having the reversed edge.

Figure 3.7 shows the most probable edges between attributes in different relations.
For the multi-relational dependencies, we see high confidence in edges between the
ages of the patients and the contacts and between the contact relationship and the age
of the patient. A more interesting highly probable edge is the edge between patient
gender and contact infected. Female patients have a slightly higher probability of
infecting their contacts (37% for women and 34% for men). The most common
correlations between strain fitness and patient attributes are on the attributes race,
pob and age, although each of these has strength less than 15%.

We note that multi-relational edges are generally less probable than intra-relation
edges. However, this is not surprising. First, attributes of the same object or tuple
are often more tightly coupled and thus more likely to have correlations. Second,

by the nature of our phased search, we will uncover dependencies between attributes

4The models learned had tree structured CPDs; among other things this allows finer-grain de-
pendencies to be learned. If we restrict attention to table CPDs, then in 100 runs only about a third
of the possible edges occur.
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within the same table before we consider dependencies between attributes in different
tables: thus, we will only add the latter to our model in the case where the correlation
has not already been explained.

There are several caveats to be made about these numbers. First, as mentioned
earlier, many dependency structures are score equivalent, so that we cannot always
distinguish between a model that has, for example, an edge directed one way from a
model that has the same edge directed the opposite way. Second, in making inferences,
the path of influence between two variables is what really matters, not just whether
they are directly connected. Also, a more principled randomized search algorithm
should be used. Nevertheless, these experiments give us some additional insight into

the domain.

3.5.3 Inference in the learned networks

Once we have learned a PRM, we can use it to make inferences about other, newly
encountered, patients and contacts.

For example, we may have a new patient, Patient-101002 who has named 3 con-
tacts, Contact-1 and Contact-2 and Contact-3. Figure 3.9 shows a portion of the
ground Bayesian network for this scenario (The figure shows the Hugin Expert [2001]
interface), along with the a priori probabilities for a number of the attributes.

Suppose we have some information about the patient’s first two contacts. Both of
these contacts were close and became infected with the disease. Using this information
alone, the probability that the patient’s third contact is infected goes from 35.34 to
40.29, as shown in Figure 3.10. If we also find out that the contact between the
patient’s and the contact has been close, then the probability that the third contact
is infected increases to 52.53, as shown in Figure 3.11. While a priori, we would
conclude that the contact is most likely not infected, by making use of this relational
information, we would change our conclusion and conclude that the patient is likely
to be infected.

Many more complex patterns of inference can be made, but each is in the context

of a particular patient and their set of contacts.
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3.6 Conclusion

In this chapter we have described the first framework for learning a statistical model
from relational data. We have presented a method for the automatic construction of
a PRM with attribute uncertainty from an existing database. Our method learns a
structured statistical model directly from the relational database, without requiring
the data to be flattened into a fixed attribute-value format. We have shown how
to perform parameter estimation, developed a scoring criterion for use in structure
selection and defined the model search space. We have also provided algorithms for
guaranteeing the coherence of the learned model. Most importantly, we have shown
results on both synthetic data and on an interesting real-world problem, and shown

how our algorithms can in fact be used to discover novel new patterns the data.
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Chapter 4

PRMs with Link Uncertainty

In this chapter, we propose probabilistic models not only for the attributes of the
objects in a relational model, but also for the relational or link structure itself. In other
words, we will model the probability that certain relationships hold between objects.
We propose two mechanisms for modeling link uncertainty: reference uncertainty and
existence uncertainty. We describe the appropriate conditions for using each model
and learning algorithms for each model. We present experimental results showing
that the learned models can be used to predict relational structure and, moreover,
the observed relational structure can be used to provide better predictions for the

attributes in the model.

4.1 Introduction

The PRM framework presented in Chapter 2 focuses on modeling the distribution over
the attributes of the objects in the model. It takes the relational structure itself —
the objects and the relational links between entities — to be background knowledge,
determined outside the probabilistic model. This assumption implies that the model
cannot be used to predict the relational structure itself. A more subtle yet very
important point is that the relational structure is informative in and of itself. For
example, the links from and to a web page are very informative about the type of web

page [Craven et al., 1998], and the citation links between papers are very informative

69
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about the paper topics [Cohn and Hofmann, 2001].

As we show in this chapter, the PRM framework provides us with a very natural
way of addressing this limitation. By making objects and links first-class citizens
in the model, our language easily allows us to place a probabilistic model directly
over them. In other words, we can extend our framework to define probability dis-
tributions over the presence of relational links between objects in our model. By
introducing these aspects of the world into the model, and correlating them with
other attributes, we can both predict the link structure and use the presence of links
to reach conclusions about attribute values.

The concept of a probabilistic model over relational structure was introduced by
Koller and Pfeffer [1998] under the name structural uncertainty. They defined several
variants of structural uncertainty, and presented algorithms for doing probabilistic
inference in models involving structural uncertainty. In this chapter, we show how a
probabilistic model of relational structure can be learned directly from data. Specifi-
cally, we extend the reference uncertainty model of Koller and Pfeffer [1998] to make
it suitable for a learning framework; we also introduce a new type of structural uncer-
tainty, called existence uncertainty. We propose a method for learning such models
from a relational database, and present empirical results on real-world data show-
ing that these models can be used to predict relational structure, as well as use an

observed relational structure to provide better predictions about attribute values.

4.2 Probabilistic Model of Link Structure

In the model described in the previous chapters, all relations between attributes are
determined by the relational skeleton o,; only the descriptive attributes are uncertain.
The relational skeleton specifies the set of objects in all classes, as well as all the
relationships that hold between them (in other words, it specifies the values for all of
the reference slots). Consider the simple university domain of Chapter 2 describing
professors, courses, students and registrations. The relational skeleton specifies the
complete relational structure in the model: it specifies which professor teaches each

course, and it specifies all of the registrations of students in courses. In our simple
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university example, the relational skeleton (shown in Figure 2.5(a)) contains all of
the information except for the values for the descriptive attributes.

Thus, Eq. (2.2) determines the probabilistic model of the attributes of objects,
but does not provide a model for the links between objects. In this chapter, we
extend our probabilistic model to allow for link uncertainty. Here, we do not treat
the relational structure as background knowledge, but choose to model it explicitly
within the probabilistic framework. Clearly, there are many ways to represent a
probability distribution over the relational structure. In this chapter, we explore two
simple yet natural models: Reference Uncertainty and Existence Uncertainty.

There is one distinction we will add to our relational schema. It is useful to
distinguish between an entity and a relationship, as in entity-relationship diagrams.
In our language, classes are used to represent both entities and relationships. Thus, a
relationship such as Registration, which relates students to courses, is represented as
a class, with reference slots to the class Student and the class Course. This approach,
which blurs the distinction between entities and relationships, is common, and allows
us to accommodate descriptive attributes that are associated with the relation, such
as Grade and Satisfaction.

In this chapter we will find it useful to be able to make this distinction. We
introduce Xg to denote the set of classes that represent entities, and Xz to denote
those that represent relationships. We note that the distinctions are prior knowledge
about the domain, and are therefore part of the domain specification. We use the

generic term object to refer both to entities and to relationships.

4.3 Reference Uncertainty

Consider a simple citation domain illustrated in Figure 4.1. Here we have a doc-
ument collection. Each document has a bibliography that references some of the
other documents in the collection. We may know the number of citations made by
each document (i.e., it is outside the probabilistic model). By observing the citations
that are made, we can use the links to reach conclusions about other attributes in

the model. For example, by observing the number of citations to papers of various



72 CHAPTER 4. PRMS WITH LINK UNCERTAINTY

— Bibliography —
— 1,eme 2
— pyp— ?
e e ? —

Scientific Paper

Document Collection

Figure 4.1: Reference uncertainty in a simple citation domain.

topics, we may be able to infer something about the topic of the citing paper.
Figure 4.2(a) shows a simple schema for this domain. We have two classes, Paper
and Cites. The Paper class has information about the topic of the paper and the words
contained in the paper. For now, we simply have an attribute for each word that is
true if the word occurs in the page and false otherwise. The Cites class represents
the citation of one paper, the Cited paper, by another paper, the Citing paper. (In
the figure, for readability, we show the Paper class twice.) In this model, we assume
that the set of objects is pre-specified, but relations among them, i.e., reference slots,
are subject to probabilistic choices. Thus, rather than being given a full relational
skeleton o,., we assume that we are given an object skeleton o,. The object skeleton
specifies only the objects 0,(X) in each class X € X, but not the values of the
reference slots. In our example, the object skeleton specifies the objects in class
Paper and the objects in class Cites, but the reference slots of the Cites relation,
Cites. Cited and Cites.Citing are unspecified. In other words, the probabilistic model
does not provide a model of the total number of citation links, but only a distribution

over their “endpoints”. Figure 4.2 shows an object skeleton for the citation domain.

4.3.1 Probabilistic model

In the case of reference uncertainty, we must specify a probabilistic model for the

value of the reference slots X.p. The domain of a reference slot X.p is the set of keys
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Figure 4.2: (a) A relational schema for the citation domain. (b) An object skeleton
for the citation domain.

(unique identifiers) of the objects in the class Y to which X.p refers. Thus, we need
to specify a probability distribution over the set of all objects in Y. For example, for
Cites. Clited, we must specify a distribution over the objects in class Paper.

A naive approach is to simply have the PRM specify a probability distribution
directly over the objects 0,(Y) in Y. For example for Cites.Cited, we would have to
specify a distribution over the primary keys of Paper. This approach has two major
flaws. Most obviously, this distribution would require a parameter for each object
in Y, leading to a very large number of parameters. This is a problem both from a
computational perspective — the model becomes very large, and from a statistical
perspective — we often would not have enough data to make robust estimates for the
parameters. More importantly, we want our dependency model to be general enough
to apply over all possible object skeletons o,; a distribution defined in terms of the
objects within a specific object skeleton would not apply to others.

In order to achieve a general and compact representation, we use the attributes
of Y to define the probability distribution. In this model, we partition the class Y
into subsets labeled 1, ..., 1, according to the values of some of its attributes, and
specify a probability for choosing each partition, i.e., a distribution over the partitions.
We then select an object within that partition uniformly.

For example, consider a description of movie theater showings as in Figure 4.3(a).
For the foreign key Shows. Mowvie, we can partition the class Movie by Genre, indicating

that a movie theater first selects the genre of movie it wants to show, and then selects
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Figure 4.3: (a) An example of reference uncertainty for a movie theater’s showings.
(b) A simple example of reference uncertainty in the citation domain

uniformly among the movies with the selected genre. For example, a movie theater
may be much more likely to show a movie which is a thriller in comparison to a foreign
movie. Having selected, for example, to show a thriller, the theater then selects the
actual movie to show uniformly from within the set of thrillers. In addition, just
as in the case of descriptive attributes, the partition choice can depend on other
attributes in our model. Thus, the selector attribute can have parents. As illustrated
in the figure, the choice of movie genre might depend on the type of theater. Consider
another example, in our citation domain. As shown in Figure 4.3(b), we can partition
the class Paper by Topic, indicating that the topic of a citing paper determines the
topics of the papers it cites; and then the cited paper is chosen uniformly among the
papers with the selected topic.

We make this intuition precise by defining, for each slot p, a partition function
W,. We place several restrictions on the partition function which are captured in the

following definition:

Definition 4.1: Let X.p be a reference slot with domain Y. Let ¥, : Y — Dom[V ]
be a function where Dom[¥ ] is a finite set of labels. We say that U, is a partition
function for p if there is a subset of the attributes of Y, P[p] C A(Y), such that for
any y € Y and any y' € Y, if the values of the attributes P[p| of y and y' are the
same, i.e., for each A € Plp|, y.A = y'.A, then ¥,(y) = ¥,(y'). We refer to P[p] as
the partition attributes for p.
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Thus, the values of the partition attributes are all that is required to determine the
partition to which an object belongs.

In our first example, Yspows Movie - Movie — {Foreign, Thriller} and the parti-
tion attributes ar P[Shows. Movie] = { Genre}. In the second example, U ites Cited :
Paper — { AL Theory} and the partition attributes are P|Cites. Cited] = { Topic}.

There are a number of natural methods for specifying the partition function. It
can be defined simply by having one partition for each possible combination of values
of the partition attributes, i.e., one partition for each value in the cross product of
the partition attribute values. Our examples above take this approach. In both cases,
there is only a single partition attribute, so specifying the partition function in this
manner is not too unwieldy, but for larger collections of partition attributes or for
partition attributes with large domains, this method for defining the partitioning
function may be problematic. A more flexible and scalable approach is to define the
partition function using a decision tree built over the partition attributes. In this
case, there is one partition for each of the leaves in the decision tree.

Each possible value 1 determines a subset of Y from which the value of p (the
referent) will be selected. For a particular instantiation Z of the database, we use
Z(Yy) to represent the set of objects in Z(Y") that fall into the partition .

We now represent a probabilistic model over the values of p by specifying a dis-
tribution over possible partitions, which encodes how likely the reference value of
p is to fall into one partition versus another. We formalize our intuition above by
introducing a selector attribute S,, whose domain is Dom[¥,]. The specification of
the probabilistic model for the selector attribute S, is the same as that of any other
attribute: it has a set of parents and a CPD. In our earlier example, the CPD of
Show.S pyie Might have as a parent Theater. Type. For each instantiation of the par-

ents, we have a distribution over Dom[S,].! The choice of value for S, determines

'Tn the current work, we treat this distribution as a simple multinomial distribution over this
value space. In general, however, we can represent such a distribution more compactly, e.g., using
a Bayesian network. For example, the genre of movies shown by a movie theater might depend on
its type (as above). However, the language of the movie can depend on the location of the theater.
Thus, the partition will be defined by P(Show.Movie) = {Movie. Genre, Movie. Language}, and its
parents would be Theater. Type and Theater. Location. We can represent this conditional distribution
more compactly by introducing a separate variable Syjovie Genre: With a parent Theater. Type, and
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the partition Y, from which the reference value of p is chosen; the choice of reference

value for p is uniformly distributed within this set.

Definition 4.2: A probabilistic relational model I1 with reference uncertainty over a
relational schema R has the same components as in Definition 2.2. In addition, for

each reference slot p € R(X) with Range[p] =Y, we have:
e a partition function ¥, with a set of partition attributes P[p] C A(Y);

e a new selector attribute S, within X which takes on values in the range of W ;

e a set of parents and a CPD for S,. 1

To define the semantics of this extension, we must define the probability of refer-

ence slots as well as descriptive attributes:

PZlo,T) = [ II I P.A|Pa(z.A)

X€EX z€0,(X) AcA(X)

Il P(z.5, = ¢[y] | Pa(z.5)))
PER(X),y=z.p |I(YT/’[3/])‘

(4.1)

where 9[y| refers to ¥,(y) — the partition that the partition function assigns y. Note
that the last term in Eq. (4.1) depends on Z in three ways: the interpretation of
x.p =y, the values of the attributes P[p] within the object y, and the size of Y.
There is one small problem with this definition: the probability is not well-defined
if there are no objects in a partition, i.e., |Z(Yy)| = 0. In this case, we will perform a

renormalization of the distribution for the selector attribute, removing all probability

P(z.S,=4[z.p]|Pa(x.5,))
[Yy|

in the above product. In other words, an instantiation where z.S, = 1 and % is an

mass from the empty partition. We then treat this term, , as 0

empty partition necessarily has probability zero.?

another Spjovie. Language’ with a parent Theater. Location.

2While an important technical detail, in practice, for the majority of our experimental domains,
we did not encounter empty partitions.
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4.3.2 Coherence of the Probabilistic Model

As in the case of PRMs with attribute uncertainty, we must be careful to guarantee
that our probability distribution is in fact coherent. In this case, the object skeleton
does not specify which objects are related to which, and therefore the mapping of
formal to actual parents depends on probabilistic choices made in the model. The as-
sociated ground Bayesian network will therefore be cumbersome and not particularly
intuitive. We define our coherence constraints using an instance dependency graph,

relative to our PRM and object skeleton.

Definition 4.3: The instance dependency graph for a PRM II and an object skeleton
0, is a graph G,, with the nodes and edges described below. For each class X and

each = € 0,(X), we have the following nodes:

e a node z.A for every descriptive attribute X.A;

e a node z.p and a node z.5,, for every reference slot X.p.
The dependency graph contains five types of edges:

e Type I edges: Consider any attribute (descriptive or selector) X.A and formal
parent X.B. We define an edge z.B — x.A, for every z € 0,(X).

e Type IT edges: Consider any attribute (descriptive or selector) X.A and formal
parent X.7.B where Dom[X.7] = Y. We define an edge y.B — z.A, for every
z € 0,(X) and y € 0,(Y).

e Type III edges: Consider any attribute X.A and formal parent X.7.B, where
T = p1,-.., Pk and Dom[p;] = X;. We define an edge z.p; — z.A, for every
x € 0,(X). In addition, for ¢ > 1, we add an edge z;.p; — z.A for for every
x; € 0,(X;) and for every x € 0,(X).

e Type IV edges: Consider any slot X.p and partition attribute Y.B € P|p|
for Y = Range[p]. We define an edge y.B — .S, for every z € 0,(X) and
y € o,(Y).

e Type V edges: Consider any slot X.p. We define an edge z.5, — x.p, for
every x € o,(X).
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We say that a dependency structure S is acyclic relative to an object skeleton o, if

the directed graph G, is acyclic. 1I

Intuitively, type I edges correspond to intra-object dependencies and type II edges to
inter-object dependencies. These are the same edges that we had in the dependency
graph for regular PRMs, except that they also apply to selector attributes. Moreover,
there is an important difference in our treatment of type II edges. In this case, the
skeleton does not specify the value of z.p, and hence we cannot determine from the
skeleton on which object y the attribute x.A actually depends. Therefore, our instance
dependency graph must include an edge from every attribute y.B.

Type I1II edges represent the fact that the actual choice of parent for x.A depends
on the value of the slots used to define it. When the parent is defined via a slot-chain,
the actual choice depends on the values of all the slots along the chain. Since we
cannot determine the particular object from the skeleton, we must include an edge
from every slot x;.p; potentially included in the chain.

Type V edges represent the dependency of a slot on the attributes defining the
associated partition. To see why this dependence is required, we observe that our
choice of reference value for z.p depends on the values of the partition attributes
Plx.p] of all of the different objects y in Y. Thus, these attributes must be determined
before z.p is determined. Finally, type V edges represent the fact that the actual
choice of parent for x.A depends on the value of the selector attributes for the slots
used to define it. In our example, as P[Shows.Movie] = {Movie.Genre}, the genres
of all movies must be determined before we can select the value of the reference slot
Shows. Mouvze.

Based on this definition, we can specify conditions under which Eq. (4.1) specifies

a coherent probability distribution.

Theorem 4.4: Let II be a PRM with reference uncertainty whose dependency struc-
ture S s acyclic relative to an object skeleton o,. Then Il and o, define a coherent

probability distribution over instantiations I that extend o, via Eq. (4.1).

Proof: The probability of an instantiation Z is the joint distribution over a set of

random variables defined via the object skeleton. We have two types of variables:
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e We have one random variable z.A for each z € 0,(X) and each A € A(X). Note
that this also includes variables of the form z.S, that correspond to selector

variables.

e We have one random variable z.p for each reference slot p € R(X) and z €
0,(X). This variable denotes the actual object in o,(Range[p]) that the slot

points to.

Let V7, ..., Vy be the entire set of variables defined by the object skeleton. Clearly,
there is a one-to-one mapping between joint assignments to these variables and instan-
tiations Z of the PRM that are consistent with o,. Because the instance dependency
graph is acyclic, we can assume without loss of generality that the ordering Vi, ..., Vy
is a topological sort of the instance dependency graph; thus, if V; = x.A, then all an-
cestors of V; in the instance dependency graph appear before it in the ordering.

Our proof will use the following argument. Assume that we can construct a non-
negative function f(V;, Vi_1,..., V1) which has the form of a conditional distribution
P(V; | Vi,...,Vi_1), i.e., for any assignment V7,...,V;_1 to V4,...,V;_1, we have that

Y fVi,Vicy, .., Vi) = 1. (4.2)
Vi

Then, by the chain rule for probabilities, we can define

N
P(Vi,...,Vy) = T[f(Vi,Viy,..., V)
i=1
N
= [[PVilWi,...,Vich).

i=1

If f satisfies Eq. (4.2), then P is a well-defined joint distribution.
All that remains is to define the function f in a way that it satisfies Eq. (4.2).

Specifically, the function f will be defined via Eq. (4.1). We consider the two types
of variables in our distribution.

Suppose that V; is of the form z.A, and consider any parent of X.A. There are

two cases:
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e If the parent is of the form X.B, then by the existence of type I edges, we have
that z.B precedes .4 in G,,. Hence, the variable x.B precedes V;.

o If the parent is of the form X.7.A, then by the existence of type III edges, for
each p; along 7 z;.p; precedes z.A in G, and hence, by the existence of type V
edges all of the z.5,, also precede x.A. Furthermore, by the existence of type II
edges, for any y € z.7, we have that y.B precedes z.A.

In both cases, we can define

as in Eq. (4.1). As the right-hand-side is simply a CPD in the PRM, it specifies a
well-defined conditional distribution, as required.

Now, suppose that V; is of the form z.p. In this case, the conditional probability de-
pends on 2.5, and the value of the partition attributes of all objects in o,(Range[p]).
By the existence of type V edges, .S, precedes z.p. Furthermore, by the existence
of type IV edges, we have that y.B for every Y.B € P|p| and y € o,(Range[p]). Con-
sequently, the assignment to V;,...,V; ; determines the number of objects in each
partition of values of P[p| and hence the set Z(Y,) for every 1.

Finally, we set

7|I(Y11Hy])| if Yly] = .5,

P(‘/;:y|‘/i_1,...,V1): .
0 otherwise

which is a well defined distribution on the objects in ¢,(Y). I

This theorem is limited in that it is very specific to the constraints of a given
object skeleton. As in the case of PRMs without relational uncertainty, we want to
learn a model in one setting, and be assured that it will be acyclic for any skeleton
we might encounter. We accomplish this goal by extending our definition of class
dependency graph. We do so by extending the class dependency graph to contain
edges that correspond to the edges we defined in the instance dependency graph.
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Figure 4.4: (a) A PRM for the movie theater example. The partition attributes
are indicated using dashed lines. (b) The dependency graph for the movie theater
example. The different edge types are labeled.

Definition 4.5: The class dependency graph Gpn for a PRM with reference uncer-
tainty IT has a node for each descriptive or selector attribute X.A and each reference

slot X.p, and the following edges:

e Type I edges: For any attribute X.A and formal parent X.B, we have an edge
X.B — X.A.

e Type II edges: For any attribute X.A and formal parent X.p.B where Range[p]
Y, we have an edge Y.B — X A.

e Type III edges: For any attribute X.A and formal parent Y.7.B, where
T = p1,..., P, and Dom[p;] = X;, we define an edge X.p; — X.A. In addition,
each 7 > 1, we add an edge X.p; = X.A.

e Type IV edges: For any slot X.p and partition attribute Y.B for ¥ =
Range[p|, we have an edge Y.B — X.S,.

e Type V edges: For any slot X.p, we have an edge X.5, = X.p.

Figure 4.4 shows the class dependency graph for our extended movie example.
It is now easy to show that if this class dependency graph is acyclic, then the

instance dependency graph is acyclic.
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Figure 4.5: Existence uncertainty in a simple citation domain.

Lemma 4.6: If the class dependency graph is acyclic for a PRM with reference
acyclic.

uncertainty 11, then for any object skeleton o,, the instance dependency graph is
Proof: Assume by contradiction that there is a cycle

1. V1 = 2o Voo xp Vi = 1. V1.

Then, because each of these object edges corresponds to an edge in the class depen-

dency graph, we have the following cycle in the class dependency graph:

X\ V= Xo Vo X3 Vi — X1 V4

This contradicts our hypothesis that the class dependency graph is acyclic. I
The following corollary follows immediately:

Corollary 4.7: Let II be a PRM with reference uncertainty whose class dependency

structure S is acyclic. For for any object skeleton o,, 11 and o, define a coherent
probability distribution over instantiations T that extend o, via Eq. (4.1).
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Figure 4.6: (a) An entity skeleton for the citation domain. (b) A CPD for the Exzists
attribute of Cites.

4.4 Existence Uncertainty

The second form of link uncertainty we introduce is called ezistence uncertainty.
In this case, we make no assumptions about the number of links that exist. The
number of links that exist and the identity of the links are all part of the probabilistic
model and can be used to make inferences about other attributes in our model. In
our citation example above, we might assume that the set of papers is part of our
background knowledge, but we want to provide an explicit model for the presence or
absence of citations. Unlike the reference uncertainty model of the previous section,
we do not assume that the total number of citations is fixed, but rather that each

potential citation can be present or absent.

4.4.1 Semantics of relational model

The object skeleton used for reference uncertainty assumes that the number of objects
in each relation is known. Thus, if we consider a division of objects into entities
and relations, the number of objects in classes of both types are fixed. Existence
uncertainty assumes even less background information than specified by the object
skeleton. Specifically, we assume that the number of relationship objects is not fixed
in advance. This situation is illustrated in Figure 4.5.

We assume that we are given only an entity skeleton o., which specifies the set

of objects in our domain only for the entity classes. Figure 4.6(a) shows an entity
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skeleton for the citation example. Our basic approach is to allow other objects within
the model — those in the relationship classes — to be undetermined, i.e., their exis-
tence can be uncertain. In other words, we introduce into the model all of the objects
that can potentially exist in it; with each of them, we associate a special binary vari-
able that tells us whether the object actually exists or not. We call entity classes
determined and relationship classes undetermined.

To specify the set of potential objects, we note that relationship classes typically
represent many-many relationships; they have at least two reference slots, which refer
to determined classes. For example, our Cite class has the two reference slots Citing
and Cited. Thus the potential domain of the Cites class in a given instantiation Z is
Z(Paper) x Z(Paper). Each “potential” object x in this class has the form Cite[y;, ya].
Each such object is associated with a binary attribute z.E that specifies whether

paper ¥; did or did not cite paper ys.

Definition 4.8: Consider a schema with determined and undetermined classes, and
let o, be an entity skeleton over this schema. We define the induced relational skeleton,

orloe], to be the relational skeleton that contains the following objects:

e If X is a determined class, then o,[o¢|(X) = 0. (X).

e Let X be an undetermined class with reference slots py, .. ., pr whose range types
are Y7, ..., Y} respectively. Then o,[0.](X) contains an object X[y, ..., yx] for
all tuples (y1,...,yx) € or[oe](Y1) X - -+ X gp[0e] (V).

The relations in o,[o.] are defined in the obvious way: Slots of objects of determined
classes are taken from the entity skeleton. Slots of objects of undetermined classes

are induced from the object definition: X[y1,. .., yx]-p; is vi. I

To ensure that the semantics of schemas with undetermined classes is well-defined,
we need a few tools. Specifically, we need to ensure that the set of potential objects
is well defined and finite. It is clear that if we allow cyclic references (e.g., an un-
determined class with a reference to itself), then the set of potential objects is not

finite. To avoid such situations, we need to put some requirements on the schema.
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Definition 4.9: A set of classes X is stratified if there exists a partial ordering over

the classes < such that for any reference slot X.p with range type Y, Y < X. 11

Lemma 4.10: If the set of undetermined classes in a schema is stratified, then given
any entity skeleton o, the number of potential objects in any undetermined class is
finite.

Proof: We prove this by induction on the stratification level of the class X. Let
p1, .-, P be the set of reference slots of X, and let ¥; = Range[p;]. Then Z(X) =
Z(Y1) x ---Z(Yg). If X is the first level in the stratification, it cannot refer to any
undetermined classes. Thus, the number of potential objects in Z(X) is simply the
product of the number of objects in each determined class Y; as specified in the entity
skeleton o.. Each term is finite, so the product of the terms will be finite.

Next, assume by induction that all of the classes at stratification levels less than
¢ are finite. If X is at level ¢ in the stratification, the constraints imposed by the
stratification imply that the range type of all of its reference slots are at stratification
levels < i. By our induction hypothesis, each of these classes is finite. Hence, the
cross product of the classes of the reference slots is finite and the number of potential

objects in X is finite. I

As discussed, each undetermined X has a special existence attribute X.E whose
values are V(E) = {true, false}. For uniformity of notation, we introduce an E
attribute for all classes; for classes that are determined, the E value is defined to be
always true. We require that all of the reference slots of a determined class X have a
range type which is also a determined class.

For a PRM with stratified undetermined classes, we define an instantiation to
be an assignment of values to the attributes, including the FEzists attribute, of all

potential objects.

4.4.2 Probabilistic model

We now specify the probabilistic model defined by the PRM. By treating the Ezists
attributes as standard descriptive attributes, we can essentially build our definition
directly on top of the definition of standard PRMs.
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Specifically, the existence attribute for an undetermined class is treated in the
same way as a descriptive attribute in our dependency model, in that it can have
parents and children, and has an associated CPD. Figure 4.6(b) illustrates a CPD for
the Cites. Exists attribute. In this example, the existence of a citation depends on the
topic of the citing paper and the topic of the cited paper; e.g., it is more likely that
citations will exist between papers with the same topic.?

Using the induced relational skeleton and treating the existence events as descrip-
tive attributes, we have set things up so that Eq. (2.2) applies with minor changes.

There are two minor changes to the definition of the distribution:

e We want to enforce that x.FE = false if x.p.E' = false for one of the slots p of X.
Suppose that X has the slots p, ..., pr, we define the effective CPD for X.E
as follows. Let Pa*(X.E) = Pa(X.E) U{X.p1.E, ..., X.ps.E}, and define

P(X.E |Pa(X.E)) if X.p;.E = true,Vi=1,...,k
P(X.E | Par(X.E)) = | T EIPaXE)) il Xop e e
0 otherwise
e We want to “decouple” the attributes of non-existent objects from the rest
of the PRM. Thus, if X.A is a descriptive attribute, we define Pa*(X.A) =
Pa(X.A)U{X.E}, and

P(X.A|Pa(X.A)) if X.F = true

—1 otherwise

P*(X.A | Pa*(X.A)) = {
V(X.4)]

It is easy to verify that in both cases P*(X.A | Pa*(X.A)) is a legal conditional
distribution.

In effect, these constraints specify a new PRM II*, in which we treat X.F as a
standard descriptive attribute. For each attribute (including the Exists attribute),
we define the parents of X.A in IT* to be Pa*(X.A) and the associated CPD to be

3This is similar to the ‘encyclopedic’ links discussed by [Ghani et al., 2001]. Our exists models can
capture each of the types of links (encyclopedic, co-referencing, and partial co-referencing) defined
in [Ghani et al., 2001]. Moreover our exists models are much more general, and can capture much
richer patterns in the existence of links.
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P*(X.A | Pa*(X.A)).
Given an entity skeleton o., a PRM with exists uncertainty Il specifies a distri-

bution over a set of instantiations Z consistent with o,[o.]:

P(Z | o, 1I) = P(Z | 0,0, 1T7) H H H P*(z.A | Pa*(z.4)) (4.3)
XeX xcorfoe](X) AcA(x)

We can similarly define the instance dependency graph and the class dependency
graph for a PRM II with existence uncertainty using the corresponding notions for
the standard PRM II*. As there, we require that the class dependency graph G-
is acyclic. One immediate consequence of this requirement is that the schema is
stratified.

Lemma 4.11: If the class dependency graph G- is acyclic, then there is a stratifi-

cation of the undetermined classes.

Proof: The stratification is given by an ordering of Fxists attributes consistent with
the class dependency graph. Because the class dependency graph has an edge from
Y.E to X.E for every slot p € R(X) whose range type is Y, Y will precede X in the

constructed ordering. Hence it is a stratification ordering. 1
Furthermore, based on this definition, we can now easily prove the following result:

Theorem 4.12: Let Il be a PRM with existence uncertainty and an acyclic class
dependency graph. Let o, be an entity skeleton. Then Eq. (4.3) defines a coherent

distribution on all instantiations T of the induced relational skeleton o,[o].

Proof: By Lemma 4.11 and Lemma 4.10 we have that o,[o.] is a well-defined rela-
tional skeleton. Using the assumption that G« is acyclic, we can apply Theorem 2.5
to IT* and conclude that IT* defines a coherent distribution over instances to o,, and

hence so does II. 1

One potential shortcoming of our semantics is that it defines probabilities over
instances that include assignment of descriptive attributes to non-existent objects.
This potentially presents a problem. An actual instantiation (i.e., a database) will

contain value assignments only for the descriptive attributes of existing objects. This
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suggests that in order to compute the likelihood of a database we need to sum over
all possible values of descriptive attributes of potential objects that do not exist.
(As we shall see, such likelihood computations are an integral part of our learning
procedure.) Fortunately, we can easily see that the definition of P* ensures that if
x.FE = 0, then variables of the form z.A are independent of all other variables in
the instance. Thus, we can ignore such descriptive attributes when we compute the
likelihood of a database.

The situation with Ezists attribute is somewhat more complex. When we observe
a database, we also observe that many potential objects do not exist. The non-
existence of these objects can provide information about other attributes in the model,
which is taken into consideration by the correlations between them and the Ezists
attributes in the PRM. At first glance, this idea presents computational difficulties,
as there can be a very large number of non-existent objects. However, we note that
the definition of P* is such that we need to compute P*(z.E = false | Pa*(z.E))
only for objects whose slots refer to existing objects, thereby bounding the number

of non-existent objects we have to consider.

4.5 Example: Word models

Our two models of link uncertainty induce simple yet intuitive models for link exis-
tence. We illustrate this by showing a natural connection to the two most common
models of word appearance in documents. Suppose our domain contains two entity
classes: Document, representing the set of documents in our corpus, and Words, rep-
resenting the words contained in our dictionary. Documents may have descriptive
attributes such as Topic; dictionary entries have the attribute Word, which is the
word itself, and may also have additional attributes such as the type of word. The
relationship class Appearance represents the appearance of words in documents; it has
two slots InDoc and HasWord. In this schema, structural uncertainty corresponds to
a probabilistic model of the appearance of words in documents.

In existence uncertainty, the class Appearance is an undetermined class; the poten-

tial objects in this class correspond to document-word pairs (d, w), and the assertion



4.5. EXAMPLE: WORD MODELS 89

Appearance(d, w).E = true means that the particular dictionary entry w appears in
the particular document d. Now, suppose that Appearance.F has the parents Appear-
ance.InDoc.Topic and Appearance.HasWord. Word. This implies, that, for each word
w and topic ¢, we have a parameter p,; which is the probability that a word w ap-
pears in a document of topic ¢. Furthermore, the different events Appearance(d, w).E
are conditionally independent given the topic ¢. It is easy to see that this model is
equivalent to the model often called binary naive Bayes model [McCallum and Nigam,
1998], where the class variable is the topic and the conditionally independent features
are binary variables corresponding to the appearance of different dictionary entries

in the document.

When using reference uncertainty, we can consider several modeling alternatives.
The most straightforward model is to view a document as a bag of words. Now,
Appearance also includes an attribute that designates the position of the word in the
document. Thus, a document of n words has n related Appearance objects. We can
provide a probabilistic model of word appearance by using reference uncertainty over
the slot Appearance.HasWord. In particular, if we choose P[Appearance. HasWord| =
Words. Word, then we have a multinomial distribution over the words in the dic-
tionary. If we set Appearance.InDoc.Topic as the parent of the selector variable
Appearance.S g, s Word> then we get a different multinomial distribution over words
for each topic. The result is a model where a document is viewed as a sequence of
independent samples from a multinomial distribution over the dictionary, where the
sample distribution depends on the document topic. This document model is called

the multinomial Naive Bayesian model [McCallum and Nigam, 1998|.

Thus, for this simple PRM structure, the two forms of structural uncertainty lead
to models that are well-studied within the statistical NLP community. However, the
language of PRMs allows us to represent more complex structures: Both the existence
and reference uncertainty can depend on properties of words rather than on the exact
identity of the word; for example they can also depend on other attributes, such as

the research area of the document’s author.
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4.6 Learning PRMs with Link Uncertainty

The previous sections described two variants of the PRM model with new power. Our
aim is to learn such models from data: given a schema and an instance, construct
a PRM that describes the dependencies between objects in the schema. As in the
previous chapter, the PRM model is learned using the same type of training data: a
complete instantiation that describes a set of objects, their attribute values and their
reference slots. Here, however, we attempt to learn somewhat different models from
this data. In the previous chapter, for PRMs with attribute uncertainty, we learn the
probability of attributes given other attributes. For PRMs with reference uncertainty,
in addition we also attempt to learn the rules that govern the link models. For PRMs
with existence uncertainty we learn the probability of existence of relationship objects.

As before, separate the learning problem into two tasks: evaluating the “goodness”

of a candidate structure, and searching the space of legal candidate structures.

4.6.1 Learning with reference uncertainty

The extension to scoring required to deal with reference uncertainty is not a difficult
one. Once we fix the partitions defined by the attributes P[p], a CPD for S, compactly
defines a distribution over values of p. Thus, scoring the success in predicting the
value of p can be done efficiently using standard Bayesian methods used for attribute
uncertainty (e.g., using a standard Dirichlet prior over values of p).

The extension to search the model space for incorporating reference uncertainty
involves expanding our search operators to allow the addition (and deletion) of at-
tributes to partition definition for each reference slot. Initially, the partition of the
range class for a slot X.p is not given in the model. Therefore, we must also search
for the appropriate set of attributes P[p]. We introduce two new operators refine
and abstract, which modify the partition by adding and deleting attributes from
Plp]- Initially, Plp] is empty for each p. The refine operator adds an attribute into
Plp]; the abstract operator deletes one. As mentioned earlier, we can define the
partition simply by looking at the cross product of the values for each of the partition

attributes, or using a decision tree. In the case of a decision tree, refine adds a split
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to one of the leaves and abstract removes a split. These newly introduced oper-
ators are treated by the search algorithm in exactly the same way as the standard
edge-manipulation operators: the change in the score is evaluated for each possible
operator, and the algorithm selects the best one to execute.

We note that, as usual, the decomposition of the score can be exploited to sub-
stantially speed up the search. In general, the score change resulting from an operator
w is re-evaluated only after applying an operator w’ that modifies the parent or parti-
tion set of an attribute that w modifies. This is also true when we consider operators

that modify the parent of selector attributes.

4.6.2 Learning with Existence Uncertainty

The extension of the Bayesian score to PRMs with existence uncertainty is straight-
forward; the exists attribute is simply a new descriptive attribute. The only new issue
is how to compute sufficient statistics that include existence attributes x.E without
explicitly enumerating all the non-existent entities. We perform this computation by
counting, for each possible instantiation of Pa(X.E), the number of potential objects
with that instantiation, and subtracting the actual number of objects x with that
parent instantiation.

Let u be a particular instantiation of Pa(X.E). To compute C x g[true, u], we can
use standard database query to compute how many objects x € o(X) have Pa(z.E) =
u. To compute Cx g[false, u], we need to compute the number of potential entities.
We can do this without explicitly considering each (z1,...,zx) € Z(Y1) X ---Z(Y)
by decomposing the computation as follows: Let p be a reference slot of X with
Range[p| = Y. Let Pa,(X.E) be the subset of parents of X.E along slot p and let
u, be the corresponding instantiation. We count the number of y consistent with
u,. If Pa,(X.E) is empty, this count is simply |Z(Y")|. The product of these counts
is the number of potential entities. To compute Cx g[false, u], we simply subtract
C x g[true, u] from this number.

No extensions to the search algorithm are required to handle existence uncertainty.

We simply introduce the new attributes X.E, and integrate them into the search
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Figure 4.7: 1lgy, the PRM learned using reference uncertainty. The reference slots
are Role.Mowvie, Role.Actor, Vote.Movie, and Vote.Person. Dashed lines indicate
attributes used in defining the partition.

space. Our search algorithm now considers operators that add, delete or reverse
edges involving the exist attributes. As usual, we enforce coherence using the class
dependency graph. In addition to having an edge from Y.E to X.E for every slot
p € R(X) whose range type is Y, when we add an edge from Y.B to X.A, we add an
edge from Y.F to X.E and an edge from Y.E to X.A.

4.7 Experimental Results

We evaluated our learning algorithms on several real-world data sets. In this section,
we describe the PRM learned for a domain using both of our models for representing
link uncertainty. In each case, we compare against a simple baseline model. Our
experiments used the Bayesian score with a uniform Dirichlet parameter prior with
equivalent sample size @ = 2, and a uniform distribution over structures. The par-
titions are defined using the cross-product of values of the partition attributes; they

are not defined using decision trees.
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4.7.1 Predictive ability

We first tested whether the additional expressive power allows us to better capture
regularities in the domain. Toward this end, we evaluated the likelihood of test data
given our learned model. Unfortunately, we cannot directly compare the likelihood of
the EU and RU models, since the PRMs involve different sets of probabilistic events
and condition on varying amounts of background knowledge. Thus to evaluate our
models we compare the PRM with link uncertainty to a “baseline” model which in-
corporates link probabilities, but makes the “null” assumption that the link structure
is uncorrelated with the descriptive attributes. For reference uncertainty, the baseline
has P[p] = 0 for each slot. For existence uncertainty, it forces z.F to have no parents
in the model.

We evaluated these variants on a dataset that combines information about movies
and actors from the Internet Movie Database* and information about people’s ratings
of movies from the Each Movie dataset,> where each person’s demographic informa-
tion was extended with census information for their zipcode. From these, we con-
structed five classes (with approximate sizes shown): Movie (1600), Actor (35,000);
Role (50,000), Person (25,000), and Vote (300,000).

We modeled uncertainty about the link structure of the classes Role (relating actors
to movies) and Vote (relating people to movies). For RU this was done by modeling
the reference uncertainty of the slots of these objects. For EU this was done by
modeling probability of the existence of such objects. We evaluated our methods
using ten-fold cross validation. To do this, we partitioned our data into ten subsets.
For each each subset, we trained on nine-tenths of the data (the data not included
in the subset) and evaluated the log-likelihood of the held-out test subset. We then
average the results. In both cases, the model using link uncertainty significantly
outperformed its “baseline” counterpart. For RU, we obtained a log-likelihood of
—149,705 as compared to —152,280 for the baseline model. For EU, we obtained
a log-likelihood of —210,044 for the EU model, as compared to —213,798 for the

baseline EU model. Thus, we see that the model where the relational structure is

4(©1990-2000 Internet Movie Database Limited.
Shttp://www.research.digital.com/SRC/EachMovie.
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correlated with the attribute values is substantially more predictive than the baseline
model that takes them to be independent: although any particular link is still a
low-probability event, our link uncertainty models are much more predictive of its
presence.

Figure 4.7 shows the RU model learned. In the RU model we partition each of
the movie reference slots on genre attributes; we partition the actor reference slot on
the actor’s gender; and we partition the person reference of votes on age, gender and
education. An examination of the model shows, for example, that younger voters are
much more likely to have voted on action movies and that male action movies roles
are more likely to exist than female roles. Furthermore, the actor reference slot has
Movie. Action as a parent; the CPD encodes the fact that male actors are more likely
to have roles in action movies than female actors.

The EU model learned had an exist attribute for both vote and role. In the model
we learned, the existence of a vote depended on the age of the voter and the movie
genre, and the existence of a role depended on the gender of the actor and the movie

genre.

4.7.2 Classification

While we cannot directly compare the likelihood of the EU and RU models, we can
compare the predictive performance of each model. In this set of experiments, we
evaluate the predictive accuracy of the different models on two datasets. It is quite
interesting to note that we observed that both models of link uncertainty significantly
increase our prediction accuracy.

We considered the conjecture that by modeling link structure we can improve
the prediction of descriptive attributes. Here, we hide some attribute of a test-set
object, and compute the probability over its possible values given the values of other
attributes on the one hand, or the values of other attributes and the link structure on
the other. We tested on two similar domains: Cora [McCallum et al., 2000] and We-
bKB [Craven et al., 1998]. The Cora dataset contains 4000 machine learning papers,
each with a seven-valued Topic attribute, and 6000 citations. The WebKB dataset
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Table 4.1: Prediction accuracy of topic/category attribute of documents in the Cora
and WebKB datasets. Accuracies and reported standard deviations are based on a
10-fold cross validation.

0.9

@ Naive-Baye
B RU Citing
O RU Cited
0.85 M Exists
. 081 ‘ ‘ Cora ‘ WebKB ‘
baseline | 75 & 2.0 | 74 + 2.5
< s RU Citing | 81 £ 1.7 | 78 + 2.3
RUCited | 79 +£1.3 | 77 £ 1.5
EU 86 +£0.9 |82 +1.3
0.7 1
0.65
Cora WebKB

contains approximately 4000 pages from four Computer Science departments, with a
five-valued attribute representing their “type”, and 10,000 links between web pages.
In both datasets we also have access to the content of the document (webpage/paper),
which we summarize using a set of attributes that represent the presence of different
words on the page (a binary Naive Bayes model). After stemming and removing stop
words and rare words, the dictionary contains 1400 words in the Cora domain, and
800 words in the WebKB domain.

In both domains, we compared the performance of models that use only word
appearance information to predict the category of the document with models that
also used probabilistic information about the link from one document to another. We
fixed the dependency structure of the models, using basically the same structure for
both domains. In the Cora EU model, the existence of a citation depends on the topic
of the citing paper and the cited paper. We evaluated two symmetrical RU models.
In the first, we partition the citing paper by topic, inducing a distribution over the
topic of Cites.Citing. The parent of the selector variable is Cites. Cited. Topic. The

second model is symmetrical, using reference uncertainty over the cited paper.
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Table 4.1 shows prediction accuracy on both data sets. We see that both mod-
els of link uncertainty significantly improve the accuracy scores, although existence
uncertainty seems to be superior. Interestingly, the variant of the RU model that
models reference uncertainty over the citing paper based on the topics of papers cited
(or the from webpage based on the categories of pages to which it points) outperforms
the cited variant. However, in all cases, the addition of citation/hyperlink informa-
tion helps resolve ambiguous cases that are misclassified by the baseline model that

considers words alone.

For example, paper #5006 is a Probabilistic Methods paper, but is classified based
on its words as a Genetic Algorithms paper (with probability 0.54). However, the
paper cites two Probabilistic Methods papers, and is cited by three Probabilistic
Methods papers, leading both the EU and RU models to classify it correctly. Pa-
per #1272 contains words such as rule, theori, refin, induct, decis, and tree. The
baseline model classifies it as a Rule Learning paper (probability 0.96). However,
this paper cites one Neural Networks and one Reinforcement Learning paper, and
is cited by seven Neural Networks, five Case-Based Reasoning, fourteen Rule Learn-
ing, three Genetic Algorithms, and seventeen Theory papers. The Cora EU model
assigns it probability 0.99 of being a Theory paper, which is the correct topic. The
first RU model assigns it a probability 0.56 of being Rule Learning paper, whereas
the symmetric RU model classifies it correctly. In this case, an explanation of this
phenomenon is that most of the information for this paper is in the topics of citing
papers; it appears that RU models can make better use of information in the parents

of the selector variable than in the partitioning variables.

4.7.3 Collective Classification

In the preceding experiments, the topics of all the linked papers or webpages were
observed and we made a prediction for a single unobserved topic. In a more realistic
setting, we will have a whole collection of unlabelled instances that are linked together.
We can no longer make each prediction in isolation, since for example, the (predicted)

topic of one paper influences the (predicted) topics of the papers it cites.
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Figure 4.8: (a) PRM Model for WebKB domain; (b) Fragment of unrolled network
for WebKB model.

This task of collective classification requires us to reason about the entire col-
lection of instances at once. In our framework, this translates into computing the
posterior distribution over the unobserved variables given the data and assigning
each unobserved variable its most likely value. This requires inference over the un-
rolled network defined by instantiating a PRM for a particular document collection.
We cannot decompose this task into separate inference tasks over the objects in the
model, as they are all correlated. In general, the unrolled network can be fairly com-
plex, involving many documents that are linked in various ways. (In our experiments,
the networks involve hundreds of thousands of nodes.) Exact inference over these net-
works is clearly impractical, so we must resort to approximate inference. Following
Taskar et al. [2001], we use belief propagation for the task of inference in PRMs. An
overview of the belief propagation algorithm was given in Section 2.5.2.

We evaluated several existence uncertainty models for the task of collective classi-
fication on the WebKB dataset [Craven et al., 1998|. Recall that the WebKB dataset
consists of webpages in the Computer Science departments of four schools: Cornell,
University of Texas at Austin, University of Washington, and University of Wisconsin.

Figure 4.8(a) shows a PRM for this domain. For clarity, the Page class is dupli-
cated in the figure, once as From-Page and once as To-Page. Each page has a category
attribute representing the type of web page which is one of {course, professor, stu-
dent, project, other}. The text content of the web page is represented using a set

of binary attributes that indicate the presence of different words on the page. After
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stemming, removing stop words and rare words, the dictionary contains around 800
words.

In addition, each page was labelled with a “category hub” attribute, whose do-
main is {course, professor, student, project, none}. A page was labelled with a hub of
a particular type (course, professor, student, or project) if it pointed to many pages
of that category. The prevalence of such hubs (or directories) on the web was inves-
tigated by Kleinberg [1999], who noted that pages of the same topic or category are
often linked to by hub pages. This insight was utilized in the classification algorithm
FOIL-HUBS of [Slattery and Mitchell, 2000] for the WebKB dataset. Pages in the
training set were hand-labeled with the hub attribute, but the attribute was hidden in
the test data. Each school had one hub page of each category, except for Washington
which does not have a project hub page and Wisconsin which does not have a faculty
web page in the data set.

The data set also describes the links between the web pages within a given school.
In addition, for each link between pages, the dataset specifies the words (one or more)
on the anchor link. There are approximately 100 possible anchor words.

In these experiments, we included only pages that have at least one out link. The
number of resulting pages for each school are: Cornell (318), Texas (319), Washington
(420), and Wisconsin (465). The number of links for each school are: Cornell (923),
Texas (1041), Washington (1534) and Wisconsin (1823).

Given a particular set of hyperlinked pages, the template is instantiated to produce
an “unrolled” Bayesian network. Figure 4.8(b) shows a fragment of such a network
for three webpages. The two existing links from page 1 to page 2 and 3 are shown
while non-existing links are omitted for clarity (but still play a role in the inference).
Also shown are the anchor word for link 1 and two anchor words for link 2. Note
that during classification, existence of links and anchor words in the links are used
as evidence to infer categories of the web pages. Hence, our unrolled Bayes net has
active paths between categories of pages through the v-structures at Link.Fxists and
Anchor. Word. These active paths capture exactly the pattern of relational inference

we set out to model.

We compared the performance of several models on predicting web page categories.
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In each case, we learned a model from three schools, and tested the performance of
the learned model on the remaining school. Our experiments used the Bayesian score
with a uniform Dirichlet parameter prior with equivalent sample size a = 2.

All models we compared can be viewed as a subset of the model in Figure 4.8(a).
Our baseline is a standard binomial Naive Bayes model that uses only words on the

page to predict the category of the page. We evaluated the following set of models:

1. Naive-Bayes: Our baseline model.

2. Anchors: This model uses both words on the page and anchor words on the

links to predict the category.

3. Exists: This model adds uncertainty over the link relationship to the simple
baseline model; the parents of Link.Ezists are Link.From-Page.Category and

Link. To-Page. Category.

4. Ex+Hubs: This model extends the Exists model with Hubs. In the model
Link. Exists depends on Link. From-Page. Hub in addition to the categories of each
of the pages.

5. Ex+Anchors: This model extends the Exists model with includes anchor

words (but not hubs).

6. Ex+Hubs+Anchors: The final model includes existence uncertainty, hubs

and anchor words.

Figure 4.9 compares the accuracy achieved by the different models on each of the
schools. The final model, Ex+Hubs+ Anchors, which incorporates existence un-
certainty, hubs and anchor words, consistently outperforms the Naive-Bayes model
by a significant amount. In addition, it outperforms any of the simpler variants.

Our algorithm was fairly successful at identifying the hubs in the test set: it
recognized 8 out of 14 hubs correctly. However, precision was not very high: 38 pages
were mislabeled as hubs. The pages mislabeled as hubs often pointed to many pages
that had been labeled as Other web pages. However, on further inspection, these hub
pages often were directories pointing to pages that were likely to be researcher home

pages or course home pages and seemed to have been mislabeled in the training set
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Figure 4.9: Comparison of accuracy of several models ranging from the simplest
model, Naive-Bayes to the most complex model, Ex+Hubs+ Anchors, which in-
corporates existence uncertainty, hubs and link anchor words. In each case, a model
was learned for 3 schools and tested on the remaining school.

as Other. We investigated how much these misclassifications hurt the performance
by revealing the labels of the hub attribute in the test data. The improvement in
classification accuracy of Ex+Hubs+ Anchors model was roughly 2%.

4.8 Conclusions

In this chapter, we proposed two representations for link uncertainty: reference uncer-
tainty and existence uncertainty. Reference uncertainty models the process by which
reference slots are selected from a given set. Existence uncertainty provides a model
for whether a relation exists between two objects. We have shown how to integrate
them within our learning framework, and presented results showing that they allow
interesting patterns to be learned. The ability to learn probabilistic models of rela-
tional structure has many applications. It allows us to predict whether two objects
with given properties are more likely to be related to each other. More surprisingly,

the link structure also allows us to predict attribute values of interest. For example,
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we can better predict the topic of a paper by using the fact that it cites certain types
of papers. Both of the models we propose are relatively simple. They make certain
independence assumptions that often will not hold. Thus the significance of our re-
sults is that even these simplistic models of link uncertainty provide us with increased
predictive accuracy.

The ability to learn probabilistic models of relational structure is an exciting new
direction for machine learning. Our treatment here only scratches the surface of
this problem. In particular, although useful, neither of the representations proposed
for structural uncertainty is entirely satisfying as a generative model. Furthermore,
both models are restricted to considering the probabilistic model of a single relational
“link” in isolation. These simple models can be seen as the naive Bayes of structural
uncertainty; in practice, relational patterns involve multiple links, e.g., the concepts
of hubs and authorities. In future work, we hope to provide a unified framework for
representing and learning probabilistic models of relational “fingerprints” involving

multiple entities and links.
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Chapter 5

PRMs with Class Hierarchies

Here we examine the benefit that additional domain structure in the form of IS-A
hierarchies provides during the construction of PRMs. We show how the introduction
of subclasses allows us to use inheritance and specialization to refine our models so
that they more accurately capture the dependencies in the data. We show how to
learn PRMs with class hierarchies (PRM-CH) in two settings. In the first, the class
hierarchy is provided, as part of the input, in the relational schema for the domain. In
the second setting, in addition to learning the PRM, we must learn the class hierarchy.
An important benefit provided by the class hierarchy mechanism is that PRM-CHs
allow us to build models that can refer to both particular instances in our domain,
and classes of objects in our domain. This capability allows us to bridge the gap

between a class-based model and an attribute-value-based model.

5.1 Introduction

Consider the problem of collaborative filtering [Resnick et al., 1994, Shardanand et al.,
1995, Breese et al., 1998], in which we utilize collected individual preferences to make
a collaborative recommendation. Ideally, by finding individuals with similar tastes or
preferences to a new user, we can use their combined preferences to make predictions
for the new user’s ratings for services or products. The canonical example is a movie

recommender system, in which we have the rankings by large number of people on
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a collection of movies. We then make recommendations by finding users who have
similar taste to the new user (i.e., who have given similar rankings on some subset
of the movies), and, for movies the new user has not yet seen, use the collective

prediction of similar users to predict the new user’s reaction.

One method for building a recommender system is to build a model of movie
viewers and the movies that they enjoy. One approach, though certainly not the
most common one, is to build a Bayesian network over the movies. The model
represents the preferences of a single viewer, which has a random variable for each
movie. Each person in the training set has a vector that represents the movies that
they have watched, and their ratings for that movie. From this data set, we can learn
a Bayesian network that represents the correlations between their preferences for the
different films. Thus, we could learn that the user’s rating of one movie, say “Forrest
Gump”, depends on her ratings for the movies that are its parents in the learned
network, say “Big” and “Caddy Shack”. Breese et al. [1998] compare this approach
to other collaborative filtering approaches and show that it is superior in its ability

to predict TV-show preferences.

This approach is limited in that it models only the relationships between instances
of one class, the movies. We cannot model broad dependencies, such as whether a
person enjoys British comedies depends on whether they like American slap-stick
comedies. In addition, we cannot model relationships between people. For example,
if my roommate recommends “Four Weddings and a Funeral”, I may be more likely
to take her advice and rent the movie (assuming that I think we have similar tastes;
her recommendation may also have the opposite effect motivating me to avoid the

movie entirely).

As we have seen, PRMs allow us to represent rich dependency structures, involving
multiple entities and the relations between them; they allow the attributes of an entity
to depend probabilistically on properties of related entities. However, PRMs model
the domain at the class level; i.e., all instances in the same class share the same
dependency model. This model is then instantiated for particular situations. For
example, a person’s ratings for a movie can depend both on the attributes of the

person and the attributes of the movie. For a given situation, involving some set of
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people and movies, this dependency model will be used several times. This allows
us, for example, to use the properties and ratings of one person to reach conclusions
about the properties of a movie (e.g., how funny it is), and thereby to reach conclusions

about the chances that another viewer would like it.

In Chapter 3 we showed how to learn PRMs from relational data, and presented
techniques for learning both parameters and the probabilistic dependency structure
for the attributes in a relational model. This learning algorithm exploits the fact that
the models are constructed at the class level. Thus, an observation concerning one
person and one movie is used to refine the class model applied to all people and all
movies, hence making much broader use of our data. This has the advantage that
we can learn robust statistical models despite the fact that each individual may have
seen only a few movies and each movie may have been seen by only a small number
of people.

However, this class-based approach also has disadvantages: all elements of the
same class must use the same model. For example, we cannot have the rating of a
user for documentaries depend on one set of parents, and his ratings for comedies
depend on another set of parents. Thus, we can not specialize the local probability
models depending on the movie category or class. In addition, we cannot have the
rating for documentaries depend on the rating for action movies (here for example,
the correlation may be negative). The dependency model for these two ratings must
be identical, and we cannot have the rating for a movie depend on itself. Finally, we
cannot have the rating for a particular movie such as “Forest Gump” depend on the
rating for another movie instance such as “Big”: The dependency model for these
two ratings must be identical, and we cannot have the rating for a movie depend on
itself.

In this chapter, we propose methods for discovering useful refinements of a PRM’s
dependency model. We begin in Section 5.2 by defining Probabilistic Relational Mod-
els with Class Hierarchies (PRMs-CH). PRMs-CH extend PRMs by including class
hierarchies over the objects. Subclasses allow us to specialize the probabilistic model
for some instances of a class. For example, we might consider subclasses of movies,

such as documentaries, action movies, British comedies, etc. The popularity of an
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action movie (a subclass of movies) may depend on its budget, whereas the popularity
of documentary (another subclass of movies) may depend on the reputation of the di-
rector. Subclassing allows us to model probabilistic dependencies at the appropriate
level of detail. For example, we can have the parents of the popularity attribute in the
action movie subclass be different than the parents of the same attribute in the docu-
mentary subclass. In addition, subclassing allows additional dependency paths to be
represented in the model, that would not be allowed in a PRM that does not support
subclasses. For example, whether I enjoy action movies may depend on whether I
enjoy documentaries. PRMs-CH provide a general mechanism that allow us to define
a rich set of dependencies. In fact, they provide the basic representational power
that will allow us to model dependency models for individuals (as done in Bayesian

Networks) and dependency models for categories of individuals (as done in PRMs).

In Section 4.6 we turn to some of the practical issues involved in learning PRMs-
CH. First, we examine the case where the class hierarchy is given as input, as part of
the relational schema. Our learning task is then simply to choose the appropriate level
at which to model the probabilistic dependencies — at the class level, or specialized
according to some subclass. We then turn to the case where the class hierarchy is not
provided, and in addition to learning the probabilistic model, we must also discover
the structure of the class hierarchy. In Section 5.4, we present some experimental
results illustrating how we have expanded the space of probabilistic models considered
by our learning algorithm, and how this allows us to learn more expressive and more

accurate models.

As described in chapter Chapter 2, PRMs extend the representational power of
(propositional) BNs to relational domains. In chapters Chapter 3 and Chapter 4
we examined how to learn richer probabilistic relational models. We described the
semantics of the models and proposed learning algorithms for models with attribute
uncertainty and models with structural uncertainty. In this chapter, we describe
models that combine a class-based relational model with more traditional instance-
based Bayesian networks. The tool we will use to provide this capability is a class

inheritance hierarchy.
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5.2 PRMs with Class Hierarchies

In this section, we describe refinements of our probabilistic model using class hier-
archies. To motivate our extensions, consider a simple PRM for the movie domain.
Let us restrict attention to the three classes Person, Movie, and Vote. We can have
the attributes of Vote depending on attributes of the person voting (via the slot
Vote. Voter) and on attributes of the movie (via the slot Vote. Movie). However, given
the attributes of all the people and the movie in the model, the different votes are
(conditionally) independent and identically distributed. By contrast, in the BN model
for this domain, each movie could have a different dependency model; we could even

have one depend on the other.

5.2.1 Class Hierarchies

Our aim is to refine the notion of a class, such as Movie, into finer subclasses, such
as “action-movies”, “comedy”, “documentaries”, etc. Moreover, we want to allow
recursive refinements of this structure. So that we might refine “action-movies” into
the subclasses “spy-movies”, “car-chase-movies”, and “kung-fu-movies”.

Formally, we introduce the notion of a probabilistic class hierarchy, similar to
that introduced in Koller and Pfeffer [1997, 1998]. We assume that the original set
of classes define, at the schema level, the structure of an object (attributes and slots
associated with it). Unlike the subclass mechanism in Koller and Pfeffer [1997, 1998],
subclasses do not change this object structure.

A class hierarchy for a class X defines an IS-A hierarchy for objects from class
X. The root of the class hierarchy is simply class X itself. The subclasses of X
are organized into an inheritance hierarchy. The leaves of the class hierarchy de-
scribe basic classes—these are the most specific characterization of objects that occur
in the database. The interior nodes describe abstractions of the base-level classes.
The intent is that the class hierarchy is designed to capture useful and meaningful
abstractions in a particular domain.

More formally, a hierarchy H[X] for a class X is rooted directed acyclic graph
defined by a subclass relation < over a a finite set of subclasses C[X]. For ¢, d € C[X],
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[ Action [ Documentary ]

v

[ Spy-Movie ] [ Car-Chase-Movie ] [ Kung-Fu-Movie ]

Figure 5.1: A simple class hierarchy for Movie.

if ¢ < d, we say that X, is a direct subclass of X4, and Xy is a direct superclass of X..
The root of the tree is the class X. Classt corresponds to the original class X. We
define <* to be the transitive closure of <; if ¢ <* d, we say that X, is a subclass of
Xg4.

For example we may have the class Movie and its direct subclasses Comedy,
Action-Movie, and Documentary. The subclass Action-Movie might, in turn, have
the direct subclasses Spy-Movie, Car-Chase-Movie, and Kung-Fu-Movie. We have that
Spy-Mouvie is a direct subclass of Action-Movie, and a subclass (but not a direct one)
of the root class Movie. Figure 5.1 shows the simple class hierarchy we have just
described.

We define the leaves of the hierarchy to be the basic subclasses, denoted basic(H|[X]).
We achieve subclassing for a class X by requiring that there be an additional sub-
class indicator attribute X.Class that determines the basic class to which an object
belongs (in theory objects could be members of a non-basic class, however we have
not examined that possibility here). Thus, if ¢ is a subclass, then Z(X,) contains all
objects x € X for which z.Class <* ¢, i.e., all objects that are in some basic class
which is a subclass of ¢. In our example, Movie has a subclass indicator variable

Movie. Class with the five possible values

{Spy-Movie, Car-Chase-Movie, Kung-Fu-Movie, Comedy, Documentary}
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Subclasses allow us to make finer distinctions when constructing a probabilistic
model. In particular, they allow us to specialize CPDs for different subclasses in the

hierarchy.

Definition 5.1: A probabilistic relational model with subclass hierarchy is defined

as follows. For each class X € X', we have
e a class hierarchy H[X]| = (C[X], <);
e a subclass indicator attribute X.Class such that V(X.Class) = basic(H[X]);
e a CPD for X.Class (here we require that X.Class has no parents.

e for each subclass ¢ € C[X] and attribute A € A(X) we have either

— a set of parents Pa‘(X.A) and a CPD that describes P(X.A | Pa‘(X.A));
or

— an inherited indicator that specifies that the CPD for X.A in c is inherited
from its direct superclass. The root of the hierarchy cannot have the

inherited indicator. 1

With the introduction of subclass hierarchies, we can refine our probabilistic de-
pendencies. Before each attribute X.A had an associated CPD. Now, if we like, we
can specialize the CPD for an attribute within particular subclass. We can asso-
ciate a different CPD with the attributes of different subclasses. For example the
attribute Action-Movie. Popularity may have a different conditional distribution from
the attribute Documentary. Popularity. Further, the distribution for each of the at-
tributes may depend on a completely different set of parents. Continuing our discus-
sion from the introduction, if the popularity of action movies depends on its budget,
then Action-Movie. Popularity would have as parents Action-Movie. Budget. However,
for documentaries, the popularity depends on the reputation of the director; then
Documentary. Popularity would have the parent Documentary. Director. Reputation.

We define P(X.A | Pa‘(X.A)) to be the CPD associated with A in X, where d
is the most specialized superclass of ¢ (which may be c itself) such that the CPD of
X.A in d is not marked with the inherited indicator.
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5.2.2 Refined Slot References

At first glance, the increase in representational power provided by supporting sub-
classes is deceptively small. It seems that little more than an extra constructed type
variable has been added, and that the structure that is exploited by the new sub-
classed CPDs could just as easily have been provided using structured CPDs, such as
the tree-structured CPDs or decision graphs [Boutilier et al., 1996, Chickering et al.,
1997]. For example, the root node in the tree-structured CPD for attribute X.A can
split on the class attribute, X.Class, and then the subtrees can defined the appropri-
ate specializations of the CPD. In reality, it is not quite so simple; now X.A would
need to have as parents the union of all of the parents of its subclasses. However, the
representational power is quite similar.

However the representational power has been extended in a very important way.
Certain dependency structures that would have been disallowed in the original frame-
work are now allowed. These dependencies appear circular when examined only at
the class level; however, when refined and modeled at the subclass level, they are
no longer cyclic. One way of understanding this phenomenon is that, once we have
refined the class, the subclass information allows us to disentangle and order the
dependencies.

Returning to our earlier example, suppose that we have the classes Voter, Movie
and Vote. Vote has reference slots Person and Movie and an attribute Ranking that
gives the score that a person has given for a movie. Suppose we want to model a
correlation between a person’s votes for documentaries and his votes for action movies.
(This correlation might be a negative one.) In the unrefined model, we do not have
a way of referring to a person’s votes for some particular subset of movies; we can
only consider aggregates over a person’s entire set of votes. Furthermore, even if we
could introduce such a dependence, the dependency graph would show a dependence
of Vote. Rank on itself.

When we create subclasses of movie, we can also create specializations of any
classes that make reference to movies. For example Vote has a reference slot Vote. Mowie.
Suppose we create subclasses of Movie: Comedy, Action-Movie, and Documentary.

Then we can create corresponding specializations of Vote: Comedy-Vote, Action-Vote,
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and Documentary-Vote. Each of these subclasses refers only to a particular category
of votes.

The introduction of subclasses of votes provides us with a way of isolating a
person’s votes on some subset of movies. In particular, we can try to introduce a
dependence of Documentary-Vote. Rank on Action-Vote. Rank. In order to allow this
dependency, we need a mechanism for constructing slot chains that restrict the types
of objects along the path to belong to specific subclasses. Recall that a reference
slot p is a function from Dom[p] to Range[p], i.e. from X to Y. We can introduce

refinements of a slot reference by restricting the types of the objects in the range.

Definition 5.2:
Let p be a slot (reference or inverse) of X with range Y. Let d be a subclass of

Y. A refined slot reference pyy for p to d is a relation between X and Y
Forre X,ye€Y, yex.pq if v € X and y € Y; then y € z.p. 1

Returning to our earlier example suppose that we have subclasses of Movie: Comedy,
Action-Movie and Documentary. In addition, suppose we also have subclasses of
Vote, Comedy-Vote and Action-Vote and Documentary-Vote. To get from a per-
son to their votes, we use the inverse of slot reference Person.Votes. Now we can
construct refinements of Person. Votes, VOteS(Comedy—Vote)’ VOteS(Action—Vote} and
VOteS(Docu mentary-Vote)

Let us name these slots Comedy-Votes and Action-Votes, and Documentary-Votes.
To specify the dependency of a person’s rankings for documentaries on their rankings
for action movies we can say that Documentary-Vote. Rank has a parent which is the

person’s action movie rankings: y(Documentary-Vote. Person. Action-Votes. Rank).

5.2.3 Support for Instance-level Dependencies

The introduction of subclasses brings the benefit that we can now provide a smooth
transition from the PRM, a class-based probabilistic model, to models that are more

similar to Bayesian networks. To see this, suppose our subclass hierarchy for movies is
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very “deep” and starts with the general class and ends in the most refined levels with
particular movie instances. Thus, at the most refined version of the model we can
define the preferences of a person by either class based dependency (the probability of
enjoying documentary movies depends whether the individual enjoys action movies)
or instance based dependency (the probability of enjoying “Terminator II” depends
on whether the individual enjoys “The Hunt for Red October”). The latter model is
essentially the same as the Bayesian network models learned by Breese et al. [1998]
in the context of collaborative filtering for TV programs.

In addition, the new flexibility in defining refined slot references allows us to
make interesting combinations of these types of dependencies. For example, whether
an individual enjoys a particular movie(e.g., “True Lies”) can be enough to predict

whether she watches a whole other category of movies (e.g., James Bonds Movies).

5.2.4 Semantics

Using this definition, the semantics for PRM-CH are given by the following equation:

P(Z|o,,)=]] [I P(z.Class)

X z€or(X)

Il P(z.A|Pa™(z.A)) (5.1)
ACA(X)

As before, the probability of an instantiation of the database is the product of CPDs
of the instance attributes; the key difference is that here, in addition to the skeleton
determining the parents on an attribute, the subclass to which the object belongs

determines which local probability model is used.

5.2.5 Coherence of Probabilistic Model

At some level, the introduction of a class hierarchy introduces no substantial diffi-
culties — the semantics of the model remain unchanged. Given a relational skeleton
or, and subclass information for each object, a PRM-CH Ilcy specifies a probabil-

ity distribution over a set of instantiations Z consistent with o, which was given by
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Eq. (5.1).

Asin the case of PRMs with attribute uncertainty, we must be careful to guarantee
that our probability distribution is in fact coherent. In this case, while the relational
skeleton specifies which objects are related to which, it does not specify the subclass
indicator for each object, so the mapping of formal to actual parents depends on
the probabilistic choice for the subclass for the object. In addition, for refined slot
references, the existence of the edge will depend on the subclass of the object. We will
indicate edge existence by the coloring of an edge: a black edge exists in the graph,
a gray edge may exist in the graph and a white edge is invisible in the graph. As in
previous chapters, we define our coherence constraints using an instance dependency

graph, relative to our PRM and relational skeleton.

Definition 5.3: The colored instance dependency graph for a CH-PRM Il and
a relational skeleton o, is a graph G,,. The graph has the following nodes, for each

class X and for each z € 0,.(X):

e A descriptive attribute node z.A, for every descriptive attribute X.A € A(X);

e a subclass indicator node z.Class.

Let Pa*(X.A) = Ueecxy Pa®(X.A). The dependency graph contains four types of
edges. For each attribute X.A (both descriptive attributes and the subclass indicator),
we add the following edges:

e Type I edges: For every z € o,(X) and for each formal parent X.B €
Pa*(X.A), we define an edge x.B — x.A. This edge is black if the parents
have not been specialized (which will be the case for the subclass indicator,

x.Class, and possibly other attributes as well). All the other edges are colored
gray.

e Type II edges: For every z € 0,(X) and for each formal parent X.7.B €
Pa*(X.A), if y € z.7 in 0,, we define an edge y.B — x.A. If the CPD has been

specialized, or if 7 contains any refined slot references this edge is colored gray;

otherwise is is colored black. 1
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As before, type I edges correspond to intra-object dependencies and type II edges
to inter-object dependencies. But since an object may be from any subclass, even
though the relational skeleton specifies the objects it is related to, until we know the
subclass of an object, we do not know which of the local probability models applies. In
addition, in the case where a parent of an object is defined via a refined slot reference,
we also do not know the set of related objects until we know their subclasses. Thus,
we add edges for every possible parent and color the edges used in defining parents
gray. Type I and type II edges are grayed when they are parents in a specialized
CPD. In addition, type IT edges may be gray if a refined slot reference is used in the
definition of a parent.

At this point, the problem with our instance dependency graph is that there are
some edges which are known to occur (the black edges) and some edges that may
or may not exist (depending on the subclass of an object). How do we ensure our
instance dependency graph is acyclic? In this case, we must ensure that the instance
dependency graph is acyclic for any setting of the subclass indicators. Note that
this is a probabilistic event. First, we extend our notion of acyclicity for our colored

instance dependency graph.

Definition 5.4: A colored instance dependency graph is acyclic if, for any instantia-
tion of the subclass indicators, there is an acyclic ordering of the nodes relative to the
black edges in the graph. Given any a particular assignment of subclass indicators,

we determine the black edges as follows:

e Given a subclass assignment y.Class, all of the edges involving this object are
colored either black or white. Let y.Class = d. The edges for any parent
nodes are colored black if they are defined by the CPD Pa%(X.A), and white
otherwise. In addition, the edges corresponding to any for any refined slot
references, p(a)(z,y), are set: If y.Class = d, the edge is colored black, otherwise

it is painted white. 1

Based on this definition, we can specify conditions under which Eq. (5.1) specifies

a coherent probability distribution.
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Theorem 5.5: Let llcy be a PRM with class hierarchies whose colored dependency
structure S is acyclic relative to a relational skeleton o.. Then llcy and o, define a

coherent probability distribution over instantiations I that extend o, via Eq. (5.1).

Proof: The probability of an instantiation Z is the joint distribution over a set of

random variables defined via the relational skeleton. We have the following variables:

e We have one random variable z.A for each z € 0,(X) and each A € A(X).

e We have one random variable z.Class for the class indicator variable for each
x € 0,(X).

Let Vi,...,Vy be the random variables defined above. We show that because the
instance dependency graph is acyclic for any instantiation of the subclass indicators,
we can construct an ordering Vi,...,Vy that is a topological sort of the instance
dependency graph; but this ordering will be constructed dynamically, once we know
the subclass information.

As in the proof of Theorem 2.5, our proof relies on the fact that the probability of
any instantiation Z is the product of legal conditional distributions, hence the product
is a well-defined joint distribution. The distribution is defined via Eq. (5.1). We must
ensure that the conditional distribution for each random variable is well-defined and
can be determined by the time that it is required in the product. Because the CPDs
come directly from the PRM-CH, the first requirement is satisfied trivially. So it
remains to check that the variable ordering and choice of CPDs can be determined
at the point at which they are needed.

The definition of acyclicity provides us with the necessary procedure for con-
structing the variable ordering. Because the subclass indicator variables do not have
parents, we can place all of the subclass indicators, x.Class, for the objects at the
start of our order. Once their values have been probabilistically chosen, we are in the
position to color all of our edges either black or white. And once we know all of the
black edges, because of the acyclicity, we know there is some topological ordering of
the nodes that is consistent with the black edges. This provides us with our variable

ordering.
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Because the instance dependency graph is acyclic and each CPD in Eq. (5.1) can
be determined and is well-defined, Eq. (5.1) is a well-defined joint distribution. I

As in the previous case of PRMs with attribute uncertainty and PRMs with
link uncertainty, we want to learn a model in one setting, and be assured that it
will be acyclic for any skeleton we might encounter. Again we achieve this goal
through our definition of class dependency graph. We do so by extending the class
dependency graph to contain edges that correspond to the edges we defined in the

instance dependency graph.

Definition 5.6: The class dependency graph for a PRM with class hierarchy Ilgogy
has the following set of nodes for each X € X:

e For each subclass ¢ € C[X] and attribute A € A(X), a node X_..A;

e A node for the subclass indicator X.Class.
and the following edges:

e Type I edges: For any node X.. A and formal parent X..B € Pa‘(X..A) we
have an edge X..B — X_..A.

e Type II edges: For any attribute X,..A and formal parent X..p.B € Pa’(X,.A),
where Range[p] =Y, we have an edge Y.B — X .A.

e Type III edges: For any attribute X..A, and for any direct superclass d, ¢ < d,
we add an edge X..A — X .A. 1

Figure 5.2 shows a simple class dependency graph for our movie example. The
PRM-CH is given in Figure 5.2(a) and the class dependency graph is shown in Fig-
ure 5.2(b).

It is now easy to show that if this class dependency graph is acyclic, then the

instance dependency graph is acyclic.

Lemma 5.7: If the class dependency graph is acyclic for a PRM with class hierarchies
[lcy, then for any relational skeleton o,, the colored instance dependency graph is

acyclic.
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Figure 5.2: (a) A simple PRM with class hierarchies for the movie domain (b) The

Proof: As before, we prove this by contradiction by showing that if there is a cycle in

the instance dependence graph, then we can construct a cycle in the class dependency

graph.

Suppose there is a cycle x1.A; — x9.As---xx.Ax — x1.A; in the instance de-

pendency graph. Each of these object edges corresponds to an edge in the class

dependency graph. Consider edge x;.A; — 7;11.A;11. Let z;.Class = c. There are

three cases:

e 1;.A; is the parent of x;,1.4;,1 and they are in the same object. Then the

corresponding edge in the class dependency graph is the type I edge, X..A4; —

X .Ai11, where ¢ may be a superclass of ¢ (if this CPD is inherited).

e 1;.A; is the parent of z;,1.4;,1 and the parent is defined via a slot chain

x;.7.A;11. Let d be the subclass of x;,1. As before there is some type II edge

from X..A; — Xg.A;1, where ¢ is a superclass of ¢ (in the case where the

CPD was inherited from ¢'). Now however d’ may be a superclass of d. So, we

then follow type III edges from X4.A4;,1 to Xg.A;11.

In either case, we can find corresponding edges in our class dependency graph

from which we can construct a cycle, which contradicts our hypothesis that the class

dependency graph is acyclic. I
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And again we have the following corollary:

Corollary 5.8: Let llcy be a PRM with class hierarchies whose class dependency
structure S 1s acyclic. For for any relational skeleton o,, llcy and o, define a coherent

probability distribution over instantiations I that extend o, via Eq. (5.1).

5.3 Learning PRM-CHs

As in previous chapters, we separate the learning problem into two basic questions:
how to evaluate the “goodness” of a candidate structure, and how to search the space
of legal candidate structures. We consider each question separately. We examine two
scenarios: in one case the class hierarchies are given as part of the input and in the
other, in addition to learning the PRM, we also must learn the class hierarchy. The
learning algorithms use the same criteria for scoring the models, however the search

space is significantly different.

5.3.1 Class Hierarchies Provided in Schema

We now turn to learning PRMs with class hierarchies. We begin with the simpler
scenario, where we assume that the class hierarchy is given as part of input.

As in Chapter 3, we restrict attention to fully observable data sets. Hence, we
assume that, in our training set, the class of each object is given. Without this
assumption, the subclass indicator attribute would play the role of a hidden variable,
greatly complicating the learning algorithm.

As discussed above, we need a scoring function that allows us to evaluate different
candidate structures, and a search procedure that searches over the space of possible
structures.

The scoring function remains largely unchanged. For each object z in each class X,
we have the basic subclass ¢ to which it belongs. For each attribute A of this object,
the probabilistic model then specifies the subclass d of X from which ¢ inherits the
CPD of X.A. Then z.A contributes only to the sufficient statistics for the CPD of



5.3. LEARNING PRM-CHS 119

Xg4.A. With that recomputation of the sufficient statistics, the Bayesian score can
now be computed unchanged.

Next we extend our search algorithm to make use of the subclass hierarchy. First,
we extend our phased search to allow the introduction of new subclass. Then, we
introduce a new set of operators. The new operators allow us to refine and abstract

the CPDs of attributes in our model, using our class hierarchy to guide us.

5.3.2 Introducing New Subclasses

New subclasses can be introduced at any point in the search. We may construct all
the subclasses at the start of our search, or we may consider introducing them more
gradually, perhaps at each phase of the search. Regardless of when the new subclasses
are introduced, the search space is greatly expanded, and care must be taken to avoid
the construction of an intractable search problem. Here we describe the mechanics of
the introduction of the new subclasses.

For each new subclass introduced, each attribute for the subclass is associated
with a CPD. A CPD can be marked as either ‘inherited’ or ‘specialized’. Initially,
only the CPD for attributes of X+ are marked as ‘specialized’; all the other CPDs
are ‘inherited’. Our original search operators — those that add and delete parents
— can be applied to attributes at all levels of the class hierarchy. However, we only
allow parents to be added and deleted from attributes whose CPDs that have been
specialized. Note that any change to the parents of an attribute is propagated to any
descendents of the attribute whose CPDs are marked as inherited from this attribute.

Next, we introduce operators Specialize and Inherit. If X..A currently has an in-
herited CPD, we can apply Specialize(X..A). This has two effects. First, it recomputes
the parameters of that CPD to utilize only the sufficient statistics of the subclass c.
To understand this point, assume that X..A was being inherited from X, prior to
the specialization. The CPD of X,.A was being computed using all objects in Z(Xy).
After the change, the CPD will be computed using just the objects in Z(X,.). The
second effect of the operator is that it makes the CPD modifiable, in that we can now

add new parents or delete them. The Inherit operator has the opposite effect.
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In addition, when a new subclass is introduced, we construct new refined slot
references that make use of the subclass. Let D be a newly introduced subclass of Y.
For each reference slot p of some class X with range Y, we introduce a new refined
slot reference p(py. In addition, we add each reference slot of Y to D, however we
refine the domain from Y to D. In other words, if we have the new reference slot p,

where Dom[p'] = D and Range[p'] = X.

5.3.3 Learning Subclass Hierarchies

We next examine the case where the subclass hierarchies are not given as part of the

input. In this case, we will learn them at the same time we are learning the PRM.

As above, we wish to avoid the problem of learning from partially observable data.
Hence, we need to assume that the basic subclasses are observed in the training set.
At first glance, this requirement seems incompatible with our task definition: if the
class hierarchy is not known, how can we observe subclasses in the training data?
We resolve this problem by defining our class hierarchy based on the standard class
attributes. For example, movies might be associated with an attribute specifying the
genre — action, drama, or documentary. If our search algorithm decides that this
attribute is a useful basis for forming subclasses, we would define subclasses based
in a deterministic way on its values. Another attribute might be the reputation of
the director. The algorithm might choose to refine the class hierarchy by partitioning
sitcoms according to the values of this attribute. Note that, in this case, the class

hierarchy depends on an attribute of a related class, not the class itself.

We implement this approach by requiring that the subclass indicator attribute
be a deterministic function of its parents. These parents are the attributes used to
define the subclass hierarchy. In our example, Movie.Class would have as parents
Movie. Genre and Movie. Director. Reputation. Note that, as the function defining the
subclass indicator variable is required to be deterministic, the subclass is effectively
observed in the training data (due to the assumption that all other attributes are

observed).
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We restrict attention to decision-tree CPDs. The leaves in the decision tree rep-
resent the basic subclasses, and the attributes used for splitting the decision tree are
the parents of the subclass indicator variable. We can allow binary splits that test
whether an attribute has a particular value, or, if we find it necessary, we can allow
a split on all possible values of an attribute.

The decision tree gives a simple algorithm for determining the subclass of an
object. In order to build the decision tree during our search, we introduce a new
operator Split(X, ¢, X.7.B), where c is a leaf in the current decision tree for X.Class
and X.7.B is the attribute on which we will split that subclass.

Note that this step expands the space of models that can be considered, but in
isolation does not change the score of the model. Thus, if we continue to use a purely
greedy search, we would never take these steps. There are several approaches for
addressing this problem. One is to use some lookahead for evaluating the quality of
such a step. Another is to use various heuristics for guiding us towards worthwhile
splits. For example, if an attribute is the common parent of many other attributes
within X, it may be a good candidate on which to split.

The other operators, Specialize and Inherit, remain the same; they simply use the

subclasses defined by the decision tree.

5.4 Experimental Results

5.4.1 Model Comparison

We begin with some preliminary results testing whether the increased representational
power allowed in PRM-CHs in fact improves the quality of the models we learn. We
compared the utility of models with subclasses (Il¢y) to our standard PRMs that do
not support the refinement of class definitions (IT). Here we are given the structure,
we do not allow inheritance of CPDs and we simply learn the parameters. We compare
the log-likelihood of a test set for each model.

We present results for the Each Movie dataset!'. Recall that this dataset contains

'http:/ /www.research.digital.com/SRC/EachMovie
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Figure 5.3: A PRM for the Movie domain.

information information about people’s ratings of movies. We extended the demo-
graphic information we had for the people by including census information available
for a person’s zip-code. The three classes are Movie, Person, and Votes. The training

set contained 1467 movies, 5210 people and 243,333 votes.

We defined a rather simple class hierarchy for Votes, based on the genre of the
Movie, Action-Votes, Romance-Votes, Comedy-Votes and Other-Votes. We learned two
different models, one that made use of the class hierarchy (Figure 5.4) and one that did
not (Figure 5.3). We then evaluated the models on five different test sets. Note that,
in relational data, different test sets have markedly different structure, so trying the
model on different test sets might result in very different answers. Each test set had
1000 votes, and approximately 100 movies and 115 people. The average log-likelihood
of the test set for II was -12079 with a standard deviation of 475.68. The model with
class hierarchies, Iy, performed much better, with average log-likelihood of -10558
and a standard deviation of 433.10. Using a standard t-test, we obtain that [Ioy is

better than IT with well over 99% confidence interval.

Looking more closely at the qualitative difference in structure between the two

models, we see that the PRM-CH is a much richer model. For example the dependency
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Figure 5.4: IIog. The links between vote rankings follows a slot chain, from a person’s
ranking on one class of movies to the person’s ranking on another class of movies.

model for Vote. Rank cannot be represented without making use of the class hierarchy
to both refine the attributes and refine the allowable slot chains. For example, we learn
a dependence of Votep,,..n.e-RRank on Votep . . ... Person. Comedy-Votes. Rank,
whereas Vote 4 .4;,y,-Rank depends on Vote 4.4y, -Person. Gender. Not only are these
two dependency models different, but they would be cyclic if interpreted as a standard
PRM. Note that in the PRM shown in Figure 5.3, there is no dependency between
Vote.Rank and attributes of Person, so the PRM that uses class hierarchies allows us

to discover dependencies on properties of Person that we could not uncover before.

5.5 Conclusion

In the chapter, we have proposed a method for making use of class hierarchies while
learning PRMs. Class hierarchies give us additional leverage for refining our proba-
bilistic models. They allow us to automatically disentangle our dependency model,

allowing us to construct acyclic dependencies between elements within the same class.
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They also allow us to span the spectrum between class level and instance level de-
pendency models.

However, using class hierarchies significantly expands an already complex search
algorithm. The search space for PRMs-CH is much larger. In this chapter, we describe
a general search algorithm. However, a key to the success of the algorithm is the
discovery of useful heuristics to guide the search. In future work, we intend to explore
the space of possible heuristics, and to test empirically which heuristics work well on

real-world problems.



Chapter 6

Statistical Relational Models

In this chapter, we describe a second type of probabilistic model for relational do-
mains, a statistical relational model (SRM). While on the surface PRMs and SRMs
share many similarities, a statistical relational model has significantly different se-
mantics from a PRM and supports answering a different category of queries. An
SRM is a statistical model of a particular database instantiation. The SRM captures
the tuple frequencies in the database. It can be used to give (approximate) answers
to queries on this database. In this chapter, we describe the semantics of SRMs and
a learning algorithm for SRMs. In addition, we describe an application of SRMs to
a fundamental problem in database theory: the task of estimating the result size of
a database query (the number of tuples in the result). Our method provides an im-
portant new unified framework for the estimating the result size of complex queries

over multiple tables.

6.1 Motivation

As we mentioned in the introduction, there are two distinct approaches to first-order
logics of probability [Halpern, 1990]. The PRM model that we have been discussing up
until this point is based on the possible-worlds approach; it defines a distribution over
possible instantiations of the database. In this chapter, we introduce SRMs, which

are based on an alternate semantics defined in terms of frequencies in the database.

125
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We will see how these models are defined, how to make the connection between the
database frequencies and the statistical model, and how to answer queries efficiently

using these models.

6.1.1 An Example

Consider two tables from the medical database of Section 3.5: Patient, containing
information about tuberculosis (TB) patients, and Contact, describing people with
whom a patient has had contact, and who may or may not be infected with the disease.
Figure 6.1(a) shows a simplified version of the database, where the patient table has
one attribute Age, which can take on values {middle-aged, old}, and the contact table
has one attribute Relationship which can take on values {family-member, coworker}
(In the figure, we abbreviate the variable and value names using their first letter.)
Suppose we are interested in answering queries involving a join between these two
tables. For example, we may be interested in the probability that the following query

is satisfied:

SELECT *

FROM Patient p, Contact ¢

WHERE p.age = old AND
c.Patient = p.Patient-ID AND
c.relationship = coworker

L.e., the probability that a randomly chosen patient is elderly and has a contact who is
a coworker. In our simple example, out of the ten Patient-Contact pairs, there are two
in which the patient is old and the contact is a coworker, so computing the probability
from the frequencies in the database, the probability that a randomly chosen patient
is elderly and has a coworker contact is %

A simple approach to this problem would proceed as follows: We begin by assum-
ing referential integrity, in other words that each tuple in Contact joins with exactly
one tuple in Patient. Then the size of the joined relation, prior to the selects, is
|Contact|. We compute the probability p of Patient.age = old and the probability ¢ of
Contact.relationship = coworker, and estimate the probability of the resulting query

2 _ 1

being satisfied as p - ¢, or % s =3



6.1. MOTIVATION 127

c PR
cl pl F
3 p2 F
L. O 4 p2 C
p2 M 5 p2 ¢
pd O CZ Pg g Patient
8 p
Patient o p4F
c10 p4 C
Contact

(a) (b)
Figure 6.1: (a) A very simple TB database (b) A PRM for the DB

This naive approach is flawed in two ways. First, the attributes of the two different
tables are often correlated: In general, foreign keys are often used to connect tuples in
different tables that are semantically related, and hence the attributes of tuples related
through foreign-key joins are often correlated. For example, there is a clear correlation
between the age of the patient and the type of contacts they have; in fact, elderly
patients with coworkers are quite rare, and this naive approach would overestimate
their number. Second, the probability that two tuples join with each other can also
be correlated with various attributes. For example, middle-aged patients typically
have more contacts than older patients. Thus, while the join size of these two tables,
prior to the selection on patient age, is |Contact|, the fraction of the joined tuples
where the patient is old is lower than the overall fraction of older patients within the
Patient table.

Now consider using a PRM to answer this query. Suppose, as shown in our
example database, that there are two middle-aged patients and they each have three
contacts, of which two are coworkers and one which is a family member, and that
there are two older patients, each with two contacts, of which one is a coworker
and the other is a family member. Suppose from this database, we learn the PRM
shown in Figure 6.1(b), which has an attribute Patient.Age which has probability

% of having the value middle-aged and probability % of having the value old, and
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attribute Contact.Relationship which, for middle-aged patients, has probability % of

being a coworker, and probability % of being a family member, and for older patients

has probability % of being a coworker, and probability % of being a family member.

Then if we computed the probability that a randomly chosen patient is older and

has a contact that is a coworker, we might naively compute this by multiplying the

probabilities from the PRM of a patient being old and the probability of the contact
1.1

being a coworker given that the patient is old. This gives us 5 -5 = i. Whereas the

true probability is %!

6.1.2 Ouwur Approach

We address these issues by providing a more accurate model of the joint frequency
distribution of tuples from a database. In this chapter we provide the machinery, but
before turning to development of a general theory, let us first illustrate our approach
in a simple setting.

Consider two tables R and S such that R.F points to S.K. We define a joint
probability space over R and S using an imaginary sampling process that randomly
samples a tuple r from R and independently samples a tuple s from S. The two tuples
may or may not join with each other. We introduce a new join indicator variable to
model this event. This variable, Jg, is binary valued; it is true when r.F' = s. K and

false otherwise.

This sampling process induces a distribution
PD(JF:Ala"'aAnaBla"'aBm)

over the values of the join indicator Jp, and the descriptive attributes A(R) =
{4,...,A,} and A(S) ={By,...,Bn}.

Now, consider any query @ over R and S of the form: r. A = a,s.B = b,r.F =
s.K (where we abbreviate a multidimensional select using vector notation). The

probability that this query is satisfied by a randomly chosen tuple r from R and s
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Figure 6.2: An SRM for the simple TB DB.

from S is simply:
Pp(A =a,B =Db, Jp = true).

In other words, we can estimate the result for any query of this form using the joint

distribution Pp defined using our sampling process.

Consider our simple example from before. We introduce a join indicator variable
Jpatiens Which has parents Contact. Patient. Age and Contact. Relationship. In this ex-
ample, the CPD for the join indicator variable is computed using the frequencies in
the database. For any particular value of Age and Relationship, (a,r), the probability

that the join indicator is true is:

|p. Patient-ID = c.Patient & p.Age = a & c.Relationship = 7|
|p-Age = a| - |c.Relationship = r|

In other words, it is the proportion of tuples that join over the number of potential
joins.
Then using our SRM to compute the probability that two randomly chosen tuples

satisfy our query is simply:

Pp(Patient. Age = old & Contact. Type = coworker & Contact.Jpatient = true)
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which is the correct answer according to the frequencies in the database.

As we now show, an extension of the techniques in Chapter 3 allows us to estimate

this joint distribution using a probabilistic graphical model.

6.2 The Relational Database

We begin by examining the distribution induced by the frequencies of various com-
binations of values occurring in the database. In the case where we have a single
table, this task is relatively straightforward. The distribution is defined over a joint
assignment of values of random variables, where we have one random variable for each
attribute in the table, and the distribution is just the probability that the attributes
of a randomly chosen tuple take on each particular joint assignment. In the case
where we have more than one table, the definition becomes a bit trickier; we need to
know something about the connection between the tuples from the different tables.
In the case where tables can join in more than one way (i.e., in the case of foreign-key
joins, when there is more than one foreign-key reference to a table), the problem is

even more ill-defined.

In this section, we introduce the necessary machinery to construct a unique dis-
tribution from a relational schema and a database. The construction hinges on the
notion of a ‘universal foreign-key closure’. At an abstract level this defines the ran-
dom variables in our distribution and the foreign-key join relationships among them.
But, before we can get to the definition, we start with several of the necessary build-
ing blocks. In some cases, we are just reviewing definitions from earlier chapters,
couching them in standard database terminology (for example we define foreign-keys,
which are analogous to reference slots). However, in addition, we introduce several

new concepts.
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6.2.1 The Relational Schema

The relational schema defines the structure of our database. As in earlier chapters,

it defines the classes (or in this case tables) and the attributes of the tables.

Definition 6.1: A relation schema R consists of a set of tables R = {Ry,..., R}
Each table R is associated with attributes of three types: a single primary key R.K '
a set F(R) of foreign keys, and a set A(R) of descriptive attributes. Each foreign key
R.F is associated with a table into which it points, Dom[R.F] € R. Each descriptive
attribute R.A is associated with a domain of possible values V(R.A). I

6.2.2 The Database

As before, a database is simply an instantiation of the schema.

Definition 6.2: A database D over R consists of a set of tuples 7 [R] for each table
R. For each t € T|R]:

e The primary key ¢.K is unique within R.

e For each F' € F(R), t.F is the primary key of some tuple in 7[S] where S =
Dom|[R.F].

e For each A € A(R), t.A is a value in V(R.A). 1

Note that the second bullet in our definition restricts attention to databases sat-
isfying referential integrity: Let R be a table and let F' be a foreign key in R that
refers to some table S with primary key K; then for every tuple » € R there must
be some tuple s € S such that r.F' = s. K. We require referential integrity, but our
model can easily be extended to accommodate cases where the foreign key takes the

value null, indicating that there is no related tuple in Dom[R.F].

'OQur definition can easily be extended to the case where keys are be composed of several at-
tributes.
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6.2.3 The Distribution Induced by a Query

In a number of different places in this chapter, we will be interested in computing
the answer to database queries. In some cases, we will limit the queries we consider,
However, at the start, we will be considering general select-join queries of the following
form: A query over a relational schema R is defined using tuple variables and the
standard relational operators x (cross-product), o (select), and > (join). A tuple
variable r is typed, i.e., Dom[r] = R, for some R € R, and refers to some tuple
xz € T[R]. In a number of places we will refer to a set of tuple variables rq, ..., 7,

and their associated tables, Ry, ..., Ry, where R; = Dom|[r;].

Let @ be a query over tuple variables 71, ..., 7, (which may or may not refer to the
same tables). Let o be the set of equality select clauses in Q); i.e., og = {r;,.Ai, =
A;, = a;} and let g be the set of keyjoins in Q; i.e., xig= {r;,.Fj, =
Fj,, =s;..K}. We can write @) as follows:

Qjyye--y Ty

Sjl.K,...,Tj

m

g (0g(Ry X ... X Ry)).

We introduce an indicator variable Z¢ indicating when the equalities in () hold.

Definition 6.3: For any query @ over database D, the joins in () induce a distri-
bution Pp(QR) over the attributes of the tuple variables in @, R; X ... X Rx. The
probability that the query is satisfied is:

| e<ag (o@(Ry x ... x Ry))|
Po(Zq) = |Ry| X ... x |Ry 1

We can also view this joint distribution as generated by an imaginary process,
where we independently sample a sequence of tuples ry,...,r, from Ry,..., R, and
then select as the values of Ay, ..., A, the values of . Ay, ...,r.A,. (Note that we are
not suggesting that the sampling process used to define Pp be carried out in practice.

We are merely using it as a way of defining Pp(Q).)
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6.2.4 The Universal Foreign-Key Closure

While the expression in Definition 6.3 is computable for any select-join query, we will
find it more useful if we can define a unique distribution induced by our database. This
will allow us to make useful assertions about the distribution, for example asserting
independence statements. To achieve this, we need to restrict our attention to a finite,
acyclic collection of foreign-key joins. We begin by introducing an ordering over the

tables in the schema:

Definition 6.4: Let < be a partial ordering over the tables in our schema. We say
that a foreign key R.F with Dom[R.F| = S is consistent with < if S < R. Let F
be a subset of the foreign keys in the database, F C F(DB). A schema R is (table)
stratified with respect to F if there exists a partial ordering < such that for any
R.F € F, R.F is consistent with <. 11

Often times, the set of foreign keys we consider is the entire set of foreign keys in the
database. In this case, we will just say that the schema is table stratified, without
referring to the set of foreign keys. We will call a table R a leaf in the ordering if
there is no other table R' such that R < R'.

At this point, we can define a new relation i/, which is the universal foreign-
key closure of a database D with respect to a table stratification. This relation is
never actually materialized, we merely use it as a tool in defining a unique distribu-
tion induced by our database, and, from this distribution, the set of independence
assumptions that hold in our database. Intuitively, the query that we construct intro-
duces a tuple variable for each table in our schema, and has a unique tuple variable

for each foreign-key in the schema.

Definition 6.5: Let D be a database with relational schema R and let < be a table
stratification of D with respect to some subset F of D’s foreign keys. The universal
foreign-key closure of D with respect to F is defined by the query U we construct
below. T (U) will be the set of tuples variables in our query. Initially, 7 (i) has
one tuple variable for each of the tables that are leaves in <. Each tuple variable is

initially marked unprocessed.
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We will construct the full set of tuple variables in the query as follows. While

there are tuple variables in 7 (i) that have not been processed:

e Let 7 be an unprocessed tuple variable in 7 (i4).

e Let R = Dom|[r|. For each F' € F(R), where R.F refers to S, add a new unique
tuple variable s to 7 (U). This tuple variable is marked unprocessed. We say
that s is the tuple variable associated with r.F'. We also add the join r.F' = s. K

to Dy

Let A(U) = {A4,..., Ay} be the attributes in & (in order to avoid ambiguity, assume
attributes are prefixed by their associated tuple variable), and let 7 (U) = {t1,...,t;}
be the tuple variables in the query. U is simply a query over the cross product of the
relations with a new copy of the relation introduced for each tuple variable that we
add. 1

As a simple example, suppose we have three tables, R, S and T, and R.F} is a
foreign key into S and S.F; is a foreign key into 7', and our table stratification is:
T < S < R. Then the universal foreign-key closure is a query over R x S xT. Let the
tuple variables of U be r, s and ¢ then, in this case, >xyy= {(r.F} = s.K) & (s.F, =
t.K)}. One way of viewing the universal foreign-key closure is as defining a graph over
the tuple variables. There is an edge between tuple variables that are (potentially)
connected via a foreign-key join. For a foreign-key join r.F' = s.K, we will draw the
edge from r to s, r — s. Figure 6.3(a) shows the graph for this example.

On the other hand, if in addition 7" has a foreign key T.F3 into S, and we use
a different set of foreign keys in our table stratification, where S < T < R with
respect to the foreign keys F = {R.F},T.F3}, then the universal foreign-key closure
of the database is a query over R x S x T x S and the tuple variables are r, s, ¢
and s; in this case we introduce two new tuple variables for S, one, s;, associated
with the foreign key r.F; and another, s, associated with the foreign key ¢.F3. Here,
= {(r.F; = s1.K) & (t.F3 = s9.K)}. Figure 6.3(b) shows the graph for this
example.

As another example, suppose we have two tables R and S, and R has two foreign
keys, R.F} and R.F5, both into S. Our table stratification is S < R and the universal
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rF,=s.K tF;=s,K

(a) (b) (c)

Figure 6.3: (a) A graph over the tuple variables for the universal foreign-key closure
over tables R, S and T, with foreign keys R.F}, Dom[R.F;| = S and S.F, Dom[S.Fy] =
T, and table stratification T < S < R. (b) A graph over the tuple variables for
the universal foreign-key closure over tables R, S and 7', with foreign keys R.F7,
Dom[R.Fi] = S and T.F; Dom[T.F3] = S, and table stratification S < T < R. (c)
A graph over the tuple variables for the universal foreign-key closure over tables R
and S, with foreign keys R.F;, Dom[R.F;| = S and R.Fy, Dom|[R.F,] = S, and table
stratification S < R.

foreign-key closure is a query over R x S x S. Let r, s1, and so be our tuple variables.
Then, in this case, <= {(r.F} = s1.K) & (r.Fy = s5.K)}. Figure 6.3(c) shows the
graph for this example.

Intuitively, the construction of U can be viewed as creating a collection of inverted
trees over the tuple variables, where there is an edge between tuple variables that
are (potentially) connected via a foreign-key join. Because a new tuple variable
is introduced for each foreign key, and is associated with exactly one foreign key,
each tuple variable has exactly one edge pointing to it (but may have many edges
emanating from it). Because any graph in which each node has at most one incoming
edge is collection of trees, our construction is a forest. We say that tuple ¢ is above
sin U, t > s, if there is a path from s to ¢ following the foreign-key joins in U. In
Figure 6.3(a), t is above s, s is above r. In Figure 6.3(b), s; is above r, however s, is

not above r.
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Given this query U, we can define the probability distribution P,. As we will see,
the distribution is induced by the frequency of occurrence of combinations of values
of the attributes of the tuple variables in ¢/ and join events among the tuple variables.
Py, is defined over the attributes of the tuple variables in &/ and over the join events

defined by p<,:

e Let ¢1,...,t; be the tuple variables 7 (i), and let A(U) = {A4,..., An} be the

attributes of the tuple variables.

e Let by, be the joins of U, then we introduce a join indicator variable r;.Jr for
each > (r;.F' = s.K). The join indicator r;.Jp is true iff r,.F = s. K. We
use J(r;) to denote the join indicators for a tuple variable r;. Let J(U) =

{J1,..., Jp_m} denote all of the join indicators.

The set of random variables Py, is defined over is V(U) = AU)UT (U) = {V1,...,V,}.

6.3 Statistical Relational Model

Now that we have a well-defined notion of the probability distribution defined by
a database, we turn to the task of representing the function in a compact manner.
We will use Statistical Relational Models (SRMs) to represent the frequencies in the
database. An SRM, like a PRM, has both a relational component to its description
and a probabilistic component. The relational component is defined via the relational
schema R of the database. We review the probabilistic component below, using
database terminology rather than the object-oriented approach of Chapter 2. Some
of the definitions are equivalent, but it will be useful to have the database definitions
at hand later when we discuss queries.

SRMs, like PRMs, extend Bayesian networks to the relational setting. They
allow us to model correlations not only between attributes of the same tuple, but
also between attributes of related tuples in different tables. This is accomplished by
allowing, as a parent of an attribute R.A, an attribute S.B in another relation S

such that R has a foreign key for S. As before, we can also allow dependencies on
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Strain

=
household

relationship

Patient

Figure 6.4: An SRM for the Tuberculosis domain.

attributes in relations that are related to R via a longer chain of joins; in this chapter

to simplify the notation, we discuss only dependencies along a single pairwise join.

Definition 6.6: A statistical relational model (SRM) ¥ for a relational schema R
is a pair (S, 6), which specifies a local probability model for each of the following

variables:

e for each table R and each attribute A € A(R), a variable R.A;

e for each foreign key F' of R into S, a Boolean join indicator variable R.Jp.
For each variable of the form R.V:

e S specifies a set of parents Pa(R.V'), where each parent has the form R.B or
R.F.B where F is a foreign key of R into some table S and B is an attribute of
S. If R.F.B is a parent of R.A, then R.Jr must also be a parent of R.A.

e 0 specifies a CPD P(R.V | Pa(R.V)). We also require that the CPD of R.V is
only defined in cases where each join indicator parent R.Jp is true, R.Jr = true.
|
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We refer to the join-indicator variables that are R.V’s parents as Pa;(R.V) and
the attributes that are R.A’s parents Pas(R.V). We use J(¥) to refer to all of the
join indicator variables in ¥. An SRM for our TB domain is shown in Figure 6.4.
Here, for example, we have that whether the contact is a household member depends

on the race of the patient.

This framework allows a probabilistic dependence of an attribute r.A on an at-
tribute s.B. This type of dependence only makes sense if s is related to r via some
foreign key dependence. Our SRM models a distribution where r and s are chosen
independently at random; there is no reason for their attributes to be correlated un-
less they are somehow related. Hence, we constrain the SRM model to allow r.A to
depend on s.B only if r.F' = s.K. The CPD of R.A is only defined for cases where
each R.Jr € Pa;(R.V) is true. In other words, in the CPD tree for R.A, the R.Jg

are at the top of the tree, and only the branch in which all R.Jr = true is meaningful.

Note that the join indicator variable also has parents and a CPD. Consider the
SRM for our TB domain. The join indicator variable Patient.J gy, has the parents
Patient. US_born and Strain. Fitness, which indicates whether the strain is unique in
the population (and has low fitness) or has appeared in more than one patient (and
has moderate to high fitness). There are essentially three cases: for a non-unique
strain and a patient that was born outside the U.S., the probability that they will
join is around 0.001; for a non-unique strain and a patient born in the U.S. the
probability is 0.0029, nearly three times as large; for a unique strain, the probability
is 0.0004, regardless of the patient’s place of birth. Thus, we are much more likely
to have U.S.-born patients joining to non-unique strains than foreign-born ones. (As
we saw in Section 3.5, the explanation is that foreign-born patients often immigrate
to the U.S. already infected with the disease; such patients typically have a unique
strain indigenous to their region. U.S.-born patients, on the other hand, are much
more likely to contract the disease by catching it from someone local, and therefore
will appear in infection clusters.)

At this point, an SRM looks suspiciously like a PRM. And, at this syntactic
level it is almost identical. Our descriptive attributes are allowed the same form

of probabilistic dependencies as the descriptive attributes of PRMs. And the join
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indicator variables are quite similar in form to the link uncertainty introduced in
Chapter 4. However, the models are distinguished by their semantics. A PRM
is a model over a particular skeleton and can be used to answer questions about
a particular individual. Answering queries (performing inference) in a PRM can
be quite expensive. A naive approach requires us to construct the entire unrolled
Bayesian network. As we will see in the next section, SRMs answer a very different
category of queries, and the algorithms for answering the queries are much more

efficient.

6.4 SRM Semantics

We now wish to describe the relationship between an SRM and a database. An SRM
describes a set of independence assumptions and the local distributions of attributes
given their parents. Intuitively, we say that a database D is a model of an SRM ¥
if the conditional independence assumptions made in ¥ hold in D and if the local
distributions match the frequencies in D. In order to make this statement precise we
will need to introduce several new concepts. The first set of definitions will allow us

to define the set of independence assumptions that hold in an SRM.

6.4.1 The Path Dependency Graph

We would like to examine the dependencies that can be represented by an SRM. As
in the case of PRMs, we cannot allow cycles in our probabilistic model. Recall that
if there is a stratification of the class dependency graph, this guarantees that our
instance dependency graph is acyclic. However, in the case of SRMs, we require a
stronger form of stratification. We use Fy to denote the set of foreign keys R.F that
are used to define parents in . We can use the notion of the table stratification of
a schema to define the table stratification of an SRM:

Definition 6.7: An SRM W with schema R is (table) stratified if there exists a table
stratification <y of R with respect to Fy. 1
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Note that this is a much stronger restriction than the stratification of the class
dependency graph proposed for PRMs. The stratification required for PRMs is at
the attribute level, whereas the stratification required for SRMs is at the table level.
Clearly, if an SRM is table stratified, its class dependency graph is stratified.

Given this restriction, we can now define the set of independence assumptions
made in an SRM. Recall that a BN defines the following set of independence assump-
tions: each random variable is conditionally independent of its non-descendants given
its parents. We would like a similar definition of the set of independence assumptions
defined by an SRM. In the case of SRMs the task is more difficult because the de-
pendency graph is defined over attributes from different tables. The following set of
definitions extend the notion of non-descendants to attributes in an SRM.

First, we will find it useful to introduce the path dependency graph. The path
dependency graph is a dependency graph defined by the SRM over the attributes and

join indicators of the tuples in i.

Definition 6.8: The path dependency graph G for an SRM ¥ with dependency
structure S is defined as follows: For each tuple variable ¢ € T (U) where t is a tuple
variable for table R,

e For each attribute R.A € A(R), and for each parent of R.A € Pa(R.A)

— If the parent is of the form R.B, add the edge t.B — t.A.

— If the parent is of the form R.F.B, and s is the tuple variable associated
with R.F' in U, add the edge s.B — t.A. Also add the edge for the

corresponding join indicator, t.Jp — t.A.

e Similarly for each join indicator R.Jp of a foreign key of R, and for each parent
of R.A € Pa(R.Jp):

— If the parent is of the form R.B, add the edge t.B — t.Jp.

— If the parent is of the form R.F’.B, and s is the tuple variable associated
with R.F" in U, add the edge s.B — t.Jp. If t.J # t.Jp, also add the

edge for the corresponding join indicator, t.J, — t.Jp.
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(a) (b)

Figure 6.5: (a) A simple example SRM for two relations, R and S. R has one
descriptive attribute, R.A, and one foreign key, R.F', which refers to S. S has one
descriptive attribute S.B. R.A depends on R.F.B. (b) The path dependency graph
for this example.

Let V(G) = {V4,...,V,} denote all of the variables in G. i

To illustrate, suppose we have the simple SRM shown in Figure 6.5(a), with a
schema containing two tables, R and S. R has one descriptive attribute and a foreign
key R.F which refers to S. S has one descriptive attribute, S.B. The value of
R.A depends on R.F.B. The path dependency graph is shown in Figure 6.5(b). It
has nodes 7.4, r.Jr, and s.B where s is associated with foreign key 7.F', and edges
s.B — r.A and, because we use the join 7.F in defining this dependence, we have the
edge r.Jp — 1.A.

A more complex SRM is shown in Figure 6.6(a). This SRM is over 5 tables: @,
U, R, S and T. The path dependency graph is shown in Figure 6.6(b). Here we see
that, due to the construction of the universal foreign-key closure, there have been two
tuple variables introduced for both table S and table T.

We introduce the notion of the upward joins of V', J;(V'), which are all the joins
that occur “above” V in the path dependency graph G. J;(V) is defined as follows:

Definition 6.9: Let G be the universal foreign-key closure for a schema R. Let
V € V(G). The upward joins of V are J};(V) = {J | J is an ancestor of V in G}. I
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Figure 6.6: (a) A more complex SRM for five relations, @, R, S, T, and U. (b) The
path dependency graph for this SRM. In this example, the nondescendants of 7. A are
T.C, S.Jp, Q.Jg, Q.Jy and U.D.

In Figure 6.6(b), the upward joins of r.A are: Jj(r.A) = {r.Js,,s1.Jr,}, and the
upward joins of ¢.E are: J(q.E) = {q.Jr, ¢-Ju,7-Js,, s1.d1, U. I3y, So.J1, }-

We can extend our definition of upward joins to a set of variables, V' C V(G), in
the obvious way: it is just the union of the upward joins of each v € V.

Next we introduce another definition defined via the path dependency graph, the

notion of the nondescendants of a variable.

Definition 6.10: Let ¥ be an SRM with path dependency graph G. Let R.A be a
node in G with parents Pag(R.A). The non-descendants of R.A, nondescendantsg(R.A),
are the set of attributes that are not descendants of R.A € G, and are neither R.A
itself or among Pa(R.A):

V(G) — {R.A} — Pag(R.A) — descendantsg(R.A). 1

In the earlier example shown in Figure 6.5(b), 7.A has no non-descendants and
r.Jr has non-descendant s.B. For the path dependency graph shown in Figure 6.6(b),
the non-descendants of 7. A are t1.C, s1.Jr,, ¢.Jr, ¢.Ju, u.D, u.Js,, $3.B, ss.Jr, and
t.C.
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‘ V=v ‘ legal? ‘
{t1.€ =¢} yes
{81.B = b, s1.J1, = false,t;.C = ¢} no
{s1.Jr, = false,t1.C = c} yes
{81.B = b, s1.J, = true,t;.C = ¢} yes
{r.Js, = true, s1.Jp, = true} yes
{r.Js, = true, s1.Jy, = false} no
{r.Js, = false,s1.J7, = true} yes
{¢.E = e,q.Jr = true,q.Jy = true,r.Js, = true, | yes
s1.Jpy = true,u.Js, = true, so.Jp, = true}

Table 6.1: This table shows several events and along with their categorization as legal
events for the path dependency graph of Figure 6.6(b).

Like P, the SRM defines a probability distribution over the random variables
V(G). However, we limit the events we consider to ones where an appropriate set of
the join indicator variables are true. In order to make this more precise, we need to
introduce a bit more machinery.

An event, which is assignment of values to some subset of the random variables,
V C V(G) is legal if, for any variable with a value assignment, all of the upward joins

of the variable are true and included in V.

Definition 6.11: Let G be the path dependecny graph for a schema R. Let
V C V(G). An assignment of values to the random variables of V' = {vy,..., v} is
legal iff for each V € V., J;(V) C V, and for V; € J;;(V), v; = true. 1

Intuitively, in a legal assignment, all of the upward joins of the variables must be
included and true, however join indicators that are on the ‘fringe’, i.e., leaves of this
set of variables, may be false.

Table 6.1 shows several examples of events for the SRM from Figure 6.6, and their
categorization as either legal or illegal events.

Now we are ready to describe the distribution defined by an SRM:

Definition 6.12: Let ¥ = (S,6) be an SRM over D, let G be the path dependency
graph for ¥. Let V(G) = {V4,...,V,} be the nodes in the path dependency graph.
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Then ¥ defines the following distribution:

Py(Vi,...,Vp) =
I Po(Vi|Pag(Vi), J; (Vi) = TN
Viev(G)
Note that this distribution is defined only for legal events.
We begin by proving that this is in fact a coherent probability distribution.

Theorem 6.13: Let ¥ be an SRM with a table-stratified schema R. Let G be the path
dependency graph for V. Then Py is a coherent distribution.

Proof: In order for Py to define a coherent distribution, we show that it corresponds
to a legal ground Bayesian network over legal events.? The ground Bayesian network
is constructed by introducing a node for each attribute of the path dependency graph
G. The parents of each node are defined by G, and the CPDs are taken from the
SRM.

The ground Bayesian network is legal if it is acyclic and if each of the node
CPDs are well-defined. Because the relational schema is table stratified, the path
dependency graph will be acyclic. Hence the ground BN, which has the same structure
as the path dependency graph, is acyclic. Assuming the CPDs in the SRMs are legal,
then the CPDs in the BN will be legal. We condition on the upward joins of each

attribute being true, hence Py defines a coherent distribution for legal events. I

6.4.2 The Independencies in the Database

Now we return to the distribution defined by our database Py (Vi,...,V,,). Now that
we have our definition of legal events, we are in the position to state the independence
statements that hold in the database.

2Note, however, that this ground Bayesian network is quite different from the ground Bayesian
networks we have defined in earlier chapters. In this case, the Bayesian network will be over attributes
of the tuple variables; our earlier constructions had a node for each attribute of each tuple in each
table as defined by the appropriate skeleton. Hence the Bayesian networks constructed in this
chapter are much smaller than our earlier ground Bayesian networks.
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Definition 6.14: Given a database D, a set of foreign keys F and a table stratifi-
cation <, the set of independence statements that hold in the database with respect
to the a set of legal events E (which will be defined by the path dependency graph G
for an SRM V) are:

For any subsets X, Y, Z of V(U), if for all assignments of values x, y and z which
are legal events:
Pu(x|y,z) = Pu(x|y)

then
L(X,Z|Y). §

We see that our construction of the path dependency graph, which introduces a
unique tuple variable for each foreign-key in the schema, places some restrictions on
the dependencies we can model. In the example given in Figure 6.3(b), because we
introduce a new tuple variable for the each reference to S, we cannot assert that r
and t refer to the same s, and hence we cannot model dependence between r and ¢
through s. Consider the case where we have a student and we have the grades for the
student and the job offers a student receives. In other words, grades is a table with
a foreign-key that refers to the student, and offers is a table with a foreign-key that
refers to the student. While clearly there may be a correlation between a student’s
grades and the salaries of the offers she receives, our model does not allow us to
assert the dependence, because in essence, we introduce a new tuple variable for the
student who received the grades and a different tuple variable for the student who
received the job offers. While we can if fact represent the correlation, for example
through an attribute of student such as their intelligence. This is a limitation on the
independence assertion that we can make. This is a design decision we have made,
and certainly there are other possibilities. Note that in some cases one can sidestep
the issue; for example, in the work on universal relations, it is assumed that there is

only one foreign-key reference to each table.
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6.4.3 Semantics: models

We are now in the position to make a connection between the independence assump-
tions made by an SRM and the independence statements that hold in our database.
If the independence assumptions defined by the SRM hold for the database and the
frequencies in the database match the CPDs of the SRM, we say that D is a model
of 0.

Now we are ready to state the main definition of this section:

Definition 6.15: A database D with universal foreign-key closure U stratified with
respect to <y is a model of an SRM W, D |= U, if they are both over the same
table-stratified schema R, and in the path dependency graph G, for each node V in
V(G):

e I;;(V,nondescendantsg (V') | Pag(V), J;;(V) = T);
o Py(V |Pag(V),J;5(V)=T) = Py(V | Pag(V), J;(V) =T). 1
And, we are now ready to prove the main theorem of this chapter:

Theorem 6.16: Let D be a database over schema R and U be an SRM over the
same schema with path dependency graph G. Suppose D = V. Then

Py(Vi,...,Vp) = Ps(Vi,...,V})
for legal events.

Proof: By definition

Py(Vi,...,V,) =
II Po(Vi| Pag(Vi), J;(Ai) = T)
Vievg

Let Vi,...,V, be a topological ordering of the attributes and join indicators of G.

Consider the same ordering of the attributes of &/. We can use the chain rule to write
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Pp(U) as follows:
p
PoU) =] Po(V; | Vicy,- .-, V2).

i=1
We can check that for any topological ordering of the attributes V1,...,V}, if vy, ..., v;
is a legal event, then so is the prefix vy,...,v;_;. Therefore in the above product, we
are conditioning on legal events. Because D = ¥, the same independences hold in

P, and Py, and we can rewrite the above as:

P
Py(Vi, ..., Vp) = I Po(Vi | Pag(Vi), J5 (Vi) = T)
i=1
Because the parameters in the SRM match the frequencies in the database, Pp(V; |
Pag(Vi), J5;(Vi) = T) = Py(V; | Pag(V;), J;;(Vi) = T), therefore the probability func-
tions Pp(U) and Py(G) are equal. 1

Also note that for any SRM W, there will be an infinite number of databases that
are models of . And, for any database, in general there will be more than one SRM
that it models. However, in the case of functional dependencies, even this SRM is

not unique.

This may all sound rather negative. In fact, even finding independencies that hold
perfectly for all legal assignments of values to attributes and join indicators in the
database is rather difficult. However, as we will see later when we learn an SRM from
a database, instead we will be finding an SRM that is a good approximation for the

independencies that hold in the database.

6.4.4 Inference: Answering Queries

Our goal is to use the SRM to answer queries rather than resorting to querying the
database. We will show how to construct a Bayesian network from our SRM that can
be use to compute the answer to a query. And we will show that if D = W then the
answer we will compute is correct. However this is only true for a certain category of

queries we define below.
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6.4.4.1 Queries

We begin by restricting attention to a form of select-join queries over multiple tables
we call inverted-tree foreign-key-join queries. These queries are over a subset of the
tuple variables of the universal foreign-key closure with respect to Fy (we assume
this throughout). Intuitively, they are over an upwardly closed fragment of the forest

defined via the foreign-key joins in &, and may themselves form a forest.

Definition 6.17: Given a database D with universal foreign-key closure U, let T C
TU). T is closed with respect to U if for all ¢ € T, if for each foreign key ¢.F
of T with associated tuple variable s, s € T. Let J(T) = {t.F < s.K |t €
T and s is the associated tuple variable for t.F}. I

Definition 6.18: Given a database D with universal foreign-key closure U, Q is a
inverted-tree foreign-key-join query over tuple variables T = {t;, ..., ¢}, if T is closed
with respect to U, o= J(T'), and we select on some subset of the attributes A(T),
og={Ai=a;| A € A(T)}:

Q =g (UQ(Rl X . R]C)) |

If a query () satisfies these conditions, we refer to it as a inverted-tree foreign-key-

join query. As shorthand, we will simply call them legal queries.

6.4.4.2 Query Evaluation Bayesian Network

Definition 6.19: Let ¥ = (S, 6) be an SRM over D, and let ) be a legal query. We

define the query-evaluation Bayesian network T[Q] to be a BN as follows:

For each attribute r.A of every tuple variable r» € @), it has a node r.A.

It also has a node r.Jp for every clause r.F' = s.K in Q).

For every variable r.V, the node r.V has parents Pag(r.V).

The CPD of 7.V is as specified in 6. 1
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Figure 6.7: A query-evaluation BN for TB domain and the keyjoin query s.Fitness =
high & p.Strain = s.Strain-1D & p.US_born = true. The attributes mentioned in the
query are shown with a heavy outline. (The disconnected nodes have been removed
from the graph.)

In our simple example in Figure 6.5(a), the query evaluation BN is identical to
the path dependency graph in Figure 6.5(b). As another example, Figure 6.7 shows
the query evaluation BN for the following foreign-key closed keyjoin query over our
TB SRM: s.Fitness = high & p.Strain = s.Strain-1D & p.US_born = true.

The query evaluation Bayesian network defines the following distribution:

Definition 6.20: Let ¥ = (S,60) be an SRM over D, let @ be a legal query and
let T[Q] be the query evaluation Bayesian network for (). Then Y[Q)] defines the

following distribution:

TRl = [[ Po(Ai| Pas(4;), J(4;) =T)
Vieve

where Pa(A4;) are defined by Y[Q]. I

Lemma 6.21: Let ¥ be an SRM with a table-stratified schema R. Let @) be a legal
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query. Then
Py(Q) = T[]

Proof: As we saw, if ) is a legal query, it is an upwardly closed set of fragments of
the universal foreign-key closure. Thus, Y[Q] is a an upwardly closed fragment of the
path dependency graph G. We can construct Y[Q] from the ground Bayesian network
for Py (@) by simply applying barren node elimination to remove descendants that

are not part of the query. I

Now we are ready to prove the main theorem of this section:

Theorem 6.22: Let database D = V. Let Q be a legal query and let Y[Q)] be the

query evaluation Bayesian network for the query.

Pp(Q) = T[¢]

Proof: This is a straightforward consequence of Theorem 6.16 and Lemma 6.21 I

6.4.5 More Expressive Queries

In the previous section, we showed how to compute the answer to queries that are
inverted foreign-key queries. It is straightforward to extend the results beyond the
universal foreign-key closure to products of unconnected inverted foreign-key queries
over non-interacting copies of U; the solution is just the cross product of the inde-
pendent components.

More interestingly, we can also use our methods to answer queries that are not
inverted foreign-key queries. A simple example of a query that is not of this form
is RF = SK & T.F = S.K. As we saw in Figure 6.3(b), our SRM makes the
assumption that the tuple variable that R joins with is independent from the tuple
variable that 71" joins with. But, we can still use our SRM to answer this query, we are

just no longer guaranteed to compute the correct answer, we will only be computing
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an approximation. In effect, we are making an incorrect independence assumption.
While on the surface this may not seem terribly useful, the SRM is still likely to
produce better estimates than other methods commonly used for estimating queries
results, which make even stronger (potentially incorrect) independence assumptions

(for example assuming independence of all attributes).

6.5 Learning SRMs

The previous sections showed how to answer queries once we have an SRM that
captures the significant statistical correlations in the data distribution. This section
addresses the question of how to construct such a model automatically from the
relational database. The learning algorithm is essentially the same as the learning
algorithm described in Chapter 3. Here we highlight the important differences in the

algorithms.

As before, the input to the construction algorithm consists of two parts: a rela-
tional schema, that specifies the basic vocabulary in the domain — the set of tables,
the attributes associated with each of the tables, and the possible keyjoins between
tuples; and the database itself, which specifies the actual tuples contained in each ta-
ble. Here, because our goal is summarization, we wish to ensure the the compactness
of our model. We accomplish this by imposing a storage limitation on the models, so

that our task is to find the best SRM that satisfies our space constraints.
In the construction algorithm, our goal is to find an SRM (S, 6) that best rep-

resents the dependencies in the data. There is an important difference in this goal
in comparison with our optimization criteria in Section 3.3.2. For a PRM, we were
interested in constructing a model that trades off fit to data with model complexity.
This tradeoff allows us to avoid fitting the training data too closely, which would
reduce our ability to predict unseen data. However, in the case of an SRM, our goal
is very different: We do not want to generalize to new data, but only to summarize
the patterns in the existing data. This difference in focus is what motivates our choice

of scoring function.
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6.5.1 Scoring Criterion

To provide a formal definition of model quality, we make use of basic concepts from
information theory [Cover and Thomas, 1991]. The quality of a model can be mea-
sured by the extent to which it summarizes the data. In other words, if we had the
model, how many bits would be required, using an optimal encoding, to represent
the data. The more informative the model, the fewer bits are required to encode the
data.

It is well known that the optimal Shannon encoding of a data set, given the model,
uses a number of bits which is the negative logarithm of the probability of the data
given the model. In other words, we define the score of a model (S,#) using the

log-likelihood function we saw earlier:
(0,8 | D)=1logP(D | S,0) (6.1)

As before, we can therefore formulate the model construction task as that of finding

the model that has maximum log-likelihood given the data.

6.5.2 Parameter Estimation

As we discussed in Section 3.2.1, the highest likelihood parameterization for a given
structure S is the one that precisely matches the frequencies in the data. We have
seen how to do maximum likelihood parameter estimation for descriptive attributes,
so here we discuss only the extensions required for join indicator variables.

The computation of the CPD for a join indicator variable Jr requires that we
compute the probability that a random tuple r from R and a random tuple s from
S will satisfy r.F' = s.K. The probability of the join event can depend on values
of attributes in r and s, e.g., on the value of r.A and s.B. In our TB domain,
the join indicator between Patient and Strain depends on US_born within the Patient
table and on Fitness within the Strain table. To compute the sufficient statistics
for P(Jp | r.A, s.B), we need to compute the total number of cases where r.A = a,

s.B = b, and then the number within those where r.F' = s.K. Fortunately, this
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computation is also easy. The first is simply Cp|R.A = a]- Cp[S.B = b]. The latter is
Cp|R.A=a,S.B=>b,R.F = S.K|, which can be computed by joining the two tables
and then doing a count and group-by query. The cost of this operation (assuming an

appropriate index structure) is linear in the number of tuples in R and in S.

6.5.3 Structure Selection

Our second task is the structure selection task: finding the dependency structure that
achieves the highest log-likelihood score. Consider a particular structure S. We saw
in Section 3.2.1, the optimal choice (in terms of likelihood) for parameterizing S. We
use s to denote this set of parameters. Let Pp be the distribution in the database,

as above. We can reformulate the log-likelihood score in terms of mutual information:

1(S,0s | D) =

? A€ A(R;)

where C' is a constant that does not depend on the choice of structure. As before, the
overall score of a structure decomposes as a sum, where each component is local to an
attribute and its parents. The local score depends directly on the mutual information
between a node and its parents in the structure. Thus, our scoring function prefers
structures where an attribute is strongly correlated with its parents. We will use
score;(S : D) to denote (S, 05 | D).

An additional consideration is any storage constraints we have on the model. A
database system typically places a bound on the amount of space used to specify the
statistical model. We therefore place a bound on the size of the models constructed
by our algorithm. In our case, the size is typically the number of parameters used
in the CPDs for the different attributes, plus some small amount required to specify
the structure. A second computational consideration is the size of the intermediate
group-by tables constructed to compute the CPDs in the structure. If these tables
get very large, storing and manipulating them can get expensive. Therefore, we often

choose to place a bound on the number of parents per node.
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6.5.3.1 Search algorithm

Now we must provide a search algorithm for finding a high-scoring hypothesis in our
space. As before, the search algorithm is greedy hill-climbing search, using random
steps to escape local maxima. We maintain our current candidate structure S and
iteratively improve it. At each iteration, we consider a set of simple local transfor-
mations to that structure. For each resulting candidate successor &', we check that
it satisfies our constraints, and select the best one. We restrict attention to simple
transformations such as adding, deleting or reversing an edge, and adding or deleting
a split in a CPD tree. This process continues until none of the possible successor
structures S’ have a higher score than S. At this point, the algorithm can take
some number of random steps, and then resume the hill-climbing process. After some
number of iterations of this form, the algorithm halts and outputs the best structure

discovered during the entire process.

However, here we are using a different scoring criterion and we need to consider
how that should alter our search strategy. In our greedy search, we need to consider
how to choose among the possible successor structures S’ of a given structure S. The
most obvious approach is to simply choose the structure &’ that provides the largest
improvement in score, i.e., that maximizes A;(S’,S) = score; (S’ : D) — score)(S : D).
However, this approach is very shortsighted, as it ignores the cost of the transforma-
tion in terms of increasing the size of the structure relative to the storage constraint

we have for the model. We now present two approaches that address this concern.

The first approach is based on an analogy between this problem and the weighted
knapsack problem: We have a set of items, each with a value and a volume, and a
knapsack with a fixed volume; our goal is to select the largest value set of items that
fits in the knapsack. Our goal here is very similar: every edge that we introduce
into the model has some value in terms of score and some cost in terms of space.
A standard heuristic for the knapsack problem is to greedily add the item into the
knapsack that has, not the maximum value, but the largest value to volume ratio.

In our case, we can similarly choose the edge for which the likelihood improvement



6.5. LEARNING SRMS 155

normalized by the additional space requirement:

A(S,S)
space(S') — space(S)

AL(S,8) =

is largest.®> We refer to this method of scoring as storage size normalized (SSN).

The second idea is to use an MDL (minimum description length) scoring function,
a modification to the log-likelihood scoring function that penalizes complex models.
This scoring function is motivated by ideas from information and coding theory. It
scores a model using not simply the negative of the number of bits required to encode
the data given the model, but also the number of bits required to encode the model

itself. This score has the form
scorepq (S : D) = 1(S, 0s | D) — space(S).

We define A,,(S',S) = scoreq (S’ : D) — score,q(S : D).

All three approaches involve the computation of A;(S’,S). Eq. (6.2) then pro-
vides a key insight for improving the efficiency of this computation. As we saw, the
score decomposes into a sum, each of which is associated only with a node and its
parents in the structure. Thus, if we modify the parent set or the CPD of only a
single attribute, the terms in the score corresponding to other attributes remain un-
changed [Heckerman, 1998]. Thus, to compute the score corresponding to a slightly
modified structure, we need only recompute the local score for the one attribute whose
dependency model has changed. Furthermore, after taking a step in the search, most

of the work from the previous iteration can be reused.

The example shown earlier, Figure 6.4, shows an SRM that was constructed using
this algorithm for the TB domain.

3This heuristic has provable performance guarantees for the knapsack problem. Unfortunately,
in our problem the values and costs are not linearly additive, so there is no direct mapping between
the problems and the same performance bounds do not apply.
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6.6 SRMs for Selectivity Estimation

SRMs are useful for answering a wide range of queries. Like PRMs, they are useful
for data mining and exploratory data analysis. SRMs answer a different category of
queries from PRMs, statistical queries, rather than queries about particular individu-
als. SRMs are also useful as a compact representation for a particular database. Here
we show how this latter capability can be used for a fundamental task in database

processing: estimating the result size of a query, or selectivity estimation.

Accurate estimates of the result size of queries are crucial to several query pro-
cessing components of a database management system (DBMS). Cost-based query
optimizers use intermediate result size estimates to choose the optimal query execu-
tion plan. Query profilers provide feedback to a DBMS user during the query design
phase by predicting resource consumption and distribution of query results. Precise
selectivity estimates also allow efficient load balancing for parallel join on multiproces-
sor systems. Selectivity estimates can also be used to approximately answer counting
(aggregation) queries. This is an area that is currently receiving a lot of research at-
tention; see [Garofalakis and Gibbons, 2001] for an excellent tutorial on approximate

query answering.

6.6.1 Current Approaches

The result size of a selection query over multiple attributes is determined by the joint
frequency distribution of the values of these attributes. The joint distribution encodes
the frequencies of all combinations of attribute values, so representing it exactly
becomes infeasible as the number of attributes and values increases. Most commercial
systems approximate the joint distribution by adopting several key assumptions; these
assumptions allow fast computation of selectivity estimates, but, as many have noted,
the assumptions can lead to very inaccurate estimates.

The first common assumption is the attribute value independence assumption, un-
der which the distributions of individual attributes are independent of each other

and the joint distribution is the product of single-attribute distributions. However,
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real data often contain strong correlations between attributes that violate this as-
sumption, leading to very inaccurate approximations. For example a census database
might contain highly correlated attributes such as Income and Home-Owner. The
attribute value independence assumption would lead to an overestimate of the result

size of a query that asks for low-income home-owners.

A second common assumption is the join uniformity assumption, which states
that a tuple from one relation is equally likely to join with any tuple from the second
relation. Again, there are many situations in which this assumption is violated. For
example, assume that our census database has a second table for online purchases.
High-income individuals typically make more online purchases than average. There-
fore, a tuple in the purchases table is more likely to join with a tuple of a high-income
individual, thereby violating the join uniformity assumption. If we consider a query
for purchases by high-income individuals, an estimation procedure that makes the
join uniformity assumption is likely to substantially underestimate the query size.

Section 6.1 gave a similar example in the TB domain.

To relax these assumptions, we need a more refined approach, that takes into con-
sideration the joint distribution over multiple attributes, rather than the distributions
over the attributes in isolation. Several approaches to joint distribution approxima-
tion, also referred to as data reduction, have been proposed recently; see [Barbard

et al., 1997] for an excellent summary of this area.

One simple approach for approximating the query size is via random sampling. For
select selectivity estimation over a single table, a set of samples is generated, and then
the query result size is estimated by computing the actual query result size relative to
the sampled data. However, the amount of data required for accurate estimation can
be quite large. For join selectivity estimation, we can randomly sample the two tables,
and compute their join. This approach is flawed in several ways [Acharya et al., 1999],
and some work has been devoted to alternative approaches that generate samples in

a more targeted way [Lipton et al., 1990].

More recently, several approaches have been proposed that attempt to capture
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the joint distribution over attributes more directly. The earliest of these is the multi-
dimensional histogram approach [Muralikrishna and Dewitt, 1988, Poosala and Ioan-
nidis, 1997]. They provide an extensive exploration of the taxonomy of methods
for constructing multidimensional histograms and study the effectiveness of different
techniques. They also propose an approach based on singular value decomposition, ap-
plicable only in the two-dimensional case. A newer approach is the use of wavelets to
approximate the underlying joint distribution [Matias et al., 1998, Vitter and Wang,
1999, Chakrabarti et al., 2001].

Contemporaneously with the development of the work presented here, there has
been recent work applying graphical models to the problems of approximate query
answering and database compression. In an approach closely related to our work,
Markov models have been used to approximate the joint distribution over attributes
in a single table [Deshpande et al., 2001]. The learned models are then used to
compute approximate answers to OLAP queries. There has also been recent work
on using a learned Bayesian network to guide the construction of compact models
of large tables [Babu et al., 2001]. Compact models are achieved by building CART
trees for certain attributes; the choice of columns is guided by the structure of the
learned Bayesian network. This approach differs from ours in that in the end it does
not attempt to capture the full joint distribution (although as an intermediate step, it
does construct a model of the joint distribute), but focuses on building good predictors
for single attributes. However, the most important distinction is the support in our

approach for queries over multiple tables.

6.6.2 Our Approach

In this section, we provide a framework for using probabilistic graphical models to
estimate selectivity of queries in a relational database. SRMs can be used to represent
the interactions between attributes in a single table, providing high-quality estimates
of the joint distribution over the attributes in that table. Furthermore, SRMs allow
us to represent skew in the join probabilities between tables, as well as correlations

between attributes of tuples joined via a foreign key. They thereby allow us to estimate



6.6. SRMS FOR SELECTIVITY ESTIMATION 159

- SRM <§ f :;3 Selectivity

offline

execution time

Figure 6.8: A high-level description of the selectivity estimation process.

selectivity of queries involving both selects and joins over multiple tables.

Our approach has several important advantages. First, it provides a uniform
framework for select selectivity estimation and foreign-key join selectivity estimation,
introducing a systematic method for estimating the size of queries involving both op-
erators. Second, our approach is not limited to answering a small set of predetermined
queries; a single statistical model can be used to effectively estimate the sizes of any
(select foreign-key join) query, over any set of tables and attributes in the database.

Figure 6.8 shows the high-level architecture for our algorithm. Like most selectiv-
ity estimation algorithms, our algorithm consists of two phases. The offiine phase, in
which the SRM is constructed from the database. This process is automatic, based
solely on the data and the space allocated to the statistical model. The second, online
phase, is the selectivity estimation for a particular query. The selectivity estimator
receives as input a query and an SRM, and outputs an estimate for the result size of
the query. Note that the same SRM is used to estimate the size of a query over any
subset of the attributes in the database; we are not required to have prior information
about the query workload. While we will be describing a batch learning algorithm,
standard methods for handling updates to the database can incorporated. We discuss
this issue further in Section 6.6.6.

The next subsection describes selectivity estimation for select operations over a
single table. We show how SRMs can be used to approximate the joint distribution

over the entire set of attributes in the table. In the following section, Section 6.6.4,
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we move to the more complex case of queries over multiple tables. Finally, in Sec-
tion 6.6.5, we provide empirical validation of our approach, and compare it to some
of the most common existing approaches. We present experiments over several real-
world domains, showing that our approach provides much higher accuracy (in a given
amount of space) than previous approaches, at a very reasonable computational cost,

both offline and online.

6.6.3 Estimation for Queries over Single Tables

We first consider estimating the result size for select queries over a single relation.
For most of this section, we restrict attention to domains where the number of values
for each attribute is relatively small (up to about 50), and to queries with equality
predicates of the form attribute = value. Neither of these restrictions is a fundamental
limitation of our approach; at the end of this section, we discuss how our approach
can be applied to domains with larger attribute value spaces and to range queries.

Let R be some table and let A(R) be the descriptive (non-key) attributes of R,
Ay, ..., A,. We denote the joint frequency over Ai,..., A, as Fp(Ai,...,4,). As
before, it is convenient to deal with the normalized frequency distribution,
Pp(Ay,..., A,), where:

P'D(Al, .- ;An) == FD(Al, .- ,An)/|R|

Now, consider a query @ over a set of attributes Ay, ..., Ay C A(R), which is a
conjunction of selections of the form A; = v;. The size of the result of the query @

sizeq[D] = Fp(Q) = |R| - Pp(Q), (6.3)

where Fp(Q) is the number of tuples satisfying @ and Pp(Q) is the probability,
relative to D, of the event Zg.
An SRM (or in this case, a Bayesian network, since we have only one table) is a

compact representation of a full joint distribution. Hence, it implicitly contains the
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answer to any query about the probability of any assignment of values to a set of
attributes. Thus, if we construct an SRM ¥ that approximates Pp, we can easily use
it to estimate Pp(Q) for any query @ over R. Assume that our query @ has the form

r.A = a. Then we can compute

Fp(A =a) = |R[- Pp(Q) = |R|- Pu(A = a)

6.6.4 Join Selectivity Estimation

Next, we consider queries over multiple tables. As above, we restrict attention to
databases satisfying referential integrity and for now, consider only foreign-key joins
in our queries.

Consider two tables R and S such that R.F points to S.K. Now, consider any
select-keyjoin query @@ over R and S: r. A = a,s.B=Db,r.F = s.K. It is easy to see
that the size of the result of @) is:

sizeg|D] = Fp(Q)
= |R|-|S|- Pp(A = a,B =b, Jp = true).

In other words, we can estimate the size of any query of this form using the joint
distribution Pp defined in Section 6.2.1.

Making use of our earlier theorem, Theorem 6.22, we can estimate this joint
distribution using an SRM. Let @ be a keyjoin query, and let Q" be its foreign-
key closure. Let r1,...,7, be the tuple variables in Q. Let Pp(ry,...,7x) be the
distribution obtained by sampling each tuple rq,...,7; independently. Then for any
query @' which extends @*, the SRM allows us to approximate Pp(Zg), precisely
the quantity required for estimating the query selectivity. We can compute the SRM
estimate using the query-evaluation Bayesian network T[] defined in Definition 6.19.

Continuing with our previous example, if query () has the form r.A = a & s.B =
b & r.F' = s.K, then size of the result of @) is:

sizegD] = Fp(Q)
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= |R|-|S|- Pp(A =a,B=b,Jr = true)
~ |R|-|S|-Py(A =a,B=Db,Jr = true)

= |R|-|S]- PT[(A:a,B:b,JF:tTue)]

The result follows from Theorem 6.22 and referential integrity. It can easily be

extended to queries involving more than two tables.

6.6.5 Experimental Results

In this section, we present experimental results for a variety of real-world data, in-
cluding: a census dataset [U.S., Census Bureau, 1992-93|; FIN, a subset of the
database of financial data used in the 1999 European KDD Cup [Berka, 1999]; and
TB, the database of tuberculosis patients in San Francisco that we have already seen
in Section 3.5. We begin by comparing the accuracy of our methods with the ex-
isting techniques on small select queries over a single relation. We next evaluate the
accuracy of our methods on models that support arbitrary select queries over a single
relation. We then consider more complex, select-join queries over several relations.
Finally, we discuss the running time for construction and estimation for our models.

In each case, we evaluate the method using the adjusted relative error of the
query size estimate: If S is the actual size of our query and S is our estimate, then
the adjusted relative error is (|S —S|)/ max(1, S). For each experiment, we computed
the average adjusted error over all possible instantiations for the select variables of

the query; thus each experiment is typically the average over several hundred queries.

6.6.5.1 Select Queries over Fixed Attributes

We evaluated accuracy for selects over a single relation on a dataset from Census
database described above (approximately 150K tuples). In the first set of experi-
ments, we compared our approach to an existing selectivity estimation technique —

multidimensional histograms.
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Figure 6.9: Relative error vs. storage size for a query suite over the Census dataset.
(a) Two attribute query (Age and Income). The relative error for AVI is 7395. (b)
Three attribute query (Age, HoursPerWeek and Income). The relative error for AVI
is 865. (c) Four attribute query (Age, Education, HoursPerWeek and Income). The
relative error for AVI is 70.19.

We compared the performance of four algorithms. AVTIis a simple estimation tech-
nique that assumes attribute value independence: for each attribute a one dimensional
histogram is maintained. In this domain, the domain size of each attribute is small, so
it is feasible to maintain a bucket for each value. This technique is representative of
techniques used in existing cost-based query optimizers such as System-R. MHIST
builds a multidimensional histogram over the attributes, using the V-Optimal(V,A)
histogram construction of Poosala and Ioannidis [1997].* This technique constructs
buckets that minimize the variance in area (frequency x value) within each bucket.
Poosala et al. found this method for building histograms to be one of the most suc-
cessful in experiments over this domain. SAMPLE constructs a random sample of
the table and estimates the result size of a query from the sample. SRM uses our
method for query size estimation. Unless stated otherwise, SRM uses tree CPDs and
the SSN scoring method.

Multidimensional histograms are typically used to estimate the joint over some
small subset of attributes that participate in the query. To allow a fair comparison,
we applied our approach (and others) in the same setting. We selected subsets of two,
three, and four attributes of the Census dataset, and estimated the query size for the

set of all equality select queries over these attributes. We evaluated the accuracy of

4We would like to thank Vishy Poosala for making this code available to us for our comparisons.
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these methods as we varied the space allocated to each method (with the exception
of AVI, where the model size is fixed). Figure 6.9 shows results on Census for three
query suites: over two, three, and four attributes. In all cases, SRM outperforms both
MHIST and SAMPLE, and all methods significantly outperform AVI. Note that an
SRM with tree CPDs over two attributes is just a slightly different representation
of a multi-dimensional histogram. Therefore, it is interesting that our approach still
dominates MHIST, even in this simple case. As the power of the representations is
roughly equivalent here, in both cases we simply use a collection of two-dimensional
counts to compute our estimate, the success of SRMs in this setting is due to the
different scoring function for evaluating different models, and the associated search

algorithm.

6.6.5.2 Arbitrary Select Queries over a Single Table

Average Relative Error (%)
<
=
SRM Average Relative Error (%)

Average Relative Error (%)

" s e
(a) (b) ()
Figure 6.10: Relative error vs. storage size for a query over the Census dataset,
with models constructed over 12 attributes. (a) Three attribute query (WorkerClass,
Education, and MaritalStatus) (b) Four attribute query (Income, Industry, Age and
EmployType). (c) A scatter plot showing the error on individual queries for a three
attribute query (Income, Industry, Age) for SAMPLE and SRM (using 9.3K bytes of
storage). In the scatter plot, each point represents a query, where the z coordinate
is the relative error using SAMPLE and the y coordinate is the relative error using
SRM. Thus, points above the diagonal line correspond to queries on which SAMPLE
outperforms SRM and points below the diagonal line correspond to queries on which
SRM performs better.

In the second set of experiments, we consider a more challenging setting, where a

single model is built for the entire table, and then used to evaluate any select query
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Figure 6.11: (a) Relative error vs. storage size for a select-join query over three tables
in the TB domain with selection on 3 attributes. (b) Relative error for three query
sets on TB (c¢) Relative error for three query sets on FIN

over that table. In this case, MHIST is no longer applicable, so we compared the
accuracy of SRM to SAMPLE, and also compared to SRMs with table CPDs. We
built an SRM (which is really a BN, as there is just one table) for the entire set of
attributes in the table, and then queried subsets of three and four attributes. (The
BN shown in Figure 2.2 is the model that was constructed for this dataset.) Similarly,

for SAMPLE, the samples included all 12 attributes.

We tested these approaches on the Census dataset with 12 attributes. The results
for two different query suites are shown in Figure 6.10(a) and (b). Although for very
small storage size, SAMPLE achieves lower errors, SRMs with tree CPDs dominates
as the storage size increases. Note also that tree CPDs consistently outperform table
CPDs. The reason is that table CPDs force us to split all bins in the CPD whenever
a parent is added, wasting space on making distinctions that might not be necessary.
Figure 6.10(c) shows the performance on a third query suite in more detail. The
scatter plot compares performance of SAMPLE and SRM for a fixed storage size
(9.3K bytes). Here we see that SRM outperforms SAMPLE on the majority of the
queries. (The spike in the plot at SAMPLE error 100% corresponds to the large set
of query results estimated to be of size 0 by SAMPLE.)
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6.6.5.3 Select-Join Queries

We evaluate the accuracy of estimation for select-join queries on two real-world
datasets. Our financial database (FIN) has three tables: Account (4.5K tuples),
Transaction (106K tuples) and District (77 tuples); Transaction refers through a for-
eign key to Account and Account refers to District. The tuberculosis database (TB)
also has three tables: Patient (2.5K tuples), Contact (19K tuples) and Strain (2K
tuples); Contact refers through a foreign key to Patient and Patient refers to Strain.

Both databases satisfy the referential integrity assumption.

We compared the following techniques. SAMPLE constructs a random sample
of the join of all three tables along the foreign keys and estimates the result size of a
query from the sample. BN+UJ is a restriction of the SRM that does not allow any
parents for the join indicator variable and restricts the parents of other attributes to
be in the same relation. This is equivalent to a model with a BN for each relation
together with the uniform join assumption. SRM uses unrestricted SRMs. Both
SRM and BN+UJ were constructed using tree-CPDs and SSN scoring.

We tested all three approaches on a set of queries that joined all three tables
(although all three methods can also be used for a query over any subset of the
tables). The queries select one or two attributes from each table. For each query
suite, we averaged the error over all possible instantiations of the selected variables.
Note that all three approaches were run so as to construct general models over all of

the attributes of the tables, and not in a way that was specific to the query suite.

Figure 6.11(a) compares the accuracy of the three methods for various storage
sizes on a three attribute query in the TB domain. The graph shows both BN+UJ
and SRM outperforming SAMPLE for most storage sizes. Figure 6.11(b) compares
the accuracy of the three methods for several different query suites on TB, allowing
each method 4.4K bytes of storage. Figure 6.11(c) compares the accuracy of the three
methods for several different query suites on FIN, allowing 2K bytes of storage for
each. These histograms show that SRM always outperforms BN+UJ and SAMPLE.
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Figure 6.12: (a) The construction time for an SRM for Census using tree and table
CPDs as a function of model storage space. (b) The construction time for an SRM
for Census using tree and table CPDs as a function of data size. (c) The running
time for query size estimation as a function of model size.

6.6.5.4 Scoring

We have experimentally compared the naive approach with the two ideas outlined
above on the Census dataset described in Section 2.2. Both SSN and MDL scoring
achieved higher log-likelihood than the naive approach for a fixed amount of space.
In fact, SSN and MDL performed almost identically for the entire range of allocated

space, and no clear winner was evident.

6.6.5.5 Running Time

Finally, we examine the running time for construction and estimation for our mod-
els. These experiments were performed on a 360 MHz Sparc60 workstation running
Solaris2.6 with 256 MB of internal memory.

We first consider the time required by the offline construction phase, shown in
Figure 6.12(a). As we can see, the construction time varies with the amount of
storage allocated for the model: Our search algorithm starts with smallest possible
model in its search space (all attributes independent of each other), so that more
search is required to construct the more complex models that take advantage of the
additional space. Note that table CPDs are orders of magnitude easier to construct
than tree CPDs; however, as we discussed, they are also substantially less accurate.

The running time for construction also varies with the amount of data in the



168 CHAPTER 6. STATISTICAL RELATIONAL MODELS

database. Figure 6.12(b) shows construction time versus dataset size for tree CPDs
and table CPDs for fixed model storage size (3.5K bytes). Note that, for table CPDs,
running time grows linearly with the data size. For tree CPDs, running time has high
variance and is almost independent of data size, since the running time is dominated
by the search for the tree CPD structure once sufficient statistics are collected.

The online estimation phase is, of course, more time-critical than construction,
since it is often used in the inner loop of query optimizers. The running time of
our estimation technique varies roughly with the storage size of the model, since
models that require a lot of space are usually highly interconnected networks which
require somewhat longer inference time. The experiments in Figure 6.12(c) illustrate
the dependence. The estimation time for both methods is quite reasonable. The
estimation time for tree CPDs is significantly higher, but this is using an algorithm
that does not fully exploit the tree-structure; we expect that an algorithm that is
optimized for inference with tree CPDs [Zhang and Poole, 1999], would be more

efficient.

6.6.6 Discussion of Selectivity Estimation Algorithm

In this section, we have presented a novel approach for estimating query selectivity
using SRMs. Our approach has several important advantages. To our knowledge, it
is unique in its ability to handle select and join operators in a single unified frame-
work, thereby providing estimates for complex queries involving several select and
join operations. Second, our approach circumvents the dimensionality problems as-
sociated with multi-dimensional histograms. Multi-dimensional histograms, as the
dimension of the table grows, either grow exponentially or become less and less accu-
rate. Our approach estimates the high-dimensional joint distribution using a set of
lower-dimensional conditional distributions, each of which is quite accurate. As we
saw, we can put these conditional distributions together to get a good approximation
to the entire joint distribution. Thus, our model is not limited to answering queries
over a small set of predetermined attributes that happen to appear in a histogram

together; it can be used to answer queries over an arbitrary set of attributes in the
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database.

At the start of this section, we made several assumptions. We now describe how
to relax these assumptions. First, we made the assumption that our select operations
used only equality predicates. It is straightforward to extend the techniques that we
have just described to handle range queries by computing the probability that an
assignment of values to the attributes falls in that range. We simply sum over all
potential value assignments satisfying the range constraints. While at first glance,
this may sound quite expensive, the BN inference algorithms described above can
be easily adapted to compute these values without any increase in computational
complexity.

The second important assumption that we have been making is that the domains
for the attributes are small to moderately sized. We can lift this restriction on our
models by using techniques that have been developed for discretization of domain
values [Friedman and Goldszmidt, 1996, Monti and Cooper, 1998]. In cases where
domain values are not ordinal, we can use feature hierarchies if they are available
[desJardins et al., 2000] or we may make use of any of a number of clustering algo-
rithms. Once we have built an SRM over the discretized or abstracted attribute value
space, we must now modify our query estimation techniques to provide estimates for
queries over the base level values. One method for doing this is to simply compute
the selectivity estimate for an abstract query, which maps the base level values to
their appropriate discretized or abstracted value, and to then compute an estimate
for the base level query by assuming a uniform distribution or the attribute’s marginal

distribution on the base level values for each abstract value.

There are several important topics that we have not fully addressed. One is the
incremental maintenance of the SRM as the database changes. It is straightforward
to extend our approach to adapt the parameters of the SRM over time, keeping the
structure fixed. To adapt the structure, we can apply a variant of the approach
of [Friedman and Goldszmidt, 1997]. We can also keep track of the model score,

relearning the structure if the score decreases drastically.

Another important topic that we have not discussed is joins over non-key at-

tributes. In this presentation, our queries use only foreign-key joins. While this
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category of queries stands to benefit most from the probabilistic models that we pro-
pose, our methods are more general. We can compute estimates for queries that join
non-key attributes by summing over the possible values of the joined attributes, and
our estimates are likely to be more accurate than methods that do not model any of
the dependencies between tuples. However an empirical investigation is required to

evaluate our methods on this category of queries.

6.7 Conclusion

In this chapter, we have introduced a second probabilistic model for relational data,
a statistical relational model. This model captures the domain frequencies in the
database and provides a coherent probabilistic model which has many potential uses.
An SRM is a compact statistical model of a database and can be used to answer
queries about randomly chosen individuals. We have described the semantics for these
models and the circumstances under which an SRM precisely captures the database
frequencies. We have described a class of queries that these models are capable of
answering. We have an important application of SRMs to the task of query result

size estimation.



Chapter 7
Conclusions

In this final chapter, we summarize the contributions of this thesis and discuss a

number of promising areas for future work.

7.1 Summary

In this thesis, we have presented a number of different structured probabilistic models
together with algorithms for their automatic construction.

We began with our simplest probabilistic relational model, which allows uncer-
tainty over attribute values. These models allow the values of attributes within a
class to depend on other attributes in the class, or on attributes in another, related,
class. The PRM describes a template for the distribution, and like a collection of
first-order rules, is instantiated (or propositionalized) in different ways depending on
the universe of discourse provided. In this case, the universe of discourse describes
both the objects of each class, and the relationships that hold between objects.

The next probabilistic relational model that we considered allowed for link uncer-
tainty. In addition to describing a probabilistic model for the attributes of objects,
this PRM describes a probabilistic model for the existence of links or relationships
between objects. Again, the PRM describes a template for a distribution, and is in-
stantiated in different ways depending of the universe of discourse. But in this case,

the universe of discourse requires only that the objects be specified. The relationships

171
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between objects must be specified.

The third category of probabilistic relational model that we explored was a model
with class hierarchies. We showed how class hierarchies allow the probabilistic model
to be refined or specialized where necessary, and at the same time allow the prob-
abilistic model to be specified at a the most abstract level in the hierarchy which
adequately captures the dependencies in the domain. More importantly, we showed
how the use of subclassing can allow us to describe dependencies that would not be
allowed in a PRM with no class hierarchy mechanism. Finally, we noted how this
simple class hierarchy mechanism can, in theory, bridge the gap between a class-based
probabilistic model (such as a PRM) and an instance-based probabilistic model (as

represented by a BN).

The final model we introduced was the statistical relational model. While in spirit
similar to the preceding probabilistic relational models, the important fundamental
difference is in the semantics of the models. In PRMs, we always made inferences
about particular instances from our universe of discourse. For SRMs, we showed that
a general category of queries can be answered efficiently, without resorting to building

the full unrolled Bayesian network for the domain.

The learning problem for PRMs and SRMs can be defined as an optimization
problem: find the best model, where we score the model according to our optimiza-
tion criterion. There are at least two criteria that make sense to consider, and the
choice depends on the intended use of the learned model. One is a generalization
criterion: we are learning a model from an existing collection of data, and we intend
to apply our model to new, unseen instances; we would like our model to show good
generalization performance. The second criterion is a summarization or compression
criterion; we may be interested in constructing a compact model that captures our ex-
isting collection of data as precisely as possible subject to certain storage restrictions.
In this thesis, we considered learning PRMs subject to optimizing their generalization
performance and we considered learning SRMs subject to optimizing their use of the

allocated space, but it certainly makes sense to consider the other two combinations.

The first learning algorithm we presented, for PRMs with attribute uncertainty,
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builds on methods for learning Bayesian networks. Regardless of the optimization cri-
teria, learning the optimal probabilistic relational model from a database is NP-hard.
So, as is typical in the face of most NP-hard problems, we resort to a heuristic search
through the space of models. The two major components of the algorithm are the
methods for doing parameter estimation and methods for doing model selection. We
showed how these are done for PRMs with attribute uncertainty. For each extension
to our model, we extended the basic learning algorithm to accommodate the changes

in the model.

7.2 Related Work

The two key characteristics of our approach are that it is applicable to relational
data and that it builds a statistical model. We have already mentioned the com-
monalities in our approach to model construction and to traditional approaches to
building statistical models in Chapter 1. But we haven’t discussed other approaches
to learning from relational data. Here we provide some background on the learning

from relational data.

7.2.1 History

Early work on machine learning often focused on learning relational concepts. This
was typically done by learning a logical concept definition. Methods were typically
ad hoc and were sensitive to noise; they were often applied to ‘toy’ domains.

One of the earliest relational learning systems was Winston’s arch learning sys-
tem [Winston, 1975]. This system was given a sequence of training instances label as
positive and negative examples of arches. The system maintains has current hypothe-
sis. The hypothesis is relational and represented as a semantic network. When a new
example is presented, the system makes a prediction using the current hypothesis. If
the prediction is correct, no changes are made to the hypothesis. If it is incorrect,
then the set of differences between the current hypothesis and the example are iden-

tified. If the example was a positive instance, the differences are used to generalize
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the concept; on the other hand if the example was a negative instance, they are used
to specialize the concept. Following this there were a number of interesting relational
learning systems [Dietterich and Michalski, 1986, Hayes-Roth and McDermott, 1997,
Stepp and Michalski, 1985], but all used a similar logic based representation for the
concepts.

This branch of machine learning has not received as much attention in recent
years. Recently the machine learning (ML) community has mostly focused attention
on models that are statistical (or can have a probabilistic interpretation) such as
neural networks, decision trees and Bayesian networks, but that apply only to simple
non-relational attribute-value feature vectors. The major exception has been the

inductive logic programming (ILP) community.

7.2.2 Inductive Logic Programming

The ILP community has concentrated its efforts on learning (deterministic) first-order
rules from relational data [Lavrac and Dzeroski, 1994, Muggleton, 1992]. Initially
the ILP community focused its attention solely on the task of program synthesis
from examples and background knowledge. However, recent research has tackled the
discovery of useful rules from larger databases [Dzeroski and Lavrac, 2001]. These
rules are usually used for prediction and may have a probabilistic interpretation.

A current weakness of these approaches is that the learning algorithms typically
do not interact directly with the database; the data must be extracted from the
database before applying the learning algorithms. While in theory this is not an
insurmountable obstacle, in practice, having an algorithm that interacts directly with
one of the standard database managements systems is an important practical feature.

The ILP community has had successes in a number of application areas includ-
ing discovery of 2D structural alerts for mutagenicity/carcinogenicity [King et al.,
1996], 3D pharmacophore discovery for drug design [Finn et al., 1998] and analysis
of chemical databases [Dehaspe et al., 1998].

Recently both the ILP community and the statistical ML community have begun

to incorporate aspects of the complementary technology. Many ILP researchers are
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developing stochastic and probabilistic representations and algorithms [Muggleton,
2000, Kersting et al., 2000, Cussens, 1999]. In more traditional machine learning
circles, researchers who have in the past focused on attribute-value or propositional
learning algorithms are exploring methods for incorporating relational information
[Craven et al., 1998, Neville and Jensen, 2000, Cohn and Hofmann, 2001]. It is our
hope that this trend will continue, and that the work presented in this thesis will

provide one bridge connecting relational and statistical learning.

7.2.3 Probabilistic ILP approaches

There are two recent developments within the ILP community that are related to
PRMs: the work on stochastic logic programs (SLPs) [Muggleton, 1996, Cussens,
1999] and the work on Bayesian logic programs (BLPs) [Kersting et al., 2000]. The
semantics for these two approaches are quite different, with the BLP semantics being
the closest to PRMs. An SLP defines a sampling distribution over logic programming
proofs; as a consequence, it induces a probability distribution over the possible ground
facts for a given predicate. On the other hand, a BLP consists of a set of rules,
along with conditional probabilities and a combination rule; following the approach
of knowledge-based model construction [Wellman et al., 1992], the BLP essentially
specifies a propositional Bayesian network. This approach is very similar to the

probabilistic logic programs of [Ngo and Haddawy, 1996, Poole, 1993].

Learning algorithms for these approaches are being developed. Methods for learn-
ing SLPs are described in [Muggleton, 2000]. A maximum likelihood approach is
taken for parameter estimation for an SLP which is based on maximizing the pos-
terior probability of the program. The task of learning the structure of an SLP is
quite different from learning a PRM structure and is based on more traditional ILP
approaches. On the other hand, while BLPs are more closely related to PRMs, and
methods for learning BLPs have been suggested in [Kersting et al., 2000], learning
algorithms have not yet been developed. Methods for learning PRMs may be found
to be applicable to learning BLPs.



176 CHAPTER 7. CONCLUSIONS

7.2.4 Relational Graph Analysis

Among the strong motivations for using a relational model is its ability to model
dependencies between related instances. Intuitively, we would like to use our infor-
mation about one object to help us reach conclusions about other, related objects.
For example, we should be able to propagate information about the topic of a docu-
ment p to documents it has links to and documents that link to it. These, in turn,
would propagate information to yet other documents.

Recently, several papers have proposed a process along the lines of this “influence
propagation” idea. Chakrabarti et al. [1998] describe a relaxation labeling algorithm
that makes use of the neighboring link information. The algorithm begins with the
labeling given by a text-based classifier constructed from the training set. It then
uses the estimated class of neighboring documents to update the distribution of the
document being classified. They show that even using small neighborhoods around
the test document significantly increases accuracy.

Neville and Jensen [2000] propose a very similar approach. Their iterative clas-
sification algorithm essentially implements this process exactly. It builds a classifier
based on a fully observed relational training set; the classifier uses both base at-
tributes and more relational attributes (e.g., the number of related entities of a given
type). It then uses this classifier on a test set where the base attributes are observed,
but the class variables are not. Those instances that are classified with high confi-
dence are temporarily labeled with the predicted class; the classification algorithm is
then rerun, with the additional information. The process repeats several times. The
classification accuracy is shown to improve substantially as the process iterates.

Slattery and Mitchell [2000] propose an iterative algorithm called FOIL-HUBS for
the problem of classifying web pages, e.g., as belonging to a university student or not.
They note that several pages in the dataset have links to many other pages, most of
which were classified as student home pages. Their approach uses recursive predicate
rules to identify such a page as a student directory page based on whether the pages it
points to are student pages, and conclude that other pages to which it points are also
more likely to be student pages. These rules are combined with text-based classifiers

in an iterative relaxation scheme. They show that classification accuracy improves
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by exploiting the relational structure.

7.3 Future Work

There are a number of promising areas for future work. At the conclusion of each chap-
ter, we mentioned some of the more immediate directions for further study. Rather
than repeat those here, instead we will describe three of the more interesting and
broad range directions that are suggested by this work: discovery of relational fea-
tures, generalized probabilistic relational models and approximate query answering
using SRMs.

In Chapter 4, we examined two simple models for link uncertainty. A promising
yet challenging untapped area of further research is the discovery of relational fea-
tures, or the discovery of patterns in the graph describing the relations between
objects. The most well-studied of these are the notions of hubs and authorities
[Kleinberg, 1999], and in fact we made use of these attributes in the experiments
in Section 4.7.3 and showed how they improved our classification accuracy. However,
there are other relational features that may prove useful as well. There are certain
generic graph connectivity characteristics, such as diameter, in-degree, out-degree,
path length, and strongly connected components, that may be predictive in certain
domains. For example the diameter of the authorship of publications from a given
conference (the longest distance between two authors) may be an indication of how in-
bred the research is or how welcoming the community is open to outside approaches.
More generally, we may be interested in discovering common subgraphs. This has
been studied, most notably by [Cook and Holder, 2000], however to our knowledge
it has not been studied in the context of a coherent generative probabilistic model.
This problem is obviously a difficult and computationally challenging problem. Even
doing the subgraph matching is NP-complete, so clearly we will need useful domain
information or heuristics if we hope to find useful models. Another area of difficulty
is ensuring that the models we learn are coherent. We need some way of maintaining
the consistency of models with some collection of probabilistic patterns.

Another quite interesting direction is the notion of a generalized probabilistic
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relational algebra. By this, we mean a model in which the probabilistic dependencies
can be described using arbitrary expressions in relational algebra. In all the models
considered in this thesis, we made heavy use of the relational schema to restrict our
search for dependencies. We considered only dependence between objects related via
a foreign-key join. One could construct arbitrary selection and filtering criteria and
have parents that are outcomes to arbitrary queries. For example, the impact of a
professor’s work could depend on their publications in the past five years that have

appeared in top conferences and have been cited at least 5 times:

SELECT COUNT(*)

FROM professor, publication, cites

WHERE publication.author = professor.name
publication.year > (current_year - 5) AND
top_conference(publication.venue) AND
cites.cited = publication.title AND

GROUP BY cites.citing

HAVING COUNT(*) > 10

Of course this greatly complicates both the model search and the coherency mainte-
nance. While there may be some charm in coming up with a fully general framework
and devising learning algorithms for them, first one must verify that the learned mod-
els are in fact worth the extra overhead. It is our belief that exploring dependencies
between objects related via foreign-key joins is generally more likely to result in the
discovery of useful dependencies than are dependencies constructed from arbitrary
relational queries.

As a final area in which we feel there are a number of compelling open-problems
is the use of SRMs as a compact statistical model of a database. There are many
basic questions such the sample size required to learn a high-quality SRM, how to
incrementally maintain the models, and how to handle large attribute value spaces.
There are also some larger questions. One is how to use SRMs to provide approximate
answers to range and aggregate queries, Another is the construction of an SRM from a
collection of statistics that were gathered while passively watching results for a stream
of user queries. Alternatively, the statistics may be provided by an association rule

miner. How do we make the best use of these constraints, in constructing our SRM?
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Finally, there may be some way in which SRMs can be used for both data integration

and possibly schema reformulation.

7.4 Conclusion

Statistical models and relational data are two fundamental concepts in computer
science. Each, in its own right, has created a revolution within the field and spawned
its own subfields. The relational model, first introduced by Codd [1970], is unarguably
the foundation of modern database theory [Date, 1999, Ullman and Widom, 1997]. Its
importance today is witnessed by the huge market for database management systems
produced by companies such as Oracle, IBM and Microsoft. Statistical models, on the
other hand, are a much older innovation. In addition to defining the field of statistics,
they have importance in a wide variety of other fields including physics, chemistry,
economics and social science. More recently a number of areas of computer science
have embraced the use of statistical models: vision, robotics and artificial intelligence
are all areas which have seen a significant increase in the use of statistical approaches.

This thesis has described our attempt to marrying these two fundamental con-
cepts. We have described our approach to learning statistical models from relational
data. Our goal is to build statistical models that are able to capture and extract
the information available in relational data. Our hope is that these statistical models
will more accurately capture the dependencies and correlations in the domain than
previous approaches and that they will prove useful for both data exploration and

data summarization in relation domains.
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