
A Graph-based Approach to Vehicle Tracking in
Traffic Camera Video Streams

Hamid Haidarian-Shahri, Galileo Namata, Saket Navlakha, Amol Deshpande, Nick Roussopoulos

Department of Computer Science
University of Maryland
College Park, MD, USA

{hamid, namatag, saket, amol, nick}@cs.umd.edu

ABSTRACT
Vehicle tracking has a wide variety of applications, from law
enforcement to traffic planning and public safety. However, the
image resolution of the videos available from most traffic
camera systems, make it difficult to track vehicles, based on
unique identifiers like license plates. In many cases, vehicles
with similar attributes, are indistinguishable from one another,
due to image quality issues. Often, network bandwidth and
power constraints limit the frame rate, as well. In this paper, we
discuss the challenges of performing vehicle tracking queries
over video streams from ubiquitous traffic cameras. We identify
the limitations of tracking vehicles individually, in such
conditions, and provide a novel graph-based approach, using the
identity of neighboring vehicle, to improve the performance.
We evaluate our approach using streaming video feeds from live
traffic cameras available on the Internet. The results show that
vehicle tracking is feasible, even for low quality and low frame
rate traffic cameras. Addtionally, exploitation of the attributes of
neighboring vehicles significantly improves the performance.

1. INTRODUCTION
Although, there are a number of traffic monitoring technologies
currently being used, from magnetic strips to radar detectors, an
ever greater number of cities are deploying traffic cameras as
their primary way to monitor traffic. Traffic cameras provide a
more flexible way of monitoring traffic and are much cheaper to
install and maintain (unlike magnetic strips which require road
excavation). Moreover, currently deployed cameras can be
controlled remotely with the ability to pan and zoom around a
given location, allowing monitoring of a greater area, compared
to other monitoring techniques. With such capabilities, not only
can these cameras be used in simple tasks like counting cars and
controlling traffic lights, they also have the potential to be used
in more complex applications like vehicle tracking. Wireless
connectivity may also have the potential to be exploited in
traffic monitoring applications [Hul06]. In this paper, we
examine the particular application of vehicle tracking, using
ubiquitous traffic cameras.

In section 2, we begin by describing the problem of vehicle
tracking from traffic camera video. We discuss the usefulness
of such an application, as well as the challenges involved in its
widespread deployment. In section 3, we discuss various
techniques on how to perform vehicle tracking on videos from
traffic cameras. We present techniques which involve resolving
the identity of vehicles independently, as well as resolving
vehicles based on using the similarities of “neighboring” cars.
In section 4, we evaluate the proposed algorithms using the
traffic feed, collected from the Internet. We also provide
evaluate the effects of factors like congestion, using a traffic
simulator that we developed. We discuss relevant work in

section 5, and provide the future direction and conclusions of
our work in sections 6 and section 7.

2. VEHICLE TRACKING

A set of cars, C, from a video frame f and a set of cars, C’, from
a video frame f’, are given. The goal of vehicle tracking is to
identify for each car c in C, a corresponding c’ in C’, if they are
images of the same physical vehicle. The video frames can
result from video of a single camera or can be across multiple
cameras at different angles and locations.

There is interest in vehicle tracking due to its applications for
public safety and traffic monitoring. Vehicle tracking can be
used by law enforcement to track criminals in cases of Amber
Alerts or as an alternative to high speed pursuits in crowded
urban areas. Similarly, traffic planners can use vehicle tracking
to identify traffic speed and alternate routes, in the roads
covered by a network of traffic cameras.

Despite the many applications, vehicle tracking is still not
readily done largely due to limitations with using the ubiquitous
traffic cameras. The cameras are low resolution, and frame rate
of video streams are slow. The data collected from various
cameras is lossy, noisy and heterogeneous. They are placed at
various points and angles and face geographical constraints.
Moreover, they are usually spaced over long distances making
the tracking of vehicles from camera to camera more difficult.
The cameras are manually controlled and uncalibrated, meaning
colors and distance measures maybe inconsistent. Finally,
usability of cameras is influenced heavily by the environment,
e.g. spots on lenses, time of day, lighting or weather conditions.

In this paper, we design several novel graph-based algorithms,
which exploit movement correlation, for vehicle tracking. We
provide an experimental evaluation on streaming videos
collected from different cities and conditions, as well as on
simulated traffic data, generated to test the effects of factors
such as congestion. We show that our graph based approaches
perform more accurately, and are less susceptible to low image
quality and low frame rates, in comparison to an approach using
only the attributes of a vehicle. The attributes of a vehicle
(represented by a blob) in a video stream, include: color, size, x
and y coordinates on the image, and width to height ratio.

3. GRAPH-BASED ALGORTIHMS FOR
VEHICLE TRACKING IN VIDEO
STREAMS
The algorithms that have been designed for vehicle tracking in
our study consist of three main steps:

1. Identify the vehicles and their properties in a frame.

2. Create a graph, representing the correlations between vehicles
in that frame.

3. Find a mapping between vehicles in two frames, using the
graph and vehicle properties.

In a naïve implementation all possible mappings would have
to be generated, and the number of possible mappings is of
combinatorial order which is intractable. Then, the possible
mappings need to be ranked, to find the one which results the
highest accuracy. Assuming that there are n cars in frame i and
m cars in frame j, and n>m, there are m! possible mappings that
need to be ranked.

Preprocessing: A basic approach for the detection of moving
objects on images is background subtraction. Initially, an image
background is constructed for each camera using the
corresponding input video. The input videos contain many
buildings, ads, traffic signs, and other independent distractions.
In order to eliminate their influence, we define a region of
interest for each camera, which is set manually to the area of the
road that we are interested in monitoring. The background
subtraction values are kept only in the region of interest.

With the background subtraction updated according to the
region of interest, motion pixels are identified as the locations in
the region where absolute difference in appearance is greater
than a threshold value. After that, blobs which probably
represent cars are found, as the connected components of the
motion pixels in the image. Components with a very small area
are filtered out.

Ground Truth for Algorithm Evaluation: While our
algorithms can provide a mapping between vehicles in two
frames, it is important to have a fast and automated procedure
for determining the correct mappings, for evaluating our results
with the truth. We devised an interesting method for producing
the ground truth using high frame rate video. When the frame
rate is high, finding the closest center of a blob in frame t+1, to
any given center of the blob in current frame t, provides the
corresponding blobs in the two frames. This serves as the correct
mapping for evaluating our algorithms. Hence, ground truth
generation requires a high frame rate, which guarantees that
blobs do not move too much, between two consecutive frames.
Note that ground truth is only required for the evaluation and
comparison of various algorithms, and the algorithms do not
require any specific frame rate, when deployed. Although, a
higher frame rate increases the accuracy of results, our
experiments show that the algorithms perform surprisingly well
with very low frame rates.

In this section, we discuss various methods of matching
vehicles between the frames of a video. The first algorithm
performs the matching purely based on attributes. The second
algorithm creates a graph based on the formation of vehicles, at
a given frame. The next four algorithms create a weighted
measure for the similarity of, a vehicle and its neighbors in
frame t, and compare it to a vehicle and its neighbors in frame
t+1. Matching is done based on which vehicle in the next frame
has the most similar attributes and neighbors, to the vehicle that
we are trying to match.

3.1. Attribute-based Matching

In attribute based matching, a greedy matching of a car from one
frame to a car in the subsequent frame is performed. For a given
car, in the first frame, we compare its attributes to all the cars in
the second frame, looking for a matching that minimizes a given
similarity measure. In this case, we use a similarity measure
based on the percent difference between the color, size and
length to width ratio of the cars between the two frames. This is
repeated for all cars until every car in the first frame is matched
to a car in the second frame. If at any point, two cars are
mapped to same car in the second from, the one with the closest
similarity to the car in the second frame retains the mapping
while the other car is mapped to -1. A value of -1 signifies that
no mapping is available since the car given in first frame may
not be present in the second frame.

3.2. Formation-based Matching

In this algorithm, the highest car C (current car) in frame A is
identified. Then car C is connected to its closest neighbor N, in
frame A. Now N becomes the current car, and takes the role of
C, and the process is repeated, i.e. we find the closest neighbor
to current car C that is has not been visited. This procedure is
repeated until all cars in frame A are connected to each other
through a path P1 (see Figure 1). The actual shape of the path is
dependant on the local positioning of the cars. This same
procedure is repeated for the subsequent frame in the video,
which creates path P2. Finally, the cars are matched by walking
path P1 and trying to match the cars in path P2, which are in
similar positions (i.e. the first car in P1 is likely to match the
first car in P2, etc.). If one car in P1 does not match, with the car
under consideration in P2, we move to the next car in P2, in
hope of finding a match there. We illustrate the algorithm in
Figure 1.

Figure 1: Formation-based matching

Relational Weighting: The next four algorithms calculate the

similarity based on similarity between the car, A, and its defined
neighbors in the first frame, and a car, B, and its defined
neighbors in the second frame. The similarity score between
two cars is given by the equation Score(A,B) = αS0 + (1-α)SK
where S0 is the attribute similarity of the cars A and B, and SK is
the sum of the similarities of all neighbors of A to the most
similar car in the set of neighbors of B. The pseudo code of our
algorithm is given in Algorithm 1 and the calculation is
illustrated in Figure 2. The next four algorithms follow this
equation and vary only in how the neighbors are specified for a
given car in a given frame. The algorithms are based on the
domain knowledge about U.S. driving conventions, as well as
observations made from the traffic videos. We discuss the
specifics about these motivations when applicable.

3.3. Nearest Neighbor Matching (NNM)

In Nearest Neighbor Matching (NNM) shown in Figure 3, for a
given car c in the given frame, c is connected with the single
neighbor whose center is the closest by Euclidean distance.
There is no limitation to where the neighbor is, relative to a
given car, and in sparse traffic conditions, the nearest neighbor
may be many lanes away.

Algorithm 1: Relational Weighting

1. For each pair of consecutive frames
f,f’:
2. Compute the attributes (cCol, cSize,
cRatio, cPos) for each car c in f.
3. Compute the attributes (c’Col, c’Size,
c’Ratio, c’Pos) for each car c’ in f’.
4. Create a graph Gf with a node for each
car, and an edge (u,v) if u is v’s closest
neighbor in the same lane. Create the same
graph Gf’ for cars in f’.
5. Let cN, cN’ be neighbors of c and c’,
respectively.
6. For each car c in f:
7. Set difference = infinity,
matchingCar = -1.
8. For each car c’ in f’:
9. Score(c,c’) = alpha*(cCol-c’Col +
cSize-c’Size + cRatio-c’Ratio) + (1-
alpha)*(cNCol-cN’Col + cNSize-cN’Size +
cNRatio-cN’Ratio)
10. If Score(c,c’) < difference
11. matchingCar = c’.
12. difference = Score(c,c’)

Figure 2: Relational Weighting

Figure 3: Nearest Neighbor Matching

3.4. Nearest Following Neighbor Matching (NFNM)

The difficulty with the Nearest Neighbor Matching is that a
neighbor can be from any direction, including a car from the
opposite lane. In traffic situations where one lane may be
moving faster than another, as is the case in roads leading to
exits and intersections, neighbors who are in another lane are not
likely to remain the neighbor of a car for very long. In order to
address this, we define a second algorithm similar to Nearest
Neighbor, but with the added restriction that the neighbor must
be a car in the same lane and must be behind the car we are
trying to connect. The difference between the algorithms can be
seen in Figure 3 and Figure 4.

Figure 4: Nearest Following Neighbor Matching

3.5. Proximity Based Neighbors Matching (PBNM)

Proximity Based Matching is designed for major highways
where cars often travel at the maximum speed limit. The
motivation is that due to legal restrictions in speed in the U.S.,
cars will travel in the same speed and thus remain in the same
position, relative to each other, down long, major roads. Thus,
in Proximity Based, shown in Figure 5, a car is defined as
neighbors with all cars in the same frame, within a given
forward and backward distance from a car. In order to address
the issue of perspective in these cameras, where cars further
away from the camera appear smaller than closer ones, we
define the distance forward and backward from a car based on
the length of the car. Specifically, neighbors are defined as all
cars whose centers are 1.5 times the length, in front of or behind,
a given car.

3.6. Same Lane Neighbors Matching (SLNM)

Proximity Based Neighbors suffer from the same problems
Nearest Neighbors does. In cases where some lanes are faster
than others and in cases of congestion, neighbors of a car might
be changing too quickly to be useful. A modification that we
evaluate is to base the neighbors on whether or not they are in
the same lane as the given car. All vehicles in the same lane are
considered neighbors with each other. In our evaluations, we
define lanes based on the width of the given vehicle.
Specifically, all cars within 1.5 times the width of the given car,
left or right, are considered neighbors. We chose to set it to 1.5
rather than just based on the width of the car in order to capture
vehicle who are switching between lanes. The algorithm is
demonstrated in Figure 6.

3.7. Random Matching

S1
S2
S3

S0

S1<S2<S3, S6<S7<S5
Given 0 < α < 1:
Score(A, B) = α*S0 + (1- α)*(S1+S6)

S5
S6
S7

A B
Frame 1 Frame 2

As a baseline for comparing the matching algorithms and
making sure that they are effective, a random matching of
vehicles was tested (i.e. in each frame, each car is matched with
a random car in the next frame). The results of other algorithms
are compared to this baseline.

Figure 5: Proximity Based Neighbors

Figure 6: Same Lane Neighbors

4. EXPERIMENTAL EVALUATION

In this section, we evaluate our algorithms on streaming videos
from different live cameras. We have run our algorithms on
many cameras, but only report some representative experiments,
due to space constraints. In our analysis, we also vary the
camera’s frame rate to see how our accuracy degrades as less
and less frames are provided (i.e. for a frame step of five, we run
our matching algorithms on frames 1 and 6, then 6 and 11, etc.)
A sensitivity analysis on the alpha parameter is provided, and
we also consider the problem of tracking at night time, when
only headlights are visible. Moreover, we developed a traffic
simulator to test our algorithms under different conditions, as
explained below.

Zinfandel Daytime, San Francisco: This video is from a
highway in California taken during the day (see Figure 7). As
shown in Figure 8, the graph-based relational weighting
algorithms do much better than the attribute and formation based
matching algorithms. Results for random matching are nearly
constant at 90% error rate (not shown). The Nearest Following
Neighbor Matching (NFNM) algorithm produces very good
results with a 35% error rate at frame step 20 (skipping 20
frames, i.e. very low frame rate). For high frame rates, all our
relational matching algorithms result in an error below 9%. The
formation approach measure the extent to which the overall
formation of cars remains constant, and seems to suffer from
fluctuations in the speed of cars, at high frame steps. Similar
results have been achieved on different types of roads, and
imply that our algorithms are quite invariant to the type of road.

Figure 7: Zinfandel, San Francisco Traffic Camera (day)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 5 10 15 20

Frame Step

%

E
r
r
o
r

Attribute

Formation

NNM

SLNM

PBNM

NFNM

Figure 8: Algorithm Comparison, at Zinfandel (day)

Sensitivity Analysis of Alpha Parameter: In the four graph-

based relational weighting algorithms, a parameter alpha can be
set to control the amount of influence that the relational
attributes of the vehicles have in the overall matching. We
evaluated our algorithms for different values of alpha and
present the results in Figure 9. Note that when alpha=1, the
relational attribute is completely ignored and the algorithms
work exactly like attribute based matching. The results show
that our algorithms do not perform well for alpha less than 0.5.
This means that when doing the matching, the similarity
between the attributes of two cars must be weighted more than
the similarity of their neighbors. Moreover, we see that in
general, the best performance is achieved at an alpha value of
0.8. We used this alpha value in all experiments in this paper,
when setting alpha as constant.

Zinfandel Night Time, San Francisco: Cars in this video
were hardly visible, and mostly identified by their tail lights,
though some were missed entirely due to darkness (see Figure
10). In Figure 11 the error rate is higher than Figure 8, as
expected, but considering the quality of the video, the results are
still impressive and comparable to day time for high frame rates.
Furthermore, we believe that using better vision tools would
greatly aid our algorithms, which we discuss in future work.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Alpha Value

%
 E

rr
or

Attr. Only
NFNM
NNM
PBNM
SLNM

Figure 9: Sensitivity Analysis of the Alpha Parameter

Figure 10: Zinfandel, San Francisco Traffic Camera (night)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 5 10 15 20

Frame Step

%

E
r
r
o
r

Attribute

NFNM

NNM

PBNM

SLNM

Formation

Figure 11: Algorithm Comparison, at Zinfandel (night)

Analyzing the Effect of Road Congestion, using Traffic

Simulations: One problem with using videos from real cameras
is that there is no control over several traffic parameters, such as
the speed of cars or density of traffic. Hence, we developed a
traffic simulator, which allowed us to not only isolate and study
certain conditions in detail, but also test our algorithms under
more diverse and extreme conditions, to ensure their generality.

We do not explain the simulator details here due to lack of
space. To experiment with different road traffics, we varied road
congestion from 5 to 25 cars per frame (with a window height
and width of 400 pixels). The results of the simulation (Figure
12) show that the NNM approach worked astoundingly well,
with an error rate below 10% for all different congestion
conditions. Note that the frame step is one here.

Our simulator is also capable of generating data for the
multiple-camera case, where we try to track cars as they move
from camera to camera. Our initial results are promising, though
we do not present them here.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

5 10 15 20 25

Congestion Variance
%

 E
rr

or

Attribute
NFNM
NNM
PBNM
SLNM
Formation

Figure 12: Effect of Congestion Variance

Analyzing the Effect of Speed Variance, using Traffic

Simulations: In this experiment, each car was assigned a
random speed, in the given range, i.e. a greater range implies a
greater speed variance. In Figure 13, each point on horizontal
axis shows the speed range. For different speed variances, the
relational weighting algorithms perform better than attribute and
formation based matching, which is consistent with our previous
results.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.5 - 1 0.5 - 2 0.5 - 3 0.5 - 4 0.5 - 5

Speed Variance

%
 E

rr
or

Attribute
NFNM
NNM
PBNM
SLNM
Formation

Figure 13: Effect of Speed Variance

5. RELATED WORK
Different sensing mechanisms have been investigated in the
literature for traffic monitoring. Some of these include use of
cell phones, inductive strip probes on the road, normal cameras
and high quality cameras [Smi04]. Our algorithms use simple
cameras with relatively low quality video and the main focus of

our research is on developing effective algorithms to track
vehicles. That is to exploit the relative position of cars in
relation to one another for detecting cars uniquely. There is a
large body of work in the area of entity resolution which studies
the detection of unique real world entities, when there are
duplicates and inconsistency in the data. This problem comes up
in databases and there are many adaptive and rule-based systems
for this task. However, they do not focus on images and their
characteristics in any way [Hai06].

CarTel [Hul06] is a mobile sensor computing system designed
to collect, process, deliver, and visualize data from sensors
located on vehicles, and may be able to provide information for
traffic monitoring. The approach that we have used is similar to
graph isomorphism. Graph isomorphism, in our application, is a
one-to-one matching of vertices in a graph of cars in frame 1 to
vertices in a graph of cars in frame 2, with the possibility of null.
We have tried several different algorithms, and many theoretical
graph matching algorithms exist [Bun00]. A common approach
to scale-invariant object recognition in images involves Scale-
Invariant Feature Transformations (SIFT) [Low04]. Briefly, the
SIFT is an algorithm which extracts scale-rotation-and-
perspective-invariant features from images, using key point
localization and assignment. One possible approach to using
SIFT in our problem is to extract images of each car in each
frame and use SIFT to see if each of these images appear in the
subsequent frame. This would in effect allow us to tell which
cars in which frames match. Soh et al. attempt to count traffic in
a similar manner to ours [Soh95]. First, they create an “extracted
road structure” similar to our background subtraction, and then
detect vehicles using the Prewitt edge detection operator. To
define a region of interest they first compute the average speed
of the cars for the first few frames, and set the region
(automatically) such that each car is only in the region once. No
experimental results were provided, but it was claimed that the
system returned “correct results”. There exist several methods
for traffic simulation, such as VATSIM which models
automated vehicles with different sensors, controllers, and
traffic networks with real-time traffic control and route guidance
[Lei01].

6. FUTURE WORK
In our work, we have used simple vision techniques to extract
car data from traffic videos. For one, we use background
subtraction to identify blobs and simple heuristics to do
segmentation of those blobs. The result is that there are cases
where a whole car is not captured in a blob and where a single
blob actually represents several cars. There are more
complicated techniques we can use to address this problem,
including frame differencing. Hence, utilizing more
sophisticated vision algorithms can only improve our results.
Similarly, attributes of blobs that are exploited in our work are:
length-width ration, color, and size. There are other features that
can be extracted from the images, for example the span of
headlights, which might increase the accuracy of our algorithms.
It is also possible to try different clustering and classification
techniques from the machine learning literature, though the
search space is huge and proper attribute selection needs to be
addressed first.

Next, the creation of the graph is the crux of all the relational-
matching algorithms, implemented in this project. We are
unaware of any other work which uses graph-based techniques

to perform matching. Although, the techniques we used were
mostly developed based on our intuition of how cars collectively
move on the road, other graph-creation algorithms could be
considered.

Our traffic simulator is capable of generating data from
multiple cameras, where one camera is followed by another
camera with a blind spot in between. We plan on pursuing the
multi-camera case and using other traffic simulation software to
improve our synthetic data. Finally, we are currently working
with the University of Maryland's Center for Advanced
Transportation Technology Laboratory (CATT Lab) in order to
acquire more video feeds from the Washington DC area. The
ability to capture several feeds directly from the cameras will be
invaluable in furthering our research.

7. CONCLUSIONS
In this paper, we discuss the application of vehicle tracking
using low quality and low frame rate traffic camera video
streams. We discuss the challenges which need to be overcome
for this problem and propose novel solutions using both the
individual vehicle attributes, as well as the attributes of
neighbors. We present various ways of defining what a
neighbor is, taking into account the traffic laws and conventions.
We have collected a relatively large video stream archive, from
traffic cameras in geographically diverse locations. The dataset
is above one Gigabyte in size and spans over three weeks. We
are planning to release this archive, which could prove to be
valuable for continuing this research. Using both real-world
data, as well as simulated data for various conditions, we show
that vehicle tracking is feasible even in low resolution, low
frame rate video streams. Moreover, we show that using
attributes of neighboring vehicles, particularly our Nearest
Neighbor Matching algorithm, significantly improves the
accuracy and is more resilient to the low quality of available
feeds, from resource-constrained traffic cameras.

REFERENCES
[Bun00] Bunke, H, “Graph matching: Theoretical foundations,

algorithms, and applications.” Proc. Vision Interface, 2000.
[Hai06] Haidarian-Shahri, H., et al., “Eliminating Duplicates

in Information Integration: An Adaptive, Extensible
Framework.” IEEE Intelligent Systems, Vol. 21, No. 5, pp.
63-71, 2006.

[Hul06] Hull, B., Bychkovsky, V., Chen, K., Goraczko, M.,
Miu, A., Shih, E., Zhang, Y., Balakrishnan, H., Madden, S.,
“CarTel: A Distributed Mobile Sensor Computing System.”
SenSys, 2006.

[Lei01] Lei, et. al, “VATSIM: a simulator for vehicles and
traffic,” Intelligent Transportation Systems, 2001.
Proceedings. 2001 IEEE.

[Low04] Lowe, D.G, "Distinctive image features from scale-
invariant keypoints," International Journal of Computer
Vision, 60(2), pp. 91-110, 2004.

[Smi04] Smith, B., Zhang, H., Fontaine, M., and Green, M.,
“Wireless Location Technology-Based Traffic Monitoring:
Critical Assessment and Evaluation of an Early-Generation
System.” Journal of Transportation Engineering, October,
2004.

[Soh95] Soh, Jung, et. al, “Analysis of Road Image Sequences
for Vehicle Counting.” IEEE Proc. International Conference
of Systems, Man, and Cybernetics, 1995.

