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ABSTRACT 
Vehicle tracking has a wide variety of applications, from law 
enforcement to traffic planning and public safety.  However, the 
image resolution of the videos available from most traffic 
camera systems, make it difficult to track vehicles, based on 
unique identifiers like license plates.  In many cases, vehicles 
with similar attributes, are indistinguishable from one another, 
due to image quality issues.  Often, network bandwidth and 
power constraints limit the frame rate, as well. In this paper, we 
discuss the challenges of performing vehicle tracking queries 
over video streams from ubiquitous traffic cameras.  We identify 
the limitations of tracking vehicles individually, in such 
conditions, and provide a novel graph-based approach, using the 
identity of neighboring vehicle, to improve the performance.  
We evaluate our approach using streaming video feeds from live 
traffic cameras available on the Internet. The results show that 
vehicle tracking is feasible, even for low quality and low frame 
rate traffic cameras. Addtionally, exploitation of the attributes of 
neighboring vehicles significantly improves the performance. 

 
1. INTRODUCTION 
Although, there are a number of traffic monitoring technologies 
currently being used, from magnetic strips to radar detectors, an 
ever greater number of cities are deploying traffic cameras as 
their primary way to monitor traffic.  Traffic cameras provide a 
more flexible way of monitoring traffic and are much cheaper to 
install and maintain (unlike magnetic strips which require road 
excavation). Moreover, currently deployed cameras can be 
controlled remotely with the ability to pan and zoom around a 
given location, allowing monitoring of a greater area, compared 
to other monitoring techniques.  With such capabilities, not only 
can these cameras be used in simple tasks like counting cars and 
controlling traffic lights, they also have the potential to be used 
in more complex applications like vehicle tracking. Wireless 
connectivity may also have the potential to be exploited in 
traffic monitoring applications [Hul06]. In this paper, we 
examine the particular application of vehicle tracking, using 
ubiquitous traffic cameras. 

In section 2, we begin by describing the problem of vehicle 
tracking from traffic camera video.  We discuss the usefulness 
of such an application, as well as the challenges involved in its 
widespread deployment.  In section 3, we discuss various 
techniques on how to perform vehicle tracking on videos from 
traffic cameras.  We present techniques which involve resolving 
the identity of vehicles independently, as well as resolving 
vehicles based on using the similarities of “neighboring” cars.  
In section 4, we evaluate the proposed algorithms using the 
traffic feed, collected from the Internet.  We also provide 
evaluate the effects of factors like congestion, using a traffic 
simulator that we developed.  We discuss relevant work in 

section 5, and provide the future direction and conclusions of 
our work in sections 6 and section 7. 

2. VEHICLE TRACKING 
 
A set of cars, C, from a video frame f and a set of cars, C’, from 
a video frame f’, are given.  The goal of vehicle tracking is to 
identify for each car c in C, a corresponding c’ in C’, if they are 
images of the same physical vehicle. The video frames can 
result from video of a single camera or can be across multiple 
cameras at different angles and locations. 

There is interest in vehicle tracking due to its applications for 
public safety and traffic monitoring.  Vehicle tracking can be 
used by law enforcement to track criminals in cases of Amber 
Alerts or as an alternative to high speed pursuits in crowded 
urban areas.  Similarly, traffic planners can use vehicle tracking 
to identify traffic speed and alternate routes, in the roads 
covered by a network of traffic cameras. 

Despite the many applications, vehicle tracking is still not 
readily done largely due to limitations with using the ubiquitous 
traffic cameras. The cameras are low resolution, and frame rate 
of video streams are slow. The data collected from various 
cameras is lossy, noisy and heterogeneous. They are placed at 
various points and angles and face geographical constraints. 
Moreover, they are usually spaced over long distances making 
the tracking of vehicles from camera to camera more difficult. 
The cameras are manually controlled and uncalibrated, meaning 
colors and distance measures maybe inconsistent. Finally, 
usability of cameras is influenced heavily by the environment, 
e.g. spots on lenses, time of day, lighting or weather conditions. 

In this paper, we design several novel graph-based algorithms, 
which exploit movement correlation, for vehicle tracking. We 
provide an experimental evaluation on streaming videos 
collected from different cities and conditions, as well as on 
simulated traffic data, generated to test the effects of factors 
such as congestion. We show that our graph based approaches 
perform more accurately, and are less susceptible to low image 
quality and low frame rates, in comparison to an approach using 
only the attributes of a vehicle. The attributes of a vehicle 
(represented by a blob) in a video stream, include: color, size, x 
and y coordinates on the image, and width to height ratio. 

3. GRAPH-BASED ALGORTIHMS FOR 
VEHICLE TRACKING IN VIDEO 
STREAMS 
The algorithms that have been designed for vehicle tracking in 
our study consist of three main steps: 

1. Identify the vehicles and their properties in a frame. 



2. Create a graph, representing the correlations between vehicles 
in that frame. 

3. Find a mapping between vehicles in two frames, using the 
graph and vehicle properties. 

In a naïve implementation all possible mappings would have 
to be generated, and the number of possible mappings is of 
combinatorial order which is intractable. Then, the possible 
mappings need to be ranked, to find the one which results the 
highest accuracy. Assuming that there are n cars in frame i and 
m cars in frame j, and n>m, there are m! possible mappings that 
need to be ranked.  

Preprocessing: A basic approach for the detection of moving 
objects on images is background subtraction. Initially, an image 
background is constructed for each camera using the 
corresponding input video. The input videos contain many 
buildings, ads, traffic signs, and other independent distractions. 
In order to eliminate their influence, we define a region of 
interest for each camera, which is set manually to the area of the 
road that we are interested in monitoring. The background 
subtraction values are kept only in the region of interest. 

With the background subtraction updated according to the 
region of interest, motion pixels are identified as the locations in 
the region where absolute difference in appearance is greater 
than a threshold value. After that, blobs which probably 
represent cars are found, as the connected components of the 
motion pixels in the image. Components with a very small area 
are filtered out. 

Ground Truth for Algorithm Evaluation: While our 
algorithms can provide a mapping between vehicles in two 
frames, it is important to have a fast and automated procedure 
for determining the correct mappings, for evaluating our results 
with the truth. We devised an interesting method for producing 
the ground truth using high frame rate video. When the frame 
rate is high, finding the closest center of a blob in frame t+1, to 
any given center of the blob in current frame t, provides the 
corresponding blobs in the two frames. This serves as the correct 
mapping for evaluating our algorithms. Hence, ground truth 
generation requires a high frame rate, which guarantees that 
blobs do not move too much, between two consecutive frames. 
Note that ground truth is only required for the evaluation and 
comparison of various algorithms, and the algorithms do not 
require any specific frame rate, when deployed. Although, a 
higher frame rate increases the accuracy of results, our 
experiments show that the algorithms perform surprisingly well 
with very low frame rates. 

In this section, we discuss various methods of matching 
vehicles between the frames of a video.  The first algorithm 
performs the matching purely based on attributes. The second 
algorithm creates a graph based on the formation of vehicles, at 
a given frame.  The next four algorithms create a weighted 
measure for the similarity of, a vehicle and its neighbors in 
frame t, and compare it to a vehicle and its neighbors in frame 
t+1.  Matching is done based on which vehicle in the next frame 
has the most similar attributes and neighbors, to the vehicle that 
we are trying to match. 

3.1. Attribute-based Matching 

In attribute based matching, a greedy matching of a car from one 
frame to a car in the subsequent frame is performed.  For a given 
car, in the first frame, we compare its attributes to all the cars in 
the second frame, looking for a matching that minimizes a given 
similarity measure.  In this case, we use a similarity measure 
based on the percent difference between the color, size and 
length to width ratio of the cars between the two frames.  This is 
repeated for all cars until every car in the first frame is matched 
to a car in the second frame.  If at any point, two cars are 
mapped to same car in the second from, the one with the closest 
similarity to the car in the second frame retains the mapping 
while the other car is mapped to -1.  A value of -1 signifies that 
no mapping is available since the car given in first frame may 
not be present in the second frame.  

3.2. Formation-based Matching 

In this algorithm, the highest car C (current car) in frame A is 
identified. Then car C is connected to its closest neighbor N, in 
frame A. Now N becomes the current car, and takes the role of 
C, and the process is repeated, i.e. we find the closest neighbor 
to current car C that is has not been visited. This procedure is 
repeated until all cars in frame A are connected to each other 
through a path P1 (see Figure 1). The actual shape of the path is 
dependant on the local positioning of the cars. This same 
procedure is repeated for the subsequent frame in the video, 
which creates path P2. Finally, the cars are matched by walking 
path P1 and trying to match the cars in path P2, which are in 
similar positions (i.e. the first car in P1 is likely to match the 
first car in P2, etc.). If one car in P1 does not match, with the car 
under consideration in P2, we move to the next car in P2, in 
hope of finding a match there. We illustrate the algorithm in 
Figure 1. 

 

 
Figure 1:  Formation-based matching 

 
Relational Weighting: The next four algorithms calculate the 

similarity based on similarity between the car, A, and its defined 
neighbors in the first frame, and a car, B, and its defined 
neighbors in the second frame.  The similarity score between 
two cars is given by the equation Score(A,B) = αS0 + (1-α)SK 
where S0 is the attribute similarity of the cars A and B, and SK is 
the sum of the similarities of all neighbors of A to the most 
similar car in the set of neighbors of B.  The pseudo code of our 
algorithm is given in Algorithm 1 and the calculation is 
illustrated in Figure 2. The next four algorithms follow this 
equation and vary only in how the neighbors are specified for a 
given car in a given frame.  The algorithms are based on the 
domain knowledge about U.S. driving conventions, as well as 
observations made from the traffic videos.  We discuss the 
specifics about these motivations when applicable. 



3.3. Nearest Neighbor Matching (NNM) 

In Nearest Neighbor Matching (NNM) shown in Figure 3, for a 
given car c in the given frame, c is connected with the single 
neighbor whose center is the closest by Euclidean distance.  
There is no limitation to where the neighbor is, relative to a 
given car, and in sparse traffic conditions, the nearest neighbor 
may be many lanes away. 

 
Algorithm 1: Relational Weighting 
 
1. For each pair of consecutive frames 
f,f’: 
2.   Compute the attributes (cCol, cSize,    
cRatio, cPos) for each car c in f. 
3.   Compute the attributes (c’Col, c’Size, 
c’Ratio, c’Pos) for each car c’ in f’. 
4.   Create a graph Gf with a node for each 
car, and an edge  (u,v) if u is v’s closest 
neighbor in the same lane. Create the same 
graph Gf’ for cars in f’. 
5.   Let cN, cN’ be neighbors of  c and c’, 
respectively. 
6.   For each car c in f: 
7.     Set difference = infinity, 
matchingCar = -1. 
8.     For each car c’ in f’: 
9.       Score(c,c’) = alpha*(cCol-c’Col + 
cSize-c’Size + cRatio-c’Ratio) + (1-
alpha)*(cNCol-cN’Col + cNSize-cN’Size + 
cNRatio-cN’Ratio) 
10.      If Score(c,c’) < difference 
11.        matchingCar = c’. 
12.        difference = Score(c,c’) 
 

 
Figure 2:  Relational Weighting 

 
Figure 3:  Nearest Neighbor Matching 

 

3.4. Nearest Following Neighbor Matching (NFNM) 

The difficulty with the Nearest Neighbor Matching is that a 
neighbor can be from any direction, including a car from the 
opposite lane.  In traffic situations where one lane may be 
moving faster than another, as is the case in roads leading to 
exits and intersections, neighbors who are in another lane are not 
likely to remain the neighbor of a car for very long.  In order to 
address this, we define a second algorithm similar to Nearest 
Neighbor, but with the added restriction that the neighbor must 
be a car in the same lane and must be behind the car we are 
trying to connect.  The difference between the algorithms can be 
seen in Figure 3 and Figure 4.  

 
 

 
Figure 4:  Nearest Following Neighbor Matching 

 
3.5. Proximity Based Neighbors Matching (PBNM) 

Proximity Based Matching is designed for major highways 
where cars often travel at the maximum speed limit.  The 
motivation is that due to legal restrictions in speed in the U.S., 
cars will travel in the same speed and thus remain in the same 
position, relative to each other, down long, major roads.  Thus, 
in Proximity Based, shown in Figure 5, a car is defined as 
neighbors with all cars in the same frame, within a given 
forward and backward distance from a car.  In order to address 
the issue of perspective in these cameras, where cars further 
away from the camera appear smaller than closer ones, we 
define the distance forward and backward from a car based on 
the length of the car.  Specifically, neighbors are defined as all 
cars whose centers are 1.5 times the length, in front of or behind, 
a given car. 

3.6. Same Lane Neighbors Matching (SLNM) 

Proximity Based Neighbors suffer from the same problems 
Nearest Neighbors does.  In cases where some lanes are faster 
than others and in cases of congestion, neighbors of a car might 
be changing too quickly to be useful.  A modification that we 
evaluate is to base the neighbors on whether or not they are in 
the same lane as the given car.  All vehicles in the same lane are 
considered neighbors with each other.  In our evaluations, we 
define lanes based on the width of the given vehicle.  
Specifically, all cars within 1.5 times the width of the given car, 
left or right, are considered neighbors.  We chose to set it to 1.5 
rather than just based on the width of the car in order to capture 
vehicle who are switching between lanes. The algorithm is 
demonstrated in Figure 6. 

3.7. Random Matching 

S1 
S2 
S3 

S0 

S1<S2<S3, S6<S7<S5 
Given 0 < α < 1: 
Score(A, B) = α*S0 + (1- α)*(S1+S6) 

S5 
S6 
S7 

A B 
Frame 1 Frame 2



As a baseline for comparing the matching algorithms and 
making sure that they are effective, a random matching of 
vehicles was tested (i.e. in each frame, each car is matched with 
a random car in the next frame). The results of other algorithms 
are compared to this baseline. 

 
Figure 5:  Proximity Based Neighbors 

 

 
Figure 6:  Same Lane Neighbors 

 
 
4. EXPERIMENTAL EVALUATION 

 
In this section, we evaluate our algorithms on streaming videos 
from different live cameras.  We have run our algorithms on 
many cameras, but only report some representative experiments, 
due to space constraints. In our analysis, we also vary the 
camera’s frame rate to see how our accuracy degrades as less 
and less frames are provided (i.e. for a frame step of five, we run 
our matching algorithms on frames 1 and 6, then 6 and 11, etc.) 
A sensitivity analysis on the alpha parameter is provided, and 
we also consider the problem of tracking at night time, when 
only headlights are visible. Moreover, we developed a traffic 
simulator to test our algorithms under different conditions, as 
explained below. 

Zinfandel Daytime, San Francisco: This video is from a 
highway in California taken during the day (see Figure 7). As 
shown in Figure 8, the graph-based relational weighting 
algorithms do much better than the attribute and formation based 
matching algorithms. Results for random matching are nearly 
constant at 90% error rate (not shown). The Nearest Following 
Neighbor Matching (NFNM) algorithm produces very good 
results with a 35% error rate at frame step 20 (skipping 20 
frames, i.e. very low frame rate). For high frame rates, all our 
relational matching algorithms result in an error below 9%. The 
formation approach measure the extent to which the overall 
formation of cars remains constant, and seems to suffer from 
fluctuations in the speed of cars, at high frame steps. Similar 
results have been achieved on different types of roads, and 
imply that our algorithms are quite invariant to the type of road. 

 

 
Figure 7:  Zinfandel, San Francisco Traffic Camera (day) 
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Figure 8:  Algorithm Comparison, at Zinfandel (day) 

 
Sensitivity Analysis of Alpha Parameter: In the four graph-

based relational weighting algorithms, a parameter alpha can be 
set to control the amount of influence that the relational 
attributes of the vehicles have in the overall matching.  We 
evaluated our algorithms for different values of alpha and 
present the results in Figure 9.  Note that when alpha=1, the 
relational attribute is completely ignored and the algorithms 
work exactly like attribute based matching.  The results show 
that our algorithms do not perform well for alpha less than 0.5.  
This means that when doing the matching, the similarity 
between the attributes of two cars must be weighted more than 
the similarity of their neighbors.  Moreover, we see that in 
general, the best performance is achieved at an alpha value of 
0.8.  We used this alpha value in all experiments in this paper, 
when setting alpha as constant. 

Zinfandel Night Time, San Francisco: Cars in this video 
were hardly visible, and mostly identified by their tail lights, 
though some were missed entirely due to darkness (see Figure 
10). In Figure 11 the error rate is higher than Figure 8, as 
expected, but considering the quality of the video, the results are 
still impressive and comparable to day time for high frame rates. 
Furthermore, we believe that using better vision tools would 
greatly aid our algorithms, which we discuss in future work. 
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Figure 9:  Sensitivity Analysis of the Alpha Parameter 

 

 
Figure 10:  Zinfandel, San Francisco Traffic Camera (night) 
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Figure 11:  Algorithm Comparison, at Zinfandel (night) 

 
Analyzing the Effect of Road Congestion, using Traffic 

Simulations: One problem with using videos from real cameras 
is that there is no control over several traffic parameters, such as 
the speed of cars or density of traffic. Hence, we developed a 
traffic simulator, which allowed us to not only isolate and study 
certain conditions in detail, but also test our algorithms under 
more diverse and extreme conditions, to ensure their generality. 

We do not explain the simulator details here due to lack of 
space. To experiment with different road traffics, we varied road 
congestion from 5 to 25 cars per frame (with a window height 
and width of 400 pixels). The results of the simulation (Figure 
12) show that the NNM approach worked astoundingly well, 
with an error rate below 10% for all different congestion 
conditions. Note that the frame step is one here. 

Our simulator is also capable of generating data for the 
multiple-camera case, where we try to track cars as they move 
from camera to camera. Our initial results are promising, though 
we do not present them here. 
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Figure 12:  Effect of Congestion Variance 

 
Analyzing the Effect of Speed Variance, using Traffic 

Simulations: In this experiment, each car was assigned a 
random speed, in the given range, i.e. a greater range implies a 
greater speed variance. In Figure 13, each point on horizontal 
axis shows the speed range.  For different speed variances, the 
relational weighting algorithms perform better than attribute and 
formation based matching, which is consistent with our previous 
results.  
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Figure 13:  Effect of Speed Variance 

5. RELATED WORK 
Different sensing mechanisms have been investigated in the 
literature for traffic monitoring. Some of these include use of 
cell phones, inductive strip probes on the road, normal cameras 
and high quality cameras [Smi04]. Our algorithms use simple 
cameras with relatively low quality video and the main focus of 



our research is on developing effective algorithms to track 
vehicles. That is to exploit the relative position of cars in 
relation to one another for detecting cars uniquely. There is a 
large body of work in the area of entity resolution which studies 
the detection of unique real world entities, when there are 
duplicates and inconsistency in the data. This problem comes up 
in databases and there are many adaptive and rule-based systems 
for this task. However, they do not focus on images and their 
characteristics in any way [Hai06]. 

CarTel [Hul06] is a mobile sensor computing system designed 
to collect, process, deliver, and visualize data from sensors 
located on vehicles, and may be able to provide information for 
traffic monitoring. The approach that we have used is similar to 
graph isomorphism. Graph isomorphism, in our application, is a 
one-to-one matching of vertices in a graph of cars in frame 1 to 
vertices in a graph of cars in frame 2, with the possibility of null. 
We have tried several different algorithms, and many theoretical 
graph matching algorithms exist [Bun00]. A common approach 
to scale-invariant object recognition in images involves Scale-
Invariant Feature Transformations (SIFT) [Low04]. Briefly, the 
SIFT is an algorithm which extracts scale-rotation-and-
perspective-invariant features from images, using key point 
localization and assignment. One possible approach to using 
SIFT in our problem is to extract images of each car in each 
frame and use SIFT to see if each of these images appear in the 
subsequent frame. This would in effect allow us to tell which 
cars in which frames match. Soh et al. attempt to count traffic in 
a similar manner to ours [Soh95]. First, they create an “extracted 
road structure” similar to our background subtraction, and then 
detect vehicles using the Prewitt edge detection operator. To 
define a region of interest they first compute the average speed 
of the cars for the first few frames, and set the region 
(automatically) such that each car is only in the region once. No 
experimental results were provided, but it was claimed that the 
system returned “correct results”. There exist several methods 
for traffic simulation, such as VATSIM which models 
automated vehicles with different sensors, controllers, and 
traffic networks with real-time traffic control and route guidance 
[Lei01]. 

6. FUTURE WORK 
In our work, we have used simple vision techniques to extract 
car data from traffic videos. For one, we use background 
subtraction to identify blobs and simple heuristics to do 
segmentation of those blobs. The result is that there are cases 
where a whole car is not captured in a blob and where a single 
blob actually represents several cars.  There are more 
complicated techniques we can use to address this problem, 
including frame differencing.  Hence, utilizing more 
sophisticated vision algorithms can only improve our results.  
Similarly, attributes of blobs that are exploited in our work are: 
length-width ration, color, and size. There are other features that 
can be extracted from the images, for example the span of 
headlights, which might increase the accuracy of our algorithms. 
It is also possible to try different clustering and classification 
techniques from the machine learning literature, though the 
search space is huge and proper attribute selection needs to be 
addressed first. 

Next, the creation of the graph is the crux of all the relational-
matching algorithms, implemented in this project. We are 
unaware of any other work which uses graph-based techniques 

to perform matching. Although, the techniques we used were 
mostly developed based on our intuition of how cars collectively 
move on the road, other graph-creation algorithms could be 
considered. 

Our traffic simulator is capable of generating data from 
multiple cameras, where one camera is followed by another 
camera with a blind spot in between. We plan on pursuing the 
multi-camera case and using other traffic simulation software to 
improve our synthetic data. Finally, we are currently working 
with the University of Maryland's Center for Advanced 
Transportation Technology Laboratory (CATT Lab) in order to 
acquire more video feeds from the Washington DC area.  The 
ability to capture several feeds directly from the cameras will be 
invaluable in furthering our research. 

7. CONCLUSIONS 
In this paper, we discuss the application of vehicle tracking 
using low quality and low frame rate traffic camera video 
streams.  We discuss the challenges which need to be overcome 
for this problem and propose novel solutions using both the 
individual vehicle attributes, as well as the attributes of 
neighbors.  We present various ways of defining what a 
neighbor is, taking into account the traffic laws and conventions. 
We have collected a relatively large video stream archive, from 
traffic cameras in geographically diverse locations. The dataset 
is above one Gigabyte in size and spans over three weeks. We 
are planning to release this archive, which could prove to be 
valuable for continuing this research. Using both real-world 
data, as well as simulated data for various conditions, we show 
that vehicle tracking is feasible even in low resolution, low 
frame rate video streams. Moreover, we show that using 
attributes of neighboring vehicles, particularly our Nearest 
Neighbor Matching algorithm, significantly improves the 
accuracy and is more resilient to the low quality of available 
feeds, from resource-constrained traffic cameras. 
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