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Abstract. In this paper we present a new approach to feature selection for se-
quence data. We identify general feature categories and give construction algo-
rithms for each of them. We show how they can be integrated in a system that
tightly couples feature construction and feature selection. This integrated process,
which we refer to as feature generation, allows us to systematically search a large
space of potential features. We demonstrate the effectiveness of our approach for
an important component of the gene finding problem, splice-site prediction. We
show that predictive models built using our feature generation algorithm achieve
a significant improvement in accuracy over existing, state-of-the-art approaches.

1 Introduction

Many real-world data mining problems involve data best represented as sequences. Se-
quence data comes in many forms including: 1) human communication such as speech,
handwriting and language, 2) time sequences and sensor readings such as stock market
prices, temperature readings and web-click streams and 3) biological sequences such
as DNA, RNA and protein. Sequence data in all domains contains useful ’signals’, fea-
tures, that enable the correct construction of classification algorithms.

Extracting and interpreting the features is known to be a hard problem. In many
cases a brute force approach is taken, in which the sequence classification models are
provided with a huge number of features in the hope that the important features are not
overlooked. The large number of features introduces a dimensionality problem which
has several disadvantages. First, enumerating all possible features is impractical. Sec-
ond, many features are irrelevant to the classification task and have an adverse effect
on accuracy. And third, knowledge discovery becomes difficult because of the large
number of parameters involved.

The focus of this paper is on a scalable method for feature generation for sequences.
We present an algorithm that explores the space of possible features and identifies the
most useful ones. Our focused feature generation algorithm (FGA) integrates feature
construction and feature selection in a systematic way. Our method is scalable because
it incrementally generates more complex features from currently selected ones.

We validate our method on the task of splice-site prediction for pre-mRNA se-
quences. Splice sites are the locations in the DNA sequence, which are boundaries for
protein coding and non-coding regions. Accurate location of splice sites is an impor-
tant component in the gene finding problems. It is a particularly difficult problem since
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the sequence characteristics, i.e. pre-mRNA sequence length, coding sequence length,
number of exons and their lengths, and interrupting intron sequence lengths do not fol-
low any known pattern, making it hard to locate the genes.

We demonstrate the effectiveness of our approach by comparing it with a state-of-
the-art method, GeneSplicer. Our predictive models show significant improvement in
accuracy. Our final feature set, achieves a 6.3% improvement in the 11-point average
precision when compared to GeneSplicer. At the 95% sensitivity level, our method
yields a 10% improvement in specificity. Our contribution is two-fold. First, we give
a general feature generation framework appropriate for any sequence data problem.
Second, we provide new results and identify a set of features for splice-site prediction
that should be of great interest to the gene-finding community.

2 Related Work

Feature selection techniques have been studied extensively in text categorization[1–5].
Recently they have begun receiving more attention for applications to biological data.
A good introduction for filtering methods in the prediction of translation initiation sites
is given in [6]. Various feature selection techniques for prediction of splice sites have
been studied in [7–9]. And in [10], SpliceMachine is described with compelling results.
In addition, there is a significant amount of work on splice-site prediction. One of the
most well-known approaches is GeneSplicer proposed by Pertea et al [11].

3 Data Description

We validate our methods on a dataset which contains 4, 000 RefSeq3 pre-mRNA se-
quences. In a pre-mRNA sequence, a human gene is a protein coding sequence which is
characteristically interrupted by non-coding regions, called introns. The coding regions
are referred to as exons. The acceptor splice site marks the start of an exon and the
donor splice site marks the end of an exon. All the pre-mRNA sequences in our dataset
follow the AG consensus for acceptors and GT consensus for donors.

We focus on the prediction of acceptor splice sites which is considered to be a
harder problem. Following the GeneSplicer format, we mark the splice site and take
a subsequence consisting of 80 nucleotides upstream from the site and 80 nucleotides
downstream. We construct negative examples by choosing random AG-pair locations
that are not acceptor sites and selecting subsequences as we do for the true acceptor
sites. Our data contains 20,996 positive instances and 200,000 negative instances.

4 Feature Generation

The feature types that we consider capture compositional and positional properties of
sequences. These apply to any sequence data defined over some fixed alphabet. For
each feature type we describe an incremental feature construction procedure. The fea-
ture construction starts with an initial set of features and produces an expanded set of
features. Incrementally, it produces richer, more complex features for each iteration.

3 http://www.ncbi.nlm.nih.gov/RefSeq/
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4.1 Feature Types and Construction Procedures

Compositional features A general k-mer is a string of k-characters. This feature type is
useful for capturing information like coding potential and composition in the sequence.
Construction Method. Given an initial set of k-mer features, this construction method
expands them to a set of (k + 1)-mers by appending the letters of the alphabet to each
k-mer feature.

Region-specific compositional features Splice-site sequences characteristically have
a coding region and a non-coding region. For the acceptor splice-site sequences, the
region of the sequence on the left of the splice-site position (upstream) is the non-
coding region, and the region of the sequence from the splice-site position to the end of
sequence (downstream) is the coding region. These regions may exhibit distinct compo-
sitional properties. In order to capture these differences we use region-specific k-mers.
Construction Method. The construction procedure of upstream and downstream k-mer
features is the same as the general k-mer method, with the addition of region indicator.

Positional features Position-specific nucleotides are the most common features used
for finding signals in the DNA stream data [12]. These features capture the correlation
between different nucleotides and their relative positions. The position specific k-mers
capture the correlations between k-adjacent nucleotides. At each position i in the se-
quence these features represent the substring appearing at positions i, i + 1, .., i + k.
Construction Method. This construction method starts with an initial set of position-
specific k-mer features and extends them to a set of position-specific (k + 1)-mers by
appending the letters of the alphabet to each position-specific k-mer feature.

Conjunctive positional features To capture the correlations between different nucleotides
in nonconsecutive positions in the sequence, we propose conjunctive position-specific
features. We construct these complex features from conjunctions of basic position-
specific features. The dimensionality of this kind of feature is inherently high.
Construction Method. Given an initial set of k-conjuncts, this construction method
selects from the set of basic position-specific features to add another conjunct in an
unconstrained position, therefore constructing the set of (k + 1)-conjuncts.

4.2 Feature Selection

Feature selection methods reduce the set of features by keeping only the useful features
for the task at hand. The problem of selecting useful features has been the focus of
extensive research and many approaches have been proposed [1–5].

In our experiments we consider several feature selection methods to reduce the size
of our feature sets. We use several filter approaches including Information Gain (IG),
Chi-Square (CHI), Mutual Information (MI), KL-distance (KL) for initial pruning of
feature types sets during the generation stage. Due to space limitations, in the experi-
ments section, we present the combination that produced the best results. In our data,
we found that mutual information performed best for selecting compositional features,
chi-squared for positional features and information gain for conjunctive features. At
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the final collection step, we combine this with an embedded method based on recur-
sive feature elimination [9] used in our final feature collection stage. The weights wi

of the decision boundary of a linear SVM can be used as feature weights to derive fea-
ture ranking. We use the C-Modified Least Squares (CMLS) classifier [13] and refer
to this method as W-CMLS. We recursively train the classifier and remove low scoring
features.

4.3 Feature Generation Algorithm (FGA)

The traditional feature selection approaches consider a single brute force selection over
a large set of all features of all different types. By categorizing the features into different
feature types we can apply appropriate construction and selection methods suitable to
the different types. Thus we can extract relevant features from each feature type set
more efficiently than if a singe selection method had been applied to the whole set. We
use the following algorithm:

– Feature Generation. The first stage generates feature sets for each feature type. For
each defined feature type, we tightly couple the corresponding feature construction
step with a specified feature selection step. We iterate through these steps to gener-
ate richer and more complex features. During each iteration, we eliminate features
that are assigned a low selection score by the feature selection method.

– Feature Collection and Selection. In the next stage, we collect the features of dif-
ferent types and apply another selection step.

– Classification. The last stage of our algorithm builds a classifier over the final set
of features.

For this type of problem it is not unusual to spend a lot of computational resources,
especially in the training phase. While feature generation remains a computationally
intensive process, the organization of the generation process according to the different
types allows us to search a much larger space efficiently. For the time complexity of the
classification algorithm, we use CMLS which is very efficient. In addition, this feature
generation approach has other advantages such as the flexibility to adapt with respect
to the feature type and the possibility to incorporate the module in a generic learning
algorithm.

5 Experimental Results for Splice-Site Prediction

We conducted a wide range of experiments using a variety of classifiers, and here we
present a summary of them. We present results for the classifier that consistently gave
the best results, CMLS.

We use the 11-point average (11ptAvg) [14] to evaluate the performance of our al-
gorithm. For any recall ratio, we calculate the precision at the threshold which achieves
that recall ratio and compute the average precision. The 11ptAvg is the average of pre-
cisions estimated at recall values 0%, 10%, 20%, ., 100%. The ability of our algorithm
to discriminate true acceptor site sequences from normal sequences is evaluated also
using Receiver Operating Characteristic (ROC) curve analysis Another performance



A Feature Generation Algorithm for Sequences 5

Accuracy Comparison for Upstream/Downstream

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Upstream k-mer Downstream k-mer General k-mer

11
p

tA
vg

 P
re

ci
si

o
n

{2}

{2,3}

{2,3,4}

{2,3,4,5}

{2,3,4,5,6}

No. features IG MI Chi KL
9000 87.44 87.39 87.41 87.44
8000 87.40 86.79 87.35 87.33
7000 87.14 85.24 87.15 87.19
6000 86.51 82.92 86.51 86.68
5000 85.93 80.33 85.94 85.89
4000 83.69 75.46 83.57 83.87
3000 82.71 66.63 82.50 82.97
2000 76.64 67.49 80.28 68.65

(a) (b)

Fig. 1: (a)Comparison between different feature type sets performances, upstream k-mers, down-
stream k-mers, and general k-mers shown for different k (b)11ptAvg precision results for FGA
varying the feature set size of position-specific collection of k-mers through different feature
selection methods

measure commonly used for biological data is the false positive rate(FPr) defined as
FPr =

(

FP

FP+TN

)

where FP , and TN are the number of false positives and true
negatives respectively. FPr can be computed for all recall values by varying the de-
cision threshold of the classifier. We also present results using this measure. In all our
experiments, the results reported use three-fold cross-validation.

5.1 Accuracy Results of FGA

We begin with a brief evaluation of the effectiveness of the different feature types used
in isolation.

Compositional features and region-specific compositional features We examine each
k-mer feature set independently for each value of k from 2 to 6. Figure 1(a) shows the
accuracy results for the region-specific k-mers and the general k-mer feature sets as we
collect them after each iteration. In our experiments, MI selection method worked best
for compositional features. We notice that k-mer features carry more information when
they are associated with a specific region (upstream or downstream) and this is shown
by the significant increase in their 11ptAvg precisions.

Positional features Next, we examine each position-specific k-mer feature set inde-
pendently. We explore k-values from 1 to 6. The prediction results for this feature type
(data not shown) after each generation step gradually increase until level 3, then gradu-
ally drop. This can be explained with the exponential increase in the number of features
after each level. In Figure 1(b), we use feature selection to have a mix of position-
specific k-mers for k values from 1 to 3. This table shows results of repeated selection
for IG, MI, CHI and KL feature selection methods. Of these, CHI retains the highest
precision among the four methods. Our paired-t tests for statistical significance reveal
that these values although similar are statistically significant.
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Accuracy of Position Specific Features generated 
with FGA vs. Random
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Fig. 2: a) 11ptAvg results for the position specific feature sets generated with FGA algorithm
vs randomly generated features. b) Performance results of the FGA method for different feature
types as well as the GeneSplicer program

Conjunctive positional features Finally, we examine conjunctive positional features.
The number of these features grows exponentially and it is clearly very cumbersome
to test for relevance more than 40 million unique combinations of triple conjuncts.
We explore sets of 2 to 4 conjuncts denoted as (P2, P3, P4). We use the IG selection
method to select the top scoring 1, 000 features and repeat the generation on the selected
set to get the next level. In Figure 2(a), we show the performances of the conjunctive
feature sets. For comparison, we introduce a baseline method, which is the average of
10 trials of randomly picking 1, 000 conjunctive features from each level.

Summary Next, we compare collections of different levels of the feature sets of dif-
ferent types. The results are summarized in Figure 2(b).

Compositional features and region-specific compositional features The first two
bars show the results for the best 2, 000 k-mer features for k ranging from 2 to
6. General k-mers result in an 11ptAvg of only 39.84%, while the result of the
combined upstream and downstream k-mer features is 77.18%.

Position-specific k-mers The third bar shows the results for position specific nu-
cleotides and the next bar shows 5, 000 position-specific k-mer features selected
using the CHI selection method for k ranging from 1 to 3. The 11ptAvg precision
is 85.94%.

Conjunctive positional features The next bar shows the results for a collection of
3, 000 conjunctive positional features for k ranging from 1 to 4 selected using
IG. The 11ptAVG precision that this collection set gives is 82.67%. These results
clearly show that using complex position-specific features is beneficial. Interest-
ingly, these features typically are not considered by existing splice-site prediction
algorithms.

Figure 2(b) also shows the performance of GeneSplicer on the same dataset. We see
that even in isolation, our positional features and our conjunctive positional features
perform better than GeneSplicer. These results are also statistically significant.
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Fig. 3: (a) 11ptAvg precision results for FGA varying the feature set size, compared to GeneS-
plicer (b) The false positive rate results for FGA varying the sensitivity threshold, compared to
GeneSplicer

Results using the full feature-type collection In the following set of experiments, we
show the results after we collect all the features that we have generated. We run our
CMLS classification algorithm with a total feature set of size 10, 000 containing gen-
eral k-mers, upstream/downstream k-mers, position-specific k-mers and conjunctive
position-specific features. We achieve an 11ptAvg precision performance of 88.20%.
This compares quite favorably with one of the leading programs in splice-site predic-
tion, GeneSplicer, which yields an accuracy of 81.89% on the same dataset. The preci-
sion results at all individual recall points (data not shown) are consistently higher than
those of GeneSplicer. In Figure 3(a) we explore more aggressive feature selection op-
tions and see that smaller feature sets of even 2, 000 also outperform GeneSplicer. In
these experiments it is the more expensive W-CMLS selection method that we use in
order to select a smaller working feature set.

We present the false positive rates for various recall values in Figure 3(b). Our fea-
ture generation algorithm, with its rich set of features, consistently performs better than
GeneSplicer. Our false positive rates are favorably lower at all recall values. At a 95%
sensitivity rate the FPr decreased from 6.2 to 4.3%. This significant reduction in false
positive predictions can have a great impact when splice-site prediction is incorporated
into a gene-finding program. It should also be noted that there is no significant dif-
ference in the running time of FGA compared to GeneSplicer. FGA performs a linear
search (in terms of sequence length) along the given sequence in search for high scoring
sites.

6 Conclusions

We presented a general feature generation framework which integrates feature construc-
tion and feature selection in a flexible manner. We showed how this method can be used
to build accurate sequence classifiers. We presented experimental results for the prob-
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lem of splice-site prediction. We were able to search over an extremely large space of
feature sets effectively, and we were able to identify the most useful set of features of
each type. By using this mix of feature types, and searching over combinations of them,
we were able to build a classifier which achieves an accuracy improvement of 6.3%
over an existing state-of-the-art splice-site prediction algorithm. The specificity values
are consistently higher for all sensitivity thresholds and the false positive rate has fa-
vorably decreased. In future work, we plan to apply our feature generation algorithm
to more complex feature types and other sequence prediction tasks, such as translation
start site prediction.
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