
Computational Methods
of

Feature Selection

© 2008 by Taylor & Francis Group, LLC

Chapman & Hall/CRC
Data Mining and Knowledge Discovery Series

Understanding Complex datasets: data mining with matrix
decompositions
David Skillicorn

CompUtational metHods oF FeatUre seleCtion
Huan Liu and Hiroshi Motoda

PubLiSHeD TiTLeS

SeRieS eDiToR

Vipin Kumar
University of minnesota

department of Computer science and engineering
minneapolis, minnesota, U.s.a

AiMS AND SCoPe

this series aims to capture new developments and applications in data mining and knowledge
discovery, while summarizing the computational tools and techniques useful in data analysis. this
series encourages the integration of mathematical, statistical, and computational methods and
techniques through the publication of a broad range of textbooks, reference works, and hand-
books. the inclusion of concrete examples and applications is highly encouraged. the scope of the
series includes, but is not limited to, titles in the areas of data mining and knowledge discovery
methods and applications, modeling, algorithms, theory and foundations, data and knowledge
visualization, data mining systems and tools, and privacy and security issues.

© 2008 by Taylor & Francis Group, LLC

Chapman & Hall/CRC
Data Mining and Knowledge Discovery Series

Computational Methods
of

Feature Selection

Edited by

© 2008 by Taylor & Francis Group, LLC

Chapman & Hall/CRC
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487‑2742

© 2008 by Taylor & Francis Group, LLC
Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid‑free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number‑13: 978‑1‑58488‑878‑9 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted
material is quoted with permission, and sources are indicated. A wide variety of references are
listed. Reasonable efforts have been made to publish reliable data and information, but the author
and the publisher cannot assume responsibility for the validity of all materials or for the conse‑
quences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any
electronic, mechanical, or other means, now known or hereafter invented, including photocopying,
microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC)
222 Rosewood Drive, Danvers, MA 01923, 978‑750‑8400. CCC is a not‑for‑profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Liu, Huan, 1958‑
Computational methods of feature selection / authors/editors, Huan Liu and

Hiroshi Motoda.
p. cm. ‑‑ (Chapman & Hall/CRC data mining and knowledge

discovery)
Includes bibliographical references and index.
ISBN 978‑1‑58488‑878‑9 (alk. paper)
1. Database management. 2. Data mining. 3. Machine learning. I. Motoda,

Hiroshi. II. Title. III. Series.

QA76.9.D3L5652 2007
005.74‑‑dc22 2007027465

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

© 2008 by Taylor & Francis Group, LLC

http://www.copyright.com
http://www.taylorandfrancis.com
http://www.crcpress.com
http://www.copyright.com
http://www.copyright.com

Preface

It has been ten years since we published our first two books on feature se-
lection in 1998. In the past decade, we witnessed a great expansion of feature
selection research in multiple dimensions. We experienced the fast data evolu-
tion in which extremely high-dimensional data, such as high-throughput data
of bioinformatics and Web/text data, became increasingly common. They
stretch the capabilities of conventional data processing techniques, pose new
challenges, and stimulate accelerated development of feature selection research
in two major ways. One trend is to improve and expand the existing tech-
niques to meet the new challenges. The other is to develop brand new algo-
rithms directly targeting the arising challenges. In this process, we observe
many feature-selection-centered activities, such as one well-received competi-
tion, two well-attended tutorials at top conferences, and two multi-disciplinary
workshops, as well as a special development section in a recent issue of IEEE
Intelligent Systems, to name a few.

This collection bridges the widening gap between existing texts and the
rapid developments in the field, by presenting recent research works from var-
ious disciplines. It features excellent survey work, practical guides, exciting
new directions, and comprehensive tutorials from leading experts. The book
also presents easy-to-understand illustrations, state-of-the-art methodologies,
and algorithms, along with real-world case studies ranging from text classi-
fication, to Web mining, to bioinformatics where high-dimensional data are
pervasive. Some vague ideas suggested in our earlier book have been de-
veloped into mature areas with solid achievements, along with progress that
could not have been imagined ten years ago. With the steady and speedy
development of feature selection research, we sincerely hope that this book
presents distinctive and representative achievements; serves as a convenient
point for graduate students, practitioners, and researchers to further the re-
search and application of feature selection; and sparks a new phase of feature
selection research. We are truly optimistic about the impact of feature selec-
tion on massive, high-dimensional data and processing in the near future, and
we have no doubt that in another ten years, when we look back, we will be
humbled by the newfound power of feature selection, and by its indelible con-
tributions to machine learning, data mining, and many real-world challenges.

Huan Liu and Hiroshi Motoda

© 2008 by Taylor & Francis Group, LLC

Acknowledgments

The inception of this book project was during SDM 2006’s feature selec-
tion workshop. Randi Cohen, an editor of Chapman and Hall/CRC Press,
eloquently convinced one of us that it was a time for a new book on feature
selection. Since then, she closely worked with us to make the process easier
and smoother and allowed us to stay focused. With Randi’s kind and expert
support, we were able to adhere to the planned schedule when facing unex-
pected difficulties. We truly appreciate her generous support throughout the
project.

This book is a natural extension of the two successful feature selection
workshops held at SDM 20051 and SDM 2006.2 The success would not be
a reality without the leadership of two workshop co-organizers (Robert Stine
of Wharton School and Leonard Auslender of SAS); the meticulous work of
the proceedings chair (Lei Yu of Binghamton University); and the altruistic
efforts of PC members, authors, and contributors. We take this opportunity
to thank all who helped to advance the frontier of feature selection research.

The authors, contributors, and reviewers of this book played an instru-
mental role in this project. Given the limited space of this book, we could
not include all quality works. Reviewers’ detailed comments and constructive
suggestions significantly helped improve the book’s consistency in content,
format, comprehensibility, and presentation. We thank the authors who pa-
tiently and timely accommodated our (sometimes many) requests.

We would also like to express our deep gratitude for the gracious help we
received from our colleagues and students, including Zheng Zhao, Lei Tang,
Quan Nguyen, Payam Refaeilzadeh, and Shankara B. Subramanya of Arizona
State University; Kozo Ohara of Osaka University; and William Nace and
Kenneth Gorreta of AFOSR/AOARD, Air Force Research Laboratory.

Last but not least, we thank our families for their love and support. We
are grateful and happy that we can now spend more time with our families.

Huan Liu and Hiroshi Motoda

1The 2005 proceedings are at http://enpub.eas.asu.edu/workshop/.
2The 2006 proceedings are at http://enpub.eas.asu.edu/workshop/2006/.

© 2008 by Taylor & Francis Group, LLC

http://enpub.eas.asu.edu
http://enpub.eas.asu.edu

Contributors

Jesús S. Aguilar-Ruiz
Pablo de Olavide University,
Seville, Spain

Jennifer G. Dy
Northeastern University, Boston,
Massachusetts

Constantin F. Aliferis
Vanderbilt University, Nashville,
Tennessee

André Elisseeff
IBM Research, Zürich, Switzer-
land

Paolo Avesani
ITC-IRST, Trento, Italy

Susana Eyheramendy
Ludwig-Maximilians Universität
München, Germany

Susan M. Bridges
Mississippi State University,
Mississippi

George Forman
Hewlett-Packard Labs, Palo
Alto, California

Alexander Borisov
Intel Corporation, Chandler,
Arizona

Lise Getoor
University of Maryland, College
Park, Maryland

Shane Burgess
Mississippi State University,
Mississippi

Dimitrios Gunopulos
University of California, River-
side

Diana Chan
Mississippi State University,
Mississippi

Isabelle Guyon
ClopiNet, Berkeley, California

Claudia Diamantini
Universitá Politecnica delle
Marche, Ancona, Italy

Trevor Hastie
Stanford University, Stanford,
California

Rezarta Islamaj Dogan
University of Maryland, College
Park, Maryland and National
Center for Biotechnology Infor-
mation, Bethesda, Maryland

Joshua Zhexue Huang
University of Hong Kong, Hong
Kong, China

Carlotta Domeniconi
George Mason University, Fair-
fax, Virginia

Mohamed Kamel
University of Waterloo, Ontario,
Canada

© 2008 by Taylor & Francis Group, LLC

Igor Kononenko
University of Ljubljana, Ljubl-
jana, Slovenia

Wei Tang
Florida Atlantic University,
Boca Raton, Florida

David Madigan
Rutgers University, New Bruns-
wick, New Jersey

Kari Torkkola
Motorola Labs, Tempe, Arizona

Masoud Makrehchi
University of Waterloo, Ontario,
Canada

Eugene Tuv
Intel Corporation, Chandler,
Arizona

Michael Ng
Hong Kong Baptist University,
Hong Kong, China

Sriharsha Veeramachaneni
ITC-IRST, Trento, Italy

Emanuele Olivetti
ITC-IRST, Trento, Italy

W. John Wilbur
National Center for Biotech-
nology Information, Bethesda,
Maryland

Domenico Potena
Universitá Politecnica delle
Marche, Ancona, Italy

Jun Xu
Georgia Institute of Technology,
Atlanta, Georgia

José C. Riquelme
University of Seville, Seville,
Spain

Yunming Ye
Harbin Institute of Technology,
Harbin, China

Roberto Ruiz
Pablo de Olavide University,
Seville, Spain

Lei Yu
Binghamton University, Bing-
hamton, New York

Marko Robnik Šikonja
University of Ljubljana, Ljubl-
jana, Slovenia

Shi Zhong
Yahoo! Inc., Sunnyvale, Califor-
nia

David J. Stracuzzi
Arizona State University,
Tempe, Arizona

Hui Zou
University of Minnesota, Min-
neapolis

Yijun Sun
University of Florida, Gaines-
ville, Florida

© 2008 by Taylor & Francis Group, LLC

Contents

I Introduction and Background 1

1 Less Is More 3
Huan Liu and Hiroshi Motoda
1.1 Background and Basics . 4
1.2 Supervised, Unsupervised, and Semi-Supervised Feature Selec-

tion . 7
1.3 Key Contributions and Organization of the Book 10

1.3.1 Part I - Introduction and Background 10
1.3.2 Part II - Extending Feature Selection 11
1.3.3 Part III - Weighting and Local Methods 12
1.3.4 Part IV - Text Classification and Clustering 13
1.3.5 Part V - Feature Selection in Bioinformatics 14

1.4 Looking Ahead . 15

2 Unsupervised Feature Selection 19
Jennifer G. Dy
2.1 Introduction . 19
2.2 Clustering . 21

2.2.1 The K-Means Algorithm 21
2.2.2 Finite Mixture Clustering 22

2.3 Feature Selection . 23
2.3.1 Feature Search . 23
2.3.2 Feature Evaluation . 24

2.4 Feature Selection for Unlabeled Data 25
2.4.1 Filter Methods . 26
2.4.2 Wrapper Methods . 27

2.5 Local Approaches . 32
2.5.1 Subspace Clustering 32
2.5.2 Co-Clustering/Bi-Clustering 33

2.6 Summary . 34

3 Randomized Feature Selection 41
David J. Stracuzzi
3.1 Introduction . 41
3.2 Types of Randomizations . 42
3.3 Randomized Complexity Classes 43

© 2008 by Taylor & Francis Group, LLC

3.4 Applying Randomization to Feature Selection 45
3.5 The Role of Heuristics . 46
3.6 Examples of Randomized Selection Algorithms 47

3.6.1 A Simple Las Vegas Approach 47
3.6.2 Two Simple Monte Carlo Approaches 49
3.6.3 Random Mutation Hill Climbing 51
3.6.4 Simulated Annealing 52
3.6.5 Genetic Algorithms . 54
3.6.6 Randomized Variable Elimination 56

3.7 Issues in Randomization . 58
3.7.1 Pseudorandom Number Generators 58
3.7.2 Sampling from Specialized Data Structures 59

3.8 Summary . 59

4 Causal Feature Selection 63
Isabelle Guyon, Constantin Aliferis, and André Elisseeff
4.1 Introduction . 63
4.2 Classical “Non-Causal” Feature Selection 65
4.3 The Concept of Causality . 68

4.3.1 Probabilistic Causality 69
4.3.2 Causal Bayesian Networks 70

4.4 Feature Relevance in Bayesian Networks 71
4.4.1 Markov Blanket . 72
4.4.2 Characterizing Features Selected via Classical Methods 73

4.5 Causal Discovery Algorithms 77
4.5.1 A Prototypical Causal Discovery Algorithm 78
4.5.2 Markov Blanket Induction Algorithms 79

4.6 Examples of Applications . 80
4.7 Summary, Conclusions, and Open Problems 82

II Extending Feature Selection 87

5 Active Learning of Feature Relevance 89
Emanuele Olivetti, Sriharsha Veeramachaneni, and Paolo Avesani
5.1 Introduction . 89
5.2 Active Sampling for Feature Relevance Estimation 92
5.3 Derivation of the Sampling Benefit Function 93
5.4 Implementation of the Active Sampling Algorithm 95

5.4.1 Data Generation Model: Class-Conditional Mixture of
Product Distributions 95

5.4.2 Calculation of Feature Relevances 96
5.4.3 Calculation of Conditional Probabilities 97
5.4.4 Parameter Estimation 97

5.5 Experiments . 99
5.5.1 Synthetic Data . 99

© 2008 by Taylor & Francis Group, LLC

5.5.2 UCI Datasets . 100
5.5.3 Computational Complexity Issues 102

5.6 Conclusions and Future Work 102

6 A Study of Feature Extraction Techniques Based on Decision
Border Estimate 109
Claudia Diamantini and Domenico Potena
6.1 Introduction . 109

6.1.1 Background on Statistical Pattern Classification . . . 111
6.2 Feature Extraction Based on Decision Boundary 112

6.2.1 MLP-Based Decision Boundary Feature Extraction . . 113
6.2.2 SVM Decision Boundary Analysis 114

6.3 Generalities About Labeled Vector Quantizers 115
6.4 Feature Extraction Based on Vector Quantizers 116

6.4.1 Weighting of Normal Vectors 119
6.5 Experiments . 122

6.5.1 Experiment with Synthetic Data 122
6.5.2 Experiment with Real Data 124

6.6 Conclusions . 127

7 Ensemble-Based Variable Selection Using Independent Probes
131

Eugene Tuv, Alexander Borisov, and Kari Torkkola
7.1 Introduction . 131
7.2 Tree Ensemble Methods in Feature Ranking 132
7.3 The Algorithm: Ensemble-Based Ranking Against Indepen-

dent Probes . 134
7.4 Experiments . 137

7.4.1 Benchmark Methods 138
7.4.2 Data and Experiments 139

7.5 Discussion . 143

8 Efficient Incremental-Ranked Feature Selection in Massive
Data 147
Roberto Ruiz, Jesús S. Aguilar-Ruiz, and José C. Riquelme
8.1 Introduction . 147
8.2 Related Work . 148
8.3 Preliminary Concepts . 150

8.3.1 Relevance . 150
8.3.2 Redundancy . 151

8.4 Incremental Performance over Ranking 152
8.4.1 Incremental Ranked Usefulness 153
8.4.2 Algorithm . 155

8.5 Experimental Results . 156
8.6 Conclusions . 164

© 2008 by Taylor & Francis Group, LLC

III Weighting and Local Methods 167

9 Non-Myopic Feature Quality Evaluation with (R)ReliefF 169
Igor Kononenko and Marko Robnik Šikonja
9.1 Introduction . 169
9.2 From Impurity to Relief . 170

9.2.1 Impurity Measures in Classification 171
9.2.2 Relief for Classification 172

9.3 ReliefF for Classification and RReliefF for Regression 175
9.4 Extensions . 178

9.4.1 ReliefF for Inductive Logic Programming 178
9.4.2 Cost-Sensitive ReliefF 180
9.4.3 Evaluation of Ordered Features at Value Level 181

9.5 Interpretation . 182
9.5.1 Difference of Probabilities 182
9.5.2 Portion of the Explained Concept 183

9.6 Implementation Issues . 184
9.6.1 Time Complexity . 184
9.6.2 Active Sampling . 184
9.6.3 Parallelization . 185

9.7 Applications . 185
9.7.1 Feature Subset Selection 185
9.7.2 Feature Ranking . 186
9.7.3 Feature Weighing . 186
9.7.4 Building Tree-Based Models 187
9.7.5 Feature Discretization 187
9.7.6 Association Rules and Genetic Algorithms 187
9.7.7 Constructive Induction 188

9.8 Conclusion . 188

10 Weighting Method for Feature Selection in K-Means 193
Joshua Zhexue Huang, Jun Xu, Michael Ng, and Yunming Ye
10.1 Introduction . 193
10.2 Feature Weighting in k-Means 194
10.3 W-k-Means Clustering Algorithm 197
10.4 Feature Selection . 198
10.5 Subspace Clustering with k-Means 200
10.6 Text Clustering . 201

10.6.1 Text Data and Subspace Clustering 202
10.6.2 Selection of Key Words 203

10.7 Related Work . 204
10.8 Discussions . 207

© 2008 by Taylor & Francis Group, LLC

11 Local Feature Selection for Classification 211
Carlotta Domeniconi and Dimitrios Gunopulos
11.1 Introduction . 211
11.2 The Curse of Dimensionality 213
11.3 Adaptive Metric Techniques 214

11.3.1 Flexible Metric Nearest Neighbor Classification 215
11.3.2 Discriminant Adaptive Nearest Neighbor Classification 216
11.3.3 Adaptive Metric Nearest Neighbor Algorithm 217

11.4 Large Margin Nearest Neighbor Classifiers 222
11.4.1 Support Vector Machines 223
11.4.2 Feature Weighting . 224
11.4.3 Large Margin Nearest Neighbor Classification 225
11.4.4 Weighting Features Increases the Margin 227

11.5 Experimental Comparisons 228
11.6 Conclusions . 231

12 Feature Weighting through Local Learning 233
Yijun Sun
12.1 Introduction . 233
12.2 Mathematical Interpretation of Relief 235
12.3 Iterative Relief Algorithm . 236

12.3.1 Algorithm . 236
12.3.2 Convergence Analysis 238

12.4 Extension to Multiclass Problems 240
12.5 Online Learning . 240
12.6 Computational Complexity 242
12.7 Experiments . 242

12.7.1 Experimental Setup 242
12.7.2 Experiments on UCI Datasets 244
12.7.3 Choice of Kernel Width 248
12.7.4 Online Learning . 248
12.7.5 Experiments on Microarray Data 249

12.8 Conclusion . 251

IV Text Classification and Clustering 255

13 Feature Selection for Text Classification 257
George Forman
13.1 Introduction . 257

13.1.1 Feature Selection Phyla 259
13.1.2 Characteristic Difficulties of Text Classification Tasks 260

13.2 Text Feature Generators . 261
13.2.1 Word Merging . 261
13.2.2 Word Phrases . 262
13.2.3 Character N-grams . 263

© 2008 by Taylor & Francis Group, LLC

13.2.4 Multi-Field Records 264
13.2.5 Other Properties . 264
13.2.6 Feature Values . 265

13.3 Feature Filtering for Classification 265
13.3.1 Binary Classification 266
13.3.2 Multi-Class Classification 269
13.3.3 Hierarchical Classification 270

13.4 Practical and Scalable Computation 271
13.5 A Case Study . 272
13.6 Conclusion and Future Work 274

14 A Bayesian Feature Selection Score Based on Näıve Bayes
Models 277
Susana Eyheramendy and David Madigan
14.1 Introduction . 277
14.2 Feature Selection Scores . 279

14.2.1 Posterior Inclusion Probability (PIP) 280
14.2.2 Posterior Inclusion Probability (PIP) under a Bernoulli

distribution . 281
14.2.3 Posterior Inclusion Probability (PIPp) under Poisson

distributions . 283
14.2.4 Information Gain (IG) 284
14.2.5 Bi-Normal Separation (BNS) 285
14.2.6 Chi-Square . 285
14.2.7 Odds Ratio . 286
14.2.8 Word Frequency . 286

14.3 Classification Algorithms . 286
14.4 Experimental Settings and Results 287

14.4.1 Datasets . 287
14.4.2 Experimental Results 288

14.5 Conclusion . 290

15 Pairwise Constraints-Guided Dimensionality Reduction 295
Wei Tang and Shi Zhong
15.1 Introduction . 295
15.2 Pairwise Constraints-Guided Feature Projection 297

15.2.1 Feature Projection . 298
15.2.2 Projection-Based Semi-supervised Clustering 300

15.3 Pairwise Constraints-Guided Co-clustering 301
15.4 Experimental Studies . 302

15.4.1 Experimental Study – I 302
15.4.2 Experimental Study – II 306
15.4.3 Experimental Study – III 309

15.5 Conclusion and Future Work 310

© 2008 by Taylor & Francis Group, LLC

16 Aggressive Feature Selection by Feature Ranking 313
Masoud Makrehchi and Mohamed S. Kamel
16.1 Introduction . 313
16.2 Feature Selection by Feature Ranking 314

16.2.1 Multivariate Characteristic of Text Classifiers 316
16.2.2 Term Redundancy . 316

16.3 Proposed Approach to Reducing Term Redundancy 320
16.3.1 Stemming, Stopwords, and Low-DF Terms Elimination 320
16.3.2 Feature Ranking . 320
16.3.3 Redundancy Reduction 322
16.3.4 Redundancy Removal Algorithm 325
16.3.5 Term Redundancy Tree 326

16.4 Experimental Results . 326
16.5 Summary . 330

V Feature Selection in Bioinformatics 335

17 Feature Selection for Genomic Data Analysis 337
Lei Yu
17.1 Introduction . 337

17.1.1 Microarray Data and Challenges 337
17.1.2 Feature Selection for Microarray Data 338

17.2 Redundancy-Based Feature Selection 340
17.2.1 Feature Relevance and Redundancy 340
17.2.2 An Efficient Framework for Redundancy Analysis . . . 343
17.2.3 RBF Algorithm . 345

17.3 Empirical Study . 347
17.3.1 Datasets . 347
17.3.2 Experimental Settings 349
17.3.3 Results and Discussion 349

17.4 Summary . 351

18 A Feature Generation Algorithm with Applications to Bio-
logical Sequence Classification 355
Rezarta Islamaj Dogan, Lise Getoor, and W. John Wilbur
18.1 Introduction . 355
18.2 Splice-Site Prediction . 356

18.2.1 The Splice-Site Prediction Problem 356
18.2.2 Current Approaches 357
18.2.3 Our Approach . 359

18.3 Feature Generation Algorithm 359
18.3.1 Feature Type Analysis 360
18.3.2 Feature Selection . 362
18.3.3 Feature Generation Algorithm (FGA) 364

18.4 Experiments and Discussion 366

© 2008 by Taylor & Francis Group, LLC

18.4.1 Data Description . 366
18.4.2 Feature Generation . 367
18.4.3 Prediction Results for Individual Feature Types 369
18.4.4 Splice-Site Prediction with FGA Features 370

18.5 Conclusions . 372

19 An Ensemble Method for Identifying Robust Features for
Biomarker Discovery 377
Diana Chan, Susan M. Bridges, and Shane C. Burgess
19.1 Introduction . 377
19.2 Biomarker Discovery from Proteome Profiles 378
19.3 Challenges of Biomarker Identification 380
19.4 Ensemble Method for Feature Selection 381
19.5 Feature Selection Ensemble 383
19.6 Results and Discussion . 384
19.7 Conclusion . 389

20 Model Building and Feature Selection with Genomic Data 393
Hui Zou and Trevor Hastie
20.1 Introduction . 393
20.2 Ridge Regression, Lasso, and Bridge 394
20.3 Drawbacks of the Lasso . 396
20.4 The Elastic Net . 397

20.4.1 Definition . 397
20.4.2 A Stylized Example 399
20.4.3 Computation and Tuning 400
20.4.4 Analyzing the Cardiomypathy Data 402

20.5 The Elastic-Net Penalized SVM 404
20.5.1 Support Vector Machines 404
20.5.2 A New SVM Classifier 405

20.6 Sparse Eigen-Genes . 407
20.6.1 PCA and Eigen-Genes 408
20.6.2 Sparse Principal Component Analysis 408

20.7 Summary . 409

© 2008 by Taylor & Francis Group, LLC

Part I

Introduction and
Background

1

© 2008 by Taylor & Francis Group, LLC

Chapter 1

Less Is More

Huan Liu

Arizona State University

Hiroshi Motoda

AFOSR/AOARD, Air Force Research Laboratory

1.1 Background and Basics . 4
1.2 Supervised, Unsupervised, and Semi-Supervised Feature Selection 7
1.3 Key Contributions and Organization of the Book . 10
1.4 Looking Ahead . 15

References . 16

As our world expands at an unprecedented speed from the physical into the
virtual, we can conveniently collect more and more data in any ways one can
imagine for various reasons. Is it “The more, the merrier (better)”? The
answer is “Yes” and “No.” It is “Yes” because we can at least get what we
might need. It is also “No” because, when it comes to a point of too much,
the existence of inordinate data is tantamount to non-existence if there is no
means of effective data access. More can mean less. Without the processing
of data, its mere existence would not become a useful asset that can impact
our business, and many other matters. Since continued data accumulation
is inevitable, one way out is to devise data selection techniques to keep pace
with the rate of data collection. Furthermore, given the sheer volume of data,
data generated by computers or equivalent mechanisms must be processed
automatically, in order for us to tame the data monster and stay in control.

Recent years have seen extensive efforts in feature selection research. The
field of feature selection expands both in depth and in breadth, due to in-
creasing demands for dimensionality reduction. The evidence can be found
in many recent papers, workshops, and review articles. The research expands
from classic supervised feature selection to unsupervised and semi-supervised
feature selection, to selection of different feature types such as causal and
structural features, to different kinds of data like high-throughput, text, or
images, to feature selection evaluation, and to wide applications of feature
selection where data abound.

No book of this size could possibly document the extensive efforts in the
frontier of feature selection research. We thus try to sample the field in several
ways: asking established experts, calling for submissions, and looking at the

3

© 2008 by Taylor & Francis Group, LLC

4 Computational Methods of Feature Selection

recent workshops and conferences, in order to understand the current devel-
opments. As this book aims to serve a wide audience from practitioners to
researchers, we first introduce the basic concepts and the essential problems
with feature selection; next illustrate feature selection research in parallel
to supervised, unsupervised, and semi-supervised learning; then present an
overview of feature selection activities included in this collection; and last
contemplate some issues about evolving feature selection. The book is orga-
nized in five parts: (I) Introduction and Background, (II) Extending Feature
Selection, (III) Weighting and Local Methods, (IV) Text Feature Selection,
and (V) Feature Selection in Bioinformatics. These five parts are relatively
independent and can be read in any order. For a newcomer to the field of fea-
ture selection, we recommend that you read Chapters 1, 2, 9, 13, and 17 first,
then decide on which chapters to read further according to your need and in-
terest. Rudimentary concepts and discussions of related issues such as feature
extraction and construction can also be found in two earlier books [10, 9].
Instance selection can be found in [11].

1.1 Background and Basics

One of the fundamental motivations for feature selection is the curse of
dimensionality [6]. Plainly speaking, two close data points in a 2-d space are
likely distant in a 100-d space (refer to Chapter 2 for an illustrative example).
For the case of classification, this makes it difficult to make a prediction of
unseen data points by a hypothesis constructed from a limited number of
training instances. The number of features is a key factor that determines the
size of the hypothesis space containing all hypotheses that can be learned from
data [13]. A hypothesis is a pattern or function that predicts classes based
on given data. The more features, the larger the hypothesis space. Worse
still, the linear increase of the number of features leads to the exponential
increase of the hypothesis space. For example, for N binary features and a
binary class feature, the hypothesis space is as big as 22N

. Therefore, feature
selection can efficiently reduce the hypothesis space by removing irrelevant
and redundant features. The smaller the hypothesis space, the easier it is
to find correct hypotheses. Given a fixed-size data sample that is part of the
underlying population, the reduction of dimensionality also lowers the number
of required training instances. For example, given M , when the number of
binary features N = 10 is reduced to N = 5, the ratio of M/2N increases
exponentially. In other words, it virtually increases the number of training
instances. This helps to better constrain the search of correct hypotheses.

Feature selection is essentially a task to remove irrelevant and/or redun-
dant features. Irrelevant features can be removed without affecting learning

© 2008 by Taylor & Francis Group, LLC

Less Is More 5

performance [8]. Redundant features are a type of irrelevant feature [16]. The
distinction is that a redundant feature implies the co-presence of another fea-
ture; individually, each feature is relevant, but the removal of one of them will
not affect learning performance. The selection of features can be achieved
in two ways: One is to rank features according to some criterion and select
the top k features, and the other is to select a minimum subset of features
without learning performance deterioration. In other words, subset selection
algorithms can automatically determine the number of selected features, while
feature ranking algorithms need to rely on some given threshold to select fea-
tures. An example of feature ranking algorithms is detailed in Chapter 9. An
example of subset selection can be found in Chapter 17.

Other important aspects of feature selection include models, search strate-
gies, feature quality measures, and evaluation [10]. The three typical models
are filter, wrapper, and embedded. An embedded model of feature selection
integrates the selection of features in model building. An example of such a
model is the decision tree induction algorithm, in which at each branching
node, a feature has to be selected. The research shows that even for such
a learning algorithm, feature selection can result in improved learning per-
formance. In a wrapper model, one employs a learning algorithm and uses
its performance to determine the quality of selected features. As shown in
Chapter 2, filter and wrapper models are not confined to supervised feature
selection, and can also apply to the study of unsupervised feature selection
algorithms.

Search strategies [1] are investigated and various strategies are proposed
including forward, backward, floating, branch-and-bound, and randomized.
If one starts with an empty feature subset and adds relevant features into
the subset following a procedure, it is called forward selection; if one begins
with a full set of features and removes features procedurally, it is backward
selection. Given a large number of features, either strategy might be too costly
to work. Take the example of forward selection. Since k is usually unknown
a priori, one needs to try

(
N
1

)
+

(
N
2

)
+ ... +

(
N
k

)
times in order to figure out

k out of N features for selection. Therefore, its time complexity is O(2N).
Hence, more efficient algorithms are developed. The widely used ones are
sequential strategies. A sequential forward selection (SFS) algorithm selects
one feature at a time until adding another feature does not improve the subset
quality with the condition that a selected feature remains selected. Similarly,
a sequential backward selection (SBS) algorithm eliminates one feature at a
time and once a feature is eliminated, it will never be considered again for
inclusion. Obviously, both search strategies are heuristic in nature and cannot
guarantee the optimality of the selected features. Among alternatives to these
strategies are randomized feature selection algorithms, which are discussed in
Chapter 3. A relevant issue regarding exhaustive and heuristic searches is
whether there is any reason to perform exhaustive searches if time complexity
were not a concern. Research shows that exhaustive search can lead the
features that exacerbate data overfitting, while heuristic search is less prone

© 2008 by Taylor & Francis Group, LLC

6 Computational Methods of Feature Selection

to data overfitting in feature selection, facing small data samples.
The small sample problem addresses a new type of “wide” data where the

number of features (N) is several degrees of magnitude more than the num-
ber of instances (M). High-throughput data produced in genomics and pro-
teomics and text data are typical examples. In connection to the curse of
dimensionality mentioned earlier, the wide data present challenges to the reli-
able estimation of the model’s performance (e.g., accuracy), model selection,
and data overfitting. In [3], a pithy illustration of the small sample problem
is given with detailed examples.

The evaluation of feature selection often entails two tasks. One is to com-
pare two cases: before and after feature selection. The goal of this task is to
observe if feature selection achieves its intended objectives (recall that feature
selection does not confine it to improving classification performance). The
aspects of evaluation can include the number of selected features, time, scala-
bility, and learning model’s performance. The second task is to compare two
feature selection algorithms to see if one is better than the other for a certain
task. A detailed empirical study is reported in [14]. As we know, there is
no universally superior feature selection, and different feature selection algo-
rithms have their special edges for various applications. Hence, it is wise to
find a suitable algorithm for a given application. An initial attempt to ad-
dress the problem of selecting feature selection algorithms is presented in [12],
aiming to mitigate the increasing complexity of finding a suitable algorithm
from many feature selection algorithms.

Another issue arising from feature selection evaluation is feature selection
bias . Using the same training data in both feature selection and classifica-
tion learning can result in this selection bias. According to statistical theory
based on regression research, this bias can exacerbate data over-fitting and
negatively affect classification performance. A recommended practice is to
use separate data for feature selection and for learning. In reality, however,
separate datasets are rarely used in the selection and learning steps. This is
because we want to use as much data as possible in both selection and learning.
It is against this intuition to divide the training data into two datasets leading
to the reduced data in both tasks. Feature selection bias is studied in [15]
to seek answers if there is discrepancy between the current practice and the
statistical theory. The findings are that the statistical theory is correct, but
feature selection bias has limited effect on feature selection for classification.

Recently researchers started paying attention to interacting features [7].
Feature interaction usually defies those heuristic solutions to feature selection
evaluating individual features for efficiency. This is because interacting fea-
tures exhibit properties that cannot be detected in individual features. One
simple example of interacting features is the XOR problem, in which both
features together determine the class and each individual feature does not tell
much at all. By combining careful selection of a feature quality measure and
design of a special data structure, one can heuristically handle some feature
interaction as shown in [17]. The randomized algorithms detailed in Chapter 3

© 2008 by Taylor & Francis Group, LLC

Less Is More 7

may provide an alternative. An overview of various additional issues related
to improving classification performance can be found in [5]. Since there are
many facets of feature selection research, we choose a theme that runs in par-
allel with supervised, unsupervised, and semi-supervised learning below, and
discuss and illustrate the underlying concepts of disparate feature selection
types, their connections, and how they can benefit from one another.

1.2 Supervised, Unsupervised, and Semi-Supervised Fea-
ture Selection

In one of the early surveys [2], all algorithms are supervised in the sense
that data have class labels (denoted as Xl). Supervised feature selection al-
gorithms rely on measures that take into account the class information. A
well-known measure is information gain, which is widely used in both feature
selection and decision tree induction. Assuming there are two features F1 and
F2, we can calculate feature Fi’s information gain as E0 − Ei, where E is
entropy. E0 is the entropy before the data split using feature Fi, and can be
calculated as E0 =

∑
c pc log pc, where p is the estimated probability of class

c and c = 1, 2, ..., C. Ei is the entropy after the data split using Fi. A better
feature can result in larger information gain. Clearly, class information plays
a critical role here. Another example is the algorithm ReliefF, which also uses
the class information to determine an instance’s “near-hit” (a neighboring in-
stance having the same class) and “near-miss” (a neighboring instance having
different classes). More details about ReliefF can be found in Chapter 9. In
essence, supervised feature selection algorithms try to find features that help
separate data of different classes and we name it class-based separation. If a
feature has no effect on class-based separation, it can be removed. A good
feature should, therefore, help enhance class-based separation.

In the late 90’s, research on unsupervised feature selection intensified in
order to deal with data without class labels (denoted as Xu). It is closely
related to unsupervised learning [4]. One example of unsupervised learning is
clustering, where similar instances are grouped together and dissimilar ones
are separated apart. Similarity can be defined by the distance between two
instances. Conceptually, the two instances are similar if the distance between
the two is small, otherwise they are dissimilar. When all instances are con-
nected pair-wisely, breaking the connections between those instances that are
far apart will form clusters. Hence, clustering can be thought as achieving
locality-based separation. One widely used clustering algorithm is k-means.
It is an iterative algorithm that categorizes instances into k clusters. Given
predetermined k centers (or centroids), it works as follows: (1) Instances are
categorized to their closest centroid, (2) the centroids are recalculated using

© 2008 by Taylor & Francis Group, LLC

8 Computational Methods of Feature Selection

the instances in each cluster, and (3) the first two steps are repeated until the
centroids do not change. Obviously, the key concept is distance calculation,
which is sensitive to dimensionality, as we discussed earlier about the curse of
dimensionality. Basically, if there are many irrelevant or redundant features,
clustering will be different from that with only relevant features. One toy
example can be found in Figure 1.1 in which two well-formed clusters in a 1-d
space (x) become two different clusters (denoted with different shapes, circles
vs. diamonds) in a 2-d space after introducing an irrelevant feature y. Unsu-
pervised feature selection is more difficult to deal with than supervised feature
selection. However, it also is a very useful tool as the majority of data are
unlabeled. A comprehensive introduction and review of unsupervised feature
selection is presented in Chapter 2.

0 1 2 3
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3
0

1

2

3

4

5

6

7

8

9

10

FIGURE 1.1: An illustrative example: left - two well-formed clusters; middle -
after an irrelevant feature is added; right - after applying 2-means clustering.

When a small number of instances are labeled but the majority are not,
semi-supervised feature selection is designed to take advantage of both the
large number of unlabeled instances and the labeling information as in semi-
supervised learning. Intuitively, the additional labeling information should
help constrain the search space of unsupervised feature selection. In other
words, semi-supervised feature selection attempts to align locality-based sep-
aration and class-based separations Since there are a large number of unla-

© 2008 by Taylor & Francis Group, LLC

Less Is More 9

beled data and a small number of labeled instances, it is reasonable to use
unlabeled data to form some potential clusters and then employ labeled data
to find those clusters that can achieve both locality-based and class-based sep-
arations. For the two possible clustering results in Figure 1.1, if we are given
one correctly labeled instance each for the clusters of circles and diamonds,
the correct clustering result (the middle figure) will be chosen. The idea of
semi-supervised feature selection can be illustrated as in Figure 1.2 showing
how the properties of Xl and Xu complement each other and work together to
find relevant features. Two feature vectors (corresponding to two features, f
and f ′) can generate respective cluster indicators representing different clus-
tering results: The left one can satisfy both constraints of Xl and Xu, but the
right one can only satisfy Xu. For semi-supervised feature selection, we want
to select f over f ′. In other words, there are two equally good ways to cluster
the data as shown in the figure, but only one way can also attain class-based

C1

C2

C1'

C2'

(a)
The cluster structure corresponding

to cluster indicator

(b)
The cluster structure corresponding

to cluster indicator

feature vector feature vectorf 'f

cluster indicator cluster indicator

'g

g

g

'g

FIGURE 1.2: The basic idea for comparing the fitness of cluster indicators accord-
ing to both Xl (labeled data) and Xu (unlabeled data) for semi-supervised feature
selection. “-” and “+” correspond to instances of negative and positive classes, and
“M” to unlabeled instances.

separation. A semi-supervised feature selection algorithm sSelect is proposed
in [18], and sSelect is effective to use both data properties when locality-based

© 2008 by Taylor & Francis Group, LLC

10 Computational Methods of Feature Selection

separation and class-based separation do not generate conflicts. We expect to
witness a surge of study on semi-supervised feature selection. The reason is
two-fold: It is often affordable to carefully label a small number of instances,
and it also provides a natural way for human experts to inject their knowledge
into the feature selection process in the form of labeled instances.

Above, we presented and illustrated the development of feature selection
in parallel to supervised, unsupervised, and semi-supervised learning to meet
the increasing demands of labeled, unlabeled, and partially labeled data. It
is just one perspective of feature selection that encompasses many aspects.
However, from this perspective, it can be clearly seen that as data evolve,
feature selection research adapts and develops into new areas in various forms
for emerging real-world applications. In the following, we present an overview
of the research activities included in this book.

1.3 Key Contributions and Organization of the Book

The ensuing chapters showcase some current research issues of feature se-
lection. They are categorically grouped into five parts, each containing four
chapters. The first chapter in Part I is this introduction. The other three
discuss issues such as unsupervised feature selection, randomized feature se-
lection, and causal feature selection. Part II reports some recent results of em-
powering feature selection, including active feature selection, decision-border
estimate, use of ensembles with independent probes, and incremental fea-
ture selection. Part III deals with weighting and local methods such as an
overview of the ReliefF family, feature selection in k-means clustering, local
feature relevance, and a new interpretation of Relief. Part IV is about text
feature selection, presenting an overview of feature selection for text classifi-
cation, a new feature selection score, constraint-guided feature selection, and
aggressive feature selection. Part V is on Feature Selection in Bioinformat-
ics, discussing redundancy-based feature selection, feature construction and
selection, ensemble-based robust feature selection, and penalty-based feature
selection. A summary of each chapter is given next.

1.3.1 Part I - Introduction and Background

Chapter 2 is an overview of unsupervised feature selection, finding the
smallest feature subset that best uncovers interesting, natural clusters for the
chosen criterion. The existence of irrelevant features can misguide clustering
results. Both filter and wrapper approaches can apply as in a supervised
setting. Feature selection can either be global or local, and the features to
be selected can vary from cluster to cluster. Disparate feature subspaces can

© 2008 by Taylor & Francis Group, LLC

Less Is More 11

have different underlying numbers of natural clusters. Therefore, care must
be taken when comparing two clusters with different sets of features.

Chapter 3 is also an overview about randomization techniques for feature
selection. Randomization can lead to an efficient algorithm when the benefits
of good choices outweigh the costs of bad choices. There are two broad classes
of algorithms: Las Vegas algorithms, which guarantee a correct answer but
may require a long time to execute with small probability, and Monte Carlo
algorithms, which may output an incorrect answer with small probability but
always complete execution quickly. The randomized complexity classes define
the probabilistic guarantees that an algorithm must meet. The major sources
of randomization are the input features and/or the training examples. The
chapter introduces examples of several randomization algorithms.

Chapter 4 addresses the notion of causality and reviews techniques for
learning causal relationships from data in applications to feature selection.
Causal Bayesian networks provide a convenient framework for reasoning about
causality and an algorithm is presented that can extract causality from data
by finding the Markov blanket. Direct causes (parents), direct effects (chil-
dren), and other direct causes of the direct effects (spouses) are all members
of the Markov blanket. Only direct causes are strongly causally relevant. The
knowledge of causal relationships can benefit feature selection, e.g., explain-
ing relevance in terms of causal mechanisms, distinguishing between actual
features and experimental artifacts, predicting the consequences of actions,
and making predictions in a non-stationary environment.

1.3.2 Part II - Extending Feature Selection

Chapter 5 poses an interesting problem of active feature sampling in do-
mains where the feature values are expensive to measure. The selection of
features is based on the maximum benefit. A benefit function minimizes the
mean-squared error in a feature relevance estimate. It is shown that the
minimum mean-squared error criterion is equivalent to the maximum average
change criterion. The results obtained by using a mixture model for the joint
class-feature distribution show the advantage of the active sampling policy
over the random sampling in reducing the number of feature samples. The
approach is computationally expensive. Considering only a random subset of
the missing entries at each sampling step is a promising solution.

Chapter 6 discusses feature extraction (as opposed to feature selection)
based on the properties of the decision border. It is intuitive that the direction
normal to the decision boundary represents an informative direction for class
discriminability and its effectiveness is proportional to the area of decision bor-
der that has the same normal vector. Based on this, a labeled vector quantizer
that can efficiently be trained by the Bayes risk weighted vector quantization
(BVQ) algorithm was devised to extract the best linear approximation to the
decision border. The BVQ produces a decision boundary feature matrix, and
the eigenvectors of this matrix are exploited to transform the original feature

© 2008 by Taylor & Francis Group, LLC

12 Computational Methods of Feature Selection

space into a new feature space with reduced dimensionality. It is shown that
this approach is comparable to the SVM-based decision boundary approach
and better than the MLP (Multi Layer Perceptron)-based approach, but with
a lower computational cost.

Chapter 7 proposes to compare feature relevance against the relevance of
its randomly permuted version (or probes) for classification/regression tasks
using random forests. The key is to use the same distribution in generating
a probe. Feature relevance is estimated by averaging the relevance obtained
from each tree in the ensemble. The method iterates over the remaining fea-
tures by removing the identified important features using the residuals as new
target variables. It offers autonomous feature selection taking into account
non-linearity, mixed-type data, and missing data in regressions and classifica-
tions. It shows excellent performance and low computational complexity, and
is able to address massive amounts of data.

Chapter 8 introduces an incremental feature selection algorithm for high-
dimensional data. The key idea is to decompose the whole process into feature
ranking and selection. The method first ranks features and then resolves the
redundancy by an incremental subset search using the ranking. The incre-
mental subset search does not retract what it has selected, but it can decide
not to add the next candidate feature, i.e., skip it and try the next according
to the rank. Thus, the average number of features used to construct a learner
during the search is kept small, which makes the wrapper approach feasible
for high-dimensional data.

1.3.3 Part III - Weighting and Local Methods

Chapter 9 is a comprehensive description of the Relief family algorithms.
Relief exploits the context of other features through distance measures and can
detect highly conditionally-dependent features. The chapter explains the idea,
advantages, and applications of Relief and introduces two extensions: ReliefF
and RReliefF. ReliefF is for classification and can deal with incomplete data
with multi-class problems. RReliefF is its extension designed for regression.
The variety of the Relief family shows the general applicability of the basic
idea of Relief as a non-myopic feature quality measure.

Chapter 10 discusses how to automatically determine the important fea-
tures in the k-means clustering process. The weight of a feature is determined
by the sum of the within-cluster dispersions of the feature, which measures
its importance in clustering. A new step to calculate the feature weights is
added in the iterative process in order not to seriously affect the scalability.
The weight can be defined either globally (same weights for all clusters) or
locally (different weights for different clusters). The latter, called subspace
k-means clustering, has applications in text clustering, bioinformatics, and
customer behavior analysis.

Chapter 11 is in line with Chapter 5, but focuses on local feature relevance
and weighting. Each feature’s ability for class probability prediction at each

© 2008 by Taylor & Francis Group, LLC

Less Is More 13

point in the feature space is formulated in a way similar to the weighted χ-
square measure, from which the relevance weight is derived. The weight has
a large value for a direction along which the class probability is not locally
constant. To gain efficiency, a decision boundary is first obtained by an SVM,
and its normal vector nearest to the point in query is used to estimate the
weights reflected in the distance measure for a k-nearest neighbor classifier.

Chapter 12 gives further insights into Relief (refer to Chapter 9). The
working of Relief is proven to be equivalent to solving an online convex opti-
mization problem with a margin-based objective function that is defined based
on a nearest neighbor classifier. Relief usually performs (1) better than other
filter methods due to the local performance feedback of a nonlinear classifier
when searching for useful features, and (2) better than wrapper methods due
to the existence of efficient algorithms for a convex optimization problem. The
weights can be iteratively updated by an EM-like algorithm, which guaran-
tees the uniqueness of the optimal weights and the convergence. The method
was further extended to its online version, which is quite effective when it is
difficult to use all the data in a batch mode.

1.3.4 Part IV - Text Classification and Clustering

Chapter 13 is a comprehensive presentation of feature selection for text
classification, including feature generation, representation, and selection, with
illustrative examples, from a pragmatic view point. A variety of feature gen-
erating schemes is reviewed, including word merging, word phrases, character
N -grams, and multi-fields. The generated features are ranked by scoring each
feature independently. Examples of scoring measures are information gain,
χ-square, and bi-normal separation. A case study shows considerable im-
provement of F -measure by feature selection. It also shows that adding two
word phrases as new features generally gives good performance gain over the
features comprising only selected words.

Chapter 14 introduces a new feature selection score, which is defined as the
posterior probability of inclusion of a given feature over all possible models,
where each model corresponds to a different set of features that includes the
given feature. The score assumes a probability distribution on the words of
the documents. Bernoulli and Poisson distributions are assumed respectively
when only the presence or absence of a word matters and when the number
of occurrences of a word matters. The score computation is inexpensive,
and the value that the score assigns to each word has an appealing Bayesian
interpretation when the predictive model corresponds to a naive Bayes model.
This score is compared with five other well-known scores.

Chapter 15 focuses on dimensionality reduction for semi-supervised clus-
tering where some weak supervision is available in terms of pairwise instance
constraints (must-link and cannot-link). Two methods are proposed by lever-
aging pairwise instance constraints: pairwise constraints-guided feature pro-
jection and pairwise constraints-guided co-clustering. The former is used to

© 2008 by Taylor & Francis Group, LLC

14 Computational Methods of Feature Selection

project data into a lower dimensional space such that the sum-squared dis-
tance between must-link instances is minimized and the sum-squared dis-
tance between cannot-link instances is maximized. This reduces to an elegant
eigenvalue decomposition problem. The latter is to use feature clustering
benefitting from pairwise constraints via a constrained co-clustering mecha-
nism. Feature clustering and data clustering are mutually reinforced in the
co-clustering process.

Chapter 16 proposes aggressive feature selection, removing more than
95% features (terms) for text data. Feature ranking is effective to remove
irrelevant features, but cannot handle feature redundancy. Experiments show
that feature redundancy can be as destructive as noise. A new multi-stage
approach for text feature selection is proposed: (1) pre-processing to remove
stop words, infrequent words, noise, and errors; (2) ranking features to iden-
tify the most informative terms; and (3) removing redundant and correlated
terms. In addition, term redundancy is modeled by a term-redundancy tree
for visualization purposes.

1.3.5 Part V - Feature Selection in Bioinformatics

Chapter 17 introduces the challenges of microarray data analysis and
presents a redundancy-based feature selection algorithm. For high-throughput
data like microarrays, redundancy among genes becomes a critical issue. Con-
ventional feature ranking algorithms cannot effectively handle feature redun-
dancy. It is known that if there is a Markov blanket for a feature, the feature
can be safely eliminated. Finding a Markov blanket is computationally heavy.
The solution proposed is to use an approximate Markov blanket, in which it is
assumed that the Markov blanket always consists of one feature. The features
are first ranked, and then each feature is checked in sequence if it has any ap-
proximate Markov blanket in the current set. This way it can efficiently find
all predominant features and eliminate the rest. Biologists would welcome
an efficient filter algorithm to feature redundancy. Redundancy-based fea-
ture selection makes it possible for a biologist to specify what genes are to be
included before feature selection.

Chapter 18 presents a scalable method for automatic feature generation
on biological sequence data. The algorithm uses sequence components and do-
main knowledge to construct features, explores the space of possible features,
and identifies the most useful ones. As sequence data have both compositional
and positional properties, feature types are defined to capture these proper-
ties, and for each feature type, features are constructed incrementally from
the simplest ones. During the construction, the importance of each feature is
evaluated by a measure that best fits to each type, and low ranked features
are eliminated. At the final stage, selected features are further pruned by an
embedded method based on recursive feature elimination. The method was
applied to the problem of splice-site prediction, and it successfully identified
the most useful set of features of each type. The method can be applied

© 2008 by Taylor & Francis Group, LLC

Less Is More 15

to complex feature types and sequence prediction tasks such as translation
start-site prediction and protein sequence classification.

Chapter 19 proposes an ensemble-based method to find robust features
for biomarker research. Ensembles are obtained by choosing different alterna-
tives at each stage of data mining: three normalization methods, two binning
methods, eight feature selection methods (including different combination of
search methods), and four classification methods. A total of 192 different clas-
sifiers are obtained, and features are selected by favoring frequently appearing
features that are members of small feature sets of accurate classifiers. The
method is successfully applied to a publicly available Ovarian Cancer Dataset,
in which case the original attribute is the m/z (mass/charge) value of mass
spectrometer and the value of the feature is its intensity.

Chapter 20 presents a penalty-based feature selection method, elastic net,
for genomic data, which is a generalization of lasso (a penalized least squares
method with L1 penalty for regression). Elastic net has a nice property that
irrelevant features receive their parameter estimates equal to 0, leading to
sparse and easy to interpret models like lasso, and, in addition, strongly cor-
related relevant features are all selected whereas in lasso only one of them
is selected. Thus, it is a more appropriate tool for feature selection with
high-dimensional data than lasso. Details are given on how elastic net can be
applied to regression, classification, and sparse eigen-gene analysis by simul-
taneously building a model and selecting relevant and redundant features.

1.4 Looking Ahead

Feature selection research has found applications in many fields where large
(either row-wise or column-wise) volumes of data present challenges to effec-
tive data analysis and processing. As data evolve, new challenges arise and
the expectations of feature selection are also elevated, due to its own suc-
cess. In addition to high-throughput data, the pervasive use of Internet and
Web technologies has been bringing about a great number of new services and
applications, ranging from recent Web 2.0 applications to traditional Web ser-
vices where multi-media data are ubiquitous and abundant. Feature selection
is widely applied to find topical terms, establish group profiles, assist in cat-
egorization, simplify descriptions, facilitate personalization and visualization,
among many others.

The frontier of feature selection research is expanding incessantly in an-
swering the emerging challenges posed by the ever-growing amounts of data,
multiple sources of heterogeneous data, data streams, and disparate data-
intensive applications. On one hand, we naturally anticipate more research
on semi-supervised feature selection, unifying supervised and unsupervised

© 2008 by Taylor & Francis Group, LLC

16 Computational Methods of Feature Selection

feature selection [19], and integrating feature selection with feature extrac-
tion. On the other hand, we expect new feature selection methods designed
for various types of features like causal, complementary, relational, struc-
tural, and sequential features, and intensified research efforts on large-scale,
distributed, and real-time feature selection. As the field develops, we are op-
timistic and confident that feature selection research will continue its unique
and significant role in taming the data monster and helping turning data into
nuggets.

References

[1] A. Blum and P. Langley. Selection of relevant features and examples in
machine learning. Artificial Intelligence, 97:245–271, 1997.

[2] M. Dash and H. Liu. Feature selection methods for classifications. Intel-
ligent Data Analysis: An International Journal, 1(3):131–156, 1997.

[3] E. Dougherty. Feature-selection overfitting with small-sample classi-
fier design. IEEE Intelligent Systems, 20(6):64–66, November/December
2005.

[4] J. Dy and C. Brodley. Feature selection for unsupervised learning. Jour-
nal of Machine Learning Research, 5:845–889, 2004.

[5] I. Guyon and A. Elisseeff. An introduction to variable and feature se-
lection. Journal of Machine Learning Research (JMLR), 3:1157–1182,
2003.

[6] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer, 2001.

[7] A. Jakulin and I. Bratko. Testing the significance of attribute interac-
tions. In ICML ’04: Twenty-First International Conference on Machine
Learning. ACM Press, 2004.

[8] G. John, R. Kohavi, and K. Pfleger. Irrelevant feature and the subset se-
lection problem. In W. Cohen and H. H., editors, Machine Learning: Pro-
ceedings of the Eleventh International Conference, pages 121–129, New
Brunswick, NJ: Rutgers University, 1994.

[9] H. Liu and H. Motoda, editors. Feature Extraction, Construction and
Selection: A Data Mining Perspective. Boston: Kluwer Academic Pub-
lishers, 1998. 2nd Printing, 2001.

[10] H. Liu and H. Motoda. Feature Selection for Knowledge Discovery &
Data Mining. Boston: Kluwer Academic Publishers, 1998.

© 2008 by Taylor & Francis Group, LLC

Less Is More 17

[11] H. Liu and H. Motoda, editors. Instance Selection and Construction for
Data Mining. Boston: Kluwer Academic Publishers, 2001.

[12] H. Liu and L. Yu. Toward integrating feature selection algorithms for
classification and clustering. IEEE Trans. on Knowledge and Data En-
gineering, 17(3):1–12, 2005.

[13] T. Mitchell. Machine Learning. New York: McGraw-Hill, 1997.

[14] P. Refaeilzadeh, L. Tang, and H. Liu. On comparison of feature selection
algorithms. In AAAI 2007 Workshop on Evaluation Methods for Machine
Learning II, Vancouver, British Columbia, Canada, July 2007.

[15] S. Singhi and H. Liu. Feature subset selection bias for classification
learning. In International Conference on Machine Learning, 2006.

[16] L. Yu and H. Liu. Efficient feature selection via analysis of rele-
vance and redundancy. Journal of Machine Learning Research (JMLR),
5(Oct):1205–1224, 2004.

[17] Z. Zhao and H. Liu. Searching for interacting features. In Proceedings of
IJCAI - International Joint Conference on AI, January 2007.

[18] Z. Zhao and H. Liu. Semi-supervised feature selection via spectral anal-
ysis. In Proceedings of SIAM International Conference on Data Mining
(SDM-07), 2007.

[19] Z. Zhao and H. Liu. Spectral feature selection for supervised and unsu-
pervised learning. In Proceedings of International Conference on Machine
Learning, 2007.

© 2008 by Taylor & Francis Group, LLC

Chapter 2

Unsupervised Feature Selection

Jennifer G. Dy

Northeastern University

2.1 Introduction . 19
2.2 Clustering . 21
2.3 Feature Selection . 23
2.4 Feature Selection for Unlabeled Data . 25
2.5 Local Approaches . 32
2.6 Summary . 34

Acknowledgment . 35
References . 35

2.1 Introduction

Many existing databases are unlabeled, because large amounts of data make
it difficult for humans to manually label the categories of each instance. More-
over, human labeling is expensive and subjective. Hence, unsupervised learn-
ing is needed. Besides being unlabeled, several applications are characterized
by high-dimensional data (e.g., text, images, gene). However, not all of the
features domain experts utilize to represent these data are important for the
learning task. We have seen the need for feature selection in the supervised
learning case. This is also true in the unsupervised case. Unsupervised means
there is no teacher, in the form of class labels. One type of unsupervised learn-
ing problem is clustering. The goal of clustering is to group “similar” objects
together. “Similarity” is typically defined in terms of a metric or a probabil-
ity density model, which are both dependent on the features representing the
data.

In the supervised paradigm, feature selection algorithms maximize some
function of prediction accuracy. Since class labels are available in supervised
learning, it is natural to keep only the features that are related to or lead
to these classes. But in unsupervised learning, we are not given class labels.
Which features should we keep? Why not use all the information that we
have? The problem is that not all the features are important. Some of the
features may be redundant and some may be irrelevant. Furthermore, the ex-
istence of several irrelevant features can misguide clustering results. Reducing

19

© 2008 by Taylor & Francis Group, LLC

20 Computational Methods of Feature Selection

the number of features also facilitates comprehensibility and ameliorates the
problem that some unsupervised learning algorithms break down with high-
dimensional data. In addition, for some applications, the goal is not just
clustering, but also to find the important features themselves.

A reason why some clustering algorithms break down in high dimensions is
due to the curse of dimensionality [3]. As the number of dimensions increases,
a fix data sample becomes exponentially sparse. Additional dimensions in-
crease the volume exponentially and spread the data such that the data points
would look equally far. Figure 2.1 (a) shows a plot of data generated from
a uniform distribution between 0 and 2 with 25 instances in one dimension.
Figure 2.1 (b) shows a plot of the same data in two dimensions, and Figure
2.1 (c) displays the data in three dimensions. Observe that the data become
more and more sparse in higher dimensions. There are 12 samples that fall
inside the unit-sized box in Figure 2.1 (a), seven samples in (b) and two in
(c). The sampling density is proportional to M1/N , where M is the number
of samples and N is the dimension. For this example, a sampling density of
25 in one dimension would require 253 = 125 samples in three dimensions to
achieve a similar sample density.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

y

(b)

0

0.5

1

1.5

2

0

0.5

1

1.5

2
0

0.5

1

1.5

2

xy

z

(c)

FIGURE 2.1: Illustration for the curse of dimensionality. These are plots of a
25-sample data generated from a uniform distribution between 0 and 2. (a) Plot in
one dimension, (b) plot in two dimensions, and (c) plot in three dimensions. The
boxes in the figures show unit-sized bins in the corresponding dimensions. Note that
data are more sparse with respect to the unit-sized volume in higher dimensions.
There are 12 samples in the unit-sized box in (a), 7 samples in (b), and 2 samples
in (c).

As noted earlier, supervised learning has class labels to guide the feature
search. In unsupervised learning, these labels are missing, and in fact its goal
is to find these grouping labels (also known as cluster assignments). Finding
these cluster labels is dependent on the features describing the data, thus
making feature selection for unsupervised learning difficult.

Dy and Brodley [14] define the goal of feature selection for unsupervised
learning as:

© 2008 by Taylor & Francis Group, LLC

Unsupervised Feature Selection 21

to find the smallest feature subset that best uncovers “interesting
natural” groupings (clusters) from data according to the chosen
criterion.

Without any labeled information, in unsupervised learning, we need to make
some assumptions. We need to define what “interesting” and “natural” mean
in the form of criterion or objective functions. We will see examples of these
criterion functions later in this chapter.

Before we proceed with how to do feature selection on unsupervised data,
it is important to know the basics of clustering algorithms. Section 2.2 briefly
describes clustering algorithms. In Section 2.3 we review the basic components
of feature selection algorithms. Then, we present the methods for unsuper-
vised feature selection in Sections 2.4 and 2.5, and finally provide a summary
in Section 2.6.

2.2 Clustering

The goal of clustering is to group similar objects together. There are two
types of clustering approaches: partitional and hierarchical. Partitional clus-
tering provides one level of clustering. Hierarchical clustering, on the other
hand, provides multiple levels (hierarchy) of clustering solutions. Hierarchical
approaches can proceed bottom-up (agglomerative) or top-down (divisive).
Bottom-up approaches typically start with all instances as clusters and then,
at each level, merge clusters that are most similar with each other. Top-
down approaches divide the data into k clusters at each level. There are
several methods for performing clustering. A survey of these algorithms can
be found in [29, 39, 18].

In this section we briefly present two popular partitional clustering algo-
rithms: k-means and finite mixture model clustering. As mentioned earlier,
similarity is typically defined by a metric or a probability distribution. K-
means is an approach that uses a metric, and finite mixture models define
similarity by a probability density.

Let us denote our dataset as X = {x1, x2, . . . , xM}. X consists of M data
instances xk, k = 1, 2, . . . , M , and each xk represents a single N -dimensional
instance.

2.2.1 The K-Means Algorithm

The goal of k-means is to partition X into K clusters {C1, . . . , CK}. The
most widely used criterion function for the k-means algorithm is the sum-

© 2008 by Taylor & Francis Group, LLC

22 Computational Methods of Feature Selection

squared-error (SSE) criterion. SSE is defined as

SSE =
K∑

j=1

∑

xk∈Cj

‖xk − μj‖2 (2.1)

where μj denotes the mean (centroid) of those instances in cluster Cj .
K-means is an iterative algorithm that locally minimizes the SSE criterion.

It assumes each cluster has a hyper-spherical structure. “K-means” denotes
the process of assigning each data point, xk, to the cluster with the nearest
mean. The k-means algorithm starts with initial K centroids, then it assigns
each remaining point to the nearest centroid, updates the cluster centroids,
and repeats the process until the K centroids do not change (convergence).
There are two versions of k-means: One version originates from Forgy [17] and
the other version from Macqueen [36]. The difference between the two is when
to update the cluster centroids. In Forgy’s k-means [17], cluster centroids are
re-computed after all the data points have been assigned to their nearest
centroids. In Macqueen’s k-means [36], the cluster centroids are re-computed
after each data assignment. Since k-means is a greedy algorithm, it is only
guaranteed to find a local minimum, the solution of which is dependent on
the initial assignments. To avoid local optimum, one typically applies random
restarts and picks the clustering solution with the best SSE. One can refer
to [47, 4] for other ways to deal with the initialization problem.

Standard k-means utilizes Euclidean distance to measure dissimilarity be-
tween the data points. Note that one can easily create various variants of
k-means by modifying this distance metric (e.g., other Lp norm distances)
to ones more appropriate for the data. For example, on text data, a more
suitable metric is the cosine similarity. One can also modify the objective
function, instead of SSE, to other criterion measures to create other cluster-
ing algorithms.

2.2.2 Finite Mixture Clustering

A finite mixture model assumes that data are generated from a mixture
of K component density functions, in which p(xk|θj) represents the density
function of component j for all j′s, where θj is the parameter (to be estimated)
for cluster j. The probability density of data xk is expressed by

p(xk) =
K∑

j=1

αjp(xk|θj) (2.2)

where the α′s are the mixing proportions of the components (subject to αj ≥ 0
and

∑K
j=1 αj = 1). The log-likelihood of the M observed data points is then

given by

L =
M∑

k=1

ln{
K∑

j=1

αjp(xk|θj)} (2.3)

© 2008 by Taylor & Francis Group, LLC

Unsupervised Feature Selection 23

It is difficult to directly optimize (2.3), therefore we apply the Expectation-
Maximization (EM) [10] algorithm to find a (local) maximum likelihood or
maximum a posteriori (MAP) estimate of the parameters for the given data
set. EM is a general approach for estimating the maximum likelihood or
MAP estimate for missing data problems. In the clustering context, the
missing or hidden variables are the class labels. The EM algorithm iterates
between an Expectation-step (E-step), which computes the expected com-
plete data log-likelihood given the observed data and the model parameters,
and a Maximization-step (M-step), which estimates the model parameters
by maximizing the expected complete data log-likelihood from the E-step,
until convergence. In clustering, the E-step is similar to estimating the clus-
ter membership and the M-step estimates the cluster model parameters. The
clustering solution that we obtain in a mixture model is what we call a “soft”-
clustering solution because we obtain an estimated cluster membership (i.e.,
each data point belongs to all clusters with some probability weight of be-
longing to each cluster). In contrast, k-means provides a “hard”-clustering
solution (i.e., each data point belongs to only a single cluster).

Analogous to metric-based clustering, where one can develop different algo-
rithms by utilizing other similarity metric, one can design different probability-
based mixture model clustering algorithms by choosing an appropriate density
model for the application domain. A Gaussian distribution is typically uti-
lized for continuous features and multinomials for discrete features. For a
more thorough description of clustering using finite mixture models, see [39]
and a review is provided in [18].

2.3 Feature Selection

Feature selection algorithms has two main components: (1) feature search
and (2) feature subset evaluation.

2.3.1 Feature Search

Feature search strategies have been widely studied for classifications. Gen-
erally speaking, search strategies used for supervised classifications can also
be used for clustering algorithms. We repeat and summarize them here for
completeness. An exhaustive search would definitely find the optimal solution;
however, a search on 2N possible feature subsets (where N is the number of
features) is computationally impractical. More realistic search strategies have
been studied. Narendra and Fukunaga [40] introduced the branch and bound
algorithm, which finds the optimal feature subset if the criterion function used
is monotonic. However, although the branch and bound algorithm makes

© 2008 by Taylor & Francis Group, LLC

24 Computational Methods of Feature Selection

problems more tractable than an exhaustive search, it becomes impractical
for feature selection problems involving more than 30 features [43]. Sequential
search methods generally use greedy techniques and hence do not guarantee
global optimality of the selected subsets, only local optimality. Examples of
sequential searches include sequential forward selection, sequential backward
elimination, and bidirectional selection [32, 33]. Sequential forward/backward
search methods generally result in an O(N2) worst case search. Marill and
Green [38] introduced the sequential backward selection (SBS) [43] method,
which starts with all the features and sequentially eliminates one feature at a
time (eliminating the feature that contributes least to the criterion function).
Whitney [50] introduced sequential forward selection (SFS) [43], which starts
with the empty set and sequentially adds one feature at a time. A problem
with these hill-climbing search techniques is that when a feature is deleted in
SBS, it cannot be re-selected, while a feature added in SFS cannot be deleted
once selected. To prevent this effect, the Plus-l-Minus-r (l-r) search method
was developed by Stearns [45]. Indeed, at each step the values of l and r
are pre-specified and fixed. Pudil et al. [43] introduced an adaptive version
that allows l and r values to “float.” They call these methods floating search
methods: sequential forward floating selection (SFFS) and sequential back-
ward floating selection (SBFS) based on the dominant search method (i.e.,
either in the forward or backward direction). Random search methods such
as genetic algorithms and random mutation hill climbing add some random-
ness in the search procedure to help to escape from a local optimum. In some
cases when the dimensionality is very high, one can only afford an individual
search. Individual search methods evaluate each feature individually accord-
ing to a criterion or a condition [24]. They then select features, which either
satisfy the condition or are top-ranked.

2.3.2 Feature Evaluation

Not all the features are important. Some of the features may be irrelevant
and some of the features may be redundant. Each feature or feature subset
needs to be evaluated based on importance by a criterion. Different criteria
may select different features. It is actually deciding the evaluation criteria that
makes feature selection in clustering difficult. In classification, it is natural
to keep the features that are related to the labeled classes. However, in
clustering, these class labels are not available. Which features should we keep?
More specifically, how do we decide which features are relevant/irrelevant, and
which are redundant?

Figure 2.2 gives a simple example of an irrelevant feature for clustering.
Suppose data have features F1 and F2 only. Feature F2 does not contribute
to cluster discrimination, thus, we consider feature F2 to be irrelevant. We
want to remove irrelevant features because they may mislead the clustering
algorithm (especially when there are more irrelevant features than relevant
ones). Figure 2.3 provides an example showing feature redundancy. Observe

© 2008 by Taylor & Francis Group, LLC

Unsupervised Feature Selection 25

FIGURE 2.2: In this example, feature F2 is irrelevant because it does not con-
tribute to cluster discrimination.

F2

F1

FIGURE 2.3: In this example, features F1 and F2 have redundant information,
because feature F1 provides the same information as feature F2 with regard to
discriminating the two clusters.

that both features F1 and F2 lead to the same clustering results. Therefore,
we consider features F1 and F2 to be redundant.

2.4 Feature Selection for Unlabeled Data

There are several feature selection methods for clustering. Similar to super-
vised learning, these feature selection methods can be categorized as either
filter or wrapper approaches [33] based on whether the evaluation methods
depend on the learning algorithms1.

As Figure 2.4 shows, the wrapper approach wraps the feature search around
the learning algorithms that will ultimately be applied, and utilizes the learned
results to select the features. On the other hand, as shown in Figure 2.5, the
filter approach utilizes the data alone to decide which features should be kept,

© 2008 by Taylor & Francis Group, LLC

26 Computational Methods of Feature Selection

Search
Clustering
Algorithm

Feature
Evaluation
Criterion

All Features
Feature
Subset

Criterion Value

Clusters

Selected
Features

Clusters

FIGURE 2.4: Wrapper approach for feature selection for clustering.

Search
Feature
Evaluation
Criterion

All Features
Feature
Subset

Criterion Value

Selected
Features

FIGURE 2.5: Filter approach for feature selection for clustering.

without running the learning algorithm. Usually, a wrapper approach may
lead to better performance compared to a filter approach for a particular
learning algorithm. However, wrapper methods are more computationally
expensive since one needs to run the learning algorithm for every candidate
feature subset.

In this section, we present the different methods categorized into filter and
wrapper approaches.

2.4.1 Filter Methods

Filter methods use some intrinsic property of the data to select features
without utilizing the clustering algorithm that will ultimately be applied. The
basic components in filter methods are the feature search method and the fea-
ture selection criterion. Filter methods have the challenge of defining feature
relevance (interestingness) and/or redundancy without applying clustering on
the data.

Talavera [48] developed a filter version of his wrapper approach that selects
features based on feature dependence. He claims that irrelevant features are
features that do not depend on the other features. Manoranjan et al. [37]
introduced a filter approach that selects features based on the entropy of dis-
tances between data points. They observed that when the data are clustered,
the distance entropy at that subspace should be low. He, Cai, and Niyogi [26]
select features based on the Laplacian score that evaluates features based on
their locality preserving power. The Laplacian score is based on the premise
that two data points that are close together probably belong to the same
cluster.

These three filter approaches try to remove features that are not relevant.

© 2008 by Taylor & Francis Group, LLC

Unsupervised Feature Selection 27

Another way to reduce the dimensionality is to remove redundancy. A filter
approach primarily for reducing redundancy is simply to cluster the features.
Note that even though we apply clustering, we consider this as a filter method
because we cluster on the feature space as opposed to the data sample space.
One can cluster the features using a k-means clustering [36, 17] type of algo-
rithm with feature correlation as the similarity metric. Instead of a cluster
mean, represent each cluster by the feature that has the highest correlation
among features within the cluster it belongs to.

Popular techniques for dimensionality reduction without labels are prin-
cipal components analysis (PCA) [30], factor analysis, and projection pur-
suit [20, 27]. These early works in data reduction for unsupervised data can
be thought of as filter methods, because they select the features prior to ap-
plying clustering. But rather than selecting a subset of the features, they
involve some type of feature transformation. PCA and factor analysis aim to
reduce the dimension such that the representation is as faithful as possible to
the original data. As such, these techniques aim at reducing dimensionality
by removing redundancy. Projection pursuit, on the other hand, aims at find-
ing “interesting” projections (defined as the directions that are farthest from
Gaussian distributions and close to uniform). In this case, projection pur-
suit addresses relevance. Another method is independent component analysis
(ICA) [28]. ICA tries to find a transformation such that the transformed vari-
ables are statistically independent. Although the goals of ICA and projection
pursuit are different, the formulation in ICA ends up being similar to that of
projection pursuit (i.e., they both search for directions that are farthest from
the Gaussian density). These techniques are filter methods, however, they
apply transformations on the original feature space. We are interested in sub-
sets of the original features, because we want to retain the original meaning of
the features. Moreover, transformations would still require the user to collect
all the features to obtain the reduced set, which is sometimes not desired.

2.4.2 Wrapper Methods

Wrapper methods apply the clustering algorithm to evaluate the features.
They incorporate the clustering algorithm inside the feature search and selec-
tion. Wrapper approaches consist of: (1) a search component, (2) a clustering
algorithm, and (3) a feature evaluation criterion. See Figure 2.4.

One can build a feature selection wrapper approach for clustering by simply
picking a favorite search method (any method presented in Section 2.3.1), and
apply a clustering algorithm and a feature evaluation criterion. However, there
are issues that one must take into account in creating such an algorithm. In
[14], Dy and Brodley investigated the issues involved in creating a general
wrapper method where any feature selection, clustering, and selection criteria
can be applied. The first issue they observed is that it is not a good idea
to use the same number of clusters throughout the feature search because
different feature subspaces have different underlying numbers of “natural”

© 2008 by Taylor & Francis Group, LLC

28 Computational Methods of Feature Selection

clusters. Thus, the clustering algorithm should also incorporate finding the
number of clusters in feature search. The second issue they discovered is that
various selection criteria are biased with respect to dimensionality. They then
introduced a cross-projection normalization scheme that can be utilized by
any criterion function.

Feature subspaces have different underlying numbers of clusters.
When we are searching for the best feature subset, we run into a new problem:
The value of the number of clusters depends on the feature subset. Figure
2.6 illustrates this point. In two dimensions {F1, F2} there are three clusters,
whereas in one dimension (the projection of the data only on F1) there are
only two clusters. It is not a good idea to use a fixed number of clusters in
feature search, because different feature subsets require different numbers of
clusters. And, using a fixed number of clusters for all feature sets does not
model the data in the respective subspace correctly. In [14], they addressed
finding the number of clusters by applying a Bayesian information criterion
penalty [44].

x
x

xx x

x
xx x
x

x

x x
x x

x

x

x
xx
x

x
x x

x

x
x
x

x

x

x xx
x

x
x

x x
x

x

x
x xx xx x

F

F

xxxxxxxxxx xxxxxxxx

2

1

FIGURE 2.6: The number of cluster components varies with dimension.

Feature evaluation criterion should not be biased with respect to
dimensionality. In a wrapper approach, one searches in feature space, ap-
plies clustering in each candidate feature subspace, Si, and then evaluates the
results (clustering in space Si) with other cluster solutions in other subspaces,
Sj , j �= i, based on an evaluation criterion. This can be problematic especially
when Si and Sj have different dimensionalities. Dy and Brodley [14] examined
two feature selection criteria: maximum likelihood and scatter separability.
They have shown that the scatter separability criterion prefers higher dimen-
sionality. In other words, the criterion value monotonically increases as fea-

© 2008 by Taylor & Francis Group, LLC

Unsupervised Feature Selection 29

tures are added (i.e., the dimension is increased) assuming identical clustering
assignments [40]. However, the separability criterion may not be monoton-
ically increasing with respect to dimension when the clustering assignments
change. Scatter separability or the trace criterion prefers higher dimensions,
intuitively, because data are more scattered in higher dimensions, and math-
ematically, because adding features means adding more terms in the trace
function. Ideally, one would like the criterion value to remain the same if the
discrimination information is the same. Maximum likelihood, on the other
hand, prefers lower dimensions. The problem occurs when we compare fea-
ture set A with feature set B wherein set A is a subset of B. The problem is
that the joint probability of a single point {x, y} is less than or equal to its
marginal probability x when the conditional probability is less than one. For
sequential searches, this can lead to the trivial result of selecting only a single
feature.

To ameliorate this bias, Dy and Brodley [14] suggest a cross-projection
scheme that can be applied with any feature evaluation criterion. The idea
is to project the cluster solution to the subspaces that we are comparing, be-
cause the ultimate goal is to find the subspace that yields good clustering.
Given two feature subsets, S1 and S2, with different dimensions, clustering
our data using subset S1 produces cluster C1. In the same way, we obtain
the clusters C2 using the features in S2. Which feature subset, S1 or S2,
enables us to discover better clusters? Let CRIT (Si, Cj) be the feature se-
lection criterion value using feature subset Fi to represent the data and Cj as
the clustering assignment. CRIT (·) represents any criterion (e.g., maximum
likelihood, scatter separability). Normalize the criterion value for S1, C1 as

normalizedV alue(S1, C1) = CRIT (S1, C1) · CRIT (S2, C1)

and the criterion value for S2, C2 as

normalizedV alue(S2, C2) = CRIT (S2, C2) · CRIT (S1, C2).

If normalizedV alue(Si, Ci) > normalizedV alue(Sj, Cj), we choose feature
subset Si. When the normalized criterion values are equal for Si and Sj , we
favor the subset with the lower cardinality. Another way to normalize the bias
of a feature evaluation criterion with respect to dimensionality is to measure
the criterion function of the clustering solution obtained by any subset Si

onto the set of all of the original features. This way, one can compare any
candidate subset.

Now, one can build any feature selection wrapper approach for unlabeled
data, by performing any favorite feature search, clustering, and evaluation
criterion, and take these two issues into account.

For wrapper approaches, the clustering method deals with defining a “sim-
ilarity” metric or defines what “natural” means. The feature selection crite-
rion defines what “interestingness” means. These two criteria need not be the
same. Typically one should choose an appropriate clustering algorithm (which

© 2008 by Taylor & Francis Group, LLC

30 Computational Methods of Feature Selection

is defined by a clustering objective function and a similarity metric) based on
a problem domain. For example, an appropriate metric for text data might
be the cosine similarity or a mixture of multinomial model for clustering. For
data described by continuous features, one might define Gaussian clusters as
the “natural” groups. The feature evaluation criterion should quantify what
type of features the user is interested in. If the user wishes to find features
that optimize the clustering algorithm in finding the natural clusters, then an
appropriate criterion for feature evaluation is the same criterion as the objec-
tive function for the clustering algorithm. If the user is interested in features
that find clusters that are well-separated, then criteria such as scatter sep-
arability are appropriate. Unlike supervised learning, which has class labels
to guide the feature search, unsupervised feature selection relies on criterion
functions and would thus require domain knowledge to choose the appropriate
objective functions.

Dy and Brodley [14] examined two feature selection criteria: maximum
likelihood and scatter separability, for a wrapper method that applies a se-
quential forward search wrapped around Gaussian mixture model clustering.
Recall that to cluster data, we need to make assumptions and define what
“natural” grouping means. Note that with this model, the assumption is that
each of the “natural” groups is Gaussian. To evaluate the feature subset,
they tried maximum likelihood and scatter separability. Here, they tried to
define what “interestingness” means. Maximum likelihood (ML) is the same
criterion used in the clustering algorithm. ML prefers the feature subspace
that can be modeled best as a Gaussian mixture. They also explored scatter
separability, because it can be used with many clustering algorithms. Scatter
separability is similar to the criterion function used in discriminant analysis.
It measures how far apart the clusters are from each other normalized by
their within cluster distance. High values of ML and scatter separability are
desired. The conclusion was that no one criterion is best for all applications.
For an image retrieval application, Dy et al. [15] applied a sequential forward
search wrapped around Gaussian mixture model clustering and the scatter
separability for feature evaluation. The features were continuous valued im-
age features; hence, the choice of the Gaussian mixture model for clustering,
and since the goal was to retrieve similar images from the same cluster, the
separability criterion was chosen for selecting the features.

Gennari [22] incorporated feature selection (they call “attention”) to CLAS-
SIT (an incremental concept formation hierarchical clustering algorithm). The
attention algorithm inspects the features starting with the most salient (“per-
attribute contribution to category utility”) attribute to the least salient at-
tribute, and stops inspecting features if the remaining features do not change
the current clustering decision. The purpose of this attention mechanism is to
increase efficiency without loss of prediction accuracy. Devaney and Ram [11]
applied both sequential forward and backward selection to search the feature
space and hierarchically clustered the data using COBWEB as the induc-
tion algorithm for each candidate feature subset, and evaluated these feature

© 2008 by Taylor & Francis Group, LLC

Unsupervised Feature Selection 31

subsets using the category utility metric (COBWEB’s cluster criterion) as
the feature selection criterion function. To improve the efficiency of the fea-
ture subset search, they introduced AICC, which is an attribute-incremental
concept learner for COBWEB that learns an n + 1 (or n − 1) descriptor
concept hierarchy using the existing n-descriptor hierarchy and the new fea-
ture to add (or remove). Talavera [48] applied filter and wrapper approaches
to COBWEB, and used a feature dependence measure to select features.
Vaithyanathan and Dom [49] proposed a probabilistic objective function for
both feature selection and clustering, and applied it to text. They modeled
the text data as a mixture of multinomials and used a Bayesian approach to
estimate the parameters. To search the feature space, they applied distribu-
tional clustering to pre-select candidate subsets and then picked the candidate
subset that led to the largest value in the objective function. Vaithyanathan
and Dom [49] incorporated finding the number of clusters in their Bayesian
formulation. They address dimensionality bias by formulating the objective
function as the integrated likelihood of the joint distribution of the relevant
and irrelevant features and assumed the relevant and irrelevant features as
conditionally independent given the class. The dimensionality of the objec-
tive function will be equal to the original number of features no matter how
many relevant features there are. Kim, Street, and Menczer [31] applied an
evolutionary local selection algorithm (ELSA) to search the feature subset
and number of clusters on two clustering algorithms: k-means and Gaussian
mixture clustering (with diagonal covariances), and a Pareto front to combine
multiple objective evaluation functions. Law, Figueiredo, and Jain [34] added
feature saliency, a measure of feature relevance, as a missing variable to a
probabilistic objective function. The objective function was similar to that
in [49] (i.e., the objective function modeled relevant features as conditionally
independent given the cluster component label, and irrelevant features with
a probability density identical for all components). To add feature saliency,
they utilized the conditional feature independence assumption to build their
model. Then, they derived an Expectation-Maximization (EM) [10] algorithm
to estimate the feature saliency for a mixture of Gaussians. Law, Figueiredo,
and Jain’s [34] method is able to find the features and clusters simultaneously
through a single EM run. They also developed a wrapper approach that se-
lects features using Kullback-Leibler divergence and entropy. They address
finding the number of clusters with a minimum message length criterion and
dimensionality bias by formulating the objective function as the likelihood of
the data for both the relevant and irrelevant features similar to [49].

© 2008 by Taylor & Francis Group, LLC

32 Computational Methods of Feature Selection

2.5 Local Approaches

Unsupervised feature selection algorithms can be categorized as filter or
wrapper approaches. Another way to group the methods are based on whether
the approach is global or local. Global methods select a single set of features
for all the clusters. Local methods select subsets of features associated with
each cluster. The feature subsets for each cluster can be different. All the
methods presented earlier are global methods. In this section, we present two
types of local unsupervised feature selection approaches: subspace clustering
and co-clustering.

2.5.1 Subspace Clustering

As local methods, subspace clustering evaluates features only from each
cluster, as opposed to global methods that evaluate features from all the data
(all clusters). Typical subspace clustering approaches measure the existence
of a cluster in a feature subspace based on density. They take advantage of
the downward closure property of density to reduce the search space. The
downward closure property of density states that if there are dense units in d
dimensions, then there are dense units in all d−1 dimensional projections. One
can start from one dimension going up until no more dense units are found.
When no more dense units are found, the algorithm combines adjacent dense
units to form clusters. Density is measured by creating histograms in each
dimension and measuring the density within each bin. A unit is considered
dense if its density is higher than a user-defined threshold. Thus, the quality
of clusters found is dependent on tuning the density thresholds and grid size,
which can be difficult to set.

One of the first subspace clustering algorithm is CLIQUE [1]. Here is where
the term subspace clustering was coined. CLIQUE proceeds level-by-level
from one feature to the highest dimension or until no more feature subspaces
with clusters (regions with high density points) are generated. The idea is
that dense clusters in dimensionality d should remain dense in d − 1. Once
the dense units are found, CLIQUE keeps the units with the high coverage
(fraction of the dataset covered by the dense units). Then, clusters are found
by combining adjacent dense and high-coverage units. By combining adjacent
units, CLIQUE is capable of discovering irregular-shaped clusters, and points
can belong to multiple clusters. CLIQUE allows one to discover different
clusters from various subspaces and combine the results.

Several new subspace clustering methods were developed after CLIQUE.
ENCLUS [7] is similar to CLIQUE except that it measures entropy rather
than density. A subspace with clusters typically has lower entropy than those
without clusters. MAFIA [23] is an extension of CLIQUE that enables the
grid-size to be adaptive. Other approaches that adaptively determine the grid-

© 2008 by Taylor & Francis Group, LLC

Unsupervised Feature Selection 33

size are CBF [6], CLTree[35], and DOC [42]. To learn more about subspace
clustering, there is a survey in [41].

2.5.2 Co-Clustering/Bi-Clustering

As mentioned earlier, one can perform feature selection by clustering in fea-
ture space to reduce redundancy. An approach called co-clustering initially
inspired by Hartigan [25] has become recently popular due to research on mi-
croarray analysis. Co-clustering tries to find the coherence exhibited by the
subset of instances on the subset of features. In microarray analysis, one may
want to find the genes that respond similarly to the environment conditions;
in text clustering, one may wish to find the co-occurence of words and docu-
ments. Co-clustering, also known as bi-clustering, is simply the clustering of
both the row (sample space) and column (feature space) simultaneously. The
algorithms for performing co-clustering typically quantify the quality of a co-
clustering as a measure of the approximation error between the original data
matrix and the reconstructed matrix from a co-clustering. And the techniques
to solve this problem alternate clustering the rows and the columns to find the
co-clusters. Dhillon, Mallela, and Modha [12] introduced an information the-
oretic formulation for co-clustering. The objective is to find the clusters that
minimizes the loss in mutual information subject to the constraints that the
numbers of row and column clusters are held fix. Banerjee et al. [2] provide a
generalized approach for co-clustering such that any Bregman divergence [5]
can be used in the objective function. Bregman divergence covers a large
class of divergence measures, which include the Kullback-Liebler divergence
and the squared Euclidean distance. They show that the update steps that
alternately update the row and column cluster and the minimum Bregman
solution will progressively decrease the matrix approximation error and lead
to a locally optimal co-clustering solution. The general method is; (1) Start
with an arbitrary row and column clustering, compute the approximation ma-
trix; (2) hold the column clustering fixed and update the row clusters, then
compute a new approximation matrix; (3) hold the row clustering fixed and
update the column clusters, then compute a new approximation matrix, and
repeat steps (2) and (3) until convergence.

Cheng and Church [8] and Cho et al. [9] developed bi-clustering algorithms
that utilize the squared Euclidean distance. The δ-cluster algorithm [51] is
another bi-clustering algorithm. It swaps attributes and data points itera-
tively to find a solution that leads to the highest coherence that a particular
attribute or instance brings to the cluster, where coherence is measured by the
Pearson correlation. Friedman and Meulman [21] designed a distance measure
for attribute-value data for clustering on subsets of attributes, and allows fea-
ture subsets for each cluster to be different. Their algorithm, COSA, starts by
initializing the weights for the features; it then clusters the data based on these
weights and recompute the weights until the solution stabilizes. The weight
update increases the weight on attributes with smaller dispersion within each

© 2008 by Taylor & Francis Group, LLC

34 Computational Methods of Feature Selection

group, where the degree of this increase is controlled by a parameter λ. The
cluster update minimizes a criterion that minimizes the inverse exponential
mean with separate attribute weighting within each cluster.

2.6 Summary

For a fixed amount of data samples, the higher the dimension, the more
sparse the data space is. The data points in high dimensions would look
equally far. Because of this, many clustering algorithms break down in high
dimensions. In addition, usually not all the features are important – some are
redundant and some are irrelevant. Data with several irrelevant features can
misguide the clustering results. There are two ways to reduce the dimension-
ality: feature transformation and feature selection. Feature transformation
reduces the dimension by applying some type of linear or non-linear func-
tion on the original features, whereas feature selection selects a subset of the
original features. One may wish to perform feature selection rather than
transformation because one may wish to keep the original meaning of the fea-
tures. Furthermore, after feature selection, one does not need to measure the
features that are not selected. Feature transformation, on the other hand,
still needs all the features to extract the reduced dimensions.

This chapter presents a survey of methods to perform feature selection
on unsupervised data. One can select a global set of features or a local set.
Global means that one selects a single subset of features that clusters the data.
Local means that different sets of features are chosen for each cluster. Global
feature selection methods can be classified as a filter or a wrapper approach.
Filter does not take into account the final clustering algorithm in evaluating
features whereas wrapper incorporates the clustering inside the feature search
and selection. Local feature selection methods include subspace clustering and
co-clustering approaches. Subspace clustering tries to find the clusters hidden
in high-dimensional data by proceeding from one dimension going up to higher
dimensions and searching for high density regions. Subspace clustering can
find clusters in overlapping subspaces, the points can also belong to multiple
clusters, and, for the methods presented here, because they connect adjacent
regions to form clusters, they can also discover irregularly shaped clusters.
Co-clustering simultaneously finds feature subsets and clusters by alternating
clustering the rows and the columns.

The key to feature selection in clustering is defining what feature relevance
and redundancy mean. Different researchers introduced varying criteria for
feature selection. To define interestingness and relevance, measures such as
scatter separability, entropy, category utility, maximum likelihood, density,
and consensus have been proposed. Redundancy is implicitly handled by the

© 2008 by Taylor & Francis Group, LLC

Unsupervised Feature Selection 35

search process (e.g., when adding new features do not change the evaluation
criterion), or explicitly through feature correlation, or through compression
techniques. Defining interestingness is really difficult because it is a relative
concept. Given the same data, what is interesting to a physician will be
different from what is interesting to an insurance company. Thus, no single
criterion is best for all applications. This led to research work on visualization
as a guide to feature search [13]. This led Kim, Street, and Menczer [31] to op-
timize multi-objective criteria. This difficulty of defining interestingness also
led to work in looking at ensembles of clusters from different projections (or
feature subspaces) and applying a consensus of solutions to provide the final
clustering [16, 46, 19]. Another avenue for research, to aid in defining interest-
ingness, is semi-supervised feature selection. Knowing a few labeled points or
constrained must-link and cannot-link pairs can help guide the feature search.

Acknowledgment

This research was supported by NSF CAREER IIS-0347532.

Notes

1 When discussing filters and wrappers, approach, method, and model are used
exchangeably.

References

[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic
subspace clustering of high dimensional data for data mining applications.
In Proceedings ACM SIGMOD International Conference on Management
of Data, pages 94–105, Seattle, WA, ACM Press, June 1998.

[2] A. Banerjee, I. S. Dhillon, J. Ghosh, S. Merugu, and D. S. Modha. A
generalized maximum entropy approach to bregman co-clustering and
matrix approximations. In Proceedings of the Tenth ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pages
509–514, August 2004.

[3] R. E. Bellman. Adaptive Control Processes. Princeton University Press,
Princeton, NJ, 1961.

© 2008 by Taylor & Francis Group, LLC

36 Computational Methods of Feature Selection

[4] P. S. Bradley and U. M. Fayyad. Refining initial points for K-means
clustering. In Proceedings of the Fifteenth International Conference on
Machine Learning, pages 91–99, San Francisco, CA, Morgan Kaufmann,
1998.

[5] Y. Censor and S. Zenios. Parallel Optimization: Theory, Algorithms, and
Applications. Oxford University Press, 1998.

[6] J.-W. Chang and D.-S. Jin. A new cell-based clustering method for large,
high-dimensional data in data mining applications. In Proceedings of
the 2002 ACM Symposium on Applied Computing, pages 503–507. ACM
Press, 2002.

[7] C. H. Cheng, A. W. Fu, and Y. Zhang. Entropy-based subspace clustering
for mining numerical data. In Proceedings of the fifth ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pages
84–93. ACM Press, August 1999.

[8] Y. Cheng and G. M. Church. Biclustering of expression data. In Pro-
ceedings of the eighth International Conference on Intelligent Systems for
Molecular Biology, pages 93–103, 2000.

[9] H. Cho, I. S. Dhillon, Y. Guan, and S. Sra. Minimum sum-squared residue
co-clustering of gene expression data. In Proceedings of the Fourth SIAM
International Conference on Data Mining, pages 114–125, 2004.

[10] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal Royal Statistical
Society, Series B, 39(1):1–38, 1977.

[11] M. Devaney and A. Ram. Efficient feature selection in conceptual clus-
tering. In Proceedings of the Fourteenth International Conference on Ma-
chine Learning, pages 92–97, Nashville, TN, Morgan Kaufmann, 1997.

[12] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-
clustering. In Proceedings of the ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD), pages 89–98,
August 2003.

[13] J. G. Dy and C. E. Brodley. Interactive visualization and feature selection
for unsupervised data. In Proceedings of the Sixth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages
360–364, Boston, MA, ACM Press, August 2000.

[14] J. G. Dy and C. E. Brodley. Feature selection for unsupervised learning.
Journal of Machine Learning Research, 5:845–889, August 2004.

[15] J. G. Dy, C. E. Brodley, A. Kak, L. S. Broderick, and A. M. Aisen.
Unsupervised feature selection applied to content-based retrieval of lung
images. IEEE Transactions on Pattern Analysis and Machine Intelli-

© 2008 by Taylor & Francis Group, LLC

Unsupervised Feature Selection 37

gence, 25(3):373–378, March 2003.

[16] X. Fern and C. E. Brodley. Solving cluster ensemble problems by bipartite
graph partitioning. In Proceedings of the 21st International Conference
on Machine Learning, pages 281–288, 2004.

[17] E. Forgy. Cluster analysis of multivariate data: Efficiency vs. inter-
pretability of classifications. Biometrics, 21:768, 1965.

[18] C. Fraley and A. E. Raftery. Model-based clustering, discriminant anal-
ysis, and density estimation. Journal of the American Statistical Associ-
ation, 97(458):611–631, June 2002.

[19] A. Fred and A. K. Jain. Combining multiple clustering using evidence
accumulation. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 27(6):835–850, 2005.

[20] J. H. Friedman. Exploratory projection pursuit. Journal American Sta-
tistical Association, 82:249–266, 1987.

[21] J. H. Friedman and J. J. Meulman. Clustering objects on subsets of
attributes. Journal Royal Statistical Society B, 2004.

[22] J. H. Gennari. Concept formation and attention. In Proceedings of the
Thirteenth Annual Conference of the Cognitive Science Society, pages
724–728, Chicago, IL, Lawrence Erlbaum, 1991.

[23] S. Goil, H. Nagesh, and A. Choudhary. Mafia: Efficient and scalable sub-
space clustering for very large data sets. Technical report, Northwestern
University, IL, June 1999.

[24] I. Guyon and A. Elisseeff. An introduction to variable and feature selec-
tion. Journal of Machine Learning Research, 3:1157–1182, 2003.

[25] J. A. Hartigan. Direct clustering of a data matrix. Journal of the Amer-
ican Statistical Association, 67(337):123–129, March 1972.

[26] X. He, D. Cai, and P. Niyogi. Laplacian score for feature selection. In
Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Infor-
mation Processing Systems 18, pages 507–514. MIT Press, Cambridge,
MA, 2006.

[27] P. Huber. Projection pursuit. The Annals of Statistics, 13(2):435–475,
1985.

[28] A. Hyvärinen. Survey on independent component analysis. Neural Com-
puting Surveys, 2:94–128, 1999.

[29] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review.
ACM Computing Surveys, 31(3):264–323, 1999.

[30] I. Jolliffe. Principal Component Analysis. Springer, New York, Second

© 2008 by Taylor & Francis Group, LLC

38 Computational Methods of Feature Selection

edition edition, 2002.

[31] Y. S. Kim, N. Street, and F. Menczer. Evolutionary model selection in
unsupervised learning. Intelligent Data Analysis, 6:531–556, 2002.

[32] J. Kittler. Feature set search algorithms. In Pattern Recognition and
Signal Processing, pages 41–60, 1978.

[33] R. Kohavi and G. H. John. Wrappers for feature subset selection. Arti-
ficial Intelligence, special issue on relevance, 97(1-2):273–324, 1997.

[34] M. H. Law, M. Figueiredo, and A. K. Jain. Feature selection in mixture-
based clustering. In Advances in Neural Information Processing Systems
15, Vancouver, December 2002.

[35] B. Liu, Y. Xia, and P. S. Yu. Clustering through decision tree construc-
tion. In Proceedings of the ninth International Conference on Information
and Knowledge Management, pages 20–29. ACM Press, 2000.

[36] J. Macqueen. Some methods for classifications and analysis of multivari-
ate observations. Proc. Symp. Mathematical Statistics and Probability,
5th, Berkeley, 1:281–297, 1967.

[37] D. Manoranjan, K. Choi, P. Scheuermann, and H. Liu. Feature selection
for clustering - a filter solution. In Proceedings of the Second IEEE In-
ternational Conference on Data Mining, pages 115–122, December 2002.

[38] T. Marill and D. M. Green. On the effectiveness of receptors in recogni-
tion systems. IEEE Transactions on Information Theory, 9:11–17, 1963.

[39] G. McLachlan and D. Peel. Finite Mixture Models. Wiley, New York,
2000.

[40] P. M. Narendra and K. Fukunaga. A branch and bound algorithm for
feature subset selection. IEEE Transactions on Computers, C-26(9):917–
922, September 1977.

[41] L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimen-
sional data: A review. SIGKDD Explorations, 6(1):90–105, June 2004.

[42] C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. M. Murali. A monte
carlo algorithm for fast projective clustering. In Proceedings of the 2002
ACM SIGMOD International Conference on Management of Data, pages
418–427. ACM Press, 2002.

[43] P. Pudil, Novovičová, and J. Kittler. Floating search methods in feature
selection. Pattern Recognition Letters, 15:1119–1125, 1994.

[44] G. Schwarz. Estimating the dimension of a model. The Annals of Statis-
tics, 6(2):461–464, 1978.

[45] S. D. Stearns. On selecting features for pattern classifiers. In Third

© 2008 by Taylor & Francis Group, LLC

Unsupervised Feature Selection 39

International Conf. on Pattern Recognition, pages 71–75, 1976.

[46] A. Strehl and J. Ghosh. Cluster ensembles - a knowledge reuse frame-
work for combining multiple partitions. Journal on Machine Learning
Research, 3(583-617), 2002.

[47] T. Su and J. G. Dy. In search of deterministic methods for initializing k-
means andgaussian mixture clustering. Intelligent Data Analysis, 11(4),
2007.

[48] L. Talavera. Feature selection as a preprocessing step for hierarchical
clustering. In Proceedings of the Sixteenth International Conference on
Machine Learning, pages 389–397, Bled, Slovenia, Morgan Kaufmann,
1999.

[49] S. Vaithyanathan and B. Dom. Model selection in unsupervised learn-
ing with applications to document clustering. In Proceedings of the Six-
teenth International Conference on Machine Learning, pages 433–443,
Bled, Slovenia, Morgan Kaufmann, 1999.

[50] A. W. Whitney. A direct method of nonparametric measurement selec-
tion. IEEE Transactions on Computers, 20:1100–1103, 1971.

[51] J. Yang, W. Wang, H. Wang, and P. Yu. δ-clusters: Capturing subspace
correlation in a large data set. In Proceedings of the 18th International
Conference on Data Engineering, pages 517–528, 2002.

© 2008 by Taylor & Francis Group, LLC

Chapter 3

Randomized Feature Selection

David J. Stracuzzi

Arizona State University

3.1 Introduction . 41
3.2 Types of Randomizations . 42
3.3 Randomized Complexity Classes . 43
3.4 Applying Randomization to Feature Selection . 45
3.5 The Role of Heuristics . 46
3.6 Examples of Randomized Selection Algorithms . 47
3.7 Issues in Randomization . 58
3.8 Summary . 59

References . 60

3.1 Introduction

Randomization is an algorithmic technique that has been used to produce
provably efficient algorithms for a wide variety of problems. For many applica-
tions, randomized algorithms are either the simplest or the fastest algorithms
available, and sometimes both [16]. This chapter provides an overview of ran-
domization techniques as applied to feature selection. The goal of this chapter
is to provide the reader with sufficient background on the topic to stimulate
both new applications of existing randomized feature selection methods, and
research into new algorithms. Motwani and Raghavan [16] provide a more
broad and widely applicable introduction to randomized algorithms.

Learning algorithms must often make choices during execution. Random-
ization is useful when there are many ways available in which to proceed but
determining a guaranteed good way is difficult. Randomization can also lead
to efficient algorithms when the benefits of good choices outweigh the costs of
bad choices, or when good choices occur more frequently than bad choices. In
the context of feature selection, randomized methods tend to be useful when
the space of possible feature subsets is prohibitively large. Likewise, random-
ization is often called for when deterministic feature selection algorithms are
prone to becoming trapped in local optima. In these cases, the ability of
randomization to sample the feature subset space is of particular value.

In the next section, we discuss two types of randomizations that may be

41

© 2008 by Taylor & Francis Group, LLC

42 Computational Methods of Feature Selection

applied to a given problem. We then provide an overview of three complexity
classes used in the analysis of randomized algorithms. Following this brief
theoretical introduction, we discuss explicit methods for applying randomiza-
tion to feature selection problems, and provide examples. Finally, the chapter
concludes with a discussion of several advanced issues in randomization, and
a summary of key points related to the topic.

3.2 Types of Randomizations

Randomized algorithms can be divided into two broad classes. Las Vegas
algorithms always output a correct answer, but may require a long time to
execute with small probability. One example of a Las Vegas algorithm is

for example). Randomized quicksort selects a pivot point at random, but
always produces a correctly sorted output. The goal of randomization is to
avoid degenerate inputs, such as a pre-sorted sequence, which produce the
worst-case O(n2) runtime of the deterministic (pivot point always the same)
quicksort algorithm. The effect is that randomized quicksort achieves the
expected runtime of O(n log n) with high probability, regardless of input.

Monte Carlo algorithms may output an incorrect answer with small prob-
ability, but always complete execution quickly. As an example of a Monte
Carlo algorithm, consider the following method for computing the value of π,
borrowed from Krauth [11]. Draw a circle inside a square such that the sides
of the square are tangent to the circle. Next, toss pebbles (or coins) randomly
in the direction of the square. The ratio of pebbles inside the circle to those
inside the entire square should be approximately π

4 . Pebbles that land outside
the square are ignored.

Notice that the longer the algorithm runs (more pebbles tossed) the more
accurate the solution. This is a common, but not required, property of ran-
domized algorithms. Algorithms that generate initial solutions quickly and
then improve them over time are also known as anytime algorithms [22]. Any-
time algorithms provide a mechanism for trading solution quality against com-
putation time. This approach is particularly relevant to tasks, such as feature
selection, in which computing the optimal solution is infeasible.

Some randomized algorithms are neither guaranteed to execute efficiently
nor to produce a correct output. Such algorithms are typically also labeled
as Monte Carlo. The type of randomization used for a given problem de-
pends on the nature and needs of the problem. However, note that a Las
Vegas algorithm may be converted into a Monte Carlo algorithm by having it
output a random (possibly incorrect) answer whenever the algorithm requires
more than a specified amount of time to complete. Similarly, a Monte Carlo

© 2008 by Taylor & Francis Group, LLC

the randomized quicksort algorithm (see Cormen, Lieserson, and Rivest [4],

Randomized Feature Selection 43

algorithm may be converted into a Las Vegas algorithm by executing the al-
gorithm repeatedly with independent random choices. This assumes that the
solutions produced by the Monte Carlo algorithm can be verified.

3.3 Randomized Complexity Classes

The probabilistic behavior that gives randomized algorithms their power
also makes them difficult to analyze. In this section, we provide a brief in-
troduction to three complexity classes of practical importance for randomized
algorithms. Papadimitriou [18] provides a rigorous and detailed discussion
of these and other randomized complexity classes. For simplicity, we focus
on decision algorithms, or those that output “yes” and “no” answers, for the
remainder of this section.

Randomized algorithms are related to nondeterministic algorithms. Nonde-
terministic algorithms choose, at each step, among zero or more possible next
steps, with no specification of which choice should be taken. Contrast this to
deterministic algorithms, which have exactly one next step available at each
step of the algorithm. Note the difference between nondeterministic choices
and conditional control structures, such as if . . . then statements, which are
fully determined by the input to the algorithm. A nondeterministic algorithm
accepts its input if there exists some sequence of choices that result in a “yes”
answer. The well-known class NP therefore includes languages accepted by
nondeterministic algorithms in a polynomial number of steps, while class P
does the same for languages accepted by deterministic algorithms.

Randomized algorithms differ from nondeterministic algorithms in that they
accept inputs probabilistically rather than existentially. The randomized com-
plexity classes therefore define probabilistic guarantees that an algorithm must
meet. For example, consider the class RP , for randomized polynomial time.
RP encompasses algorithms that accept good inputs (members of the under-
lying language) with non-trivial probability, always reject bad inputs (non-
members of the underlying language), and always execute in polynomial time.
More formally, a language L ∈ RP if some randomized algorithm R accepts
string s ∈ L with probability 1

ε for any ε that is polynomial in |s|, rejects
s′ /∈ L with probability 1, and requires a polynomial number of steps in |s|.

Notice that the definition of RP corresponds to the set of Monte Carlo
algorithms that can make mistakes only if the input string is a member of
the target language. The complement of this class, co-RP, then corresponds
to the set of algorithms that can make mistakes only if the input string is
not a member of the target language. Furthermore, the intersection of these
two classes, RP∩ co-RP, corresponds to the set of Las Vegas algorithms that
execute in worst-case polynomial time.

© 2008 by Taylor & Francis Group, LLC

44 Computational Methods of Feature Selection

ZPP

NP

P

RP

coRP

BPP

FIGURE 3.1: Illustration of the randomized complexity classes in relation to each
other and the deterministic classes P and NP .

To see why, first note that each problem in the intersection has two Monte
Carlo algorithms. One algorithm never outputs a false positive, while the
other never outputs a false negative. By conducting many repeated and in-
dependent executions of both algorithms, we are guaranteed to eventually
arrive at the correct output. (Recall that Las Vegas algorithms always output
the correct answer, but may take a long time to do so.) This intersection is
also known as the class ZPP, for polynomial randomized algorithms with zero
probability of error.

In practice we can use algorithms in RP to construct Monte Carlo algo-
rithms that produce the correct output with high probability simply by run-
ning them polynomially many times. If any execution accepts the input, then
we return “yes.” Since algorithms in RP never produce false positive results,
we can guarantee that the probability of a false negative becomes small. Here,
that probability is (1− 1

ε)k for k executions of the algorithm.
The third and largest complexity class of practical importance is BPP, for

polynomial time algorithms with bounded probability of error. Unlike RP and
ZPP, BPP allows a randomized algorithm to commit both false positive and
false negative errors. This class encompasses algorithms that accept good
inputs a majority of the time and rejects bad inputs a majority of the time.
More formally, a language L ∈ BPP if some randomized algorithm R accepts
s ∈ L with probability 1

2 + 1
ε and accepts s /∈ L with probability 1

2 −
1
ε for

any ε polynomial in |s|. Like RP and ZPP, we can create an algorithm
that produces the correct result with high probability simply by executing
repeatedly an algorithm that meets the stated minimums.

Figure 3.1 illustrates the relationships among the randomized classes, and
shows how the randomized classes are related to the deterministic classes P
and NP . Note that the figure assumes that P �= NP , which is an open
problem. If this assumption turns out to be false, then the complexity classes

© 2008 by Taylor & Francis Group, LLC

Randomized Feature Selection 45

will collapse into one or just a few classes.
Finally, note that the randomized complexity classes are semantic as op-

posed to syntactic classes such as P and NP . Semantic class membership
depends on the meaning of a specific algorithm instead of the format of the
algorithm. For example, we can determine whether an algorithm is a member
of class P by counting the number of times the input is processed. Conversely,
we must consider the probability that a given input is accepted to determine
membership in the class RP . Thus, there is no simple way to check whether
a given randomized algorithm fits into a given randomized complexity class.
There can be no complete problems for such classes [18].

3.4 Applying Randomization to Feature Selection

A critical step in constructing a randomized algorithm is to decide which
aspect of the target problem to randomize. In some cases there may be only
one clear option. For example, in the deterministic quicksort algorithm, the
pivot is typically chosen arbitrarily as the first element of the current array.
However, any fixed choice of pivot would work equally well, so randomizing
the selection in an effort to protect against degenerate inputs is successful.
Other problems may offer several candidates for randomization.

We formulate the specific feature selection problem considered here as fol-
lows. Given a set of supervised training examples described by a set of input
features or variables x and a target concept or function y, produce a subset
of the original input variables that predicts best the target concept or func-
tion when combined into a hypothesis by a learning algorithm. The term
“predicts best” may be defined in a variety of ways, depending on the spe-
cific application. In this context, there are at least two possible sources of
randomization.

The first source is the set of input variables. A feature selection algorithm
may choose at random which variables to include in a subset. The resulting
algorithm searches for the best variable subset by sampling the space of possi-
ble subsets. This approach to randomization carries an important advantage.
As compared to the popular greedy stepwise search algorithms [1, 8], which
add or remove a single variable at a time, randomization protects against local
minima. A broad sampling of subsets is unlikely to concentrate effort on any
one portion of the search space. Conversely, if many subsets have equally high
quality, then a randomized approach will also tend to find a solution quickly.

Randomizing over the set of variables is less likely to be effective if one
or a few of the variable subsets is much better than all of the others. The
probability of selecting one particular subset at random out of all possible
subsets is simply too small. A second issue with this type of randomization

© 2008 by Taylor & Francis Group, LLC

46 Computational Methods of Feature Selection

is that there is no clear choice of when to stop sampling. A parameter must
be set arbitrarily within the algorithm, or the algorithm can be run until the
available computation time expires (as an anytime algorithm).

The second possible source of randomization is the set of training examples,
often known as the prototype selection problem. If the number of available
examples is very large, an algorithm can select at random which examples to
include in a given subset evaluation. The resulting algorithm may conduct
a traditional deterministic search through the space of feature subsets, but
evaluates those subsets based on a random sample of data. This option is
particularly useful when the number of examples available is intractably large,
or the available computation time is short.

Notice that as a side effect, randomization reduces the confidence with
which the feature selection algorithm produces results. By sampling only
a small portion of the space of variable subsets, we lose confidence that the
algorithm’s final output is actually the best possible subset. Likewise, when we
sample the set of available training data, we lose confidence in the accuracy of
our evaluation of a given feature subset. Such effects are of particular concern
for algorithms that randomize on both the set of input variables and the set
of examples. The approach offers the possibility of combining the advantages
of both randomization methods, but it also reduces confidence in two ways.
Concerns about confidence must be balanced carefully against any reductions
in computation.

3.5 The Role of Heuristics

A fundamental goal of computer science is to find correct or optimal problem
solutions using a minimum of computation. For many problems, no known
algorithm can produce such a solution efficiently. Heuristics are therefore used
to relax one or both of these demands on optimality and efficiency.

Randomization itself is a problem solving heuristic. A randomized algo-
rithm may trade optimality for efficiency by searching only a sampled portion
of the state space, instead of the entire state space. In many cases there is no
guarantee that the best possible solution will be found, but often a relatively
good solution is found with an acceptable amount of computation.

Many algorithms employ multiple heuristics. One type of heuristic appro-
priate to a randomized algorithm is a sampling bias. In the context of feature
selection, an algorithm that always samples uniformly from the entire space
of feature subsets to obtain its next candidate solution uses randomization as
its only heuristic. However, algorithms that bias their samples, for example
by sampling only in the neighborhood of the current best solution, employ a
second heuristic in conjunction with randomization.

© 2008 by Taylor & Francis Group, LLC

Randomized Feature Selection 47

A variety of sampling biases are possible for feature and prototype selection
algorithms. We illustrate several examples in the following section. However,
not all sampling biases are appropriate to all selection problems. A sampling
bias that quickly focuses the search on a small set of features may not be
appropriate if there are several disjoint feature sets capable of producing good
learner performance. Likewise, an approach that samples the space broadly
throughout the search may not be appropriate if the number of features is
large but few are relevant. As noted above, randomization may not be a good
choice of heuristic if there is some reason to believe that only a very small
number of feature subsets produce desirable results, while all other subsets
produce undesirable results. In this case, random sampling is unlikely to
uncover the solution efficiently.

Successful application of a randomized (or deterministic) selection algo-
rithm requires some understanding of the underlying feature space. The
heuristics and sampling biases used must be appropriate to the given task.
Viewed oppositely, successful application of a randomized algorithm implies
that the underlying feature space exhibits particular characteristics, and these
characteristics depend on the specific heuristics used to solve the problem.

3.6 Examples of Randomized Selection Algorithms

We now consider specific examples of randomized feature and prototype
selection algorithms. The goal is to illustrate ways in which randomization
can be applied to the feature selection problem. We consider both Las Vegas
and Monte Carlo methods, and a variety of performance guarantees, along
with the strengths and weaknesses of each approach. The algorithms discussed
here also illustrate a variety of heuristics and sampling biases. As is often the
case, no one algorithm uniformly dominates another. The goal of this section
is to familiarize readers with existing methods for randomized selection, and
to provide the background necessary to make informed choices.

3.6.1 A Simple Las Vegas Approach

The key characteristic of a Las Vegas algorithm is that it must eventually
produce the correct solution. In the case of feature selection, this means
that the algorithm must produce a minimal subset of features that optimizes
some criteria, such as classification accuracy. The Las Vegas Filter (LVF)
algorithm discussed by Liu and Setino [12] achieves this goal, albeit under
specific conditions.

LVF searches for a minimal subset of features to describe a given set of su-
pervised training examples X =< x1, y1 >, . . . , < xM , yM >, where |xi| = N .

© 2008 by Taylor & Francis Group, LLC

48 Computational Methods of Feature Selection

Given:
Examples X =< x1, y1 >, . . . , < xM , yM >
Maximum allowable inconsistancy γ
Number of attributes N
Number of iterations tmax

Algorithm:
Sbest ← all N attributes
cbest ← N
for i← 1 to tmax do

c← random number between 0 and cbest
S ← random selection of c features to include
if Inconsistancy(S,X) ≤ γ then

Sbest ← S
cbest ← c

return(Sbest)

FIGURE 3.2: The Las Vegas Filter algorithm [12].

The subsets are selected uniformly at random with respect to the set of all
possible subsets. They are then evaluated according to an inconsistency cri-
terion, which tests the extent to which the reduced-dimension data can still
separate the class labels. If the newly selected subset is both smaller in size
and has an equal or lesser inconsistency rate, then the subset is retained. LVF
performs this simple sampling procedure repeatedly, stopping after a prede-
termined number of iterations, tmax . Figure 3.2 shows the LVF algorithm.

There are two important caveats to the LVF algorithm. First, the algorithm
can only be labeled as a Las Vegas algorithm if it is allowed to run sufficiently
long to find the optimal solution. For training data described by N input
features, we expect to need approximately 2N iterations. In the case where
tmax 	 2N , the algorithm should be considered Monte Carlo. Notice that the
Monte Carlo version of the algorithm may be used in an anytime format by
returning the current best feature subset at any point during execution.

The second caveat to LVF regards the allowable inconsistency rate, γ. This
parameter controls the trade-off between the size of the returned feature sub-
set and the ability of that subset to distinguish among examples. If we set
γ equal to the inconsistency rate of the full data set X(), then LVF is guar-
anteed to find the optimal solution under the conditions described above for
tmax . However, a larger inconsistency rate allows LVF to reach smaller fea-
ture subsets more quickly. The algorithm then effectively becomes a greedy
local search and is susceptible to local minima. LVF ignores any subset that
is selected with size larger than the current best. If a larger subset exists
that has a lower inconsistency rate, then the algorithm will not find it. Thus,
given an inconsistency rate larger than that of the full data set, LVF must be

© 2008 by Taylor & Francis Group, LLC

Randomized Feature Selection 49

Given:
Examples X =< x1, y1 >, < xM , yM >, . . .
Number of iterations tmax

Number of prototypes p

Algorithm:
Xbest ← random selection of p examples from X
for i← 1 to tmax do

X′ ← random selection of p examples from X
if kNN(X′,X) > kNN(Xbest,X) then

Xbest ← X′

return(Xbest)

FIGURE 3.3: The MC1 algorithm [19].

considered as a Monte Carlo algorithm, regardless of the number of iterations
performed.

3.6.2 Two Simple Monte Carlo Approaches

Consider next two applications of Monte Carlo randomization to feature
selection. The goal of the first is to reduce the computational requirements
of the nearest neighbor learner by sampling over the set of available training
examples. The algorithm, called MC1 [19], repeatedly samples the data set
in an attempt to find a small subset of prototypes (training examples) that
allow nearest neighbor to generalize well to unseen examples.

The MC1 procedure begins by selecting p prototypes at random from the
available examples, where p is chosen in advance by the user. Classification
accuracy for nearest neighbor is then computed over the entire training set.
If the selected set of examples leads to higher accuracy than the previous
best subset, then the new subset is retained. This procedure is repeated tmax

times, where tmax is also specified in advance by the user. The example subset,
which yields the highest accuracy, is then returned at the end of the procedure
and used on test data. Figure 3.3 summarizes the MC1 algorithm.

Notice that if we set tmax sufficiently large, then we are virtually guaranteed
to find the best possible set of prototypes for a given value of p. Thus, like the
LVF algorithm, MC1 behaves like a Las Vegas algorithm in the limit. Unlike
LVF, which attempts to find the minimum number of features, MC1 does
not necessarily find the minimum number of prototypes, p. Notice also that
MC1 makes no assumptions particular to the nearest neighbor learner. The
selection algorithm can therefore be adapted as a general purpose wrapper
and can be used with any classification learning algorithm.

Skalak’s experiments [19] show that MC1 performs best when the training
and test data exhibit well-defined class boundaries. Put another way, MC1

© 2008 by Taylor & Francis Group, LLC

50 Computational Methods of Feature Selection

performs well when there is little overlap between examples from different
classes. This may be an artifact of the nearest neighbor algorithm and not of
Monte Carlo randomization in general. Nevertheless, the result reinforces the
notion that we cannot expect randomized techniques to find a single specific
solution within a large search space.

The Relief algorithm [9] demonstrates a different use of Monte Carlo ran-
domization. Relief is a basic, two-class filtering algorithm that ranks variables
according to a statistical measure of how well individual features separate the
two classes. In an effort to reduce the computational cost of calculating these
statistics, Relief selects examples at random for the computation.

Given:
Examples X =< x1, y1 >, . . . < xm, ym >
Relevancy cut-off τ
Number of iterations tmax

Algorithm:
Partition X by class into X+ and X−

Initialize w = (0, 0, . . . , 0)
for i← 1 to tmax do //compute relevance

xi ← random example x ∈ X
x+

i ← nearest x+ ∈ X+ to xi

x−
i ← nearest x− ∈ X− to xi

if xi ∈ X+ then
update(w,xi,x

+
i ,x−

i)
else

update(w,xi,x
−
i ,x+

i)
for i← 1 to N do //select most relevant

if wi

tmax
≥ τ then

feature i is relevant

Procedure update(w,x,x+,x−) //update relevance values
for i← 1 to N do

wi ← wi − diff(x,x+)2 + diff(x,x−)2

FIGURE 3.4: The Relief algorithm [9].

Briefly, the algorithm operates by calculating a weight value for each of the
N available features. These weights are calculated using a random sample of
examples from the full set of supervised examples X. Relief selects a training
example xi at random and then finds, according to Euclidean distance, the
nearest same-class example x+

i and the nearest different-class example x−
i .

These examples are then used to update the weight value for each feature

© 2008 by Taylor & Francis Group, LLC

Randomized Feature Selection 51

according to the difference between xi, x+
i , and x−

i . Here, the difference
for nominal feature k is defined as 1 if xi,k and xj,k have different nominal
values, and is defined as 0 if they are the same. For numerical features, the
difference is simply xi,k−xj,k normalized into the range [0, 1]. This procedure
is repeated tmax times for some preset value of tmax . Features with weights
greater than a specified value τ are considered relevant to the target output
variable. Figure 3.4 summarizes the Relief algorithm.

Notice the similarities and differences between MC1 and Relief. Both al-
gorithms use randomization to avoid evaluating all M available training ex-
amples. MC1 achieves this goal by evaluating many hypotheses on different
random example subsets, while Relief simply selects one random subset of
examples on which to perform evaluations. Relief’s approach is faster compu-
tationally but cannot provide the user with any confidence that the selection
of examples is representative of the sample space. In particular, the fewer
examples selected, the less likely the random subset will provide a represen-
tative sample of the space. MC1 mitigates this problem by searching for the
most beneficial, and presumably representative, example subset.

3.6.3 Random Mutation Hill Climbing

Skalak [19] discusses a feature selection approach based on randomized local
search, called random mutation hill climbing (RMHC). As with the MC1
algorithm, the goal is to reduce the computational cost of the nearest neighbor
learner while maximizing classification accuracy. Unlike MC1, which samples
the space of possible prototype subsets, the RMHC algorithm conducts a more
localized search by changing only one included prototype per iteration.

RMHC uses a single bit vector to encode the index of each of the p selected
prototypes. This bit vector is initialized randomly, and the algorithm proceeds
by flipping one randomly selected bit on each iteration. This has the effect of
replacing exactly one prototype with another. The new set of prototypes is
then evaluated on the entire training set using nearest neighbor and is retained
if it produces higher accuracy than the current set. Otherwise the change is
discarded. The algorithm terminates after a fixed number of iterations, tmax .
Figure 3.5 summarizes the RMHC algorithm. Note that, like MC1, RMHC
can be adapted for use with learning algorithms other than nearest neighbor.

Skalak also describes a variant of the algorithm in which the bit vector
also encodes which of the features are selected for use. Here, when a bit is
selected for flipping, it may either change the set of included prototypes or
the set of included features. No control over the relative probability of these
changes is considered. Experimental results, though limited, suggest that
RMHC does improve both the computational requirements and the classifi-
cation performance of k-nearest neighbor. Notice however, that because the
random selections are embedded in a greedy local search, RMHC does not
necessarily avoid falling into local extrema. Thus, RMHC is a Monte Carlo
algorithm that cannot be converted into a Las Vegas algorithm simply by

© 2008 by Taylor & Francis Group, LLC

52 Computational Methods of Feature Selection

Given:
Examples X =< x1, y1 >, . . . , < xm, ym >
Number of iterations tmax

Number of prototypes p

Algorithm:
Xbest ← random selection of p examples from X
b← random bit vector encoding p prototype indicies
for i← 1 to tmax do

j ← random number between 0 . . . |b|
flip bit bj

X′ ← set of prototypes from X included by b
if kNN(X′,X) > kNN(Xbest,X) then

Xbest ← X′

return(Xbest)

FIGURE 3.5: The random mutation hill climbing algorithm [19].

increasing the number of iterations, tmax . We can still convert RMHC to a
Las Vegas algorithm by running the algorithm many times, however.

3.6.4 Simulated Annealing

Simulated annealing [10, 2] is a general purpose stochastic search algo-
rithm inspired by a process used in metallurgy. The heating and slow cooling
technique of annealing allows the initially excited and disorganized atoms of
a metal to find strong, stable configurations. Likewise, simulated annealing
seeks solutions to optimization problems by initially manipulating the solution
at random (high temperature), and then slowly increasing the ratio of greedy
improvements taken (cooling) until no further improvements are found.

To apply simulated annealing, we must specify three parameters. First is an
annealing schedule, which consists of an initial and final temperature, T0 and
Tfinal , along with an annealing (cooling) constant ΔT . Together these govern
how the search will proceed over time and when the search will stop. The
second parameter is a function used to evaluate potential solutions (feature
subsets). The goal of simulated annealing is to optimize this function. For this
discussion, we assume that higher evaluation scores are better. In the context
of feature selection, relevant evaluation functions include the accuracy of a
given learning algorithm using the current feature subset (creating a wrapper
algorithm) or a variety of statistical scores (producing a filter algorithm).

The final parameter for simulated annealing is a neighbor function, which
takes the current solution and temperature as input and returns a new,
“nearby” solution. The role of the temperature is to govern the size of the
neighborhood. At high temperature the neighborhood should be large, allow-

© 2008 by Taylor & Francis Group, LLC

Randomized Feature Selection 53

Given:
Examples X =< x1, y1 >, . . . < xm, ym >
Annealing schedule, T0, Tfinal and ΔT with 0 < ΔT < 1
Feature subset evaluation function Eval (·, ·)
Feature subset neighbor function Neighbor (·, ·)

Algorithm:
Sbest ← random feature subset
while Ti > Tfinal do

Si ← Neighbor (Sbest , Ti)
ΔE ← Eval(Sbest , X)− Eval (Si, X)
if ΔE < 0 then //if new subset better

Sbest ← Si

else //if new subset worse
Sbest ← Si with probability exp(−ΔE

Ti
)

Ti+1 ← ΔT × Ti

return(Sbest)

FIGURE 3.6: A basic simulated annealing algorithm.

ing the algorithm to explore broadly. At low temperature, the neighborhood
should be small, forcing the algorithm to explore locally. For example, sup-
pose we represent the set of available features as a bit vector, such that each
bit indicates the presence or absence of a particular feature. At high temper-
ature, the neighbor function may flip many bits to produce the next solution,
while at low temperature the neighbor function may flip just one bit.

The simulated annealing algorithm, shown in Figure 3.6, attempts to it-
eratively improve a randomly generated initial solution. On each iteration,
the algorithm generates a neighboring solution and computes the difference in
quality (energy, by analogy to metallurgy process) between the current and
candidate solutions. If the new solution is better, then it is retained. Oth-
erwise, the new solution is retained with a probability that is dependent on
the quality difference, ΔE, and the temperature. The temperature is then
reduced for the next iteration.

Success in simulated annealing depends heavily on the choice of the anneal-
ing schedule. If ΔT is too large (near one), the temperature decreases slowly,
resulting in slow convergence. If ΔT is too small (near zero), then the tem-
perature decreases quickly and convergence will likely reach a local extrema.
Moreover, the range of temperatures used for an application of simulated an-
nealing must be scaled to control the probability of accepting a low-quality
candidate solution. This probability, computed as exp(−ΔE

Ti
), should be large

at high temperature and small at low temperature to facilitate exploration
early in the search and greedy choices later in the search.

In spite of the strong dependence on the cooling schedule, simulated anneal-

© 2008 by Taylor & Francis Group, LLC

54 Computational Methods of Feature Selection

ing is guaranteed to converge provided that the schedule is sufficiently long
[6]. From a theoretical point of view, simulated annealing is therefore a Las
Vegas algorithm. However, in practice, the convergence guarantee requires
intractably long cooling schedules, resulting in a Monte Carlo algorithm. Al-
though the literature contains relatively few examples of simulated annealing
applications to feature selection, the extent to which the algorithm can be cus-
tomized (annealing schedule, neighbor function, evaluation function) makes
it a good candidate for future work. As noted above, simulated annealing
supports both wrapper and filter approaches to feature selection.

3.6.5 Genetic Algorithms

Like simulated annealing, genetic algorithms are a general purpose mecha-
nism for randomized search. There are four key aspects to their use: encoding,
population, operators, and fitness. First, the individual states in the search
space must be encoded into some string-based format, typically bit-strings,
similar to those used by RMHC. Second, an initial population of individuals
(search states, such as feature subsets) must be selected at random. Third,
one or more operators must be defined as a method for exchanging information
among individuals in the population. Operators define how the search pro-
ceeds through state space. Typical operators include crossover, which pairs
two individuals for the exchange of substrings, and mutation, which changes
a randomly selected bit in an individual string with low probability. Finally,
a fitness function must be defined to evaluate the quality of states in the pop-
ulation. The goal of genetic algorithms is to optimize the population with
respect to the fitness function.

The search conducted by a genetic algorithm proceeds iteratively. Individu-
als in the population are first selected probabilistically with replacement based
on their fitness scores. Selected individuals are then paired and crossover is
performed, producing two new individuals. These are next mutated with low
probability and finally injected into the next population. Figure 3.7 shows a
basic genetic algorithm.

Genetic algorithms have been applied to the feature selection problem in
several different ways. For example, Vafaie and De Jong [21] describe a
straightforward use of genetic algorithms in which individuals are represented
by bit-strings. Each bit marks the presence or absence of a specific feature.
The fitness function then evaluates individuals by training and then testing
a specified learning algorithm based on only the features that the individual
specifies for inclusion.

In a similar vein, SET-Gen [3] uses a fitness function that includes both the
accuracy of the induced model and the comprehensibility of the model. The
learning model used in their experiments was a decision tree, and comprehen-
sibility was defined as a combination of tree size and number of features used.
The FSS-EBNA algorithm [7] takes a more complex approach to crossover by
using a Bayesian network to mate individuals.

© 2008 by Taylor & Francis Group, LLC

Randomized Feature Selection 55

Given:
Examples X =< x1, y1 >, . . . < xm, ym >
Fitness function f(·, ·)
Fitness threshold τ
Population size p

Algorithm:
P0 ← population of p random individuals
for k ← 0 to ∞ do

sum ← 0
for each individual i ∈ Pk do //compute pop fitness

sum ← sum + f(i, X)
if f(i, X) ≥ τ then

return(i)
for each individual i ∈ Pk do //compute selection probs

Prk[i]← f(i, X)
sum

for j ← 1 to p
2 do //select and breed

select i1, i2 ∈ Pk according to Prk with replacement
i1, i2 ← crossover (i1, i2)
i1 ← mutate(i1)
i2 ← mutate(i2)
Pk+1 ← Pk+1 + {i1, i2}

FIGURE 3.7: A basic genetic algorithm.

Two well-known issues with genetic algorithms relate to the computational
cost of the search and local minima in the evaluation function. Genetic algo-
rithms maintain a population (100 is a common size) of search space states
that are mated to produce offspring with properties of both parents. The
effect is an initially broad search that targets more specific areas of the space
as the search progresses. Thus, genetic algorithms tend to drift through the
search space based on the properties of individuals in the population. A wide
variety of states, or feature subsets in this case, are explored. However, the
cost of so much exploration can easily exceed the cost of a traditional greedy
search.

The second problem with genetic algorithms occurs when the evaluation
function is non-monotonic. The population may quickly focus on a local
maximum in the search space and become trapped. The mutation operator, a
broad sampling of the state space in the initial population, and several other
tricks are known to mitigate this effect. Goldberg [5] and Mitchell [15] provide
detailed discussions of the subtleties and nuances involved in setting up a
genetic search. Nevertheless, there is no guarantee that genetic algorithms
will produce the best, or even a good, result. This issue may arise with any
probabilistic algorithm, but some are more prone to becoming trapped in

© 2008 by Taylor & Francis Group, LLC

56 Computational Methods of Feature Selection

suboptimal solutions than others.

3.6.6 Randomized Variable Elimination

Each of the algorithms considered so far uses a simple form of randomization
to explore the space of feature or example subsets. MC1 and LVF both sample
the space of possible subsets globally, while RMHC samples the space in the
context of a greedy local search. Simulated annealing and genetic algorithms,
meanwhile, conduct initially broad searches that incrementally target more
specific areas over time. The next algorithm we consider samples the search
space in a more directed manner.

Randomized variable elimination (RVE) [20] is a wrapper method motivated
by the idea that, in the presence of many irrelevant variables, the probability
of selecting several irrelevant variables simultaneously at random is high. RVE
searches backward through the space of variable subsets, attempting to elim-
inate one or more variables per step. Randomization allows for the selection
of irrelevant variables with high probability, while selecting multiple variables
allows the algorithm to move through the space without incurring the cost of
evaluating the intervening points in the search space. RVE conducts its search
along a very narrow trajectory, sampling variable subsets sparsely, rather than
broadly and uniformly. This more structured approach allows RVE to reduce
substantially the total cost of identifying relevant variables.

A backward search serves two purposes for this algorithm. First, backward
elimination eases the problem of recognizing irrelevant or redundant variables.
As long as a core set of relevant variables remains intact, removing other
variables should not harm the performance of a learning algorithm. Indeed,
the learner’s performance may increase as irrelevant features are removed
from consideration. In contrast, variables whose relevance depends on the
presence of other variables may have no noticeable effect when selected in
a forward manner. Thus, mistakes should be recognized immediately via
backward elimination, while good selections may go unrecognized by a forward
selection algorithm.

The second purpose of backward elimination is to ease the process of se-
lecting variables for removal. If most variables in a problem are irrelevant,
then a random selection of variables is likely to uncover them. Conversely, a
random selection is unlikely to turn up relevant variables in a forward search.
Thus, forward search must work harder to find each relevant variable than
backward search does for irrelevant variables.

RVE begins by executing the learning algorithm L on data that include
all N variables. This generates an initial hypothesis h. Next, the algorithm
selects k input variables at random for removal. To determine the value
of k, RVE computes a cost (with respect to a given learning algorithm) of
attempting to remove k input variables out of n remaining variables given
that r are relevant. Note that knowledge of r is required here, although the
assumption is later removed. A table kopt (n, r) of values for k given n and

© 2008 by Taylor & Francis Group, LLC

Randomized Feature Selection 57

Given:
Examples X =< x1, y1 >, . . . < xm, ym >
Learning algorithm L
Number of input features N
Number of relevant features r

Algorithm:
n← N
h← hypothesis produced by L on all N inputs
compute schedule kopt (i, r) for r < i ≤ N by dynamic programming
while n > r do

select kopt (n, r) variables at random and remove them
h′ ← hypothesis produced by L on n− kopt (n, r) inputs
if error(h′,X) < error(h,X) then

n← n− kopt (n, r)
h← h′

else
replace the kopt (n, r) selected variables

return(h)

FIGURE 3.8: The randomized variable elimination algorithm [20].

r is then computed via dynamic programming by minimizing the aggregate
cost of removing all N − r irrelevant variables. Note that n represents the
number of remaining variables, while N denotes the total number of variables
in the original problem.

On each iteration, RVE selects kopt (n, r) variables at random for removal.
The learning algorithm is then trained on the remaining n−kopt(n, r) inputs,
and a hypothesis h′ is produced. If the error e(h′) is less than the error of
the previous best hypothesis e(h), then the selected inputs are marked as
irrelevant and are all simultaneously removed from future consideration. If
the learner was unsuccessful, meaning the new hypothesis had larger error,
then at least one of the selected inputs must have been relevant. The removed
variables are replaced, a new set of kopt (n, r) inputs is selected, and the process
repeats. The algorithm terminates when all N− r irrelevant inputs have been
removed. Figure 3.8 shows the RVE algorithm.

Analysis of RVE [20] shows that the algorithm expects to evaluate only
O(r log(N)) variable subsets to remove all irrelevant variables. This is a
striking result, as it implies that a randomized backward selection wrapper
algorithm evaluates fewer subsets and requires less total computation than for-
ward selection wrapper algorithms. Stracuzzi and Utgoff provide a detailed
formal analysis of randomized variable elimination [20].

The assumption that the number of relevant variables r is known in ad-
vance plays a critical role in the RVE algorithm. In practice, this is a strong

© 2008 by Taylor & Francis Group, LLC

58 Computational Methods of Feature Selection

assumption that is not typically met. Stracuzzi and Utgoff [20] therefore pro-
vide a version of the algorithm, called RVErS (pronounced “reverse”), that
conducts a binary search for r during RVE’s search for relevant variables.

Experimental studies suggest RVErS evaluates a sublinear number of vari-
able subsets for problems with sufficiently many variables. This conforms to
the performance predicted by the analysis of RVE. Experiments also show
that for problems with hundreds or thousands of variables, RVErS typically
requires less computation than a greedy forward selection algorithm while pro-
ducing competitive accuracy results. In practice, randomized variable elimi-
nation is likely to be effective for any problem that contains many irrelevant
variables.

3.7 Issues in Randomization

The preceding sections in this chapter covered the basic use of randomiza-
tion as an algorithmic technique, specifically as applied to feature selection.
We now consider more advanced issues in applying randomization. Of partic-
ular interest and importance are sampling techniques, and the source of the
random numbers used in the algorithms.

3.7.1 Pseudorandom Number Generators

Randomized algorithms necessarily depend on the ability to produce a se-
quence of random numbers. However, deterministic machines such as modern
computers are not capable of producing sequences of truly random numbers.
John von Neumann once stated that, “Anyone who considers arithmetical
methods of producing random digits is, of course, in a state of sin” [17].
In practice, we must rely on pseudorandom number generators to provide
sequences of numbers that exhibit statistical properties similar to those of
genuinely random numbers.

The main property of pseudorandom numbers that differs from true random
numbers is periodicity. No matter how sophisticated a pseudorandom number
generating algorithm may be, it will eventually revisit a past state and begin
repeating the number sequence. Other possible problems with pseudorandom
number generators include non-uniform distribution of the output sequence,
correlation of successive values (predictability), and short periods for certain
starting points. The presence of any of these properties can cause poor or
unexpected performance in a randomized algorithm.

The primary defense against such undesirable results is to select a good
pseudorandom number generator prior to running any experiments. For ex-
ample, the Mersenne twister algorithm [14] has proved useful for statistical

© 2008 by Taylor & Francis Group, LLC

Randomized Feature Selection 59

simulations and generative modeling purposes. The algorithm has a very
long period of 219937, provides a provably good distribution of values, and is
computationally inexpensive. A variety of other suitable, but less complex
algorithms are also available, particularly if the user knows in advance that
the length of the required sequence of pseudorandom numbers is short.

3.7.2 Sampling from Specialized Data Structures

A second possible pitfall in the use of randomized algorithms stems from
sampling techniques. For small databases, such as those that can be stored in
a simple table or matrix, examples and features (rows and columns, respec-
tively) may be selected by simply picking an index at random. However, many
large databases are stored in more sophisticated, non-linear data structures.
Uniformly distributed, random samples of examples cannot be extracted from
such databases via simple, linear sampling methods.

An improperly extracted sample is unlikely to be representative of the larger
database. The results of a feature selection or other learning algorithm run on
such a sample may not extrapolate well to the rest of the database. In other
words, the error achieved by feature selection and/or learning algorithm on
a sampled test database will be overly optimistic. In general, different data
structures will require different specialized sampling methods.

One example of a specialized sampling algorithm is discussed by Makawita,
Tan, and Liu [13]. Here, the problem is to sample uniformly from a search tree
that has a variable number of children at internal nodes. The naive approach
of simply starting at the root and then selecting random children at each step
until reaching a leaf (known as a random walk) will tend to oversample from
paths that have few children at each internal node. This is an artifact of
the data structure and not the data themselves, and so is unacceptable. The
presented solution is to bias the acceptance of the leaf node into the sample
by keeping track of the fanout at each internal node along the path. Leaves
from paths with low fanout are accepted with lower probability than those
from paths with high fanout. The sampling bias of the naive algorithm is thus
removed.

3.8 Summary

The feature selection problem possesses characteristics that are critical to
successful applications of randomization. First, the space of all possible fea-
ture subsets is often prohibitively large. This means that there are many
possible choices available at each step in the search, such as which feature
to include or exclude next. Second, those choices are often difficult to eval-

© 2008 by Taylor & Francis Group, LLC

60 Computational Methods of Feature Selection

uate, because learning algorithms are expensive to execute and there may
be complex interdependencies among features. Third, deterministic selection
algorithms are often prone to becoming trapped in local optimal, also due
to interdependencies among features. Finally, there are often too many ex-
amples available for an algorithm to consider each one deterministically. A
randomized approach of sampling feature subset space helps to mitigate all of
these circumstances.

In practice, there are several important issues to consider when constructing
a randomized algorithm for feature selection. First is the decision of which
aspect of the problem will be randomized. One option is to randomize over the
set of input variables, causing the resulting algorithm to search for the best
variable subset by sampling from the space of all subsets. A second approach
is to randomize over the set of training examples, creating an algorithm that
considers only a portion of the available training data. Finally, one may also
randomize over both the input variables and the training data. In any case,
the achieved reduction in computational cost must be balanced against a loss
of confidence in the solution.

The second issue to consider in randomization relates to the performance
of the resulting algorithm. Some tasks may demand discovery of the best
possible feature subset, necessitating the use of a Las Vegas algorithm. Other
tasks may sacrifice solution quality for speed, making a Monte Carlo algorithm
more appropriate. A third option is to generate an initial solution, and then
improve the solution over time, as in anytime algorithms [22]. Many more
specific guarantees on performance are also possible.

Other issues in the application of randomization include the quality of the
pseudorandom number generator used and the sampling technique that is
used. Both of these can impact the performance of the randomized algorithm.
The feature selection literature contains examples of the different randomiza-
tions methods (randomization over features versus examples), a variety of
performance guarantees, and special purpose sampling methods, as discussed
throughout the chapter. Although far from a complete exposition, this chapter
should provide sufficient information to launch further study of randomized
algorithms in the context of feature selection.

References

[1] R. Caruana and D. Freitag. Greedy attribute selection. In Machine
Learning: Proceedings of the Eleventh International Conference, pages
121–129, New Brunswick, NJ, Morgan Kaufmann, 1994.

[2] V. Černý. A thermodynamical approach to the traveling salesman prob-
lem: An efficient simulation algorithm. Journal of Optimization Theory

© 2008 by Taylor & Francis Group, LLC

Randomized Feature Selection 61

and Applications, 45:41–51, 1985.

[3] K. Cherkauer and J. Shavlik. Growing simpler decision trees to facilitate
knowledge discovery. In E. Simoudis, J. Han, and U. M. Fayyad, edi-
tors, Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, Portland, OR, AAAI Press, 1996.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. MIT Press, Cambridge, MA, 1990.

[5] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, Reading, MA, 1989.

[6] H. M. Hastings. Convergence of simulated annealing. ACM SIGACT
News, 17(2):52–63, 1985.

[7] I. Inza, P. Larranaga, E. R., and B. Sierra. Feature subset selection
by Bayesian network-based optimization. Artificial Intelligence, 123(1–
2):157–184, 2000.

[8] G. H. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset
selection problem. In Machine Learning: Proceedings of the Eleventh
International Conference, pages 121–129, New Brunswick, NJ, Morgan
Kaufmann, 1994.

[9] K. Kira and L. Rendell. A practical approach to feature selection. In S. D.
H. and P. Edwards, editors, Machine Learning: Proceedings of the Ninth
International Conference, Aberdeen, Scotland, UK, Morgan Kaufmann,
1992.

[10] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simu-
lated annealing. Science, 220(4598):671–680, 1983.

[11] W. Krauth. Introduction to monte carlo algorithms. In J. Kertesz and
I. Kondor, editors, Advances in Computer Simulation, Lecture Notes in
Physics. SpringerVerlag, New York, 1998.

[12] H. Liu and R. Setino. A probabilistic approach to feature selection. In
L. Saitta, editor, Machine Learning: Proceedings of the Thirteenth In-
ternational Conference on Machine Learning, pages 319–327, Bari, Italy,
Morgan Kaufmann, 1996.

[13] D. P. Makawita, K.-L. Tan, and H. Liu. Sampling from databases us-
ing B+-trees. In Proceedings of the 2000 ACM CIKM International
Conference on Information and Knowledge Management, pages 158–164,
McLean, VA, ACM, 2000.

[14] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator. ACM Trans-
actions on Modeling and Computer Simulation, 8(1):3 – 30, 1998.

© 2008 by Taylor & Francis Group, LLC

62 Computational Methods of Feature Selection

[15] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cam-
bridge, MA, 1996.

[16] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, Cambridge, UK, 1995.

[17] J. von Neumann. Various techniques used in connection with random
digits. In Applied Mathematics Series, no. 12. 1951.

[18] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Read-
ing, MA, 1994.

[19] D. B. Skalak. Prototype and feature selection by sampling and random
mutation hill climbing. In W. W. Cohen and H. Hirsh, editors, Machine
Learning: Proceedings of the Eleventh International Conference, pages
293–301, New Brunswick, NJ, Morgan Kaufmann, 1994.

[20] D. J. Stracuzzi and P. E. Utgoff. Randomized variable elimination. Jour-
nal of Machine Learning Research, 5:1331–1364, 2004.

[21] H. Vafaie and K. DeJong. Genetic algorithms as a tool for restructuring
feature space representations. In Proceedings of the Seventh International
Conference on Tools with AI, Herndon, VA, IEEE Computer Society
Press, New York, 1995.

[22] S. Zilberstein. Using anytime algorithms in intelligent systems. AI Mag-
azine, 17(3), 1996.

© 2008 by Taylor & Francis Group, LLC

Chapter 4

Causal Feature Selection

Isabelle Guyon

Clopinet, California

Constantin Aliferis

Vanderbilt University, Tennessee

André Elisseeff

IBM Zürich, Switzerland

4.1 Introduction . 63
4.2 Classical “Non-Causal” Feature Selection . 65
4.3 The Concept of Causality . 68
4.4 Feature Relevance in Bayesian Networks . 71
4.5 Causal Discovery Algorithms . 77
4.6 Examples of Applications . 80
4.7 Summary, Conclusions, and Open Problems . 82

Acknowledgments . 83
References . 83

4.1 Introduction

The present chapter makes an argument in favor of understanding and
utilizing the notion of causality for feature selection: from an algorithm design
perspective, to enhance interpretation, build robustness against violations of
the i.i.d. assumption, and increase parsimony of selected feature sets; from
the perspective of method characterization, to help uncover superfluous or
artifactual selected features, missed features, and features not only predictive
but also causally informative.

Determining and exploiting causal relationships is central in human reason-
ing and decision-making. The goal of determining causal relationships is to
predict the consequences of given actions or manipulations. This is fundamen-
tally different from making predictions from observations. Observations imply
no experimentation, no interventions on the system under study, whereas ac-
tions disrupt the natural functioning of the system.

Confusing observational and interventional predictive tasks yields classical
paradoxes [22]. Consider for instance that there seems to be a correlation

63

© 2008 by Taylor & Francis Group, LLC

64 Computational Methods of Feature Selection

between being in bed and dying. Should we conclude that we should better
not spend time in bed to reduce our risk of dying? No, because arbitrarily
forcing people to spend time in bed does not normally increase death rate. A
plausible causal model is that disease causes both an increase in time spent in
bed and in death rate. This example illustrates that a correlated feature (time
spent in bed) may be predictive of an outcome (death rate), if the system is
stationary (no change in the distribution of all the variables) and no interven-
tions are made; yet it does not allow us to make predictions if an intervention
is made (e.g., forcing people to spend more or less time in bed regardless of
their disease condition). This example outlines the fundamental distinction
between correlation and causation.

Policy making in health care, economics, or ecology are examples of inter-
ventions, of which it is desirable to know the consequences ahead of time (see
our application section, Section 4.6). The goal of causal modeling is to provide
coarse descriptions of mechanisms, at a level sufficient to predict the result of
interventions. The main concepts are reviewed in Sections 4.3 and 4.4. The
most established way of deriving causal models is to carry out randomized
controlled experiments to test hypothetical causal relationships. Yet such ex-
periments are often costly, unethical, or infeasible. This prompted a lot of re-
cent research in learning causal models from observational data [8, 22, 25, 15],
which we briefly review in Section 4.5.

Most feature selection algorithms emanating from the machine learning
literature (see, e.g., [18, 11], which we briefly review for comparison in Sec-
tion 4.2) do not seek to model mechanisms: They do not attempt to uncover
cause-effect relationships between feature and target. This is justified because
uncovering mechanisms is unnecessary for making good predictions in a purely
observational setting. In our death rate prediction example, classical feature
selection algorithms may include without distinction: features that cause the
target (like disease), features that are consequences of a common cause (like
time spent in bed, which is a consequence of disease, not of death rate), or fea-
tures that are consequences of the target (like burial rate). But, while acting
on a cause (like disease) can influence the outcome (death rate), acting on con-
sequences (burial rate) or consequences of common causes (time spent in bed)
cannot. Thus non-causality-aware feature selection algorithms do not lend
themselves to making predictions of the results of actions or interventions.
Additionally, feature selection algorithms ignoring the data-generating pro-
cess may select features for their effectiveness to predict the target, regardless
of whether such predictive power is characteristic of the system under study
or the result of experimental artifacts. To build robustness against changes in
measuring conditions, it is important to separate the effects of measurement
error from those of the process of interest, as outlined in Section 4.4.2.

On the strong side of feature selection algorithms developed recently [18,
11], relevant features may be spotted among hundreds of thousands of dis-
tracters, with less than a hundred examples, in some problem domains. Re-
search in this field has effectively addressed both computational and statistical

© 2008 by Taylor & Francis Group, LLC

Causal Feature Selection 65

problems that related to uncovering significant dependencies in such adverse
conditions. In contrast, causal models [8, 22, 25, 15] usually deal with just a
few variables and a quasi-perfect knowledge of the variable distribution, which
implies an abundance of training examples. Thus there are opportunities for
cross-fertilization of the two fields: Causal discovery can benefit from feature
selection to cut down dimensionality for computational or statistical reasons
(albeit with the risk of removing causally relevant features); feature selection
can benefit from causal discovery by getting closer to the underlying mecha-
nisms and reveal a more refined notion of relevance (albeit at computational
price). This chapter aims to provide material to stimulate research in both
directions. More details and examples are found in a technical report [10].

4.2 Classical “Non-Causal” Feature Selection

In this section, we give formal definitions of irrelevance and relevance from
the point of view of classical (non-causal) feature selection. We review ex-
amples of feature selection algorithms. In what follows, the feature set is
a random vector X = [X1, X2, ...XN] and the target a random variable Y .
Training and test data are drawn according to a distribution P (X, Y). We
use the following definitions and notations for independence and conditional
independence: Two random variables A and B are conditionally indepen-
dent given a set of random variables C, denoted A ⊥ B|C, iff P (A, B|C) =
P (A|C)P (B|C), for all assignments of values to A, B, and C. If C is the
empty set, then A and B are independent, denoted A ⊥ B.

A simple notion of relevance can be defined by considering only the depen-
dencies between the target and individual variables:

DEFINITION 4.1 Individual feature irrelevance. A feature Xi

is individually irrelevant to the target Y iff Xi is independent of Y (denoted
Xi ⊥ Y): P (Xi, Y) = P (Xi)P (Y).

From that definition it should simply follow that all non-individually irrel-
evant features are individually relevant (denoted Xi �⊥ Y). However, when a
finite training sample is provided, the statistical significance of the relevance
must be assessed. This is done by carrying out a statistical test with null
hypothesis “H0: the feature is individually irrelevant” (that is Xi and Y are
statistically independent). For a review, see e.g. [11], Chapters 2 and 3.

Feature selection based on individual feature relevance (Def. 4.1) is called
univariate. In the context of other variables, a variable Xi individually rele-
vant to Y may become irrelevant, or vice versa. This renders necessary the
notion of multivariate feature selection; see the scenarios of Figure 4.1:
− Falsely irrelevant variables. Figure 4.1 (a) shows a classification prob-

lem with two input variables X1 and X2 and a binary target Y (represented by

© 2008 by Taylor & Francis Group, LLC

66 Computational Methods of Feature Selection

the star and circle symbols). Variables X2 and Y are independent (X2 ⊥ Y),
yet, in the context of variable X1, they are dependent (X2 �⊥ Y |X1). The class
separation with X1 is improved by adding the individually irrelevant variable
X2. Univariate feature selection methods fail to discover the usefulness of
variable X2. Figure 4.1 (b) shows a trickier example in which both variables
X1 and X2 are independent of Y (X1 ⊥ Y and X2 ⊥ Y). Each variable taken
separately does not separate the target at all, while taken jointly they provide
a perfect non-linear separation ({X1, X2} �⊥ Y). This problem is known in
machine learning as the “chessboard problem” and bears resemblance with
the XOR and parity problems. Univariate feature selection methods fail to
discover the usefulness of variables for such problems.
− Falsely relevant variables. Figures 4.1(c) and (d) show an example

of the opposite effect, using a regression problem. The continuous variables
X2 and Y are dependent when taken out of the context of the binary variable
X1. However, conditioned on any value of X1 (represented by the star and
circle symbols), they are independent (X2 ⊥ Y |X1). This problem is known
in statistics as Simpson’s paradox. In this case, univariate feature selection
methods might find feature X2 relevant, even though it is redundant with
X1. If X1 were unknown (unobserved), the observed dependency between X2

and Y may be spurious, as it vanishes when the “confounding factor” X1 is
discovered (see Section 4.4.2).

Multivariate feature selection may be performed by searching in the space
of possible feature subsets for an optimal subset. The techniques in use have
been classified into filters, wrappers, and embedded methods [14, 5]. They
differ in the choice of three basic ingredients [18]: search algorithm, objective
function, and stopping criterion. Wrappers use the actual risk functional of
the machine learning problem at hand to evaluate feature subsets. They must
train one learning machine for each feature subset investigated. Filters use
an evaluation function other than the actual risk functional, which is usually
computationally advantageous. Often no learning machine is involved in the
feature selection process. For embedded methods, the feature selection space
and the learning machine parameter space are searched simultaneously. For
a review of filter, wrapper, and embedded methods, see [11].

From the multivariate perspective, it is useful to generalize the notion of
individual relevance (Def. 4.1) to that of relevance in the context of other fea-
tures. This allows us to rank features in a total order rather than assessing the
relevance of feature subsets. We first introduce irrelevance as a consequence of
random variable independence and then define relevance by contrast. For sim-
plicity, we provide only asymptotic definitions, which assume the full knowl-
edge of the data distribution. For a discussion of the finite sample case, see
the introductory chapter of [11]. In what follows, X = [X1, X2, ..., Xi, ..., XN]
denotes the set of all features, X\i is the set of all features except Xi, and
V\i is any subset of X\i (including X\i itself).

DEFINITION 4.2 Feature irrelevance. A feature Xi is irrelevant to

© 2008 by Taylor & Francis Group, LLC

Causal Feature Selection 67

x
1

x
2

X
2
 → X

1
 ← Y

(a) X2 ⊥ Y, X2 �⊥ Y |X1

x
1

x
2

{X
1
, X

2
} → Y

(b) X1 ⊥ Y, X2 ⊥ Y, {X1, X2} �⊥ Y

x
2

y

(c) X2 �⊥ Y

x
2

y X
2
 ← X

1
 → Y

(d) X2 ⊥ Y |X1

FIGURE 4.1: Multivariate dependencies. (a) Spouse problem: Feature
X2 (a spouse of Y having the common child X1) is individually irrelevant to Y
(X2 ⊥ Y), but it becomes relevant in the context of feature X1 (X2 �⊥ Y |X1). (b)
Chessboard problem: Two individually irrelevant features (X1 ⊥ Y and X2 ⊥ Y)
become relevant when taken jointly ({X1, X2} �⊥ Y). (c - d) Simpson’s paradox
and the confounder problem: (c) X2 is correlated to Y , it is not independent
of Y (X2 �⊥ Y). It is individually relevant, but it may become irrelevant in the
context of another feature, see case (d). (d) For any value of X1 (star or circle), X2

is independent of Y (X2 ⊥ Y |X1). Note: We show at the top of each scatter plot
the causal structure of the models, which generated the data. In some cases, the
same data can be explained by several alternative causal models (see Section 4.3).

© 2008 by Taylor & Francis Group, LLC

68 Computational Methods of Feature Selection

the target Y iff for all subset of features V\i, and for all assignments of values,
Xi is conditionally independent of Y given V\i (denoted by Xi ⊥ Y |V\i):
P (Xi, Y |V\i) = P (Xi|V\i)P (Y |V\i).

Kohavi and John define a notion of strong and weak relevance [14]. In-
tuitively and in many practical cases (but not always, as shown below), a
strongly relevant feature is needed on its own and cannot be removed without
performance degradation, while a weakly relevant feature is redundant with
other relevant features and can be omitted if similar features are retained.

DEFINITION 4.3 Strong relevance. A feature Xi is strongly relevant
to the target Y iff there exist some values x, y, and v with P (Xi = x,X\i =
v) > 0 such that: P (Y = y|Xi = x,X\i = v) �= P (Y = y|X\i = v).

DEFINITION 4.4 Weak relevance. A feature Xi is weakly relevant to
the target Y iff it is not strongly relevant and if there exist a subset of features
V\i for which there exist some values x, y, and v with P (Xi = x,V\i = v) > 0
such that: P (Y = y|Xi = x,V\i = v) �= P (Y = y|V\i = v).

From the above definitions, and noting that P (Y |Xi,V\i) = P (Y |V\i)
implies that P (Xi, Y |V\i) = P (Xi|V\i)P (Y |V\i), one can easily see that a
feature is either irrelevant, strongly relevant, or weakly relevant.

The issue of relevance has been the subject of much debate (see, e.g., the
special issue of Artificial Intelligence on relevance [1] and the recent discussion
of Tsamardinos and Aliferis [27] challenging the universality of any particular
notion of relevance or usefulness of features). Although much remains to be
said about such non-causal relevance, we wish now to introduce the concept
of causality and show how it will shed light on the notion of feature relevance.

4.3 The Concept of Causality

Formal, widely-accepted definitions of causality have eluded philosophers
of science for centuries. However, from an engineering point of view, causality
is a very goal-oriented notion, which can simply be defined as finding modes
of action on a system, which will result in a desired outcome (for example,
taking a drug to cure an illness). Thus, even though causality may not find
a perfect definition regrouping all the notions it encompasses in philosophy,
psychology, history, law, religion, statistics, physics, and engineering, we can
devise tests of causality that satisfy our engineering-oriented goal by assessing
the effect of actual or hypothetical manipulations performed on the system [8,
22, 25, 21, 15].

© 2008 by Taylor & Francis Group, LLC

Causal Feature Selection 69

4.3.1 Probabilistic Causality

Our everyday-life concept of causality is very much linked to the time de-
pendency of events. However, such a temporal notion of causality is not always
necessary or convenient. In particular, many machine learning problems are
concerned with “cross-sectional studies,” which are studies where many sam-
ples of the state of a system are drawn at a given point in time. Thus, we will
drop altogether the reference to time and replace it by the notion of causal
ordering. Causal ordering can be understood as fixing a particular time scale
and considering only causes happening at time t and effects happening at time
t + Δt, where Δt can be made as small as we want.

In this chapter, causes and consequences will be identified to random vari-
ables (RV) rather than events. Borrowing from Glymour and Cooper [8], we
adopt here an operational criterion of causality: Given a closed system of
interdependent RV, an RV C may be called a cause of another RV E, called
its effect or consequence, if imposing changes in the distribution of C (by
means of manipulation performed by an agent external to the system) results
in changes in the distribution of E. For example, C may be the choice of one
of two available treatments for a patient with lung cancer and E may rep-
resent 5-year survival. If we randomly assign patients to the two treatments
by flipping a fair coin and observe that the probability distribution for 5-year
survival differs between the two treatment groups, we can conclude that the
choice of treatment causally determines survival in patients with lung cancer.

There is a parallel between the operational test of causality and the notion
of individual feature relevance of Definition 4.1. A feature X is individually
irrelevant to the target Y iff P (X, Y) = P (X)P (Y), that is, assuming that
P (X) > 0, if P (Y |X) = P (Y). Hence, individual relevance defined by con-
trast occurs if for some assignment of values P (Y |X) �= P (Y). In the test of
causality, we must first define a manipulation. Borrowing the notation of [22],
we will denote by P (Y |do(X)) and P (do(X)) the distributions resulting from
the manipulation of variable X called “do(X)”. In the test of causality, indi-
vidual causal relevance occurs if P (Y |do(X)) �= P (Y).

The definitions of strong and weak feature relevance (Def. 4.3 and 4.4) can
also be modified by replacing Xi by do(Xi), yielding a notion of strong and
weak causal relevance. Although these definitions are formally interesting in
that they establish a parallel with the feature selection framework, they have
little practical value. First, they have the same drawback as their non-causal
feature relevance counterpart that they require exploring all possible subsets
of features and assignment of values to features. Second, the fact that they
require exploring all possible manipulations to establish the absence of a causal
relationship with certainty is also unrealistic. When we may establish a causal
relationship using a manipulation on Xi, thereafter any other manipulation
that affects Xi will potentially affect Y . But the converse is not true. We
must in principle try “all possible” manipulations to establish with certainty
that there is no causal relationship. Practically, however, planned experiments

© 2008 by Taylor & Francis Group, LLC

70 Computational Methods of Feature Selection

have been devised as canonical manipulations and are commonly relied upon
to rule out causal relationships (see, e.g., [23]). Nonetheless, they require
conducting experiments, which may be costly, impractical, unethical, or even
infeasible. The purpose of the following sections is to introduce the reader to
the discovery of causality in the absence of experimentation. Experimentation
will be performed punctually, when absolutely needed.

4.3.2 Causal Bayesian Networks

Causal Bayesian networks provide a convenient framework for reasoning
about causality between random variables. Causal Bayesian networks imple-
ment a notion of causal ordering and do not model causal time dependencies
in detail (although they can be extended to do so if desired). Even though
other frameworks exist (like structural equation modeling [12, 13]), we limit
ourselves in this chapter to Bayesian networks to illustrate simply the con-
nections between feature selection and causality we are interested in.

Recall that in a directed acyclic graph (DAG), a node A is the parent of B
(B is the child of A) if there is a direct edge from A to B, and A is the ancestor
of B (B is the descendant of A) if there is a direct path from A to B. “Nodes”
and “variables” will be used interchangeably. As in previous sections, we
denote random variables with uppercase letters X, Y, Z; realizations (values)
with lowercase letters, x, y, z; and sets of variables or values with boldface
uppercase X = [X1, X2, ..., XN] or lowercase x = [x1,x2, ...,xN], respectively.
A “target” variable is denoted as Y .

We begin by formally defining a discrete Bayesian network:

DEFINITION 4.5 (Discrete) Bayesian network. Let X be a set
of discrete random variables and P be a joint probability distribution over all
possible realizations of X. Let G be a directed acyclic graph (DAG) and let
all nodes of G correspond one-to-one to members of X. We require that for
every node A ∈ X, A is probabilistically independent of all non-descendants
of A, given the parents of A (Markov Condition). Then we call the triplet
{X,G, P} a (discrete) Bayesian Network or, equivalently, a Belief Network or
Probabilistic Network (see, e.g., [21]).

Discrete Bayesian networks can be generalized to networks of continuous
random variables and distributions are then replaced by densities. To sim-
plify our presentation, we limit ourselves to discrete Bayesian networks. A
causal Bayesian network is a Bayesian Network {X,G, P} with the additional
semantics that (∀A ∈ X) and (∀B ∈ X), if there is an edge from A to B in
G, then A directly causes B (see, e.g., [25]).

Using the notion of d-separation (see, e.g., [22]), it is possible to read from a
graph G if two sets of nodes A and B are independent, conditioned on a third
set C: A ⊥G B|C. Furthermore, in a causal Bayesian network, the existence
of a directed path between two nodes indicates a causal relationship. It is

© 2008 by Taylor & Francis Group, LLC

Causal Feature Selection 71

usually assumed that in addition to the Markov condition, which is part of
the definition of Bayesian networks, another condition called “faithfulness” is
also fulfilled (see, e.g., [22]). The faithfulness condition entails dependencies
in the distribution from the graph while the Markov condition entails that
independencies in the distribution are represented in the graph. Formally:

DEFINITION 4.6 Faithfulness. A directed acyclic graph G is faithful
to a joint probability distribution P over a set of variables X iff every inde-
pendence present in P is entailed by G and the Markov condition, that is,
(∀A ∈ X, ∀B ∈ X and ∀C ⊂ X), A �⊥G B|C ⇒ A �⊥P B|C. A distribution
P over a set of variables X is said to be faithful iff there exists a DAG G
satisfying the faithfulness condition.

Together, the Markov and faithfulness conditions guarantee that the Bayesian
network will be an accurate map of dependencies and independencies of the
represented distribution. Both the Markov condition and the faithfulness
conditions can be trivially specialized to causal Bayesian networks.

Bayesian networks are fully defined by their graph and the conditional prob-
abilities P (Xi|DirectCauses(Xi)). Those may be given by experts or trained
from data (or a combination of both). Once trained, a Bayesian network
may be used to compute the joint probability of all variables, by applying the
Markov condition P (X1, X2, ..., XN) =

∑
i P (Xi|DirectCauses(Xi)), as well

as any joint or conditional probabilities involving a subset of variables, using
the chain rule P (A, B, C, D, E) = P (A|B, C, D, E) P (B|C, D, E) P (C|D, E)
P (E) and marginalization P (A, B) =

∑
C,D,E P (A, B, C, D, E). Such calcu-

lations are referred to as inference in Bayesian networks. In the worst cases,
inference in Bayesian networks is intractable. However, many very efficient
algorithms have been described for exact and approximate inference [22, 21].

To learn the structure of a causal Bayesian network, we can test for causal
relationships with manipulations. A manipulation in a causal Bayesian net-
work is defined as “clamping” variables to given values, while the other ones
are let free to assume values according to the rules of the graph. However,
the structure of a causal graph can, to some extent, be determined from ob-
servational data (i.e., without manipulation). One method consists in making
statistical tests of conditional independence between variables, which al-
lows us to determine the causal structure up to Markov equivalence classes
(see Section 4.5).

4.4 Feature Relevance in Bayesian Networks

In this section we relate notions of non-causal feature relevance introduced
in Section 4.2 with Bayesian networks introduced in Section 4.3.2. Strongly
relevant features in the Kohavi-John sense are found in the Bayesian network

© 2008 by Taylor & Francis Group, LLC

72 Computational Methods of Feature Selection

DAG in the immediate neighborhood of the target, but they are not necessarily
strongly causally relevant. These considerations will allow us in Section 4.4.2
to characterize various cases of features called relevant according to different
definitions.

4.4.1 Markov Blanket

Pearl [22] introduced the notion of Markov blanket in a Bayesian network
as the set of nodes shielding a given node from the influence of the other nodes
(see Figure 4.2). Formally, let X∪Y (Y /∈ X) be the set of all variables under
consideration and V a subset of X. We denote by “\” the set difference.

DEFINITION 4.7 Markov blanket. A subset M of X is a Markov
blanket of Y iff for any subset V of X, and any assignment of values, Y is
independent of V\M given M (i.e., Y ⊥ V\M|M, that is, P (Y,V\M|M) =
P (Y |M)P (V\M|M) or for P (V\M|M) > 0, P (Y |V\M,M) = P (Y |M))
[21].

Markov blankets are not unique in general and may vary in size. But,
importantly, any given faithful causal Bayesian network (see Section 4.3.2)
has a unique Markov blanket, which includes its direct causes (parents), direct
effects (children), and direct causes of direct effects (spouses) (see, e.g., [22,
21]). The Markov blanket does not include direct consequences of direct causes
(siblings) and direct causes of direct causes (grandparents). To understand
the intuition behind Markov blankets, consider the example of Figure 4.2 in
which we are looking at the Markov blanket of the central node “lung cancer”:

- Direct causes (parents): Once all the direct causes have been given, an
indirect cause (e.g., “anxiety”) does not bring any additional information. In
Figure 4.2(e), for instance, increased “anxiety” will eventually increase “smok-
ing” but not influence directly “lung cancer,” so it suffices to use “smoking”
as a predictor, and we do not need to know about “anxiety.” Similarly, any
consequence of a direct cause (like “other cancers” in Figure 4.2(d), which is
a consequence of “genetic factor 1”) brings only indirect evidence, but no ad-
ditional information once the direct cause “genetic factor 1” is known. Direct
causes in faithful distributions are individually predictive, but they may oth-

the chessboard/XOR problem, which is an example of unfaithfulness).
- Direct effects (children) and direct causes of direct effects (spouses):

In faithful distributions, direct effects are always predictive of the target. But
their predictive power can be enhanced by knowing other possible causes
of these direct effects. For instance, in Figure 4.2(a), “allergy” may cause
“coughing” independently of whether we have “lung cancer.” It is important
to know of any “allergy” problem, which would eventually explain away that
“coughing” might be the result of “lung cancer.” Spouses, which do not have

erwise need to be known jointly to become predictive (see, e.g., Figure 4.1(b):

© 2008 by Taylor & Francis Group, LLC

Causal Feature Selection 73

a direct connecting path to the target (like “allergy”), are not individually
predictive of the target (“lung cancer”), they need a common child (“cough-
ing”) to become predictive. However, in unfaithful distributions, children are
not necessarily predictive without the help of spouses, for example in the case
of the chessboard/XOR problem.

Following [27], we interpret the notion of Markov blankets in faithful dis-
tributions in terms Kohavi-John feature relevance as follows:

1. Irrelevance: A feature is irrelevant if it is disconnected from Y in the
graph.

2. Strong relevance: Strongly relevant features form a Markov blanket
M of Y .

3. Weak relevance: Features having a connecting path to Y , but not
belonging to M, are weakly relevant.

The first statement interprets Definition 4.2 (irrelevance) in terms of discon-
nection to Y in the graph. It follows directly from the Markov properties of
the graph. The second statement casts Definition 4.3 (strong relevance) into
the Markov blanket framework. Only strongly relevant features cannot be
omitted without changing the predictive power of X. Therefore, non-strongly
relevant features can be omitted without changing the predictive power of
X. Hence the set M of all strongly relevant features should be sufficient
to predict Y , regardless of the values v assumed by the other features in
X\M: P (Y |M) = P (Y |M,X\M = v). Therefore, following Definition 4.7,
M is a Markov blanket. Markov blankets are unique for faithful distributions
(see [22]), which ensures the uniqueness of the set of strongly relevant features
for faithful distributions.

The interpretation of the Markov blanket as the set of strongly relevant
variables, which is valid for all Bayesian networks, extends to causal Bayesian
networks. This means that strongly relevant in the Kohavi-John sense includes
direct causes (parents), direct effects (children), and direct causes of the di-
rect effects (spouses). Yet only direct causes are strongly causally relevant
according to our definition (Section 4.3.1). Consequently, weakly causally rel-
evant features coincide with indirect causes, which are ancestors in the graph
(excluding the parents).

4.4.2 Characterizing Features Selected via Classical Meth-
ods

In this section, we analyze in terms of causal relationships several non-trivial
cases of multivariate dependencies with artificial examples. This sheds a new
light on the notion of feature relevancy. We limit ourselves to the analysis
of variables, which are in the immediate proximity of the target, including
members of the Markov blanket (MB) and variables in the vicinity of the
MB (Figure 4.2). We analyze scenarios illustrating some basic three-variable

© 2008 by Taylor & Francis Group, LLC

74 Computational Methods of Feature Selection　

Coughing

Allergy

Smoking

Anxiety

Genetic

factor1

(a)

(d)

Hormonal

factor

Metastasis
(b)

Other

cancers

Lung cancer

Genetic

factor2

Tar in

lungs
(e)

Bio-

marker2

Biomarker1

Systematic

noise (c)

FIGURE 4.2: Markov blanket. The central node “lung cancer” represents a
disease of interest, which is our target of prediction. The solid oval nodes in the
shaded area include members of the Markov blanket. Given these nodes, the target
is independent of the other nodes in the network. The letters identify local three-
variable causal templates: (a), (b), and (c) colliders, (d) fork, and (e) chain. The
dashed lines/nodes indicate hypothetical unobserved variables providing alternative
explanations to the gray arrows.

causal templates: chains A → B → C, forks A ← B → C, and colliders
A→ B ← C. This allows us to refine the notion of feature relevance into:
• Direct cause (parent)
• Unknown direct cause (absent parent called confounder, which may re-

sult in mistaking a sibling for a parent)
• Direct effect (child)
• Unknown direct effect (which may cause sampling bias and result in

mistaking a spouse for a parent)
• Other truly relevant MB members (spouses)
• Nuisance variable members of the MB (also spouses).

We touch upon the problem of causal sufficiency: In the presence of vari-
ables, which are unobserved or unknown, the MB does not necessarily include
all the strong variables and may include weakly relevant variables. Our ex-
amples also include illustrations of the problem of experimental artifacts: We
caution against the fact that feature selection algorithms may find nuisance
variables (or effects of nuisance variables) “relevant.”

Upstream of the Target: Chain and Fork Patterns

Let us first examine the roles played by variables (denoted X2) directly
connected to parents (denoted X1) of the target Y , including grandparents
and siblings. Those are involved in chain patterns, X2 → X1 → Y , and fork

© 2008 by Taylor & Francis Group, LLC

Causal Feature Selection 75

patterns, X2 ← X1 → Y , both featuring the independence relations: Y �⊥ X2

and Y ⊥ X2|X1. An example of a distribution satisfying such independence
relations is depicted in Figure 4.1(d). We have already examined this exam-
ple in Section 4.2: An apparent dependency between X2 and Y may vanish
if we introduce a new variable X1 (Simpson’s paradox). Importantly, the
pattern of dependencies does not allow us to determine whether we have a
chain or a fork, which prevents us from distinguishing grandparents from sib-
lings; this can sometimes be resolved using dependencies with other variables,
higher order moments of the distribution, experiments, or prior knowledge
(see Section 4.5). Only parents are part of the Markov blanket and should,
in principle, be considered “strongly relevant.” The study of some examples
allows us to understand the relevance of grandparents and siblings, as well as
potential confusions between siblings or grandparents and parents:

• Relevance of grandparents and siblings: Controllability and
specificity of parents. In our “lung cancer” example of Figures 4.2(d)
and (e) the direct causes (“smoking” and “genetic factor 1”) are strongly
relevant (in the Markov blanket). Indirect causes and consequences of
causes are only weakly relevant (outside the Markov blanket). We ar-
gue that siblings and grandparents are nevertheless worthy of attention.
In particular, if the direct causes are not controllable (cannot be acted
upon), it may be interesting to look at indirect causes (e.g., reducing
“anxiety” might indirectly reduce the risk of “lung cancer”). Conse-
quences of direct causes are also interesting for a different reason: They
might weaken the relevance of strongly relevant features. In our exam-
ple, the fact that “genetic factor 1” causes not only “lung cancer” but
also “other cancers” makes it a non-specific marker of “lung cancer.”

• Ambiguity between grandparents and siblings: Unknown par-
ents as confounders. The ambiguity between forks and chains is at
the heart of the correlation vs. causation problem. If the “true” par-
ents are not known, grandparents become the most direct identifiable
causes. However, if one cannot distinguish between sibling and grand-
parents, we may falsely think that siblings are causes. This is illustrated
by the hypothetical alternative scenarios in Figure 4.2(e). The question
is whether “smoking” is a cause of “lung cancer,” given that there may
be other unknown factors. First scenario: The existence of a more di-
rect cause: “tar in lungs.” “Smoking” remains a cause and may still
be the most direct controllable cause, retaining its importance even if
its no longer member of the MB. Second scenario: The existence of
an unknown “genetic factor 2.” In the recent years, new restrictions
on smoking in public places have been imposed, based on the correla-
tion between smoking and lung cancer. Some tobacco companies have
been arguing that there may be a common genetic factor causing both
craving for nicotine (and therefore smoking) and a predisposition to get
lung cancer. Such a confounding factor, the hypothetical “genetic fac-

© 2008 by Taylor & Francis Group, LLC

76 Computational Methods of Feature Selection

tor 2,” has not been identified to date. But the possibility that it exists
outlines the difficulty of drawing conclusions about causal relationships
when human experimentation is not possible (in this case for ethical
reasons).

Downstream of the Target: Colliders

Patterns of dependencies (X2 ⊥ Y , X2 �⊥ Y |X1) are characteristic of un-
shielded colliders: Y → X1 ← X2. Both children (denoted X1) and spouses
(denoted X2) are involved in such patterns, which are found downstream of
the target Y . As explained before, both children and spouses are members of
the Markov blanket, and as such they are “strongly relevants” in the Kohavi-
John sense for faithful distributions. Two cases of distributions corresponding
to colliders are shown in Figures 4.1(a) and (b). One corresponds to a faithful
case (consistent only with: Y → X1 ← X2) and the other to an unfaithful case
(chessboard problem, consistent with several possible graphs: Y → X1 ← X2,
X1 → Y ← X2, and Y → X2 ← X1). In either case, spouses can be useful
complements of children to improve prediction power. Nonetheless, we must
caution against two types of problems that may be encountered: sampling
bias and artifacts. We illustrate these various cases:

• Relevance of a spouse: Explaining away the effect of Y . Children
and spouses are not “causally” relevant, in the sense that manipulat-
ing them does not affect the target. Yet, they may be used to make
predictions for stationary systems, or as predictors of the effect of ma-
nipulations of the target (e.g., the effect of a treatment of “lung cancer”).
We previously noted that “allergy” is a useful complement of “cough-
ing” to predict “lung cancer,” because knowing about allergy problems
allows the doctor to “explain away” the fact that coughing may be the
symptom of “lung cancer.” Now, after a patient receives a treatment
for “lung cancer” (manipulation), a reduction in “coughing” may be an
indication of success of the treatment.

• False causal relevance of a spouse: Sampling bias. In Fig-
ure 4.2(b) we show a scenario of “sampling bias” in the subgraph:
Lungcancer → Metastasis ← Hormonalfactor. The presence of
metastases may be unknown. It may turn out that all the patients
showing up in the doctor’s office are more likely to have late stage cancer
with metastases because only then do they experience alarming fatigue
symptoms. In this situation, the sample of patients seen by the doctor
is biased. If, from that sample a correlation between a certain hormonal
factor and lung cancer is observed, it may be misinterpreted as causal.
In reality, the dependency may only be due to the sampling bias. “Hor-
monal factor” (playing the role of X2) cannot be used as a predictive
factor without knowing about the “metastasis” factor (playing the role
of X1), and wrong results could be inferred if that factor is unknown.

© 2008 by Taylor & Francis Group, LLC

Causal Feature Selection 77

• False relevance of a spouse: Artifacts. In Figure 4.2(c), we show
an example of an experimental artifact. Assume that we are using an in-
strument to measure the abundance of some medical diagnosis biomark-
ers in blood serum (e.g., proteins or metabolites), and we have identified
two promising complementary biomarkers (numbered 1 and 2), which
have a distribution similar to that of X1 and X2 in Figure 4.1(a). The
simple model Y → X1 ← X2 explains the observed distribution, in sup-
port of the relevance of “Biomarker2,” which can be assumed to be part
of the MB. However, the relevance of “Biomarker2” may be challenged
if we suspect the existence of some unknown “Systematic noise” variable
S due to the measuring instrument. A model Y → X1 ← S → X2 could
also explain the observed data. Then S may be part of the MB, not
X2. In that case, feature X2 is an indirect measurement of the noise S
useful to correct the measurement error, but not relevant to the system
under study (human disease).

4.5 Causal Discovery Algorithms

In previous sections, we have motivated the introduction of the concept of
causality in feature selection. It has long been thought that causal relation-
ships can only be evidenced by “manipulations,” as summarized by the motto
commonly attributed to Paul Holland and Don Rubin: “No causation without
manipulation.” For an introduction on manipulation methods of inferring cau-
sation, see, for instance, [23]. Yet, in the recent years much fruitful research
has been devoted to inferring causal relationships from “observational data,”
that is, data collected on a system of interest, without planned experiments
or intervention. Current books exploring these techniques include [8, 22, 25].
We collectively refer to the algorithms as “causal discovery machine learning
methods.”

Learning a Bayesian network {X,G, P} from data consists in two subtasks,
sometimes performed jointly, sometimes in sequence: learning the structure
of the graph G and learning the probability distribution P . From the point
of view of causal discovery and feature selection, learning the structure of the
graph is the subtask of interest.

In what follows, we will make the following set of “causal discovery as-
sumptions”: (i) Causal sufficiency: The set of observable variables X is self-
sufficient to characterize all causal relationships of interest, which imposes
that direct common causes of all pairs of variables are observed. (ii) Sta-
tistical sufficiency: The learner has access to a sufficiently large training set
and reliable statistical tests for determining conditional dependencies and in-
dependencies in the original distribution where the data are sampled from.

© 2008 by Taylor & Francis Group, LLC

78 Computational Methods of Feature Selection

(iii) Faithfulness: The process that generated the data having the distribu-
tion P (X, Y) can be faithfully represented by the family of models under
consideration (here causal Bayesian networks).

4.5.1 A Prototypical Causal Discovery Algorithm

We outline in this section the fundamental operation of the Peter-Clark
(PC) algorithm (barring speed-up techniques and implementation details in
order to simplify the presentation; see [25] for a complete description). Under
the causal discovery assumptions stated above, this algorithm is provably
sound in the large sample limit [25], in the sense that it can recover the
structure of a Bayesian network (BN) that generated the data, up to a Markov
equivalence class (that is, a class of BN sharing the same set of conditional
independence conditions).

The algorithm begins with a fully connected unoriented graph and has three
phases:

Algorithm: PC

Let A, B, and C be variables in X and V any subset of X. Initialize with
a fully connected un-oriented graph.

1. Find unoriented edges by using the criterion that variable A shares a
direct edge with variable B iff no subset of other variables V can render
them conditionally independent (A ⊥ B|V).

2. Orient edges in “collider” triplets (i.e., of the type A → C ← B) using
the criterion that if there are direct edges between A, C and between C,
B, but not between A and B, then A→ C ← B, iff there is no subset V
containing C such that A ⊥ B|V.

3. Further orient edges with a constraint-propagation method by adding ori-
entations until no further orientation can be produced, using the two fol-
lowing criteria: (i) If A → B → ... → C, and A − C (i.e., there is an
undirected edge between A and C), then A→ C. (ii) If A→ B−C, then
B → C.

Without going into details, we note that all of the causal discovery assump-
tions can be relaxed via a variety of approaches. For example, if the causal
sufficiency property does not hold for a pair of variables A and B, and there is
at least one common parent C of the pair that is not measured, the PC algo-
rithm might wrongly infer a direct edge between A and B. The FCI algorithm
addresses this issue by considering all possible graphs including hidden nodes
(latent variables) representing potential unmeasured “confounders,” which are
consistent with the data. It returns which causal relationships are guaranteed
to be unconfounded and which ones cannot be determined by the observed
data alone. The FCI algorithm is described in detail in [25]. The PC algo-
rithms and their derivatives remain limited to discovering causal structures

© 2008 by Taylor & Francis Group, LLC

Causal Feature Selection 79

up to Markov equivalence classes. For instance, since the two graphs X → Y
and X ← Y are Markov equivalent, the direction of the arrow cannot be de-
termined from observational data with such methods. Other methods have
been proposed to address this problem; see, e.g., [26]. Designed experiments;
or “active learning” may be use instead or in conjunction with observational
methods to resolve ambiguous cases; see, e.g., [20].

4.5.2 Markov Blanket Induction Algorithms

From our previous discussion it follows that one can apply the PC algorithm
(or other algorithms that can learn high-quality causal Bayesian networks) and
extract the Markov blanket of a target variable of interest Y . However, when
the dataset has tens or hundreds of thousands of variables, or when at least
some of them are highly interconnected, applying standard causal discovery
algorithms that learn the full network becomes impractical. In those cases,
local causal discovery algorithms can be used, which focus on learning the
structure of the network only in the immediate neighborhood of Y .

The first two algorithms for Markov blanket induction by Koller and Sahami
and Cooper et al. [16, 6] contained many promising ideas, and the latter was
successfully applied in the real-life medical problem of predicting community
acquired pneumonia mortality; however, they were not guaranteed to find the
actual Markov blanket, nor could they be scaled to thousands of variables.
Margaritis and Thrun [19] subsequently invented a sound algorithm, Grow-
Shrink (GS), however, it required samples at least exponential to the size of
the Markov blanket and would not scale to thousands of variables in most
real datasets with limited samples sizes. Tsamardinos et al. [27] introduced
several improvements to GS with the Iterative Associative Markov Blanket
(IAMB) algorithms, while Aliferis et al. [3] introduced HITON (“hiton” means
“blanket” in Greek). Both types of algorithms scale well (100,000 variables
in a few CPU-hours), but the latter is more sample efficient.

For illustration, we describe HITON in some detail. The same induction
criterion as PC is used to find edges (i.e., Xi shares a direct edge with the
target Y iff there is no subset V of the variables set X such that Xi ⊥ Y |V).
However, while PC starts with a fully connected graph, HITON starts with
an empty graph. Accordingly, for PC, conditioning sets include large num-
bers of variables, while, for HITON, they include small dynamically-changing
subsets of “neighbors” of Y (direct causes and effects of Y). Spouses are
identified by first finding the neighborhood of depth two (i.e., by recursive
application of the direct-edge induction step) and then by eliminating non-
spouses. This reduces errors from incorrect orientations. As more and more
variables are scanned, the algorithm converges to the Markov blanket of Y .
Aside from limiting the search in a neighborhood of Y , which already rep-
resents a significant computational speedup compared to building an entire
Bayesian network, HITON accelerates the search with a number of heuristics,
including limiting conditioning sets to sizes permitting the sound estimation

© 2008 by Taylor & Francis Group, LLC

80 Computational Methods of Feature Selection

of conditional probabilities and prioritizing candidate variables.
An important novelty of local methods is circumventing non-uniform graph

connectivity. A network may be non-uniformly dense (or sparse). In a global
learning framework, if a region is particularly dense, that region cannot be
discovered fast and, when learning with a small sample, it will produce many
errors. These errors propagate to remote regions in the network (including
those that are learnable accurately and fast with local methods). On the
contrary, local methods will be both fast and accurate in the less dense regions.
Thus local methods are also competitive for learning full Bayesian networks.

Localizing the search for direct edges is desirable according to the previous
explanation, but far from obvious algorithmically [28]. A high-level explana-
tion is that, when building the parents/children sets around Y in a localized
manner, we occasionally omit variables Xi not connected to Y but connected
to other variables Xj, which are not parents or children of Y . This happens
because variables such as Xi act as “hidden variables” insofar as the localized
criterion for independence is concerned. It turns out, however, that (i) the
configuration in which this problem can occur is rare in real data, and (ii)
the problem can be detected by running the localized criterion in the opposite
direction (i.e., seeking the parents/children of Xj in a local fashion). This
constitutes the symmetry correction of localized learning of direct edges.

The Causal Explorer software package, including HITON and many other
useful causal discovery algorithms, is available from the Internet [4].

4.6 Examples of Applications

Causality and feature selection as described in this chapter have been used
to achieve various objectives in different areas such as bio-informatics, econo-
metrics, and engineering. We present below one example from each of these
fields that illustrates the use of causal and feature techniques in practice.

With the advent of the DNA microarrays technology [24], biologists have
collected the expression of thousands of genes under several conditions. Xing
et al. were among the first to use a Markov blanket discovery algorithm for
feature selection [29] in DNA microarray data, to diagnose disease (two kinds
of leukemia). Friedman and colleagues [7] applied a causal discovery tech-
nique on microarray data to build a causal network representing the potential
dependencies between the regulations of the genes. If the expression level of
one gene causes the up or down regulation of another gene, an edge should
link them. A simple feature selection technique based on correlation is first
applied to select a set of potential causes for each gene. A causal discovery
method is then run on the reduced set of potential causes to refine the causal
structure. More recently, the Markov blanket discovery algorithm HITON [3]
has been applied with success to clinical, genomic, structural, and proteomic

© 2008 by Taylor & Francis Group, LLC

Causal Feature Selection 81

data, and mining the medical literature, achieving significantly better reduc-
tion in feature set size without classification degradation compared to a wide
range of alternative feature selection methods. Other applications include un-
derstanding physician decisions and guideline compliance in the diagnosis of
melanomas, discovering biomarkers in human cancer data using microarrays
and mass spectrometry, and selecting features in the domain of early graft fail-
ure in patients with liver transplantations (see [2] for reports and comparisons
with other methods).

In biology and medicine, causal discovery aims at guiding scientific discov-
ery, but the causal relationships must then be validated by experiments. The
original problem, e.g., the infeasibility of an exhaustive experimental approach
to detect and model gene interactions, is addressed using causality by defin-
ing a limited number of experiments that should be sufficient to extract the
gene regulatory processes. This use of causality is in contrast with our second
example, economy and sociology, where experiments in a closed environment
are usually not possible, i.e., there is no possible laboratory validation before
using the treatment in real situations. Causality has been used by economists
for more than 40 years. Some years before artificial intelligence started to ad-
dress the topic, Clive Granger [9] defined a notion of temporal causality that
is still in use today. In 1921, Wright introduced Structure Equation Mod-
eling (SEM) [12, 13], a model widely known by sociologists and economists.
It is therefore singular to see that marketing research – a field close to econ-
omy and sociology – does not contain much work involving causality. The
defense of SEM by Pearl [22] might change the status, though, and causality
appears slowly as to be a subject of interest in marketing. From a practical
perspective, causality can be directly used to addresses one of the key ques-
tions that marketers ask: how to assess the impact of promotions on sales?
It is known that many potential factors come into play when computing the
effect of promotions: weather, word of mouth, availability, special days (e.g.,
Valentine’s Day), etc. Understanding how these factors influence the sales is
interesting from a theoretical point of view but is not the primary objective:
What practically matters is what to do next, that is, what will be the effect
of promotions versus no promotions next month. This is typically a problem
of causal discovery and parameter estimation. Finding the causal link is not
enough. It is necessary to know whether the promotion will have a positive
effect and how positive it will be in order to compute the expected profit.
A promotion that has a small positive effect but costs a lot to implement
might not be worth launching. Extracting the true causal structure is also
less critical than estimating P (sales|do(promotions)).

Failure diagnosis is the last application we shall consider. In diagnosing a
failure, engineers are interested in detecting the cause of defect as early as
possible to save cost and to reduce the duration of service breach. Bayesian
networks and their diagnostic capabilities, which are of particular relevance
when the links are causal, have been used to quickly perform a root cause
analysis and to design a series of tests minimizing the overall cost of diag-

© 2008 by Taylor & Francis Group, LLC

82 Computational Methods of Feature Selection

nosis and repair. Kraaijeveld et al. [17] present an approach that relies on
a user-defined causal structure to infer the most probable causes based on a
description of the symptoms.

These three applications show that causality techniques can be used in
different settings with different requirements.

4.7 Summary, Conclusions, and Open Problems

Feature selection focuses on uncovering subsets of variables X1, X2, ... pre-
dictive of a target Y . In light of causal relationships, the notion of variable
relevance can be refined. In particular, causes are better targets of action of
external agents than effects: If Xi is a cause of Y , manipulating it will have an
effect on Y , not if Xi is a consequence (or effect). In the language of Bayesian
networks, direct causes (parents), direct effects (children), and other direct
causes of the direct effects (spouses) are all members of the Markov blanket.
The members of the Markov blanket are strongly relevant in the Kohavi-John
sense, for faithful distributions. Direct causes are strongly causally relevant.
Spouses are not individually relevant, but both parents and children are, in
faithful distributions. Both causes and consequences of Y are predictive of Y ,
but consequences can sometimes be “explained away” by other causes of the
consequences of Y . So the full predictive power of children cannot be har-
vested without the help of spouses. Causes and consequences have different
predictive powers when the data distribution changes between training and
utilization time, depending on the type of change. In particular, causal fea-
tures should be more predictive than consequential features, if new unknown
“noise” is added to the variables X1, X2, ... (the co-variate shift problem).
If new unknown noise is added to Y , however, consequential variables are a
better choice. Unknown features, including possible artifacts or confounders,
may cause the whole scaffold of causal feature discovery to fall apart if their
possible existence is ignored. Causal feature selection methods can assist the
design of new experiments to disambiguate feature relevance.

Connecting feature selection and causality opens many avenues of interest-
ing future research, including:

1. Characterizing theoretically and/or empirically existing and novel fea-
ture selection methods in terms of causal validity

2. Developing appropriate metrics, research designs, benchmarks, etc., to
empirically study the performance and pros and cons of causal vs. non-
causal feature selection methods

3. Studying the concept of relevancy and its relationship with causality
beyond faithful distributions and beyond Kohavi-John relevancy

4. Improving computational performance and accuracy of causal feature
selection methods for large dimensional problems and small samples

© 2008 by Taylor & Francis Group, LLC

Causal Feature Selection 83

5. Developing a theory of the statistical complexity of learning causal re-
lationships

6. Developing powerful and versatile software environments for causally-
oriented feature selection

7. Examining the validity of and relaxing assumptions motivated by ef-
ficiency or convenience (e.g., faithfulness, causal sufficiency, normality
of distributions, linearity of relationships) when applied to real-world
feature selection situations.

The interested reader is encouraged to pursue his reading, starting perhaps
with [8, 22, 25, 21, 15].

Acknowledgments

We are grateful to Alexander Statnikov, Philippe Leray, and the reviewers
for their helpful comments. Part of this work was initiated while Isabelle
Guyon was visiting Prof. Joachim Buhmann at ETH Zürich. His support
is gratefully acknowledged. Constantin Aliferis acknowledges support from
grants 1R01 LM007948-01, 1U01 HL081332-01, and 1 U24 CA126479-01.

References

[1] Special issue on relevance. Artificial Intelligence, 97(1-2), Dec. 1997.

[2] Dicovery systems laboratory bibliography, 2007, http://discover.mc.
vanderbilt.edu/discover/public/publications.html.

[3] C. F. Aliferis, I. Tsamardinos, and A. Statnikov. HITON, a novel Markov
blanket algorithm for optimal variable selection. In American Medical
Informatics Association (AMIA) Annual Symposium, pages 21–25, 2003.

[4] C. F. Aliferis, I. Tsamardinos, A. Statnikov, and L. Brown. Causal ex-
plorer: A probabilistic network learning toolkit for biomedical discov-
ery. In 2003 International Conference on Mathematics and Engineering
Techniques in Medicine and Biological Sciences (METMBS), Las Vegas,
Nevada, USA, June 23-26 2003, http://discover1.mc.vanderbilt.
edu/discover/public/causal_explorer/. CSREA Press.

[5] A. Blum and P. Langley. Selection of relevant features and examples in
machine learning. Artificial Intelligence, 97(1-2):245–271, Dec. 1997.

© 2008 by Taylor & Francis Group, LLC

http://discover.mc.vanderbilt.edu
http://discover1.mc.vanderbilt.edu
http://discover.mc.vanderbilt.edu
http://discover1.mc.vanderbilt.edu

84 Computational Methods of Feature Selection

[6] G. Cooper and E. Herskovits. A Bayesian method for the induction of
probabilistic networks from data. Mach. Learning, 9(4):309–347, 1992.

[7] N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using bayesian net-
works to analyze expression data. In RECOMB, pages 127–135, 2000.

[8] C. Glymour and G. C. Editors. Computation, Causation, and Discovery.
AAAI Press/The MIT Press, Menlo Park, CA; Cambridge, MA; London,
England, 1999.

[9] C. Granger. Investigating causal relations by econometric models and
cross-spectral methods. Econometrica, 37:424–438, 1969.

[10] I. Guyon, C. Aliferis, and A. Elisseeff. Causal feature selection. Technical
report, Berkeley, CA, March 2007, http://clopinet.com/isabelle/
Papers/causalFS.pdf.

[11] I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, Editors. Feature Ex-
traction, Foundations and Applications. Studies in Fuzziness and Soft
Computing. Physica-Verlag, Springer, Heidelberg, 2006.

[12] D. Kaplan. Structural Equation Modeling: Foundations and Extensions,
volume 10 of Advanced Quantitative Techniques in the Social Sciences
series. Sage, 2000.

[13] R. B. Kline. Principles and Practice of Structural Equation Modeling.
The Guilford Press, 2005.

[14] R. Kohavi and G. John. Wrappers for feature selection. Artificial Intel-
ligence, 97(1-2):273–324, December 1997.

[15] D. Koller and N. Friedman. Structured Probabilistic Models: Principles
and Techniques. MIT Press, Cambridge, MA, 2007, to appear.

[16] D. Koller and M. Sahami. Toward optimal feature selection. In 13th In-
ternational Conference on Machine Learning, pages 284–292, July 1996.

[17] P. C. Kraaijeveld and M. J. Druzdzel. Genierate: An interactive genera-
tor of diagnostic bayesian network models. In 16th International Work-
shop on Principles of Diagnosis, Monterey, CA, 2005.

[18] H. Liu and H. Motoda. Feature Extraction, Construction and Selection:
A Data Mining Perspective. Kluwer Academic, 1998.

[19] D. Margaritis and S. Thrun. Bayesian network induction via local neigh-
borhoods. Technical Report CMU-CS-99-134, Carnegie Mellon Univer-
sity, August 1999.

[20] K. Murphy. Active learning of causal bayes net structure, 2001.

[21] R. E. Neapolitan. Learning Bayesian Networks. Prentice Hall series in
Artificial Intelligence. Prentice Hall, Eaglewood Cliffs, NJ, 2003.

© 2008 by Taylor & Francis Group, LLC

http://clopinet.com
http://clopinet.com

Causal Feature Selection 85

[22] J. Pearl. Causality: Models, Reasoning and Inference. Cambridge Uni-
versity Press, Cambridge, UK, March 2000.

[23] D. Rubin. Estimating causal effects of treatments in randomized and
nonrandomized studies. Journal of Educational Psychology, 66(5):688–
701, 1974.

[24] M. Schena, D. Shalon, R. W. Davis, and P. O. Brown. Quantitative moni-
toring of gene expression patterns with a complementary dna microarray.
Science, 270(5235):467–470, October 1995.

[25] P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and
Search. MIT Press, Cambridge, MA, 2000.

[26] X. Sun, D. Janzing, and B. Schölkopf. Causal inference by choosing
graphs with most plausible Markov kernels. In Ninth International Sym-
posium on Artificial Intelligence and Mathematics, 2006.

[27] I. Tsamardinos and C. Aliferis. Towards principled feature selection:
Relevance, filters, and wrappers. In Ninth International Workshop on
Artificial Intelligence and Statistics, Florida, USA, January 2003.

[28] A. C. Tsamardinos I, Brown LE. The max-min hill-climbing bayesian net-
work structure learning algorithm. Machine Learning, 651:31–78, 2006.

[29] E. P. Xing, M. I. Jordan, and R. M. Karp. Feature selection for high-
dimensional genomic microarray data. In Proc. 18th International Conf.
on Machine Learning, pages 601–608. Morgan Kaufmann, San Francisco,
CA, 2001.

© 2008 by Taylor & Francis Group, LLC

Part II

Extending Feature
Selection

87

© 2008 by Taylor & Francis Group, LLC

Chapter 5

Active Learning of Feature
Relevance

Emanuele Olivetti

SRA Division, ITC-IRST

Sriharsha Veeramachaneni

SRA Division, ITC-IRST

Paolo Avesani

SRA Division, ITC-IRST

5.1 Introduction . 89
5.2 Active Sampling for Feature Relevance Estimation . 92
5.3 Derivation of the Sampling Benefit Function . 93
5.4 Implementation of the Active Sampling Algorithm . 95
5.5 Experiments . 99
5.6 Conclusions and Future Work . 102

References . 105

5.1 Introduction

This chapter deals with active feature value acquisition for feature relevance
estimation in domains where feature values are expensive to measure. The
following two examples motivate our work.

Example 1: Molecular reagents called biomarkers are studied for cancer
characterization by testing them on biological (e.g., tissue) samples from pa-
tients who have been monitored for several years and labeled according to
their cancer relapse and survival status. New biomarkers are tested on these
biological samples with the goal of obtaining a subset of biomarkers that char-
acterize the disease. In addition to the relapse and survival information, for
each patient, information such as grade of the disease, tumor dimensions, and
lymphonode status is also available. That is, the samples are class labeled as
well as described by some existing features. The goal is to choose the best
subset of new features (biomarkers) among many that are most informative
about the class label given the existing features. Since each time a biomarker
is tested on a biological sample the sample cannot be used for testing other

89

© 2008 by Taylor & Francis Group, LLC

90 Computational Methods of Feature Selection

biomarkers, it is desirable to evaluate the biomarkers by testing them on as
few samples as possible. Once some of the biomarkers are determined to be
informative, they can be tested on all the samples. A detailed description of
this problem is presented in [20, 8, 12].

Example 2: In the agricultural domain, biologists study the symptoms of a
certain disease by monitoring a controlled collection of trees affected by the
disease. A data archive is arranged with each record describing a single tree.
All the records are labeled as infected or not infected. The biologists then pro-
pose candidate features (e.g., color of leaves, altitude of the tree, new chemical
tests, etc.) that could be extracted (or measured) to populate the archive, so
as to ultimately arrive at a set of most predictive symptoms. Since the data
collection on the field is usually very expensive or time consuming, there is
a need for a data acquisition plan that is aimed at accurately estimating the
relevance of the candidate features, so that only the most relevant features
may be extracted on all trees.

The above two examples demonstrate the need for a data acquisition proce-
dure with the goal of accurate feature relevance estimation. Data acquisition
has traditionally been studied in machine learning under the topic of active
learning. Our formulation of the active learning problem differs from the
traditional setting of active learning where the class labels of unlabeled ex-
amples are queried [3, 17, 19]. Differently from most previous work in active
learning, we consider a situation where class-labeled instances or subjects are
monitored. A set of potentially informative features are proposed by experts
in order to learn a predictive model. It is conceivable that some of these can-

1 0 2 0 1

C X 1 X 2 X 3 X 4

1

2

3

4

5

0

0

1

1

1 1

2 0

0

0 01 ?
??

? ??
? ?

= 1x23

Top Expected Benefit:

B(2,3) = 0.015016

= argmax(B(i,j))x23

Stopping
Criterion

Estimate
Feature Relevances

g = 0.28154

g = 0.06273

g = 0.53282

g1 = 0.4712

Feature Relevances:

Query Actual
Value

Select Top
Benefit

1 0 2 0 1

C X 1 X 2 X 3 X 4

1

2

3

4

5

0

0

1

1

1 1

2 0

0

0 01 ?
??

? ??
? ?

...
..

...
..

B(1,2) = 0.008512

B(1,3) = 0.002779

B(2,3) = 0.015016

B(3,4) = 0.004431

B(3,1) = 0.009774

...
..

Expected Benefits:

Exit

Fill dataset

Estimate Expected Benefits

FIGURE 5.1: Active sampling process for feature relevance estimation. The en-
tries shown in gray in the dataset in the top left corner indicate the ones that are
missing at a particular instance. The bottom right-hand corner shows the process of
computing the benefit of sampling at a particular missing value. The missing value
with the highest benefit is chosen and actually sampled.

© 2008 by Taylor & Francis Group, LLC

Active Learning of Feature Relevance 91

didate features are useless or redundant. Moreover, the measurement of the
features on all the instances may be costly. It is therefore necessary to evaluate
the efficacy (or relevance) of a new candidate feature by measuring it on a
subsample of the instances to permit discarding useless features inexpensively.

As opposed to random subsampling, we propose to choose this subsample
actively, that is, to choose the subsample that is likely to provide the best
estimate of the relevance of the feature to the class. The active sampling
strategy is to iteratively choose the most informative missing value to fill
given all the previous data. When the budget for the data acquisition has
been exhausted, the estimate of the feature relevances can then be used for
feature selection. The selected features are then measured on all the instances
and the resulting database is used to generate the model. The overall savings
in cost comes from discarding irrelevant features without having measured
them on all instances. The process is illustrated in Figure 5.1.

Although our final goal is feature selection, we do not review the extensive
previous work in this area [1, 9] because we are mainly concerned with feature
value acquisition. We would, however, like to mention that research in feature
selection distinguishes between the so-called wrapper and filter approaches,
depending upon whether or not the feature selection is explicitly based upon
the accuracy of the final classifier [11]. Our active feature sampling algorithm
that interleaves feature value acquisition and feature relevance estimation is
independent of the final classifier that might be used and therefore is a filter
method.

There has been previous work in active feature value acquisition for classifier
induction [13, 22, 14] or testing [18] where the goal is to minimize the number
of feature values acquired to learn and deploy a classifier on the entire feature
set. This approach is inappropriate in some domains such as medical and
agricultural, because the entire set of feature values is expensive to obtain
not just on the training examples but also on the test instances (i.e., after the
classifier is deployed). We have recently shown that active sampling heuristics
developed for classifier induction perform poorly when the goal is feature
relevance estimation [21].

Although the general theory of active learning derives from the theory of
optimal experimentation [5, 16], its application to problems in learning raises
practical issues such as finding good approximations to the theory, dealing
with missing values, and learning with sampling bias (which is a side effect of
active sampling).

In Section 5.2 we present the task of active sampling for feature relevance
estimation and present the active sampling algorithm in abstract terms. In
Section 5.3 we derive a sampling benefit function from a statistical formula-
tion of the problem. Our specific implementation of the proposed method is
presented in Section 5.4, where all necessary derivations and choices are de-
scribed. In Section 5.5 we show the results of our experiments with discussion.
Conclusions and future work are presented in Section 5.6.

© 2008 by Taylor & Francis Group, LLC

92 Computational Methods of Feature Selection

5.2 Active Sampling for Feature Relevance Estimation

Let us consider a dataset D = {di}i=1,...,N of a finite number of records, each
corresponding to a pattern instance (or a subject). Let the random variable
corresponding to the class label be denoted by c taking values in C. The
random vector x = (x1, . . . ,xF) corresponds to F features (or attributes)
that can be extracted on any instance, taking on values in X1 × . . . × XF .
Each record comprises a class value and feature values: di = (c,x1, . . . ,xF).
Initially the class labels are known for every instance in D. However, all of
the feature values are missing for every instance.1 The goal is to incrementally
select a specified number of missing values to fill so as to estimate the relevance
of all the features most accurately. For now we leave the definitions of the
terms ”feature relevance” and ”most accurately” unspecified.

Our proposed incremental feature value acquisition process is illustrated in
general terms in Figure 5.1. At any stage of the process the dataset has some
feature values missing, as indicated in the figure. We estimate the vector ĝ of
feature relevances according to which the features may be ranked. For each
missing entry we can calculate the benefit of acquiring the value of that entry.
We then choose the entry with the maximum benefit and actually acquire its
value, which is entered into the dataset.2 We perform this process iteratively
until some stopping criterion has been met. The core step of the process,
where one missing value is acquired, is described in Algorithm 5.2.1.

Algorithm 5.2.1: AcquireOneMissingValue(Dk)

ĝ(Dk) = EstimateRelevances(Dk)
for each (i, f) such that record i has feature value f missing

B[i, f]← 0 comment: Initialize the value of the benefit to zero

for each x ∈ Xf

Dtemp = Dk.F illV alue(xif = x)
ĝ(DTemp) = EstimateRelevances(DTemp)
B[i, f] = B[i, f] + ComputeBenefit(ĝ(Dtemp), ĝ(Dk))

end
end
comment: Now find the missing entry with the highest benefit

(i∗, f∗) = argmax
i,f

(B[i, f])

comment: Now query the value for the missing entry

x∗ = SampleMissingV alue(i∗, f∗)
comment: Fill the missing value

Dk+1 = Dk.F illV alue(xi∗f∗ = x∗)
return (Dk+1)

© 2008 by Taylor & Francis Group, LLC

Active Learning of Feature Relevance 93

The benefit of acquiring the value of a missing entry is the amount of
information such an acquisition provides about the feature relevances. We
will derive the benefit function in Section 5.3. The stopping criterion will be
problem dependent and may involve factors such as the total cost of feature
value acquisition, the change in the feature relevances, or confidence in the
feature relevance estimates.

5.3 Derivation of the Sampling Benefit Function

We will now derive our active sampling algorithm in more abstract terms.
Consider the dataset D as described above. Let the probability distribu-
tion over C × X1 × . . . × XF be parametrized by θ ∈ Θ. It is required
to estimate a vector valued function of the distribution parameter vector θ
g(θ) = (g1(θ), . . .) accurately under a sum-of-squared-error loss function by
filling as few missing values of D as possible.

After k sampling steps, the dataset is partially filled and the remaining
values are missing. The current dataset is denoted Dk. The Bayes minimum
mean square error (MMSE) estimate of g given Dk is given by ĝ(Dk) =
E[g|Dk]. The current mean squared error is given by

MSEk =
F∑

j=1

∫

Gj

(E[gj |Dk]− gj)2p(gj|Dk)dgj (5.1)

Currently for an instance i we have the class label ci available and perhaps
also some subset of the feature values obs(i) (observed values for instance i).
Let mis(i) be the subset of features values currently missing for instance i, and
xf be a particular feature whose value is missing for instance i. If we assume
that for the (k + 1)th sampling step this missing feature value is measured
and a value of x was obtained, then the new dataset, denoted (Dk,xif = x),
has the value x for the feature f for instance i. The new mean squared error
would be

F∑

j=1

∫

Gj

(E[gj |Dk,xif = x]− gj)2p(gi|Dk,xif = x)dgj

Since we do not know in advance what value would be obtained if we did
sample at xif , we need to average the above quantity over all the possi-
ble outcomes, so as to estimate the predicted mean square error (denoted

ˆMSE(i, f)k+1) if we sampled the missing value for the feature f , for instance
i. That is,

© 2008 by Taylor & Francis Group, LLC

94 Computational Methods of Feature Selection

ˆMSE(i, f)k+1 =
F∑

j=1

∫

Xf

∫

Gj

(E[gj |Dk,xif = x]− gj)2p(gj |Dk,xif = x)

p(xif = x|Dk)

=
F∑

j=1

∫

Xf

∫

Gj

(E[gj |Dk,xif = x]− gj)2p(gj ,xif = x|Dk)

(5.2)

Now the best missing value (i, f) to measure is the one that yields the
lowest predicted mean squared error ˆMSE(i, f)k+1. This criterion is akin to
Bayesian A-optimality in experiment design [2].

Adding and subtracting E[gj |Dk] inside the squared term in Equation 5.2,
we obtain

ˆMSE(i, f)k+1 =
F∑

j=1

∫

Xf

∫

Gj

(E[gj |Dk,xif = x]− E[gj |Dk])2p(gj,xif = x|Dk)

+ 2
F∑

j=1

∫

Xf

∫

Gj

(E[gj |Dk,xif = x]− E[gj |Dk]) . . .

. . . (E[gj |Dk]− gj)p(gj,xif = x|Dk)

+
F∑

j=1

∫

Xf

∫

Gj

(E[gj |Dk]− gj)2p(gj,xif = x|Dk)

Since p(gj ,xif = x|Dk) = p(xif = x|Dk)p(gj |Dk,xif = x) and both
E[gj |Dk] and E[gj |Dk,xif = x] are functionally independent of gj, it can
be shown that the second summand is −2 times the first summand. Fur-
thermore, the third summand is functionally independent of (i, f) since x
integrates out (by interchanging the order of integration). Therefore, we have

ˆMSE(i, f)k+1 = A−
∫

Xf

F∑

j=1

(E[gj |Dk,xif = x]− E[gj |Dk])2p(xif = x|Dk)

where A is independent of i and f . That is, in order to minimize the predicted
mean squared error if the missing value at (i, f) is measured, it is sufficient
to maximize the sum of the squared differences between the Bayes estimates
of g before and and after the value at (i, f) is measured, averaged over the
possible outcomes.

Therefore, to minimize the predicted mean squared error, the objective
function to be maximized is

B(i, f) =
∫

Xf

F∑

j=1

(E[gj |Dk,xif = x]− E[gj |Dk])2p(xif = x|Dk) (5.3)

© 2008 by Taylor & Francis Group, LLC

Active Learning of Feature Relevance 95

Our active sampling method based on this benefit criterion is called the Max-
imum Average Change (MAC) sampling algorithm.

For the purposes of feature relevance estimations, the function g we wish
to estimate is the vector of feature relevances, i.e., g = (g1, . . . ,gF), where gj

is the relevance of the jth feature. Since we need to know the prior on g to
compute the Bayes MMSE estimate, we approximate the objective function
in Equation 5.3 by

B(i, f) =
∫

Xf

F∑

j=1

(ĝj(Dk,xif = x)− ĝj(Dk))2p(xif = x|Dk) (5.4)

where ĝj(Dk) is any reasonable estimate of gj from dataset Dk.

5.4 Implementation of the Active Sampling Algorithm

Algorithm 5.2.1 for active feature value acquisition is general and can be
used with any measure for feature relevance for which the squared-error loss
is reasonable. That is, the choice for the function EstimateRelevances(D) in
the pseudocode can be any estimate of feature relevance that can be estimated
from a dataset with missing values.

In addition, the implementation of the benefit criteria introduced above
also requires the computation of the conditional probabilities p(xif = x|Dk).

Although our active sampling algorithm is quite general, we implemented
it for a particular choice of the model for data generation (i.e., the joint class-
and-feature distribution), which we present below. We then explain how the
conditional probabilities and feature relevances can be computed given the
joint distribution.

Our model is applicable for problems with categorical valued features. That
is, we assume that every feature xf takes on a discrete set of values Xf =
{1, . . . , Vf}.

5.4.1 Data Generation Model: Class-Conditional Mixture of
Product Distributions

We assume that each class-conditional feature distribution is a mixture of
M product distributions over the features. (Although for our implementation
it is not necessary that the number of components is constant across classes,
we make this assumption for simplicity.) That is, the class-conditional feature
distribution for class c ∈ C is

P (x1 = x1, . . . ,xF = xF |c) =
M∑

m=1

αcm

F∏

f=1

Vf∏

x=1

θ
δ(x,xf)
cmfx (5.5)

© 2008 by Taylor & Francis Group, LLC

96 Computational Methods of Feature Selection

where αcm is the mixture weight of component m for class c, θcmfx is the
probability that the feature f takes on the value x for component m and class
c, and δ(.) is the Kronecker delta function. Note that if M = 1, our model is
equivalent to the Näıve Bayes model.

Therefore, the full class-and-feature joint distribution can be written as

P (c = c,x1 = x1, . . . ,xF = x) =
∑

c∈C
p(c = c)

M∑

m=1

αcm

F∏

f=1

Vf∏

x=1

θ
δ(x,xf)
cmfx (5.6)

where p(c = c) is class probability. The class-and-feature joint distribution is
completely specified by the parameters αs, θs, and the class probabilities.

Before we describe how the α and θ parameters can be estimated from a
dataset with missing values, we will explain how feature relevances and the
conditional probability p(xif = x|Dk) are calculated if the parameters are
known.

5.4.2 Calculation of Feature Relevances

We use the mutual information between a feature and the class variable as
our measure of the relevance of that feature. That is,

gf = I(xf ; c) = H(xf)−H(xf |c) (5.7)

Although we are aware of the shortcomings of mutual information as a fea-
ture relevance measure, especially for problems where there are inter-feature
correlations, we chose it because it is easy to interpret and to compute given
the joint class-and-feature distribution. We did not use approaches such as
Relief [10] and SIMBA [7], which provide feature weights (that can be in-
terpreted as relevances), because they do not easily generalize to data with
missing values.

The entropies in Equation 5.7 can be computed as follows:

H(xf) = −
C∑

c=1

Vf∑

x=1

p(c,xf = x) log(p(c,xf = x)) (5.8)

H(xf |c) = −
C∑

c=1

Vf∑

x=1

p(xf = x|c) log(p(xf = x|c))p(c) (5.9)

If the α and θ parameters and p(c) of the model are known, the mutual
information can be computed as follows:

H(xf) = −
Vf∑

x=1

(
C∑

c=1

p(c)
M∑

m=1

αcmθcmfx

)

log

(
C∑

c=1

p(c)
M∑

m=1

αcmθcmfx

)

(5.10)

© 2008 by Taylor & Francis Group, LLC

Active Learning of Feature Relevance 97

H(xf |c) = −
C∑

c=1

p(c)
Vf∑

x=1

(
M∑

m=1

αcmθcmfx

)

log

(
M∑

m=1

αcmθcmfx

)

(5.11)

5.4.3 Calculation of Conditional Probabilities

Since the instances in the dataset D are assumed to be drawn independently,
we have

p(xif = x|Dk) = p(xif = x|xobs(i) = xobs(i), ci)

=
p(xif = x,xobs(i) = xobs(i)|ci)

p(xobs(i) = xobs(i)|ci)
(5.12)

where, as before, xobs(i) are features that are observed for instance i that take
on values xobs(i), and ci is the class label for instance i.

Therefore, the conditional probability in Equation 5.12 can be written in
terms of the parameters of the joint distribution as

p(xif = x|Dk) =

∑M
m αcimθcimfx

∏
φ∈obs(i) θcimφxiφ

∑M
m αcim

∏
φ∈obs(i) θcimφxiφ

(5.13)

5.4.4 Parameter Estimation

Since after each sampling step we only have a dataset with missing values
and not the parameters αs, θs, and p(c) that describe our model, they need
to be estimated from the data. Once we have the estimates, the conditional
probabilities and feature relevances can be computed by using the estimates
in place of the parameters in Equations 5.13, 5.10, and 5.11. We will now
describe how these parameters are estimated.

Estimation of p(c) : Since class labels of all the records in the dataset are avail-
able, the estimates of the class probabilities are obtained from the (Laplace
smoothed) relative frequencies of the classes in the dataset.

Estimation of αs and θs : We need to estimate the parameters of the class-
conditional mixture distribution for all classes. Since we have class labeled
instances, we can perform the estimation separately for each class, considering
only the data from that particular class. We therefore suppress the subscript
c for the parameters corresponding to the class variable in the following equa-
tions.

Let Dc be the part of the dataset corresponding to class c. The data
likelihood is given by

© 2008 by Taylor & Francis Group, LLC

98 Computational Methods of Feature Selection

l(Dc; θ) =
N∑

i=1

log
M∑

m=1

p(xi|αm, θm)p(αm) (5.14)

The maximum-likelihood estimates of the parameters are the values that
maximize the above likelihood function. One approach to perform the above
maximization is the Expectation-Maximization (EM) algorithm [4] that iter-
ates the following two steps :

E-step: Q(θ|θt) = E[lc(Dc, Z, θ)|Dc, θ
t]

M-step: θt+1 = argmax
θ

Q(θ|θt)

where lc is the log-likelihood of an associated complete problem where each
record in Dc is generated by a component of the mixture specified indicated
by Z = {zi}Ni=1, zi = (z1, . . . , zM) and zij = 1 iff instance i is generated by
component j.

When the dataset Dc has no missing values the EM update equation for θs
can be shown to be

θt+1
mfx =

∑N
i=1 δ(x, xif)him
∑N

i=1 him

(5.15)

αt+1
m =

1
N

N∑

i=1

him (5.16)

where

him = E[zim = 1|xi, θ
t] =

αm

∏F
f=1 θt

mjxif
∑M

m=1 αm

∏F
f=1 θt

mjxif

(5.17)

Since for our problem there are missing values, we can derive the EM update
equation as described in [6] to obtain

θt+1
mfx =

∑N
i=1 hobs

im (θt
mfxIsMissing(i, f) + δ(x, xif)(1 − IsMissing(i, f))

∑N
i=1 hobs

im
(5.18)

αt+1
m =

1
N

N∑

i=1

hobs
im (5.19)

where

hobs
im = E[zim|xobs(i)] =

αm

∏
j∈obs(i) θt

mjxij

∑M
m=1 αm

∏
j∈obs(i) θt

mjxij

(5.20)

and where IsMissing(i, f) takes on the value one or zero depending upon
whether or not the feature f for record i is missing.

Note that in the actual implementation of Equation 5.18 we perform Laplace
smoothing to reduce estimation variance.

© 2008 by Taylor & Francis Group, LLC

Active Learning of Feature Relevance 99

5.5 Experiments

We conducted experiments on synthetic data and on datasets from the UCI
repository [15]. For a particular dataset, the experimental setup is as follows.
We start with the assumption that the class labels for all the samples are
initially known and all of the feature values are missing. At each sampling
step a single missing entry in the dataset is selected by the sampling policy
and the actual value in the dataset is disclosed. The experiment ends when all
entries of the dataset are sampled and all the original feature values are fully
disclosed. After each sample is disclosed, we estimate the feature relevances
from all the data that are currently available, which are compared to the
“true” feature relevance values (the feature relevances estimated from the
entire dataset). The comparison measure is the average sum-of-squared errors,
which is plotted as a function of the number of missing entries filled thus
far. The average is computed over 100 sampling runs to reduce fluctuations
introduced by the random selection of entries in the case of multiple equivalent
choices occurring at certain steps. The plots show the comparison of our active
sampling algorithm to the random sampling algorithm.3

Although the models we presented are general, we only experimented with
mixture distributions (cf. Section 5.4.1) of only one component per class (i.e.,
a Näıve Bayes model). We did not perform experiments with a higher num-
ber of components because of estimation problems during the initial sampling
steps and also because of computational issues. In the future we intend to de-
velop methods to adjust the number of components depending on the amount
of data available at any sampling step.

5.5.1 Synthetic Data

We now describe how the synthetic dataset was generated. We created a
dataset of size N = 200 samples with binary class labels and three binary
features with exactly 100 records per class (i.e., p(c = 0) = p(c = 1) = 0.5).
The features are mutually class-conditionally independent and with different
relevances to the class labels.

The feature values are generated randomly according to the following scheme.
For feature Fi we generate the feature values according to the probability
p(Fi = 0|c = 0) = p(Fi = 1|c = 1) = pi. Clearly, if pi is closer to 0 or 1,
the feature is more relevant for classification than if pi is closer to 0.5. For
our three features we chose p1 = 0.9, p2 = 0.7, and p3 = 0.5, meaning that
the first feature is highly relevant and the third is completely irrelevant for
classification. The true feature relevances (mutual information values) are
r1 = 0.37, r2 = 0.08, and r3 = 0, respectively.

Since by construction there is no inter-feature dependence given the class,
we conducted experiments using a product distribution for each class (i.e.,

© 2008 by Taylor & Francis Group, LLC

100 Computational Methods of Feature Selection

a mixture of just one component). The average squared distance between
the estimated and the true feature relevances is plotted as function of the
number feature values sampled in Figure 5.2 for both the random and our
active sampling policies.4

The graph in Figure 5.2 shows that our proposed active scheme clearly
outperforms the random acquisition policy. For example, note that in order
to reduce the difference between the estimated and true relevances to a fourth
of the initial value (when all feature values are missing), the random policy
requires 45 samples instead of 30 by our active method.

In Figure 5.3 we show, separately, the estimates of each of the individual
feature relevances. In Figure 5.4 we show the average number of times each
feature is sampled as a function of the number of samples. We observe that
the frequency with which a feature is sampled is correlated to its relevance.
This is a desirable property because the least relevant features will eventually
be discarded and therefore sampling them would be wasteful.

0 20 40 60 80 100
Number of feature values sampled

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

rorre derauqs .gvA

random
active

FIGURE 5.2: Squared sum of the differences between estimated and true rele-
vances at each sampling step on artificial data for random and active policies.

5.5.2 UCI Datasets

We performed experiments on the Zoo, Solar Flares, Monks, and Cars
datasets from the UCI repository. These datasets present larger class label
spaces (from 2 to 6 classes) and an increased number of features (from 6 to 16).
Also, some of the features take on more values (from 2 to 6 values) than our

© 2008 by Taylor & Francis Group, LLC

Active Learning of Feature Relevance 101

0 100 200 300 400 500 600
Number of feature values sampled

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ecnavele
R

feature 1

feature 2

feature 3

random
active

FIGURE 5.3: Estimated relevances at each sampling step for every single feature
on artificial data. Random (dashed line) and active (solid-dotted line) policies are
compared. Since there are three features and 200 instances, the x axis goes to 600.

0 100 200 300 400 500 600
Number of feature values sampled

0

50

100

150

200

250

stnuo
C gnilp

maS

feature 1,2,3 - random
feature 1 - active
feature 2 - active
feature 3 - active

FIGURE 5.4: Average cumulative sampling counts at each sampling step for each
feature on artificial data. The more relevant features are sampled more frequently
than less relevant features in case of active policy. As a comparison, the random
policy samples features independently of their relevance.

© 2008 by Taylor & Francis Group, LLC

102 Computational Methods of Feature Selection

artificial datasets. Figure 5.5 shows the plots of the average sum-of-squared
errors between the estimated and “true” feature relevances as a function of
the number of samples acquired for both the active and the random sampling
schemes. The error values are normalized such that at step 0 (i.e, when none
of the missing entries has been filled) the error is 1.0.

Figure 5.5 illustrates the advantage of the active sampling policy over
the random scheme in reducing the number of feature samples necessary for
achieving comparable accuracy. We note that in order to reduce the estima-
tion error of feature relevances to one fourth of the initial value, the number of
samples required is 25% - 75% lower for the active policy than for the random
policy. Again, we have observed in all datasets that most relevant features
are sampled more frequently than less relevant features.

5.5.3 Computational Complexity Issues

The computational complexity of our active sampling algorithm due to
the expensive EM estimation (which is repeated for every missing entry and
every possible feature value) limits its applicability to large datasets. One
way we reduced the computational expense was to memoize the calculation
of the benefit function for equivalent entries (i.e., entries having the same
non-missing feature values, thus having the same benefit value). Another
strategy to reduce computation is to perform sub-optimal active sampling by
considering only a random subset of the missing entries at each time step. This
latter strategy can be used to trade off sampling cost versus computational
cost.

In Figure 5.6 (upper panel) the active and random policies are shown to-
gether with the active policy that considers 0.1% and 1% of the missing entries
(randomly selected) at each sampling step; results are based on the artificial
dataset described in Section 5.5.1. We observe that the dominance of ac-
tive policy compared to random increases monotonically with the subsample
size, but in general this increase is not uniform. A similar experiment was per-
formed on the Solar Flares dataset (see Figure 5.6, bottom panel) where active
and random policies are plotted together with the active policy that considers
0.05%, 0.25%, and 1% of the missing entries (randomly selected). Again we
observe that performing active policy considering a random subportion of the
dataset (0.25% of the total number of missing entries at any instance) is an
effective strategy to obtain a reduction in the number of samples acquired at
a reduced computational cost.

5.6 Conclusions and Future Work

We have presented a general active feature sampling method for feature
relevance estimation in domains where the feature values are expensive to

© 2008 by Taylor & Francis Group, LLC

Active Learning of Feature Relevance 103

0 50 100 150 200 2500.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

random
active

0 50 100 150 200 2500.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

random
active

0 50 100 150 200 2500.0

0.2

0.4

0.6

0.8

1.0
random
active

0 50 100 150 200 250

Number of feature values sampled
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
random
active

Zoo

Monks

Solar Flares

Cars

rorre derauqs egarevA

FIGURE 5.5: The normalized difference between final relevances and estimated
relevances at each sampling step is plotted for random (dashed line) and active (solid
line) policies on four UCI datasets (Zoo, Monks, Solar Flares, Cars). The value at
step 0 (all feature values unknown) is normalized to 1.0 in all cases. For the Zoo
dataset, after measuring 100 feature values using a random policy, the normalized
difference in the estimated and true feature relevances is 0.5 as opposed to 0.3 for
active sampling.

© 2008 by Taylor & Francis Group, LLC

104 Computational Methods of Feature Selection

0 20 40 60 80 1000.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

rorre derauqs .gvA

random
active
active 0.1%
active 1%

0 50 100 150 200 250
Number of feature values sampled

0.0

0.2

0.4

0.6

0.8

1.0

rorre derauqs .gvA

random
active
active 0.05%
active 0.25%
active 1%

Artificial

Solar Flares

FIGURE 5.6: Average squared sum of the differences between estimated and
true relevances at each sampling step on artificial and UCI Solar Flares datasets.
Random and active policies are compared to the active policy that considers only a
small random subset of the missing entries at every sampling step.

© 2008 by Taylor & Francis Group, LLC

Active Learning of Feature Relevance 105

measure. At any stage, the feature sampling method evaluates the benefit
of sampling the value of every individual missing entry in the dataset and
selects the one with the highest benefit. The value of the selected entry is
then queried. We have derived a benefit function that attempts to minimize
the mean-squared error in the estimates of the feature relevances and showed
that the minimum mean-squared error criterion is equivalent to the maximum
average change criterion. Although we implemented the active sampling al-
gorithm for a class-conditional mixture of product distribution model and
mutual information, a measure of feature relevance, we argued that the ac-
tive sampling algorithm can be applied with other models and measures for
feature relevance. We experimentally demonstrated that the active sampling
algorithm can be applied to perform feature relevance estimation at a reduced
sampling cost over a random subsampling approach.

We intend to study the effect of an incorrect choice of number of components
for the mixture distribution. Since the final goal is to obtain a classifier with
high accuracy, we plan to investigate the advantage of active sampling over
random sampling for the accuracy of the final classifier built after feature
selection. Some other directions of future work are the online choice of number
of components for the mixtures and extending the algorithm for continuous
feature values (either by discretization or by developing models for continuous
data).

Notes

1 Even if some of the feature values are initially available, the methods described
below are still applicable.

2 If multiple entries have the same highest benefit, then the actual entry to
measure is selected randomly from the equivalent alternatives.

3 At each sampling step, then, random policy chooses one of the missing entries
uniformly at random.

4 In the case of the synthetic dateset, this difference never goes to zero since it
is computed with respect to the true relevances (i.e., the relevances computed
from the probabilities used to generate the data) rather than the estimated
relevances from the completely filled dataset.

References

[1] A. Blum and P. Langley. Selection of relevant features and examples in
machine learning. Artificial Intelligence, 97(1-2):245–271, 1997.

© 2008 by Taylor & Francis Group, LLC

106 Computational Methods of Feature Selection

[2] K. Chaloner and I. Verdinelli. Bayesian experimental design: A review.
Statistical Science, 10:273–304, 1995.

[3] D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning with
statistical models. In G. Tesauro, D. Touretzky, and T. Leen, editors,
Advances in Neural Information Processing Systems, volume 7, pages
705–712. MIT Press, Cambridge, MA, 1995.

[4] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
estimation from incomplete data via the em algorithm (with discussion).
Journal of the Royal Statistical Society Series B, 39:1–38, 1977.

[5] V. V. Fedorov. Theory of Optimal Experiments. Academic Press, New
York, 1972.

[6] Z. Ghahramani and M. I. Jordan. Supervised learning from incomplete
data via an EM approach. In J. D. Cowan, G. Tesauro, and J. Alspector,
editors, Advances in Neural Information Processing Systems, volume 6,
pages 120–127. Morgan Kaufmann Publishers, Inc., 1994.

[7] R. Gilad-Bachrach, A. Navot, and N. Tishby. Margin based feature se-
lection - theory and algorithms. In Proceedings of the Twenty-First In-
ternational Conference on Machine learning (ICML-04), page 43, New
York, NY, ACM Press, 2004.

[8] T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov,
H. Coller, M. Loh, J. Downing, M. Caligiuri, C. Bloomfield, and E. Lan-
der. Molecular classification of cancer: class discovery and class predic-
tion by gene expression monitoring. Science, 286(5439):531–537, 1999.

[9] G. H. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset
selection problem. In Proceedings of the Eleventh International Confer-
ence on Machine Learning (ICML-94), pages 121–129, 1994.

[10] K. Kira and L. A. Rendell. A practical approach to feature selection.
In Proceedings of the Ninth International Workshop on Machine Learn-
ing (ML-92), pages 249–256, San Francisco, CA, USA, 1992. Morgan
Kaufmann Publishers Inc.

[11] R. Kohavi and G. H. John. Wrappers for Feature Subset Selection. Ar-
tificial Intelligence, 97(1-2):273–324, 1997.

[12] J. Kononen, L. Bubendorf, A. Kallioniemi, M. Barlund, P. Schraml,
S. Leighton, J. Torhorst, M. Mihatsch, G. Seuter, and O. P. Kallion-
iemi. Tissue microarrays for high-throughput molecular profiling of tu-
mor specimens. Nature Medicine, 4(7):844–847, 1998.

[13] D. Lizotte, O. Madani, and R. Greiner. Budgeted learning of naive-bayes
classifiers. In Proceedings of the 19th Annual Conference on Uncertainty
in Artificial Intelligence (UAI-03), pages 378–385, 2003.

© 2008 by Taylor & Francis Group, LLC

Active Learning of Feature Relevance 107

[14] P. Melville, M. Saar-Tsechansky, F. Provost, and R. Mooney. Ac-
tive feature-value acquisition for classifier induction. In Proceedings of
the Fourth IEEE International Conference on Data Mining (ICDM’04),
pages 483–486, Washington, DC, IEEE Computer Society, New York,
2004.

[15] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repository
of machine learning databases, 1998.

[16] P. Sebastiani and H. P. Wynn. Maximum entropy sampling and optimal
Bayesian experimental design. Journal of Royal Statistical Society, pages
145–157, 2000.

[17] H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In
Proceedings of the Fifth Annual Workshop on Computational Learning
Theory (COLT-92), pages 287–294, 1992.

[18] V. S. Sheng and C. X. Ling. Feature value acquisition in testing: A
sequential batch test algorithm. In Proceedings of the 23rd International
Conference on Machine Learning (ICML-06), pages 809–816, New York,
NY, ACM Press, 2006.

[19] S. Tong and D. Koller. Support vector machine active learning with ap-
plications to text classification. In Proceedings of the Seventeenth Inter-
national Conference on Machine Learning (ICML-00), pages 999–1006,
2000.

[20] S. Veeramachaneni, F. Demichelis, E. Olivetti, and P. Avesani. Active
sampling for knowledge discovery from biomedical data. In Proceeding
of the 9th European Conference on Principles and Practice of Knowledge
Discovery in databeses (PKDD-05), pages 343–354, 2005.

[21] S. Veeramachaneni, E. Olivetti, and P. Avesani. Active sampling for
detecting irrelevant features. In Proceedings of the 23rd international
conference on Machine learning (ICML-06), pages 961–968, New York,
NY, ACM Press, 2006.

[22] Z. Zheng and B. Padmanabhan. On active learning for data acquisition.
In Proceedings of the International Conference on Datamining (ICDM-
02), pages 562–570, 2002.

© 2008 by Taylor & Francis Group, LLC

Chapter 6

A Study of Feature Extraction
Techniques Based on Decision
Border Estimate

Claudia Diamantini

Universitá Politecnica delle Marche

Domenico Potena

Universitá Politecnica delle Marche

6.1 Introduction . 109
6.2 Feature Extraction Based on Decision Boundary . 112
6.3 Generalities About Labeled Vector Quantizers . 115
6.4 Feature Extraction Based on Vector Quantizers . 116
6.5 Experiments . 122
6.6 Conclusions . 127

References . 127

6.1 Introduction

Feature extraction is the core of methodologies aimed at building new
and more expressive features from the existing ones. This representation
change typically allows one to enlighten characteristics of data that are not
immediately evident in the original space. As a consequence, performance can
be improved at the expenses of reduced interpretation capability by domain
experts.

Feature extraction can be considered as a mapping from the original space
to a lower dimensional feature space. The mapping can be carried out with
respect to different criteria. They can be roughly divided into data repre-
sentation and data discrimination criteria. In the former case, the goal is to
find the set of reduced features that best approximate the original data, so
the criteria are based on the minimization of a mean-squared error or dis-
tortion measure. One of the best-known methods based on this criterion is
the principal component analysis (PCA) or Karhunen-Loeve expansion [7],
which calculates eigenvalues and eigenvectors of the data covariance matrix,
and defines the mapping as an orthonormal transformation based on the set
of eigenvectors corresponding to the highest eigenvalues. The squared error

109

© 2008 by Taylor & Francis Group, LLC

110 Computational Methods of Feature Selection

of the transformation is simply the sum of the leftover eigenvalues. The PCA
is an optimum method for data compression and signal representation, how-
ever, it presents several limitations for discriminating between data belonging
to different classes. In particular, for data discrimination, criteria to evaluate
the effectiveness of features should be a measure of the class separability. For
this task, Bayes error probability is the best criterion to evaluate a feature
set. Unfortunately, Bayes error is unknown in general. A family of methods
that is frequently used in practice, but that is only indirectly related to Bayes
error, is called discriminant analysis (DA), based on a family of functions
of scatter matrices. In the simplest form, linear DA (LDA), also known as
canonical analysis (CA), considers a within-class scatter matrix for each class,
measuring the scatter of samples around the respective class mean, and the
between-class scatter matrix, measuring the scatter of class means around the
mixture mean, and finds a transformation that maximizes the between-class
scatter and minimizes the within-class scatter, so that the class separability
is maximized in the reduced dimensional space [7, 1]. Other approaches use
upper bounds of Bayes error, like the Bhattacharyya distance [2]. In [12] Lee
and Landgrebe introduced the principle that, in classification tasks, the rele-
vance of features can be measured on the basis of properties of the decision
border, the geometrical locus of points of the feature space separating one
class from the others.

Following this approach, some authors proposed the use of artificial neural
networks (ANNs) to estimate the unknown decision border. In early works
[8, 13], authors suggested the use of multi-layer perceptron, which is the most
widely used type of feedforward ANN, consisting of multiple layers of inter-
connected neurons. More recently, it was proposed to use ANNs targeted
to the accurate estimate of the optimal decision border [17, 4]. In particular,
[17] exploits support vector machines (SVMs), a class of powerful kernel-based
learning algorithms [16]. In [4] a truly bayesian approach to feature extrac-
tion for classification is introduced that is based on an appropriately trained
labeled vector quantizer (LVQ). We call the approach truly bayesian since
the LVQ is trained with the Bayes risk weighted vector quantization (BVQ)
learning algorithm, which is, to the best of our knowledge, the only learning
algorithm based on the minimization of the misclassification risk [3]. Under
this truly classification-based algorithm, an LVQ moves toward a locally opti-
mal linear approximation of the bayesian decision border. In this chapter we
present these approaches and compare them.

The rest of this section is devoted to the introduction of the basic no-
tions about statistical pattern classification. Section 6.2 presents the decision
boundary feature extraction (DBFE) principle in general and DBFE methods
based on MLP and SVM in particular. Then, in Section 6.3, we introduce
vector quantizers and the BVQ algorithm. The details of the BVQ-based
feature extraction (BVQFE) method are given in Section 6.4. Comparative
experiments are presented in Section 6.5. Finally, Section 6.6 ends the chap-
ter.

© 2008 by Taylor & Francis Group, LLC

Feature Extraction Techniques Based on Decision Border Estimate 111

6.1.1 Background on Statistical Pattern Classification

In statistical approaches to classification, data are described by a continuous
random vector X ∈ RN (feature vector) and classes by a discrete random
variable Y ∈ Y = {y1, y2, . . . , yC}. For each class yi, the distribution of
data in the feature space is described by the conditional probability density
function (cpdf) pX|Y (x|yi). The cumulative probability density function of
the random vector X is pX(x) =

∑C
i=1 PY (yi)pX|Y (x|yi), where PY (yi) is the

a-priori probability of class yi.
A classification rule is a mapping Ψ : RN → Y, which assigns a class label

to data on the basis of the observation of its feature vector. A classification
rule partitions the feature space in C decision regions D1, . . . , DC such that
Di = {x ∈ RN | Ψ(x) = yi}. The border separating decision regions is called
the decision border. Figure 6.1 presents a set of data drawn from two gaussian
classes (symbolized by ∗ and o); the straight line represents the decision border
of a rule that assigns all points at the left of it to the ∗ class, and those at the
right to the o class.

The predictive accuracy of a classification rule is evaluated by the average
error probability, err. In the two-class case, err takes the form:

err =
∫

D1

pY |X(y2|x)pX(x)dVx +
∫

D2

pY |X(y1|x)pX(x)dVx, (6.1)

where dVx denotes the differential volume in the x space, and pY |X(yi|x) is
the a-posteriori probability that can be derived from the cpdf by the Bayes
Theorem.

The classification rule that minimizes the average error probability (6.1) is
the Bayes rule: ΨB(x) = if pY |X(y1|x) > pY |X(y2|x) then y1 else y2.

The decision border related to ΨB(x) is the optimal decision border (or
Bayes decision border). Indeed, it is defined by the geometrical locus of points
such that hB(x) = 0, where hB(x) = pY |X(y1|x)− pY |X(y2|x). In general, for
any decision rule Ψ, there always exists a function h(x) such that h(x) = 0
is the decision border, so the decision rule takes the form: Ψ(x) = if h(x) >
0 then y1 else y2. For this reason h(x) is usually called the decision function.

Often, in practice, misclassifying y1 and y2 samples may have different
consequences. Hence it is appropriate to assign a cost to each situation as:
b(yi, yj) ≥ 0 is the cost of deciding in favor of class yj when the true class
is yi, with b(yi, yi) = 0 ∀i. In such a situation, the average error probability
generalizes to the average misclassification risk:

R(Ψ) = b(y2, y1)
∫

D1

pY |X(y2|x)pX(x)dVx + b(y1, y2)
∫

D2

pY |X(y1|x)pX(x)dVx

(6.2)

and Bayes rule becomes: ΨB(x) = if
pY |X(y1|x)
pY |X(y2|x)

>
b(y2, y1)
b(y1, y2)

then y1 else y2.

These equations can be easily generalized to the case of C classes. We refer
the interested readers to [7] for details.

© 2008 by Taylor & Francis Group, LLC

112 Computational Methods of Feature Selection

FIGURE 6.1: A two-class classification problem in a 2-dimensional space. α and
β represent the informative direction and the redundant direction, respectively.

The development of most of the learning algorithms and non-parametric
methods for classification try to overcome the limits of applicability of the
Bayes rule, related to the the fact that cpdfs are in general unknown. Thus,
one of the main efforts is that of obtaining cpdf estimates on the basis of a
set of samples drawn from the C classes called training sets, and hereafter
denoted by T S. However, it is recognized that accurate cpdf estimation does
not necessarily lead to good classification performance [6].

6.2 Feature Extraction Based on Decision Boundary

Decision boundary feature extraction (DBFE) is a discriminative approach
proposed by Lee and his co-authors [12]. The approach is based on the ge-
ometry of the Bayes decision border in order to predict the minimum number
of features needed to achieve the same classification accuracy as in the origi-
nal space. The DBFE algorithm is based on the idea that moving along the
direction of the decision border, the classification of each observation will re-
main unchanged (see Figure 6.1). Hence, the direction of the decision border
is redundant. In contrast, a normal vector to the decision border at a point
represents an informative direction and its effectiveness is proportional to the
area of decision border that has the same normal vector.

In [12], starting from the normal vectors to the decision border, the authors
define the effective decision boundary feature matrix (EDBFM) as

ΣEDBFM =
1∫

S′ p(x)dx

∫

S′
NT (x)N(x)p(x)dx, (6.3)

where N(x) is the normal vector at a point x, NT (x) denotes the transposed

© 2008 by Taylor & Francis Group, LLC

Feature Extraction Techniques Based on Decision Border Estimate 113

normal vector, and S′ is the portion of decision border containing most of the
training data (the effective decision boundary). It is proved [12] that:

• The rank of the EDBFM represents the intrinsic discriminant dimen-
sion, that is, the minimum number of feature vectors needed to achieve
the same Bayes error probability as in the original space.

• The eigenvectors of the EDBFM corresponding to nonzero eigenvalues
are the necessary feature vectors.

The DBFE algorithm uses the knowledge of cpdf to define the Bayes deci-
sion border. However, true cpdfs are generally unknown in real classification
problems. In order to overcome this limitation, [11] estimates the cpdf and
the decision border by the Parzen method [7]. However, more effective tech-
niques for the estimation of the decision border exist, which are based on
neural networks. In the rest of this section, we will present approaches based
on MLPs and SVMs. In the next section we will introduce a formal derivation
from Equation (6.3) based on the LVQ.

6.2.1 MLP-Based Decision Boundary Feature Extraction

In [13], Lee and Landgrebe introduce the use of MLP to estimate the de-
cision border. For this reason, we call this version of the method the MLP-
feature extraction (MLPFE) method. Such an approach exploits an MLP with
one hidden layer and C output neurons, with backpropagation used to train
the network. Backpropagation is based on the minimization of the squared
error, allowing a trained MLP to estimate class a-posteriori probability dis-
tributions.

Let us consider the case of a two-class problem, and let h(x) be the decision
function of an MLP (remember that if h(x) = 0, then x is a point of the deci-
sion border). Given a point p on the decision border, the MLPFE algorithm
estimates numerically the vectors normal to p as follows:

N(p) =
∇h(p)
‖∇h(p)‖ ≈

1
‖1/ξ‖ · ‖p‖(

1
ξ1

,
1
ξ2

, . . . ,
1

ξN
),

where ξi, i = 1, 2, . . . , N , are the smallest values such that h(p1, . . . , pi +
ξi, . . . , pN) �= 0.

In order to find the point p for each training sample xa correctly classified
as class y1, the algorithm finds the nearest sample xb correctly classified as
class y2. The same procedure is repeated for the samples classified as class
y2. Then, a segment s = α · xa + (1 − α) · xb, 0 ≤ α ≤ 1, is built. Such
a segment must pass through the decision border since the given points are
classified differently. Then, the point p can be detected by moving along s
stepwise, until the decision function is near to zero. The algorithm can be
easily generalized to the case of a multi-class problem.

© 2008 by Taylor & Francis Group, LLC

114 Computational Methods of Feature Selection

In the estimate of N(p), searching for ξ means evaluating a certain num-
ber of differences between the activation functions, resulting in an inaccurate
estimation and a long computational time. So, in [8], the authors describe an
improvement of the algorithm, called the analytical decision boundary feature
extraction (ADBFE), where the normal vectors are calculated analytically
from the equations of the decision border.

6.2.2 SVM Decision Boundary Analysis

In order to accurately reconstruct the Bayes decision border, in [17] the
authors proposed SVM decision boundary analysis (SVMDBA), a method
that combines the DBFE principle and the support vector machine algorithm.
The maximum margin classifier principle underlying SVM [16] is developed for
two-class problems. Exploiting the decision function h(x) of an SVM adapted
on the training set, the unit normal vector to the decision border at a point
x can be analytically computed as follows:

N(x) =
∇h(x)
‖∇h(x)‖ where ∇h(x) =

∂h(x)
∂x

=
l∑

i=1

αiyi
∂K(x,xi)

∂x

where xi ∈ RN , i = {1, 2, . . . , l} is the support vector, and yi ∈ {±1} is its
class label. K(x,xi) is the chosen kernel function and αi are the parameters
of the adapted SVM. Like in MLP-based approaches, the point x of the de-
cision border is estimated by building a segment s connecting two differently
classified points, and estimating the point of s such that h(x) is less than a
threshold ε. Unlike them, in SVMDBA only a part of the training set T S
is used to evaluate the ΣEDBFM . Such a subset consists of the r× | T S |
observations, 0 < r ≤ 1, such that the absolute decision function | h(x) |
assumes the first r× | T S | smallest values. In other words, such a subset
consists of the observations nearest to the decision border.

The principle of maximum margin classifiers allows a very accurate recon-
struction of the border. However, the literature discusses the high computa-
tional cost of the quadratic optimization underlying SVM [14, 9], which limits
its application on huge amounts of data [15]. SVM is used in multi-class
problem, by exploiting a one-against-all schema, which constructs C SVM
classifiers with the ith one separating class yi from all the remaining classes.
Of course this leads to increased complexity.

In the following we introduce an alternative approach, based on the Bayes
risk weighted vector quantization algorithm, which has shown performances
at least comparable with SVM, with lower computational cost [3].

© 2008 by Taylor & Francis Group, LLC

Feature Extraction Techniques Based on Decision Border Estimate 115

6.3 Generalities About Labeled Vector Quantizers

The goal of this section is to introduce the basic definitions about labeled
vector quantizers and to present the Bayes risk weighted vector quantization
algorithm.

DEFINITION 6.1 A Euclidean nearest neighbor vector quantizer (VQ)
of dimension N and order Q is a function Ω : RN → M, M = {m1,m2,
. . . ,mQ}, mi ∈ RN ,mi �= mj, that defines a partition of RN into Q regions
V1,V2, . . . ,VQ, such that

Vi = {x ∈ RN :‖ x−mi ‖2<‖ x−mj ‖2, j �= i}, (6.4)

M is called the code. Elements of M are called code vectors. The region Vi

defined by (6.4) is called the Voronoi region of the code vector mi. Note that
the Voronoi region is completely defined by the code M. In particular, the
border of Voronoi region Vi is defined by the intersection of a finite set of

hyperplanes Si,j with equation (mi −mj) · (x−
mi + mj

2
) = 0, where mj is

a neighbor code vector to mi.

DEFINITION 6.2 A labeled vector quantizer (LVQ) is a pair LV Q =<
Ω,L >, where Ω : RN → M is a vector quantizer, and L : M → Y is a
labeling function, assigning to each code vector in M a class label.

An LVQ defines a classification rule:

DEFINITION 6.3 The classification rule associated with a labeled vector
quantizer LV Q =< Ω,L > is ΨLV Q : RN → Y,x �→ L(Ω(x)).

Note that the nearest neighbor nature of this classification rule: each vec-
tor in RN is assigned to the same class as its nearest code vector. Thus,
decision regions are defined by the union of Voronoi regions of code vectors
with the same label. Note also that decision borders are defined only by those
hyperplanes Si,j such that mi and mj have different labels.

An LVQ can be trained by the Bayes risk weighted vector quantization
algorithm (BVQ) to find the best linear approximation to the true Bayes
decision border. The BVQ formally derives from the minimization of the
average misclassification risk. However, for the sake of simplicity, hereinafter
we will refer to the version of the algorithm for the minimization of average
error probability.

© 2008 by Taylor & Francis Group, LLC

116 Computational Methods of Feature Selection

Let LM = {(m1, l1), . . . , (mQ, lQ)} be a labeled code, where li ∈ Y denotes
the class of the code vector mi, and let T S = {(t1, u1), . . . , (tM , uM)} be the
training set, where ti ∈ RN denotes the feature vector and ui ∈ Y is the
class the sample belongs to. The BVQ algorithm is an interactive punishing-
rewarding adaptation schema. At each iteration, the algorithm considers a
training sample randomly picked from T S. If the training sample turns out
to fall “on” the decision border, then the position of the two code vectors de-
termining the border is updated, moving the code vector with the same label
of the sample toward the sample itself and moving away that with a different
label. Since the decision border is a null measure subspace of the feature
space, we have zero probability to get samples falling exactly on it. Thus,
an approximation of the decision border is made, considering those samples
falling close to it (at a maximum distance of Δ/2). In the following, the BVQ
algorithm at the k-th iteration is given:

BVQ Algorithm - k-th iteration

1. randomly pick a training pair (t(k), u(k)) from T S;

2. find the code vectors m
(k)
i and m

(k)
j nearest to t(k);

3. m
(k+1)
q = m

(k)
q for q �= i, j;

4. compute t
(k)
i,j , the projection of t(k) on S(k)

i,j ;

5. if t(k) falls at a distance d ≤ Δ/2 from the border S(k)
i,j , then

m
(k+1)
i = m

(k)
i − γ(k)

δ(u(k) = l
(k)
j) − δ(u(k) = l

(k)
i)

‖ mi − mj ‖
(m

(k)
i − t

(k)
i,j)

m
(k+1)
j = m

(k)
j + γ(k)

δ(u(k) = l
(k)
j) − δ(u(k) = l

(k)
i)

‖ mi − mj ‖
(m

(k)
j − t

(k)
i,j)

else m
(k+1)
q = m

(k)
q for q = i, j.

where δ(expr) = 1 if expr is true and 0 otherwise.
More details on the formal derivation of the algorithm and on the proper

setting of parameters can be found in [3].

6.4 Feature Extraction Based on Vector Quantizers

Having a trained LVQ, the extraction of the most discriminating features
is straightforward. As a matter of fact, according to the DBFE principle, the
most informative directions are defined by the normal vectors to the decision
borders. Such normal vectors are simply defined by Nij = mi −mj , where
li �= lj (see Figure 6.2).

The normal vectors Nij can then be combined together to extract the in-
formative features as in the Lee and Landgrebe approach.

© 2008 by Taylor & Francis Group, LLC

Feature Extraction Techniques Based on Decision Border Estimate 117

FIGURE 6.2: A piece of true deci-
sion border, its linear approximation,
and the local discriminative direction
Nij = mi −mj .

FIGURE 6.3: An example of the
uneven contribution of normal vectors.
White dots: class A code vectors. Black
dot: class B code vector.

TABLE 6.1: Relevance of the features, of Pima Indians diabetes
database. “Weight” represents the absolute value of eigenvector
components associated with the feature. “Acc. W.” is accumulation of
weights.

Feature Weight (%) Acc. W.
2 Plasma glucose concentration at 2 hours in an oral glucose

tolerance test 47.35 47.35
6 Body mass index 15.94 63.29
1 Number of times pregnant 15.07 78.36
3 Diastolic blood pressure 13.15 91.51
7 Diabetes pedigree function 2.94 94.45
8 Age 2.87 97.32
4 Triceps skin fold thickness 2.47 99.79
5 2-hour serum insulin 0.21 100

In order to illustrate the effectiveness of the method, we refer to the Pima
Indians diabetes database from the UCI machine learning repository [5]. It
presents data of female patients at least 21 years old from the Pima Indian
tribe. The goal of this problem is to predict whether the patient will result
positive for diabetes. The database consists of 8 features plus the class, and
it contains 768 instances. In this experiment it can be shown that an LVQ
with only 2 code vectors can reach an error of 0.24, while SVM can reach an
error of 0.23 (with 400 SVs). Hence, we can assume a linear decision border
to be a good approximation of the true one. In this special case, only one
eigenvalue turns out to be different from zero. The corresponding eigenvector
is the normal vector to the unique decision hyperplane. Table 6.1 lists features
ordered with respect to the value of the related eigenvector component, hence
with respect to their discriminative relevances.

Note that the most important feature agrees with the criterion of the World
Health Organization for diagnosing diabetes (i.e., if the 2-hour post-load
plasma glucose was at least 200 mg/dl at any survey examination or if found
during routine medical care).

In more complex situations, where many pieces of the hyperplane form the

© 2008 by Taylor & Francis Group, LLC

118 Computational Methods of Feature Selection

decision border, the normal vectors should be appropriately weighted to take
into account the extent of the portion of the hyperplane actually forming the
decision border. To better explain this point, let us consider the example of
the decision border shown in Figure 6.3.

For this example, we get four normal vectors to the piecewise linear decision
border: [1 0] and [0 1], each repeated two times. Since the LVQ defines a
piecewise linear decision border, the estimate of ΣEDBFM turns out to be
proportional to

∑
i N

T
i · Ni, where Ni is the unit normal vector to a piece

of the decision border. Eigenvalues and eigenvectors of such a ΣEDBFM

matrix turn out to be λ1 = λ2 = 0.5, u1 = [1 0], u2 = [0 1], suggesting
that the two dimensions have the same discriminative power, while it is clear
that projecting on the first dimension results in a minor accuracy loss than
projecting on the second dimension. Exploiting only the normal vectors, we
don’t fully consider the geometry of the decision border, which greatly depends
on the statistics of the classification problem. Indeed, if in this example we
consider a square instead of a rectangle, we obtain the same ΣEDBFM matrix.
By defining the ΣEDBFM matrix as a weighted sum of normal vectors, where
each normal vector is weighted by the length of the related segment of decision
border over the total length of the decision border, we get λ1 = 0.8, λ2 = 0.2,
u1 = [1 0], u2 = [0 1]; hence the first dimension correctly results four times
more important than the second one.

In order to take into account the statistics of the problem, normal vectors
should be appropriately weighted. Then we give the following general form of
the BVQ-based feature extraction (BVQFE) algorithm:

BVQ-based Feature Extraction

1. Train the LVQ {(m1, l1), . . . , (mQ, lQ)}, mi ∈ RN, li ∈ Y
on a training set T S by using the BVQ algorithm;

2. set the elements of the matrix ΣBV QF M to 0;

3. set wtot to 0;

4. for each pair yi, yj ∈ Y, where i �= j do

1. set the elements of the matrix ΣBV QF Mij
to 0;

2. for each pair mk, mz ∈ M defining a piece of

decision border, where lk = yi and lz = yj do

1. calculate the unit normal vector to

the decision border as: Nkz = (mk−mz)
‖mk−mz‖;

2. calculate the weight wkz of the unit normal vector Nkz;

3. wtot = wtot + wkz;

4. ΣBV QF Mij
= ΣBV QF Mij

+ wkzN
T
kzNkz;

3. ΣBV QF M = ΣBV QF M + P (yi)P (yj)ΣBV QF Mij
;

5. ΣBV QF M =
ΣBV QF M

wtot
.

© 2008 by Taylor & Francis Group, LLC

Feature Extraction Techniques Based on Decision Border Estimate 119

The eigenvectors ui of the ΣBV QFM define the matrix U = [u1,u2, . . . ,uN],
which is exploited to transform the original space into a new space such that
x′ = U·x. The eigenvectors corresponding to the largest eigenvalues represent
the most discriminant features. So, the matrix U′ built with only the first
n′ most discriminant features defines the transformation of the original space
RN in the reduced space RN ′

.
Algorithms to calculate the weight of the normal vectors Nkz are discussed

in the following subsections.

6.4.1 Weighting of Normal Vectors

Since the LVQ decision border is piecewise linear, the EDBFM equation
(6.3) becomes

ΣBV QFM =
1∫

S′ p(x)dx

Λ∑

λ=1

NT
λ ·Nλ

∫

Sλ

p(x)dx, (6.5)

where S′ =
Λ∑

λ=1

Sλ is the piecewise effective decision border and Nλ is the unit

normal vector to the piece of border Sλ, λ = 1, 2, . . . , Λ. Hence, weight wλ is
represented by the probability distribution of data on Sλ: wλ =

∫
Sλ

p(x)dx.
In order to estimate wλ, one can resort to nonparametric density estimation
methods, and in particular to the Parzen method [7]:

p̂(x) =
1
M

M∑

i=1

k(x− xi),

where k(.) is the kernel function. Different forms of the kernel can be chosen.
In the following, we consider the uniform hypercubic window, that is, k(x −
xi) = Δ−N over a N -dimensional hypercube of side Δ centered on the training
sample xi (i = 1, 2, . . . , M) and k(x − xi) = 0 elsewhere. With this choice,
after some manipulations, we get

ŵλ(Δ) =
M∑

i=1

δ(d(xi, Sλ) ≤ Δ
2

), (6.6)

where d(xi, Sλ) is the Euclidean distance between xi and the piece of decision
border Sλ, that is, we can approximate the true weights by counting how many
training samples fall “on” (i.e., at a distance less than Δ/2 from) each piece
of decision border Sλ. In [10, 4] it is proposed to weight the normal vectors
by the volumes of the decision border. It is simple to see that this method is
a special case of the previous one. In fact, when p(x) = p is constant along
each piece of decision border, Equation (6.5) becomes

Σ̂BV QFM =
1

p

Λ∑

λ=1

∫

Sλ

dx

Λ∑

λ=1

NT
λ ·Nλ · p

∫

Sλ

dx =
1

wtot

Λ∑

λ=1

NT
λ ·Nλ · wλ

© 2008 by Taylor & Francis Group, LLC

120 Computational Methods of Feature Selection

FIGURE 6.4: Two differently clas-
sified nearest samples. The horizontal
line is the decision border.

FIGURE 6.5: A two-class problem
with uneven contribution of normal vec-
tors. The bold line is the Bayes decision
border.

wλ =
∫

Sλ
dx is now simply the volume of the piece of decision border Sλ.

Volumes can be estimated by resorting to the concept of numerical integra-
tion of an N -dimensional function, by using a grid of equally spaced points [4].

The DBFE feature extraction techniques discussed in Sections 6.2.1 and
6.2.2 evaluate unit normal vectors N(x) by considering for each sample xa the
nearest sample xb differently classified. x turns out to be the point belonging
to the segment s = α ·xa +(1−α) ·xb, 0 ≤ α ≤ 1, and such that the decision
function h(x) is set to zero within a threshold.

To choose xb such that it is the nearest sample to xa means that s is al-
most normal to the decision border (see Figure 6.4). Hence, x is close to the
projection of xa on the decision border, and the distance between xa and the
decision border is approximated by the distance between x and xa. This ob-
servation allows us to recast both MLP-based and SVM-based approaches in
the theoretical framework discussed above. In order to grasp the intuition be-
hind this statement, let us consider a piecewise linear decision border: On each
piece Sλ, SVMDBA, and MLPFE, find as many Nλ as the number of samples
falling at a certain distance from Sλ. Hence, they implicitly perform a Parzen
estimate of the probability density function along the decision border. In
the MLP-based approach, the size of Δ is fixed and set to 2 ∗max{d(xa, S)},
so each sample contributes to the Parzen estimate, while in the SVM-based
approach, Δ is implicitly set such that only r× | T S | samples are consid-
ered. If r = 1, the SVM-based and MLP-based approaches work in the same
way. In order to understand how these parameters influence performance, let
us consider the classification problem depicted in Figure 6.5: Class 1, rep-
resented by “+”, is described by a uniform distribution over the rectangle
[−0.2, 9.8]× [−0.2, 1.8]. Class 2, represented by “o”, is distributed according
to two uniform distributions over the rectangles [−9.8,−0.2]× [−0.2, 1.8] and
[-0.2,9.8]×[−1.8, 0.2]. The classes are equiprobable. The bayesian decision
border is given by S : {x1 = 0, x2 ∈ [0, 1.8]∧x2 = 0, x1 ∈ [0, 9.8]}. Then, from

© 2008 by Taylor & Francis Group, LLC

Feature Extraction Techniques Based on Decision Border Estimate 121

Equation (6.3), it turns out that the eigenvalues and related eigenvectors of
the ΣEDBFM matrix are λ1

∼= 0.1591,u1 = [1, 0]; λ2
∼= 0.841,u2 = [0, 1].

For each class, 1000 samples are generated. These are used to estimate the
normal vectors by the SVMDBA, MLPFE, and BVQFE approaches. In order
to eliminate the influence of the classifier characteristics (MLP, SVM, and
BVQ), we use as the decision function h(x) the equation of the bayesian deci-
sion border S. In Table 6.2 we show the eigenvalues and related eigenvectors
of the ΣEDBFM averaged over 100 different datasets, obtained with the best
setting of ΔBV QFE = 0.5 and r = 0.2. With such a setting of r it turns out
that the most far sample is at a distance of 0.248 from the decision border.
Hence we can assume that SVMDBA implicitly defines a Parzen window of
size 0.496. Note the similarity with ΔBV QFE . As a matter of fact, eigenvalues
estimated by SVMDBA and BVQFE are similar and close to the real values.
They both perform much better than MLPFE.

TABLE 6.2: Comparison of eigenvalues
estimated by MLPFE, SVMDBA, and BVQFE.

MLPFE SVMDBA BVQFE
u1 = [1, 0] λ1 0.3068 0.1521 0.1608
u2 = [0, 1] λ2 0.6932 0.8478 0.8392

Table 6.3 shows how the eigenvalues calculated by SVMDBA depend on the
parameter r. In the table, ΣEDBFM is averaged over 100 different datasets.
Moving from r = 0.2 to r = 1, the estimate of the eigenvalues is worse, and
when the size of the Parzen window is such that all samples contribute to the
estimate of ΣEDBFM (that is, r is set to 1), the eigenvalues tend to the values
obtained by MLPFE in the previous experiment.

TABLE 6.3: SVMDBA eigenvalues
estimate vs. the value of r.

r 0.2 0.4 0.6 0.8 1
λ1 0.152 0.143 0.134 0.127 0.296
λ2 0.848 0.857 0.866 0.873 0.704

Hence, in general, contrary to what the authors state in [17], the parameter
r may greatly affect the performance of the SVMDBA approach.

As observed by Fukunaga [7, p.328], the optimal value of the Parzen window
is not easy to obtain, and it has to be searched experimentally. We note that
BVQ returns the minimum error probability when the parameter ΔBV QFE

is set to the side of the optimal Parzen window. So, this value is given as
a byproduct of the BVQ training [3], while SVM training does not give any
suggestion on how to set r.

© 2008 by Taylor & Francis Group, LLC

122 Computational Methods of Feature Selection

6.5 Experiments

In the present section we experimentally compare the performance of DBFE-
based methods. We first examine their accuracy and robustness on the syn-
thetic experiment proposed in [13, 8]. Then we show the performances on
real-world datasets from the UCI Machine Learning Repository [5], and in
particular we exploit the Waveform dataset in order to examine the complex-
ity of the methods.

6.5.1 Experiment with Synthetic Data

The dataset consists of three equiprobable classes y1, y2, y3 distributed
according to the following statistics:

μ1 =

⎡

⎣
0
0
0

⎤

⎦ ,Σ1 =

⎡

⎣
4 0 0
0 4 0
0 0 9

⎤

⎦

μ21 =

⎡

⎣
5
0
0

⎤

⎦ ,Σ21 =

⎡

⎣
2 0 0
0 2 0
0 0 9

⎤

⎦ and μ22 =

⎡

⎣
−5

0
0

⎤

⎦ ,Σ22 =

⎡

⎣
2 0 0
0 2 0
0 0 9

⎤

⎦

μ31 =

⎡

⎣
0
5
0

⎤

⎦ ,Σ31 =

⎡

⎣
9 0 0
0 2 0
0 0 9

⎤

⎦ and μ32 =

⎡

⎣
0
−5

0

⎤

⎦ ,Σ32 =

⎡

⎣
9 0 0
0 2 0
0 0 9

⎤

⎦

The intrinsic discriminant dimension (Section 6.2) of the problem is 2, and
the pairs of eigenvalues and related eigenvectors are (λ1 = 0.56, u1 =[0 1 0]);
(λ2 = 0.44, u2 =[1 0 0]); and (λ3 = 0, u3 =[0 0 1]).

Similarly to [8], 2000 samples from each class were generated, of which
500 were used for the training and the remaining for the test. We initialized
an LVQ of order 20 with the first 20 training vectors, and we set Δ = 0.5,
γ(0) = 0.5. We did not stress the setting of the parameters deliberately, in
order not to take advantage of either the knowledge of the class statistics or of
the results in [13, 8]. As a result, the net shows an average error probability on
the test set of 0.1694, which is slightly worse than that in [13] (0.143) and [8]
(0.152). Nevertheless, the feature extraction algorithm produces comparable
eigenvalues and eigenvectors:

λ1 = 0.5237, λ2 = 0.4689, λ3 = 0.0074,

u1 =

⎡

⎣
−0.29

0.96
−0.03

⎤

⎦ ,u2 =

⎡

⎣
0.96
0.29
−0.01

⎤

⎦ ,u3 =

⎡

⎣
0.00
−0.03
−1.00

⎤

⎦ .

As a weighting method we used the one based on the training samples, while
in [4] experiments with the volume calculus are presented. We employed a

© 2008 by Taylor & Francis Group, LLC

Feature Extraction Techniques Based on Decision Border Estimate 123

TABLE 6.4: Average nearest neighbor error probabilities vs.
dimensions of the transformed spaces for the PCA, CA, MLPFE,
ADBFE, SVMDBA, and BVQFE approaches.

feature Error Probability (Variance)
No. PCA CA MLPFE ADBFE SVMDBA BVQFE
1 0.489 0.576 0.467 0.483 0.424 0.469

(8.1·10−5) (4.7·10−3) (2.1·10−3) (2.6·10−3) (1.9·10−4) (1.5·10−3)
2 0.229 0.408 0.212 0.220 0.211 0.208

(9.4·10−4) (5.6·10−3) (4.9·10−5) (7.0·10−4) (7.8·10−5) (5.0·10−5)
3 0.219 0.218 0.219 0.219 0.218 0.219

(3.9·10−5) (4.4·10−5) (3.9·10−5) (3.9·10−5) (3.9·10−5) (3.9·10−5)

gaussian radial basis kernel to train the SVM, and we set r to 0.2, which
gave the best results for this experiment. Average error probability on the
test set is 0.1666. Table 6.4 compares the accuracy of the proposed method
with that of competing methods, namely of MLPFE, ADBFE, SVMBDA,
PCA, and CA, by showing the error performed by a nearest neighbor (NN)
classifier on the data transformed according to the above approaches. In
particular, we present the average error probability when the most important
feature is considered when the first two features are considered and on the
whole transformed space. By using the same classifier for each approach, we
eliminate the influence of the classifier characteristics (in particular, MLP vs.
LVQ vs. SVM) and we can better appreciate the performance of the feature
extraction methods. The error probabilities in Table 6.4 are averaged over 10
different datasets, and the related variances are also shown in brackets.

We can see that the accuracies obtained by using the methods based on
the DBFE principle are substantially the same, and they are definitely better
than those of the methods that do not exploit information about the decision
border.

It was noted that MLPFE and ADBFE indirectly define the decision border
from the estimation of the a-posteriori class probabilities, while BVQ and
SVM are devoted to directly finding the Bayes decision border. The use of
direct information about the decision border is an advantage in many cases
since it is well known that an accurate estimation of the a-posteriori class
probabilities leads to an accurate estimation of the decision border; however,
if a-posteriori class probabilities are not well estimated, nothing can be said
about the accuracy of the estimated decision border. This advantage can be
experimentally observed if, for the same experiment, we consider a training set
of reduced size. Table 6.5 reports the average error probabilities and variances
of the error performed by the DBFE-based methods when only 50 training
vectors and 150 test vectors are used for each class. The results are averaged
over 10 different datasets.

Note that BVQFE and SVMDBA give comparable results. They both find
the best features and are more robust: The variance of the error in the case
of the best pair of features is an order of magnitude lower than that of both
MLPFE and ADBFE. Nevertheless, the MLPs used in this experiment have
on average the same mean squared error as the MLPs used in the previous

© 2008 by Taylor & Francis Group, LLC

124 Computational Methods of Feature Selection

TABLE 6.5: Average nearest neighbor error probabilities vs.
dimensions of the transformed spaces for the BVQFE, ADBFE,
SVMDBA, and MLPFE methods. Reduced dataset.

feature Error Probability (Variance)
No. MLPFE ADBFE SVMDBA BVQFE

1 0.495 (5.4 · 10−3) 0.460 (3.9 · 10−3) 0.459 (1.2 · 10−3) 0.475 (2.3 · 10−3)

2 0.227 (1.3 · 10−3) 0.236 (2.0 · 10−3) 0.221 (6.5 · 10−4) 0.219 (6.9 · 10−4)

3 0.246 (3.2 · 10−4) 0.246 (3.2 · 10−4) 0.246 (3.2 · 10−4) 0.246 (3.2 · 10−4)

experiment.

6.5.2 Experiment with Real Data

We evaluate the performance of DBFE methods on four real-world datasets
drawn from the UCI repository: Waveform, Pima Indians Diabetes, Liver
Disorders, and Letter. Waveform is a three-class problem in a 40-dimensional
space, with known statistics. The first 21 features of each class represent a
wave generated from a combination of two of three shifted triangular wave-
forms, plus Gaussian noise with mean 0 and variance 1. The latter 19 features
are all Gaussian noise. It can be proven that the intrinsic discriminant di-
mension for this problem is 2. The Waveform dataset contains 5000 instances.
Pima Indians Diabetes is described in Section 6.4. The Liver Disorders dataset
consists of 345 observations of males, each with 6 features, classified on the ba-
sis of their sensitivity to liver disorders. Finally, samples of the Letter dataset
are 20000 images of 26 English capital letters, described by 16 features.

TABLE 6.6: Parameter settings for
experiments with UCI datasets.

UCI SVMDBA BVQFE
Datasets Kernel r VQ size Δ
Waveform 3-polynomial 1.0 10 0.5

Pima Indians 2-polynomial 0.2 2 0.3
Liver rbf 0.2 8 0.15
Letter rbf 0.2 52 0.05

For Waveform, Pima Indians, and Liver we use 10-fold, 12-fold, and 5-fold
cross validation, respectively, while we split the Letter dataset into 15000 sam-
ples for the training and 5000 for the test. For the Pima Indians, Waveform,
and Letter experiments we used the same setup as in [17]. Table 6.6 shows
the parameter settings of SVMDBA and BVQFE for the experiments.

Figures 6.6(a - d) show the error performed by a nearest neighbor classifier
on the data transformed according to DBFE-based methods. In particular,
we plot error probability vs. the first N ′ most discriminative features.

In Pima Indians, Liver, and Letter, we see that from a certain number of
features (the intrinsic discriminant dimension) on, the error becomes nearly
constant. The trend of the error in the Waveform experiment is due to the

© 2008 by Taylor & Francis Group, LLC

Feature Extraction Techniques Based on Decision Border Estimate 125

(a) (b)

(c) (d)

FIGURE 6.6: Comparison of DBFE-based methods over the first discriminative
features. Average error computed by using NN.

fact that each dimension added to the intrinsic discriminant ones introduces
noise, which greatly affects the nearest neighbor classifier. In any case, it
is clear that the performance given by the methods on smaller numbers of
features better illustrates the capability to find good discriminative features.

We can observe that BVQFE clearly outperforms MLP-based methods on
the Waveform and Pima Indians datasets, and it is slightly better on Liver.
It is at least comparable with SVMDBA everywhere. We do not show the
performance of MLP-based methods on the Letter dataset since we were not
able to obtain results in a reasonable time on an Intel Pentium M 1.73GHz-
1.0GB RAM. This raises the issue of computational complexity.

In order to compute ΣEDBFM , BVQFE calculates Q · |T S| distances, where
Q is the number of code vectors. Since the optimal number of code vectors
depends on the classification problem, but it does not depend on the size M
of the training set [3], the complexity of BVQFE is linear in the size of the

© 2008 by Taylor & Francis Group, LLC

126 Computational Methods of Feature Selection

training set. On the other hand, the MLP-based methods require, for each
correctly classified training vector, the calculus of about |T S| distances and a
certain number of MLP activation functions in order to find the point on the
decision border. Hence these methods show a complexity that is quadratic
in the training set size. As regards SVMDBA, it calculates |T S| decision
functions h(.) in order to extract the subset of cardinality r, plus (r · |T S|)2
distances and a certain number of h(.) in order to find the point on the
decision border and the normal vector. Thus the complexity of SVMDBA
is quadratic in |T S|. Since each calculus of h(.) implies the calculus of a
kernel function for each support vector, SVMDBA is more time-consuming
than MLP-based methods. This analysis is confirmed by the experiment in

FIGURE 6.7: Comparison of DBFE-based methods over the number of training
samples. Waveform dataset. Average cpu-time computed over 10 different datasets.
Logarithmic scale.

Figure 6.7, which draws graphically the differences in cpu-time of the DBFE-
based methods vs. training set size on the Waveform dataset. The parameter
ΔBV QFE is the optimal one, while we chose r = 0.2 in order to evaluate
SVMDBA computational time on a favorable situation where only a subset
of training samples is used. In such an experiment, the learning time of
the nets is not considered. We observe that the BVQFE cpu-time is around
two orders of magnitude lower than that of the other methods. If we also
consider the learning time, the performance of SVMDBA becomes better than
the MLP-based ones, since SVM is quicker than MLP on high-dimensional
datasets. Unlike SVM, the BVQ learning time is not dependent on the size
of the training set, then BVQFE keeps on being faster than SVMDBA. This
fact is emphasized in general C-class problems, where we have to train C
different SVMs and compute the same number of ΣEDBFM . Finally, note
that considering scalability w.r.t. the training set is significant for data mining

© 2008 by Taylor & Francis Group, LLC

Feature Extraction Techniques Based on Decision Border Estimate 127

problems, typically characterized by huge amounts of data.

6.6 Conclusions

This chapter presented a study on feature extraction techniques for clas-
sification based on the decision boundary feature extraction principle. We
detailed the techniques that apply the DBFE principle on approximations of
the Bayes decision border extracted by neural network classifiers. In particu-
lar, multi-layer perceptron and support vector machines are considered. We
also introduced a formal derivation of the DBFE principle for labeled vec-
tor quantizers. It is shown that LVQ allows for a cheap representation of
decision borders, from which the most discriminative features can be easily
extracted. Furthermore, the use of the Bayes risk weighted vector quantiza-
tion algorithm to train the LVQ allows one to define a robust and effective
procedure for the estimation of a true decision border. Experimentally we ob-
served that BVQFE and SVMDBA give comparable results, and they perform
better than MLP-based methods. Furthermore, the BVQFE method shows a
lower computational cost than the others.

In the development of the theory and in the experiments, we focused on the
average error probability as a performance measure. However, we note that
BVQ is a general algorithm for the minimization of the average misclassifica-
tion risk. Hence, BVQFE is the only DBFE-based method that can directly
manage real problems where the misclassification costs differ from one class
to another.

References

[1] C. H. Park, H. Park and P. Pardalos. A Comparative Study of Linear
and Nonlinear Feature Extraction Methods. In Proceedings of the Fourth
IEEE International Conference on Data Mining. IEEE, Piscataway, NJ,
2004.

[2] E. Choi and C. Lee. Feature Extraction Based on the Bhattacharyya
Distance. Pattern Recognition, 36(8):1703–1709, 2003.

[3] C. Diamantini and M. Panti. An Efficient and Scalable Data Compression
Approach to Classification. ACM SIGKDD Explorations, 2(2):54–60,
2000.

[4] C. Diamantini and D. Potena. Feature Extraction for Classification: an

© 2008 by Taylor & Francis Group, LLC

128 Computational Methods of Feature Selection

LVQ-based Approach. In Proc. of Int. Workshop on Feature Selection
for Data Mining: Interfacing Machine Learning and Statistics, pages 2–
9. SIAM, Philadelphia, PA, 2006.

[5] D.J. Newman, S. Hettich, C.L. Blake and C.J. Merz. UCI Repository of
Machine Learning Databases. http://kdd.ics.uci.edu/, 1998.

[6] J. H. Friedman. On Bias, Variance, 0/1-Loss, and the Curse-of-
Dimensionality. Data Mining and Knowledge Discovery, 1(1):55–77,
1997.

[7] K. Fukunaga. Introduction to Statistical Pattern Recognition (2nd Edi-
tion). Academic Press, San Diego, 1990.

[8] J. Go and C. Lee. Analytical Decision Boundary Feature Extraction for
Neural Networks. In Proc. IEEE Int. Symposium on Geoscience and Re-
mote Sensing, volume 7, pages 3072–3074. IEEE, Piscataway, NJ, 2000.

[9] T. Joachims. Making Large-Scale SVM Learning Practical. In B.
Scholkopf, C. J. Burges, A. J. Smola, editors, Advances in Kernel Meth-
ods - Support Vector Learning. MIT Press, Cambridge, MA, 1999.

[10] C. Lee and D. Landgrebe. Feature Selection Based on Decision Bound-
aries. In Int. Geoscience and Remote Sensing Symposium, volume 3,
pages 1471–1474. IEEE, Piscataway, NJ, June 1991.

[11] C. Lee and D. Landgrebe. Decision Boundary Feature Extraction for
Nonparametric Classification. IEEE Trans. on Man and Cybernetics,
23(2):433–444, March/April 1993.

[12] C. Lee and D. Landgrebe. Feature Extraction Based on Decision Bound-
aries. IEEE Trans. on Pattern Analysis and Machine Intelligence,
15(4):388–400, Apr. 1993.

[13] C. Lee and D. Landgrebe. Decision Boundary Feature Extraction for
Neural Networks. IEEE Trans. on Neural Networks, 8(1):75–83, Jan.
1997.

[14] Osuna, E. and Girosi, F. Reducing the Run-time Complexity of Support
Vector Machines. In Proc. International Conference on Pattern Recogni-
tion (ICPR98), 1998.

[15] B. Schoelkopf, C. Burges, and V. Vapnik. Extracting Support Data for
a Given Task. In U. Fayyad and R. Uthurusamy, editors, Proc. 1st Int.
Conf. on Knowledge Discovery and Data Mining, Menlo Park, CA, AAAI
Press, 1995.

[16] V. Vapnik. Statistical Learning Theory. J. Wiley and Sons, New York,
1998.

[17] J. Zhang and Y. Liu. SVM Decision Boundary Based Discriminative

© 2008 by Taylor & Francis Group, LLC

http://kdd.ics.uci.edu

Feature Extraction Techniques Based on Decision Border Estimate 129

Subspace Induction. Pattern Recognition, 1(38):1746–1758, 2005.

© 2008 by Taylor & Francis Group, LLC

Chapter 7

Ensemble-Based Variable Selection
Using Independent Probes

Eugene Tuv

Analysis & Control Technology Department, Intel

Alexander Borisov

Analysis & Control Technology Department, Intel

Kari Torkkola

Intelligent Systems Lab, Motorola

7.1 Introduction . 131
7.2 Tree Ensemble Methods in Feature Ranking . 132
7.3 The Algorithm: Ensemble-Based Ranking Against Independent Probes 134
7.4 Experiments . 137
7.5 Discussion . 143

References . 144

7.1 Introduction

Traditional multivariate statistics has approached variable selection using
stepwise selection and best subset selection within linear-regression models.
More recent trends are nonlinear models and addressing the question of in-
stability (a small change in the data might result in a drastic change in the
inferred results). This chapter discusses an approach that covers both of these
concerns. ¡Nonlinearity is addressed using decision trees as the underlying re-
gressors or classifiers, and instability is addressed by employing ensembles of
decision trees.

Assuming now that we have a possibly nonlinear and stable system that
ranks variables in the order of importance, the last missing component is
finding a threshold to include only truly important variables. This is the
main topic of the current chapter.

Variable selection generally contains two components. There needs to be
a criterion that, given a set of variables, evaluates the joint relevance of the
set. The second component is a search mechanism that adds or removes
variables to the current set. It may also be that the criterion only evaluates

131

© 2008 by Taylor & Francis Group, LLC

132 Computational Methods of Feature Selection

the relevance of a single variable, or a small number of variables at a time.
This search is iterated until a desired number of variables is reached.

A general problem is, however, where to terminate the search. Given some
kind of a ranking of variables, or sets of variables, it is not clear how to
threshold the ranking in order to select only truly important variables and to
exclude noise. If the number of true variables is known, this is naturally not
a problem, but in real-world cases this information is seldom available.

We present a principled approach to doing this for datasets of any type and
complexity by means of independent probe variables. We describe first how
ensembles of trees can produce measures for relevant variable ranking with
multiple interacting variables. The main idea of independent probes is then
presented together with an algorithm incorporating these ideas. Experimen-
tation with artificial as well as real datasets demonstrates the performance of
the method.

7.2 Tree Ensemble Methods in Feature Ranking

In this chapter we try to address a problem of feature selection in very gen-
eral supervised settings: The target variable could be numeric or categorical,
the input space could have variables of mixed type with non-randomly missing
values, the underlying X − Y relationship could be very complex and multi-
variate, and the data could be massive in both dimensions (tens of thousands
of variables and millions of observations). Ensembles of unstable but very fast
and flexible base learners such as trees (with embedded feature weighting) can
address all of the listed challenges. They have proved to be very effective in
variable ranking in problems with up to 100,000 predictors [2, 11]. A more
comprehensive overview of feature selection with ensembles is given in [13].

A decision tree partitions the input space into a set of disjoint regions and
assigns a response value to each corresponding region. It uses a greedy, top-
down recursive partitioning strategy. At every step a decision tree uses an
exhaustive search by trying all combinations of variables and split points to
achieve the maximum reduction in impurity of the node. Therefore, the tree
constructing process itself can be considered as a type of variable selection,
and the impurity reduction due to a split on a specific variable could indicate
the relative importance of that variable to the tree model. Note that this
relative importance is based on a multivariate model, and it is different from
the relevance measured by standard, univariate filter methods. For a single
decision tree, a measure of variable importance has been defined in [4]:

V I(xi, T) =
∑

t∈T

ΔI(xi, t) (7.1)

where ΔI(xi, t) = I(t) − pLI(tL) − pRI(tR) is the decrease in impurity due

© 2008 by Taylor & Francis Group, LLC

Ensembles with Independent Probe Variables 133

to an actual (or potential) split on variable xi at a node t of the optimally
pruned tree T . The sum in (7.1) is taken over all internal tree nodes where
xi is a primary splitter, as proposed in [4]. Node impurity I(t) for regression
is defined as 1

N(t)

∑
s∈t(ys − ȳ)2, where the sum and mean are taken over all

observations s in node t, and N(t) is the number of observations in node t.
For classification I(t) = Gini(t), where Gini(t) is the Gini index of node t:

Gini(t) =
∑

i�=j

pt
ip

t
j (7.2)

and pt
i is the proportion of observations in t whose response label equals i

(y = i) and i and j run through all response class numbers. The Gini index is
in the same family of functions as cross-entropy, −

∑
i pt

ilog(pt
i), and measures

node impurity. It is zero when t has observations only from one class and
reaches its maximum when the classes are perfectly mixed.

Random Forest [3] is a representative of tree ensembles that extends the
“random subspace” method [8]. The randomness originates from sampling
both the data and the variables. It grows a forest of random trees on bagged
samples showing excellent results comparable with the best-known classifiers.
Random Forest (RF) does not overfit, and can be summarized as follows:

1. A number n is specified much smaller than the total number of variables
N (typically n ∼

√
N).

2. For each tree to be constructed, a different sample of training data is
drawn with replacement (bootstrap sample). The size of the sample
is the same as that of the original dataset. This bootstrap sampling
typically leaves 30 percent of the data out-of-bag. These data help
provide an unbiased estimate of the tree’s performance later. Each tree
is constructed up to a maximum pre-specified depth.

3. At each node, n out of the N variables are selected at random.

4. The best split among these n variables is chosen for the current node,
in contrast to typical decision tree construction, which selects the best
split among all variables.

The computational complexity for each tree in the RF is O(
√

NM log M),
where M is the number of the training cases. Therefore, it can handle very
large numbers of variables with a moderate number of observations. Note
that for every tree grown in RF, about one-third of the cases are out-of-bag
(out of the bootstrap sample). The out-of-bag (OOB) samples can serve as a
test set for the tree grown on the non-OOB data.

Averaging how often different variables were used in the splits of the trees
(and from the quality of those splits) gives a measure of variable importance
as a byproduct of the construction. For a stochastic tree ensemble of S trees

© 2008 by Taylor & Francis Group, LLC

134 Computational Methods of Feature Selection

the importance measure (7.1) is thus

I(xi) =
1
S

S∑

s=1

V I(xi, Ts) (7.3)

The regularization effect of averaging makes this measure much more reliable
than a single tree.

Relative feature ranking (7.3) provided by such ensembles, however, does
not separate relevant features from irrelevants. Only a list of importance
values is produced without a clear indication of which variables to include
and which to discard. Also, trees tend to split on variables with more dis-
tinct values. This effect is more pronounced for categorical predictors with
many levels. Trees often make a less relevant (or completely irrelevant) input
variable more “attractive” to split on only because they have high cardinality.

The main idea of this work relies on the following fact. We add a number of
randomly generated features, all independent of the target variable Y , to the
set of original features. A stable feature ranking method, such as an ensemble
of trees, which measures the relative relevance of an input to a target variable
Y , would assign a significantly (in statistical sense) higher rank to a legitimate
variable Xi than to an independent probe variable. These independent probe
variables thus act as a baseline that determines the ranking cutoff point. If
the sample size is small, the process of variable generation and ranking must
be repeated several times in order to gain statistical significance. We present
now an algorithm for variable ranking or selection based on this idea.

7.3 The Algorithm: Ensemble-Based Ranking Against
Independent Probes

Our method is a combination of three ideas: A) Estimating variable im-
portance using an RF ensemble of trees of a fixed depth (3-6 levels) with
the split weight re-estimation using OOB samples (gives a more accurate and
unbiased estimate of variable importance in each tree and filters out noise
variables), B) comparing variable importance against artificially constructed
noise variables using a formal statistical test, and C) iteratively removing the
effect of identified important variables to allow the detection of less important
variables (trees and parallel ensemble of trees are not well suited for additive
models). All the advantages of ensembles of trees listed in Section 7.2, such as
the capability to handle missing variables, are now inherited by the algorithm.

A) Split weight re-estimation
We propose a modified scheme for calculating split weight and selecting
the best split in each node of a tree. The idea is to use training samples

© 2008 by Taylor & Francis Group, LLC

Ensembles with Independent Probe Variables 135

to find the best split point on each variable, and then use samples that
were not used for building the tree (out-of-bag) to select the best split
variable in a node. Split weight used for variable importance estimation
is also calculated using out-of-bag samples.

This helps to prevent irrelevant features from entering the model, or at
least makes their weight close to zero, because the irrelevant variable
weight calculated on out-of-bag samples will not depend on the variable
type (continuous, discrete) or on the number of distinct variable values.

B) Selecting important features
In order to determine a cutoff point for the importance scores, there
needs to be a contrast variable that is known to be truly independent of
the target. By comparing variable importance to this contrast (or sev-
eral), one can then use a statistical test to determine which variables are
truly important. We propose to obtain these independent probe vari-
ables by randomly permuting values of the original N variables across
the M examples. Generating contrasts using unrelated distributions,
such as Gaussian or uniform, is not sufficient, because the values of the
original variables may exhibit some special structure.

For each of the T permutations a short ensemble of L = 10− 50 trees is
constructed. For each ensemble, variable importance is then computed
for all variables, including the independent probes for each series. Using
a series of ensembles is important when the number of variables is large
or tree depth is small, because some (even important) features can be
absent in a particular tree. To gain statistical significance, the impor-
tance score of all variables is compared to a percentile (we used 75th)
of importance scores of the N contrasts. A statistical test (Student’s
t-test) is performed to compare the scores over the T series. Variables
that are scored significantly higher than contrasts are selected.

C) Removing effects of identified important variables
To allow detection of less important variables, after a subset of relevant
variables is discovered by step B, we remove their effects on the response.
To accomplish this, the target is predicted using only these important
variables, and a residual of the target is computed. Then we return to
step A, until no variables remain with scores significantly higher than
those of the contrasts. The last step is identical to stage-wise regression,
but applied to a nonlinear model. It is important that the step (A)
uses all variables to build the ensemble, and does not exclude identified
important ones.

To accommodate step C in classification problems we adopted the multi-
class logistic regression approach described in [5]. We predict log-odds of class
probabilities for each class with an ensemble, and then take pseudo-residuals
as summarized in Algorithm 7.3.2. The main difference in the regression

© 2008 by Taylor & Francis Group, LLC

136 Computational Methods of Feature Selection

TABLE 7.1: Notation in the Algorithms

C Number of classes (if classification problem)
X Set of original variables
Y Target variable
Z Permuted versions of X
F Current working set of variables
Φ Set of important variables
Vi. ith row of variable importance matrix V
V.j jth column of matrix V
gI(F, Y) Function that trains an ensemble of L trees based on

variables F and target Y , and returns a row vector
of importance for each variable in F

gY (F, Y) Function that trains an ensemble based on variables F
and target Y , and returns a prediction of Y (the number
of trees is typically larger than L)

Gk(F) Current predictions for log-odds of k-th class
I(Yi = k) Indicator variable, equals one if (Yi = k)
x Data vector in the original variable space

case is that variable selection and removal of the influence of the discovered
variables to the target are done separately for each class in each iteration (loop
2). The important feature set is then grouped from all classes. The stopping
criteria is the absence of important features for all C classes.

The algorithms are now presented using the notation in Table 7.1. Note
that the computational complexity of our method is of the same order as of an
RF model, but it could be significantly faster for datasets with large numbers
of cases since trees in RF are built to the maximum depth.

Algorithm 7.3.1 Independent Probes with Ensembles (IPE), Regression
1. set Φ← {};
2. for i = 1, ..., T do
3. {Z1, ..., ZN} ← permute{X1, ..., XN}
4. set F ← X ∪ {Z1, ..., ZN}
5. Vi. = gI(F, Y);

endfor
6. vn =(1−α) percentilej∈{Z1,...,ZN}V.j

7. Set Φ̂ to those {Xk} for which V.k > max(vn,V.Zk
) with

t-test significance 0.05
8. If Φ̂ is empty, then quit.
9. Φ← Φ ∪ Φ̂;
10. Y = Y − gY (Φ̂, Y)
11. Go to 2.

© 2008 by Taylor & Francis Group, LLC

Ensembles with Independent Probe Variables 137

Algorithm 7.3.2 Independent Probes with Ensembles (IPE), Classification
1. set Φ← {}; Gk(F) = 0;
2. for k = 1, ..., C do

a. Compute class prob. pk(x) = exp(Gk(x))/
∑K

l=1 exp(Gl(x))
b. Compute pseudo-residuals Y k

i = I(Yi = k)− pk(xi)
c. Set V = 0
d. for i = 1, ..., T do

{Z1, ..., ZN} ← permute{X1, ..., XN}
set F ← X ∪ {Z1, ..., ZN}
Vi. = Vi. + gI(F, Y k);
endfor

e. vn =(1−α) percentilej∈{Z1,...,ZN}V.j

f. Set Φ̂k to those {Xs} for which V.s > max(vn,V.Zs)
with t-test significance 0.05

g. Φ← Φ ∪ Φ̂k;
h. Gk(F) = Gk(F) + gY (Φ̂, Y k)

endfor
3. If Φ̂k is empty for all k = 1, ..., C, then quit.
4. Go to 2.

As the function g(., .) we have used ensembles of trees. Any classifier/regressor
function can be used, from which variable importance from all variable inter-
actions can be derived. To our knowledge, only ensembles of trees can provide
this conveniently.

7.4 Experiments

As advocated by [9], an experimental study must have relevance and must
produce insight. The former is achieved by using real datasets. However, such
studies often lack the latter component, failing to show exactly why and under
which conditions one method excels over another. This can be achieved by
using synthetic datasets because they let one vary systematically the domain
characteristics of interest, such as the number of relevant and irrelevant at-
tributes, the amount of noise, and the complexity of the target concept. We
describe first experiments with the proposed method using synthetic datasets
followed by a real example.

© 2008 by Taylor & Francis Group, LLC

138 Computational Methods of Feature Selection

7.4.1 Benchmark Methods

7.4.1.1 CFS

As one benchmark method, we use correlation-based feature selection (CFS),
[7] as implemented in the Weka machine learning package [15]. CFS assumes
that useful feature subsets contain features that are predictive of the target
variable but uncorrelated with one another. CFS computes a heuristic mea-
sure of the “merit” of a feature subset from pairwise feature correlations. A
heuristic search is used to traverse the space of feature subsets in reasonable
time; the subset with the highest merit found during the search is reported.
CFS thus also determines the number of returned features. CFS discretizes
internally every continuous feature and can thus work with mixed-type input
variables. In the experiments, CFS using forward search is labeled as “CFS,”
and using genetic search as “CFS-Gen.”

Computational complexity is light, linear in the number of samples, but
quadratic in the number of variables [7].

7.4.1.2 RFE

Another benchmark method is recursive feature elimination (RFE) [6], as
implemented in the Spider machine learning library [14]. The idea is to com-
pute the change in the cost function of a classifier ∂J(i) caused by removing
a given feature i or, equivalently, by bringing its weight to zero. RFE trains
a support vector machine (SVM) as the classifier optimizing the weights wi

with respect to criterion J . A ranking criterion w2
i (or ∂J(I)) is computed

for all features. The feature with the smallest ranking criterion is removed
and the iteration is repeated. RFE thus considers the current feature set as a
whole rather than ranking features individually. However, RFE has no intrin-
sic threshold. The desired number of features has to be determined by other
means. In the experiments with artificial data we give an unfair advantage
to RFE by retaining the top N features returned by RFE, where N is the
known number of relevant features in the generated dataset. Another unfair
advantage we gave for RFE is kernel selection for the intrinsc SVM classifier
or regressor. We used an RBF kernel for the data generated by Friedman’s
generator where the target is a sum of multivariate Gaussians, and a linear
kernel for the dataset where the target is a linear combination of variables.

As the method trains an SVM for each feature removed, the computational
complexity is linear in the number of variables and retains the complexity of
the SVM in the number of data samples, which is quadratic.

7.4.1.3 Breiman’s RF Error Sensitivity Method

As the third benchmark we use the sensitivity-based measure of variable
relevance evaluated by a Random Forest as proposed by Breiman [3]. For
each tree, the prediction accuracy on the out-of-bag portion of the data is
recorded. Then the same is done after permuting each predictor variable.

© 2008 by Taylor & Francis Group, LLC

Ensembles with Independent Probe Variables 139

The differences between the two accuracies are then averaged over all trees
and normalized by the standard error. For regression, the MSE is computed
on the out-of-bag data for each tree, and then the same is computed after
permuting a variable. The differences are averaged and normalized by the
standard error to get a z-score, and assign a significance level to the z-score
assuming normality. The null hypothesis tested is that the mean score is
zero, against the one-sided alternative that the mean score is positive. It is
clear that for a large number of variables this method would be extremely
computationally challenging.

Since IPE uses a learner internally, it can be considered an embedded fea-
ture selection method. RFE, which uses internally an SVM, and RF error
sensitivity methods can also similarly be called embedded methods. However,
unlike RFE and RF, which just rank all the variables, IPE also determines the
number of important variables. In this sense, the IPE operates in a similar
fashion to CFS.

7.4.2 Data and Experiments

7.4.2.1 Synthetic Complex Nonlinear Data - Friedman’s Generator

A very useful data generator is described in [5]. This generator produces
datasets with multiple non-linear interactions between input variables. Any
greedy method that evaluates the importance of a single variable one at a
time is bound to fail with these datasets.

For each data set, 20 N(0, 1) distributed input variables were generated.
The target is a multivariate function of ten of those, thus ten are pure noise.
The target function is generated as a weighted sum (weights are random) of
20 multidimensional Gaussians, each Gaussian involving about four randomly
drawn input variables at a time. Thus all of the important 10 input variables
are involved in the target, to a varying degree. We derive the “true impor-
tance” of a variable as the sum of absolute values of the weights of those
Gaussians that the variable was involved in. Mixed-type data were generated
by discretizing a randomly chosen half of the variables, each into a randomly
generated number of levels, which varied between 2 and 32.

Four different experiments are illustrated in Figures 7.1 and 7.2. Each ex-
periment involves averaging results from 50 generated datasets, 400 samples
each: 1) continuous variables - regression, 2) continuous variables - classifica-
tion, 3) mixed-type variables - regression, 4) mixed-type variables - classifica-
tion. Note that the smaller the dataset is, the harder it will be to detect true
variables among the noise variables. Even though we claim that IPE handles
massive datasets (because of its low computational complexity), here we are
really evaluating the sensitivity of the method.

Each of the pairs of panels in Figures 7.1 and 7.2 illustrates two things. 1)
How well the true important variables can be detected as a function of their
“true” importance, and 2) What is the rate of erroneously detecting a noise

© 2008 by Taylor & Francis Group, LLC

140 Computational Methods of Feature Selection

variable as an important variable?
Figures 7.1 and 7.2 show that for all four scenarios of complex nonlinear

dependencies (regression and classification with numeric and mixed-type pre-
dictors) IPE and RF methods are notably superior to CFS, CFS-Gen, and
RFE. IPE and RF have similar detection rates, but RF consistently produced
twice as many false alarms.

FIGURE 7.1: Data with nonlinear dependencies. Top: continuous variables, re-
gression. Bottom: continuous variables, classification. Legend: IPE - Independent
Probes with Ensembles, RF - Random Forest, CFS - Correlation-Based Feature
Selection with forward search, CFS-Gen - same but with genetic search, RFE - Re-
cursive Feature Elimination. Graph panels (left), Horizontal axis: True importance
of an input variable. Vertical axis: The fraction of times such a variable was de-
tected as an important variable. Bar graphs display the detection rates as well as
the false alarm rates for each of the methods averaged over 50 datasets.

© 2008 by Taylor & Francis Group, LLC

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Regression, continuous variables

Actual variable importance

D
et

ec
tio

n
ra

te

IPE
RF
CFS
CFS−Gen
RFE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

detection rate

false alarms

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Classification, continuous variables

Actual variable importance

D
et

ec
tio

n
ra

te

IPE
RF
CFS
CFS−Gen
RFE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

detection rate
false alarms

Ensembles with Independent Probe Variables 141

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Regression, mixed−type variables

Actual variable importance

D
et

ec
tio

n
ra

te

IPE
RF
CFS
CFS−Gen

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

detection rate
false alarms

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Classification, mixed−type variables

Actual variable importance

D
et

ec
tio

n
ra

te

IPE
RF
CFS
CFS−Gen

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

detection rate
false alarms

FIGURE 7.2: Data with nonlinear dependencies. Top: mixed-type variables, re-
gression. Bottom: mixed-type variables, classification. Legend: IPE - Independent
Probes with Ensembles, RF - Random Forest, CFS - Correlation-Based Feature
Selection with forward search, CFS-Gen - same but with genetic search, RFE - Re-
cursive Feature Elimination. Graph panels (left), Horizontal axis: True importance
of an input variable. Vertical axis: The fraction of times such a variable was de-
tected as an important variable. Bar graphs display the detection rates as well as
the false alarm rates for each of the methods averaged over 50 datasets.

7.4.2.2 Linear Models Challenging for Trees

We also experimented using data with linear relationships, where the target
is a simple linear combination of a number of input variables plus noise as
follows:

Y = −0.25x(1) + 0.1x(2) + 0.05x(3) + 0.025x(4) +
0.015x(5) + 0.01N(0, 1) (7.4)

where each x(i) is drawn from N(0, 1). Fifteen independent noise variables
drawn from N(0, 1) were joined to the data columns. This would be a simple
problem for stage-wise linear regression, but typically linear problems are
harder for trees. These results are illustrated in Figure 7.3.

© 2008 by Taylor & Francis Group, LLC

142 Computational Methods of Feature Selection

FIGURE 7.3: Data with linear dependencies. Continuous variables, regression.
Left panel, Horizontal axis: the importance of the variable. Vertical axis: the
fraction of times such a variable was detected as an important variable. Right panel
displays the detection rates as well as the false alarm rates for each of the methods
averaged over 50 datasets.

With these data sets of 200 samples, IPE detected 100% of the important
variables, as long as their variance was larger than 2.5 times the variance of
additive noise. The false acceptance rate remained at 1.5% with an overall
detection rate of 93%. RFE was the second best, detecting 86% of relevant
features with 4.8% false detects. RF recovered 72% of relevant features with
11% false detects. CFS and CFS-Gen performed poorly.

7.4.2.3 Real Data from Semiconductor Manufacturing with Large
Number of Multilevel Categorical Predictors

Semiconductor fabrication is becoming increasingly complex, with routes
stretching to several hundred process steps. Even with highly advanced pro-
cess control systems in place, there is inevitable variation in yield and per-
formance between and within manufacturing lots. A common practice is to
associate this variation with equipment differences by performing analysis of
variance at every process step where multiple pieces of equipment are used.
Looking for operations where there are significant differences between process
tools can reveal the sources of process variation. The one-at-a-time approach
to equipment commonality studies has many shortcomings: Most target vari-
ables of interest are affected by multiple process steps. For example, yield can
be reduced by high particle counts at nearly any manufacturing step. The
maximum frequency (Fmax) at which a part can run can be affected by a
variety of lithography, etch, implant, and diffusion operations.

We used one such dataset with known signals to test the feature selection
methods discussed in this chapter to detect tools that had non-random effects
on the maximum frequency. The data had 223 categorical predictors (man-
ufacturing steps) with the number of levels (different pieces of equipment)

© 2008 by Taylor & Francis Group, LLC

0.015 0.025 0.05 0.1 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Regression, continuous variables, Linear case

Variable importance in linear generator

D
et

ec
tio

n
ra

te IPE
RF
CFS
CFS−Gen
RFE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IPE RF CFS CFS-Gen RFE

detection rate
false alarms

Ensembles with Independent Probe Variables 143

ranging from 3 to 31, and a numeric response (Fmax). There were 6 out of
223 variables that had an actual effect. Operation 43 had the strongest effect,
and had nearly complete confounding with operations 7, 95, and 106 (100%
redundancy). Operations 46, 52, 53, and 54 had progressively weaker effects
on a single tool only. Operation 223 had small differences between a large
number of tools.

The proposed method (IPE) showed significantly superior performance on
this task, identified all relevant variables, and 5 irrelevant steps. That trans-
lates to 100% detection and 2.2% false alarm rates. The RF sensitivity method
identified only 4 relevant redundant variables with the strongest effect and 15
irrelevant steps. That translates to 44% detection and 6.7% false alarm rates.
The CFS method identified all relevant variables except step 54, and 28 irrel-
evant steps. That translates to a decent detection rate of 89% and a relatively
high percent of false alarms - 13%. The CFS-Gen method performed poorly,
identified 107 variables with 45% false alarm rate, and missed the weakest
contributor-step 223.

In all the experiments we had the “ground truth,” the knowledge of which
variables were truly the important ones. Thus we did not have to have an-
other indirect layer in the evaluation process, but we could directly assess the
variable selection performance of IPE and the benchmark methods.

7.5 Discussion

This chapter presented an efficient approach to feature selection using inde-
pendent probe variables. The result is a truly autonomous variable selection
method that considers all variable interactions and does not require a pre-set
number of important variables. It showed excellent results on a variety of
simulated and real-life complex datasets. It performed favorably when tested
against several different and reportedly powerful feature selection methods.

In earlier work, the idea of adding random “probe variables” to the data
for feature selection purposes has been used in [1]. Adding permuted original
variables as random “probes” has been used in [12] in the context of comparing
gene expression differences across two conditions. A univariate filter method
based on the permutation test is considered in [10]. However, flexible tree
ensembles with robust split estimation and variable scoring mechanisms in a
combination with formal statistical tests have not been used to compare ranks
of artificial probes to real variables in the context of variable selection.

The presented method retains all the good features of ensembles of trees:
mixed-type data can be used, missing variables can be tolerated, and variables
are not considered in isolation. The method does not require any preprocess-
ing, and it is applicable to both classification and regression. It will report

© 2008 by Taylor & Francis Group, LLC

144 Computational Methods of Feature Selection

redundant features if at least one of them is relevant to a response. However,
if the best-subset problem is of interest, a penalization strategy can be easily
added to the ensemble construction. Redundant variables are prevented from
entering the model by penalizing the algorithm for adding new variables. The
computational complexity of IPE is the same as that of the Random Forest,
O(
√

NM log M), where N is the number of variables, and M is the number
of observations. This is in fact lighter than that of any of the benchmark
methods.

References

[1] J. Bi, K. Bennett, M. Embrects, C. Breneman, and M. Song. Dimension-
ality reduction via sparse support vector machines. Journal of Machine
Learning Research, 3:1229–1243, March 2003.

[2] A. Borisov, V. Eruhimov, and E. Tuv. Dynamic soft feature selection for
tree-based ensembles. In I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh,
editors, Feature Extraction, Foundations and Applications, volume 207 of
Studies in Fuzziness and Soft Computing, pages 363–378. Springer, New
York, 2006.

[3] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[4] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. CRC Press, Boca Raton, FL, 1984.

[5] J. Friedman. Greedy function approximation: a gradient boosting ma-
chine. Technical report, Dept. of Statistics, Stanford University, 1999.

[6] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for
cancer classification using support vector machines. Machine Learning,
46:389422, 2002.

[7] M. Hall. Correlation-based Feature Selection for Machine Learning. PhD
thesis, Waikato University, Department of Computer Science, Hamilton,
NZ, 1998.

[8] T. K. Ho. The random subspace method for constructing decision
forests. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 20(8):832–844, 1998.

[9] P. Langley. Relevance and insight in experimental studies. IEEE Expert,
11:11–12, October 1996.

[10] P. Radivojac, Z. Obradovic, A. Dunker, and S. Vucetic. Feture selection
filters based on the permutation test. In Proc. European Conference on

© 2008 by Taylor & Francis Group, LLC

Ensembles with Independent Probe Variables 145

Machine Learning, pages 334–346, 2004.

[11] K. Torkkola and E. Tuv. Ensembles of regularized least squares classifiers
for high-dimensional problems. In I. Guyon, S. Gunn, M. Nikravesh,
and L. Zadeh, editors, Feature Extraction, Foundations and Applications,
volume 207 of Studies in Fuzziness and Soft Computing, pages 301–317.
Springer, New York, 2006.

[12] V. Tusher, R. Tibshirani, and G. Chu. Significance analysis of microar-
rays applied to the ionizing radiation response. PNAS, 98(9):5116–5121,
April 24 2001.

[13] E. Tuv. Feature selection and ensemble learning. In I. Guyon, S. Gunn,
M. Nikravesh, and L. Zadeh, editors, Feature Extraction, Foundations
and Applications, volume 207 of Studies in Fuzziness and Soft Computing,
pages 189–207. Springer, New York, 2006.

[14] J. Weston, A. Elisseeff, G. Bakir, and F. Sinz. The Spider.
http://www.kyb.tuebingen.mpg.de/bs/people/spider/, 2004.

[15] I. H. Witten and E. Frank. Data Mining: Practical machine learning
tools and techniques. Morgan Kaufmann, San Francisco, second edition,
2005.

© 2008 by Taylor & Francis Group, LLC

http://www.kyb.tuebingen.mpg.de

Chapter 8

Efficient Incremental-Ranked
Feature Selection in Massive Data

Roberto Ruiz

Pablo de Olavide University

Jesús S. Aguilar-Ruiz

Pablo de Olavide University

José C. Riquelme

University of Seville

8.1 Introduction . 147
8.2 Related Work . 148
8.3 Preliminary Concepts . 150
8.4 Incremental Performance over Ranking . 152
8.5 Experimental Results . 156
8.6 Conclusions . 164

Acknowledgment . 165
References . 165

8.1 Introduction

In recent years, there has been an explosion in the growth of databases in
all areas of human endeavor. Progress in digital data acquisition and stor-
age technology has resulted in the growth of huge databases. In this work,
we address the feature selection issue under a classification framework. The
aim is to build a classifier that accurately predicts the classes of new unla-
beled instances. Theoretically, having more features and instances should give
us more discriminating power. However, this can cause several problems: in-
creased computational complexity and cost; too many redundant or irrelevant
features; and estimation degradation in the classification error.

The problem of feature selection received a thorough treatment in pattern
recognition and machine learning. Most of the feature selection algorithms
approach the task as a search problem, where each state in the search spec-
ifies a distinct subset of the possible attributes [2]. The search procedure is
combined with a criterion in order to evaluate the merit of each candidate

147

© 2008 by Taylor & Francis Group, LLC

148 Computational Methods of Feature Selection

subset of attributes. There are a lot of possible combinations between each
procedure search and each attribute measure [17, 4, 16]. However, search
methods can be prohibitively expensive in massive datasets, especially when
a data mining algorithm is applied as an evaluation function.

There are various ways in which feature selection algorithms can be grouped
according to the attribute evaluation measure, depending on the type (filter
or wrapper technique) or on the way that features are evaluated (individual
or subset evaluation). The filter model relies on general characteristics of
the data to evaluate and select feature subsets without involving any mining
algorithm. The wrapper model requires one predetermined mining algorithm
and uses its performance as the evaluation criterion. It searches for features
better suited to the mining algorithm, aiming to improve mining performance,
but it also is more computationally expensive [15, 13] than filter models.
Feature ranking (FR), also called feature weighting [2, 8], assesses individual
features and assigns them weights according to their degrees of relevance,
while the feature subset selection (FSS) evaluates the goodness of each found
feature subset. (Unusually, some search strategies in combination with subset
evaluation can provide a ranked list.)

In order to compare the effectiveness of feature selection, feature sets chosen
by each technique are tested with three well-known learning algorithms: a
probabilistic learner (näıve Bayes), an instance-based learner (IB1), and a
decision tree learner (C4.5). These three algorithms have been chosen because
they represent three quite different approaches to learning, and their long-
standing tradition in classification studies.

The chapter is organized as follows. In the next two sections, we will review
previous work, and notions of feature relevance and redundancy, respectively.
In Section 8.4, we will present our proposed measures of feature relevance and
redundancy using a wrapper or filter approach, and describe our algorithm.
Experimental results are shown in Section 8.5, and the most interesting con-
clusions are summarized in Section 8.6.

8.2 Related Work

Traditional feature selection methods in some specific domain often select
the top-ranked features according to their individual discriminative powers [7].
This approach is efficient for high-dimensional data due to its linear time
complexity in terms of dimensionality. They can only capture the relevance
of features to the target concept, but cannot discover redundancy and ba-
sic interactions among features. In the FSS algorithms category, candidate
feature subsets are generated based on a certain search strategy. Different
algorithms address these issues distinctively. In [17], a great number of selec-

© 2008 by Taylor & Francis Group, LLC

Efficient Incremental Feature Selection in Massive Data 149

tion methods are categorized. We found different search strategies, namely
exhaustive, heuristic, and random searches, combined with several types of
measures to form different algorithms. The time complexity is exponential in
terms of data dimensionality for exhaustive searches and quadratic for heuris-
tic searches. The complexity can be linear to the number of iterations in a
random search, but experiments show that in order to find the best feature
subset, the number of iterations required is usually at least quadratic to the
number of features [5]. The most popular search methods in pattern recogni-
tion and machine learning cannot be applied to massive datasets due to the
large number of features and instances (sometimes tens of thousands). One
of the few used search techniques in these domains is sequential forward (SF,
also called hill-climbing or greedy search). Different subset evaluation mea-
sures in combination with an SF search engine can be found. We are specially
interested in the wrapper approach.

A key issue of wrapper methods is how to search into the space of subsets
of features. Although several heuristic search strategies exist such as greedy
sequential search, best-first search, and genetic algorithm, most of them are
still computationally expensive O(N2) (with N the number of features of the
original dataset), which prevents them from scaling well to datasets containing
thousands of features. A rough estimate of the time required by most of
these techniques is in the order of thousands of hours, assuming that the
method does not get caught in a local minima first and stops prematurely.
For example, if we have chosen 50 features from 20,000 (0.0025% of the whole
set) through a greedy search, the subset evaluator would be run approximately
one million times (N times to find the best single feature, then it tries each
of the remaining features in conjunction with the best to find the most suited
pair of features N − 1 times, and so on, more or less 20, 000 × 50 times).
Assuming 4 seconds on average by each evaluation, the results would take
more than 1,000 hours.

The limitations of both approaches, FR and FSS, clearly suggest that we
should pursue a hybrid model. Recently, a new framework of feature selection
has been used, where several of the above-mentioned approaches are combined.
[21] proposed a fast correlation-based filter algorithm (FCBF) that uses corre-
lation measure to obtain relevant features and to remove redundancy. There
are other methods based on relevance and redundancy concepts. Recursive
feature elimination (RFE) is a proposed feature selection algorithm described
in [10]. The method, given that one wishes to find only r dimensions in the
final subset, works by trying to choose the r features that lead to the largest
margin of class separation, using an SVM classifier. This combinatorial prob-
lem is solved in a greedy fashion at each iteration of training by removing
the input dimension that decreases the margin the least until only r input
dimensions remain (this is known as backward selection). The authors in [6]
have used mutual information for gene selection that has maximum relevance
with minimal redundancy by solving a simple two-objective optimization, and
[20] proposes a hybrid of filter and wrapper approaches to feature selection.

© 2008 by Taylor & Francis Group, LLC

150 Computational Methods of Feature Selection

In [12], the authors propose a rank search method to compare feature se-
lection algorithms. Rank search techniques rank all features, and subsets of
increasing size are evaluated from the ranked list (i.e., the first attribute, the
two first ones, etc.). The best attribute set is reported. The authors apply the
wrapper approach to datasets up to 300 attributes and state that for the ADS
dataset (1,500 attributes) the estimated time to only generate the ranking in
a machine with a 1.4GHz processor would be about 140 days and to evalu-
ate the ranked list of attributes would take about 40 days. In contrast, our
method can be tested on datasets with 20,000 features on a similar machine
in a few hours.

This chapter presents a feature selection method, named BIRS (Best In-
cremental Ranked Subset), based on the hybrid model, and attempts to take
advantage of all of the different approaches by exploiting their best perfor-
mances in two steps: First, a filter or wrapper approach provides a ranked
list of features, and, second, ordered features are added using a wrapper or
filter subset evaluation ensuring good performance (the search algorithm is
valid for any feature ranked list). This approach provides the possibility of
efficiently applying any subset evaluator, wrapper model included, in large
and high-dimensional domains, obtaining good results. The final subset is
obviously not the optimum, but it is unfeasible to search for every possible
subset of features through the search space. The main goal of our research
is to obtain a few features with high predictive power. The wrapper version
of this algorithm has been proved to be efficient and effective in microarray
domains [18].

8.3 Preliminary Concepts

8.3.1 Relevance

The purpose of a feature subset algorithm is to identify relevant features
according to a definition of relevance. However, the notion of relevance in ma-
chine learning has not yet been rigorously defined in common agreement [1].
Reference [13] includes three disjointed categories of feature relevance: strong
relevance, weak relevance, and irrelevance. These groups are important to
decide what features should be conserved and which ones can be eliminated.
The strongly relevant features are, in theory, important to maintain a struc-
ture in the domain, and they should be conserved by any feature selection
algorithm in order to avoid the addition of ambiguity to the sample. Weakly
relevant features could be important or not, depending on the other features
already selected and on the evaluation measure that has been chosen (accu-
racy, simplicity, consistency, etc.). Irrelevant attributes are not necessary at
all. Reference [1] makes use of information theory concepts to define the en-

© 2008 by Taylor & Francis Group, LLC

Efficient Incremental Feature Selection in Massive Data 151

tropic or variable relevance of a feature with respect to the class. Reference
[2] collects several relevance definitions. The above notions of relevance are
independent of the specific learning algorithm being used. There is no guar-
antee that just because a feature is relevant, it will necessarily be useful to
an algorithm (or vice versa). The definition of incremental relevance in [3]
makes it explicit, since it is considered especially suited to obtain a predictive
feature subset.

DEFINITION 8.1 Incremental usefulness Given a sample of data
XL, a learning algorithm L, a feature space F, and a feature subset S (S ⊆ F),
the feature Fi is incrementally useful to L with respect to S if the accuracy of
the hypothesis that L produces using the group of features {Fi} ∪ S is better
than the accuracy achieved using just the subset of features S.

We consider this definition to be especially suited to obtain a predictive
feature subset. In the next section, concepts can be applied to avoid a subset
that contains attributes with the same information.

8.3.2 Redundancy

Notions of feature redundancy are normally in terms of feature correlation.
It is widely accepted that two features are redundant to each other if their
values are completely correlated. There are two widely used types of mea-
sures for the correlation between two variables: linear and non-linear. In the
first case, the Pearson correlation coefficient is used, and in the second one,
many measures are based on the concept of entropy, or the measure of the
uncertainty of a random variable. Symmetrical uncertainty is frequently used,
defined as

SU(X, Y) = 2
[

IG(X |Y)
H(X) + H(Y)

]

where H(X) = −
∑

i P (xi)log2(P (xi)) is the entropy of a variable X and
IG(X |Y) = H(X)−H(X |Y) is the information gain from X provided by Y .

The above-mentioned definitions are between pairs of variables. However,
it may not be as straightforward in determining feature redundancy when one
is correlated with a set of features. Reference [14] applies a technique based
on cross-entropy, named Markov blanket filtering, to eliminate redundant fea-
tures. This idea is formalized in the following definition.

DEFINITION 8.2 Markov blanket Given a feature Fi ∈ S (a set of
attributes) and the class Y, the subset M ⊆ S (Fi /∈M) is a Markov blanket
of Fi if, given M, Fi is conditionally independent of S−M− {Fi} and Y.

Two attributes (or sets of attributes) X, Y are said to be conditionally

© 2008 by Taylor & Francis Group, LLC

152 Computational Methods of Feature Selection

independent given a third attribute Z (or set) if, the given Z makes X and
Y independent, i.e., the distribution of X , knowing Y and Z, is equal to
the distribution X knowing Z; therefore, Y does not have influence on X
(P (X |Y, Z) = P (X |Z)).

Theoretically, it can be shown that once we find a Markov blanket M of fea-
ture Fi in a feature set S, we can safely remove Fi from S without increasing
the divergence from the original distribution. Furthermore, in a sequential
filtering process, in which unnecessary features are removed one by one, a
feature tagged as unnecessary based on the existence of a Markov blanket M
remains unnecessary in later stages when more features have been removed.
The Markov blanket condition requires that M assumes not only the infor-
mation that Fi has about Y, but also about all the other features. In [14] it
is stated that the cardinality of set M must be small and fixed.

References [20] and [21] are among the most cited works at present following
the above-mentioned framework (FR+FSS). Both are based on this concept
of Markov blanket. In the first one, the number of attributes of M is not
provided, but it is a fixed number among the highly correlated features. In the
second one, a fast correlation-based filter is implemented (FCBF), where M is
formed by only one attribute, and gradually eliminates redundant attributes
with respect to M from the first to the final attributes of an ordered list.
Other methods based on relevance and redundancy concepts can be found in
[10, 6].

8.4 Incremental Performance over Ranking

In this section, we introduce first our ideas of relevance and redundancy
taking into account the aim of applying a wrapper model to massive datasets;
second, changes introduced by the filter model; and then our approach is
described.

As previously indicated, the wrapper model makes use of the algorithm that
will build the final classifier to select a feature subset. Thus, given a classifier
L, and given a set of features S, a wrapper method searches in the space of S,
using cross-validation to compare the performance of the trained classifier L
on each tested subset. While the wrapper model is more computationally ex-
pensive than the filter model, it also tends to find feature sets better suited to
the inductive biases of the learning algorithm and therefore provides superior
performance.

In this work, we propose a fast search over a minimal part of the feature
space. Beginning with the first feature from the list ordered by some evalua-
tion criterion, features are added one by one to the subset of selected features
only if such inclusion improves the classifier accuracy. Then, the learning al-

© 2008 by Taylor & Francis Group, LLC

Efficient Incremental Feature Selection in Massive Data 153

gorithm of the wrapper approach is always run N (number of features) times,
usually with a few features. A feature ranking algorithm makes use of a scor-
ing function computed from the values of each feature and the class label. By
convention, we assume that a high score is indicative of a valuable feature and
that we sort features in decreasing order of this score. We consider ranking
criteria defined for individual features, independently of the context of others.

When a ranking of features is provided from a high dimensional data set,
a large number of features with similar scores is generated, and a common
criticism is that it leads to the selection of redundant subsets. However, ac-
cording to [8], noise reduction and consequently better class separation may
be obtained by adding variables that are presumably redundant. Moreover,
a very high attribute correlation (in absolute value) does not mean the ab-
sence of attribute complementarity. Therefore, our idea of redundancy is not
based only on correlation measures, but also on the learning algorithm target
(wrapper or filter approach), in the sense that a feature is chosen if additional
information is gained by adding it to the selected subset of features.

8.4.1 Incremental Ranked Usefulness

In feature subset selection, it is a fact that two types of features are generally
perceived as being unnecessary: features that are irrelevant to the target
concept, and features that are redundant given other features. Our approach
is based on the concept of a Markov blanket, which is described in [14]. This
idea was formalized using the notion of conditionally independent attributes,
which can be defined by several approaches [20, 21]. We set this concept by a
wrapper model, defining incremental ranked usefulness in order to devise an
approach to explicitly identify relevant features and do not take into account
redundant features.

Let XL be a sample of labeled data, S be a subset of features of XL, and L
be a learning algorithm; the correct rate (or accuracy) Γ(XL/S, L) is named
to the ratio between the number of instances correctly classified by L and
the total number of evaluated instances considering only the subset S. In the
training process, this accuracy will be an estimate of error by cross-validation.

Let R = {Fi}, i = 1 . . .N be a ranking of all the features in XL sorted in
descending order, and S be named the subset of the i first features of R.

DEFINITION 8.3 Incremental ranked usefulness The feature Fi+1

in R is incrementally useful to L if it is not conditionally independent of the
class Y given S; therefore, the correct rate of the hypothesis that L produces
using the group of features {Fi+1} ∪ S is significantly better (denoted by �)
than the correct rate achieved using just the subset of features S.

Therefore, if Γ(XL/S∪{Fi+1}, L) � �Γ(XL/S, L), then Fi+1 is conditionally
independent of class Y given the subset S, and then we should be able to omit

© 2008 by Taylor & Francis Group, LLC

154 Computational Methods of Feature Selection

Input: XL training U-measure, L-subset evaluator
Output: BestSubset
1 list R = {}
2 for each feature Fi ∈ XL

3 Score = compute(Fi, U, XL)
4 append Fi to R according to Score
5 BestEvaluation = 0
6 BestSubset = ∅
7 for i = 1 to N
8 TempSubset = BestSubset ∪ {Fi} (Fi ∈ R)
9 TempEvaluation = WrapperOrFilter(TempSubset, L)
10 if (TempEvaluation m BestEvaluation)
11 BestSubset = TempSubset
12 BestEvaluation = TempEvaluation

FIGURE 8.1: BIRS algorithm.

Fi+1 without compromising the accuracy of class prediction.

A fundamental question in the previous definition is how the significant im-
provement is analyzed in this wrapper model. A five-fold cross-validation is
used to estimate if the accuracy of the learning scheme for a set of features is
significantly better (�) than the accuracy obtained for another set. We con-
ducted a Student’s paired two-tailed t-test in order to evaluate the statistical
significance (at 0.1 level) of the difference between the previous best subset
and the candidate subset. This last definition allows us to select features from
the ranking, but only those that increase the classification rate significantly.
Although the size of the sample is small (five folds), our search method uses
a t-test. We want to obtain a heuristic, not to do an accurate population
study. However, on the one hand, it must be noticed that it is a heuristic
based on an objective criterion, to determine the statistical significance de-
gree of difference between the accuracies of each subset. On the other hand,
the confidence level has been relaxed from 0.05 to 0.1 due to the small size
of the sample. Statistically significant differences at the p < 0.05 significance
level would not allow us to add more features, because it would be difficult for
the test to obtain significant differences between the accuracy of each subset.
Obviously, if the confidence level is increased, more features can be selected,
and vice versa.

Following a filter model in the subset evaluation, we need a different way to
find out if the value of measurement of a set is significantly better (�) than
another one when adding an attribute. Simply, it is verified if the improvement
surpasses a threshold (for example, 0.005), one resulted from the best previous
subset and the other resulted from the joint candidate.

© 2008 by Taylor & Francis Group, LLC

Efficient Incremental Feature Selection in Massive Data 155

TABLE 8.1: Example of feature selection
process by BIRS.

Rank F5 F7 F4 F3 F1 F8 F6 F2 F9

Subset Eval. Acc P-Val Acc Best Sub
1 F5 80 80 F5

2 F5,F7 82
3 F5,F4 81
4 F5,F3 83
5 F5,F1 84 < 0.1 84 F5,F1

6 F5,F1,F8 84
7 F5,F1,F6 86
8 F5,F1,F2 89 < 0.1 89 F5,F1,F2

9 F5,F1,F2,F9 87

8.4.2 Algorithm

There are two phases in the algorithm, named BIRS (Best Incremental
Ranked Subset), shown in Figure 8.1: Firstly, the features are ranked accord-
ing to some evaluation measure (lines 1–4). In the second phase, we deal with
the list of features once, crossing the ranking from the beginning to the last
ranked feature (lines 5-12). We obtain the classification accuracy with the
first feature in the list (line 9) and it is marked as selected (lines 10-12). We
obtain the classification rate again with the first and second features. The
second will be marked as selected depending on whether the accuracy ob-
tained is significantly better (line 10). We repeat the process until the last
feature on the ranked list is reached. Finally, the algorithm returns the best
subset found, and we can state that it will not contain irrelevant or redundant
features.

The first part of the above algorithm is efficient since it requires only the
computation of N scores and to sort them, while in the second part, time com-
plexity depends on the learning algorithm chosen. It is worth noting that the
learning algorithm is run N (number of features) times with a small number
of features, only the selected ones. Therefore, the running time of the rank-
ing procedure can be considered to be negligible regarding the global process
of selection. In fact, the results obtained from a random order of features
(without previous ranking) showed the following drawbacks: 1) The solution
was not deterministic; 2) a greater number of features were selected; 3) the
computational cost was higher because the classifier used in the evaluation
contained more features since the first iterations.

Consider the situation depicted in Table 8.1: an example of the feature
selection process done by BIRS. The first line shows the features ranked ac-
cording to some evaluation measure. We obtain the classification accuracy
with the first feature in the list (F5:80%). In the second step, we run the

© 2008 by Taylor & Francis Group, LLC

156 Computational Methods of Feature Selection

classifier with the first two features of the ranking (F5,F7:82%), and a paired
t-test is performed to determine the statistical significance degree of the differ-
ences. Since it is greater than 0.1, F7 is not selected. The same happens with
the next two subsets (F5,F4:81%, F5,F3:83%). Later, the feature F1 is added,
because the accuracy obtained is significantly better than that with only F5

(F5,F1:84%), and so on. In short, the classifier is run nine times to select,
or not, the ranked features (F5,F1,F2:89%): once with only one feature, four
times with two features, three with three features, once with four, and once
with four, features. Most of the time, the learning algorithm is run with few
features. In short, this wrapper-based approach needs much less time than
others with a broad search engine.

As we can see in the algorithm, the first feature is always selected. This
does not mean a great shortcoming in high-dimensional databases, because
usually several different sets of features share similar information. The main
disadvantage of sequential forward generation is that it is not possible to con-
sider certain basic interactions among features, i.e., features that are useless
by themselves can be useful together. Backward generation remedies some
problems, although there still will be many hidden interactions (in the sense
of being unobtainable), but it demands more computational resources than
the forward approach. The computer-load necessities of the forward search
might become very inefficient in high-dimensional domains, as it starts with
the original set of attributes and removes features increasingly.

8.5 Experimental Results

The aim of this section is to evaluate our approach in terms of classification
accuracy, degree of dimensionality, and speed in selecting features, in order to
see how good BIRS is in situations where there is a large number of features
and instances.

The comparison was performed with two representative groups of datasets:
Twelve datasets were selected from the UCI Repository (Table 8.2) and five
from the NIPS 2003 feature selection benchmark [9]. In this group (Table 8.3),
the datasets were chosen to span a variety of domains (cancer prediction
from mass-spectrometry data, handwritten digit recognition, text classifica-
tion, and prediction of molecular activity). One dataset is artificial. The
input variables are continuous or binary, sparse or dense. All problems are
two-class classification problems. The full characteristics of all the datasets
are summarized in Tables 8.2 and 8.3. We chose three different learning al-
gorithms: C4.5, IB1, and Näıve Bayes, to evaluate the accuracy on selected
features for each feature selection algorithm.

Figure 8.2 can be considered to illustrate both blocks that always com-

© 2008 by Taylor & Francis Group, LLC

Efficient Incremental Feature Selection in Massive Data 157

TABLE 8.2: UCI Repository of Machine Learning
Databases. For each dataset we show the acronym
used in this text, the number of features, the number
of examples, and the number of possible classes.

Data Acron. #Feat. #Inst. #Classes

ads ADS 1558 3279 2
arrhythmia ARR 279 452 16

hypothyroid HYP 29 3772 4
isolet ISO 617 1559 26

kr vs kp KRV 36 3196 2
letter LET 16 20000 26

multi feat. MUL 649 2000 10
mushroom MUS 22 8124 2

musk MUK 166 6598 2
sick SIC 29 3772 2

splice SPL 60 3190 3
waveform WAV 40 5000 3

TABLE 8.3: NIPS 2003 challenge data sets. For each dataset we
show the acronym used in this text, the domain it was taken from, its type
(dense, sparse, or sparse binary), the number of features, the number of
examples, and the percentage of random features. All problems are
two-class classification problems.

Data Acron. Domain Type #Feat. #Inst. %Ran.

Arcene ARC Mass Spectro. Dense 10000 100 30
Dexter DEX Text classif. Sparse 20000 300 50

Dorothea DOR Drug discove. S. bin 100000 800 50
Gisette GIS Digit recogn. Dense 5000 6000 30

Madelon MAD Artificial Dense 500 2000 96

pose algorithm BIRS (originally introduced in [21]). Therefore, this feature
selection algorithm needs measures to evaluate individual and subsets of at-
tributes. Numerous versions of selection algorithms BIRS could be formed
combining the criteria of each group of measures (individual and subset). In
order to simplify, we will use the same evaluation measure in the two phases
(individual and subset). In the experiments, we used two criteria: one belongs
to the wrapper model, and one to the filter model. 1) In the wrapper approach
(denoted by BINB , BIC4, or BIIB) we order features according to their in-
dividual predictive power, using as criterion the performance of the target
classifier built with a single feature. The same classifier is used in the second
phase to evaluate subsets. 2) In the filter approach, a ranking is provided
using a non-linear correlation measure. We chose symmetrical uncertainty
(denoted by BICF), based on entropy and information gain concepts [11] in

© 2008 by Taylor & Francis Group, LLC

158 Computational Methods of Feature Selection

Ranking
{SOAP, SU-CFS,

wrapper }

Subset
evaluation
{CFS, wrapper }

Original set
Ordered
features

Selected
subset

FIGURE 8.2: Type of feature evaluation in BIRS.

both phases. Note the similarity among the results obtained in previous works
with several ranking measure approaches [18]. Accuracy differences are not
statistically significant, although wrapper ranking is a little bit better.

Also in these experiments, to find out if the value of measurement of a set
is significantly better (�) than another one when adding an attribute, it is
distinguished between filter and wrapper models in the subset evaluation. In
the first case, it is simply verified if the improvement surpasses a threshold
established in 0.005; nevertheless, in the second case, we conduct Student’s
paired two-tailed t-test in order to evaluate the statistical significance (at level
0,1) of the difference between two averaged accuracy values: one resulted from
the joint candidate and the other resulted from the best previous subset.

Due to the high dimensionality of data, we limited our comparison to se-
quential forward (SF) techniques and a fast correlation-based filter (FCBF)
algorithm [21] applied to the first group of datasets, and only FCBF with
the NIPS datasets. We chose two representative subset evaluation measures
in combination with the SF search engine. One, denoted by SFWR, uses a
target learning algorithm to estimate the worth of feature subsets; the other,
denoted by SFCF , is a subset search algorithm that exploits sequential forward
search and uses the correlation measures (variation of the CFS correlation-
based feature selection algorithm [11]) to guide the search.

The experiments were conducted using the WEKA’s implementation of
all these existing algorithms, and our algorithm is also implemented in the
WEKA environment [19]. We must take into account that the proper way to
conduct a cross-validation for feature selection is to avoid using a fixed set of
features selected with the whole training dataset, because this induces a bias
in the results. Instead, one should withhold a pattern, select features, and
assess the performance of the classifier with the selected features using the
leftout examples. The results reported in this section were obtained with a
5×2-fold cross-validation over each dataset, i.e., a feature subset was selected
using the 50% of the instances; then, the accuracy of this subset was esti-
mated over the unseen 50% of the data. In this way, estimated accuracies,
selected attribute numbers, and time needed were the result of a mean over
five executions of two cross-validation samples. We use two instead of ten
cross-validations because of the time cost consuming with massive datasets.
Standard methods have been used for the experimental section (sequential
forward; Näıve Bayes, IB1, and C4.5 classifiers; and the t-Student statistical
test). There exist other methods following the wrapper approach to extract

© 2008 by Taylor & Francis Group, LLC

Efficient Incremental Feature Selection in Massive Data 159

TABLE 8.4: Accuracy of NB on selected features for UCI
data. The symbols + and − respectively identify statistically
significant (at 0.05 level) wins or losses over BINB.

Wrapper Filter Original
Data BINB SFNB BICF SFCF FCBF
ADS 95.42 95.83 95.38 95.81 95.64 96.38
ARR 66.99 67.70 66.50 68.05 63.98 60.13
HYP 95.10 95.32 94.15− 94.15− 94.90 95.32
ISO 83.30 82.28 77.61 80.79 74.62− 80.42
KRV 94.27 94.32 90.43− 90.43− 92.50 87.50
LET 65.67 65.67 64.28− 64.28− 65.06 63.97
MUL 97.21 96.87 97.04 96.72 96.19 94.37
MUS 98.78 99.01 98.52 98.52 98.52 95.10
MUK 84.59 84.59 79.94 69.78− 72.29 83.56
SIC 94.55 93.88 93.89 93.89 96.25 92.41
SPL 94.85 94.91 93.63− 93.60− 95.49 95.26
WAV 81.01 81.55 81.01 80.12 78.42− 80.02

time(s) 6111 49620 49 133 68

relevant features, which involve the selection process into the learning process
(neural networks, Bayesian networks, support vector machines), although the
source code of these methods is not freely available and therefore the experi-
ments cannot be reproduced. In fact, some of them are designed for specific
tasks, so the parameter settings are quite different for the learning algorithm.

Tables 8.4, 8.5, and 8.6 report accuracy by Näıve Bayes, IB1, and C4.5,
respectively, by each feature selection algorithm and the original set. From
the last row of each table, we can observe for each algorithm the running
time. We conducted a Student’s paired two-tailed t-test in order to evaluate
the statistical significance of the difference between two averaged accuracy
values: one resulted from the wrapper approach of BIRS (BINB , BIC4 or
BIIB) and the other resulted from one of the wrapper version of SF (SFNB ,
SFC4 or SFIB), BICF , SFCF , FCBF , and the original set. The symbols +
and − respectively identify statistic significance, at 0.05 level, wins or losses
over BIWR.

We studied the behavior of BIWR in three ways in Tables 8.4, 8.5, and 8.6:
with respect to a whole set of features (last row, original); with respect to an-
other wrapper approach (SFWR); and with respect to three filter approaches
(BICF , SFCF , and FCBF).

As it is possible to be observed in the last column of Tables 8.4, 8.5,
and 8.6, classification accuracies obtained with the wrapper approach of BIRS
(BIWR) with respect to results obtained with the total set of attributes are
statistically better in 4 and 3 occasions for classifiers NB and IB, respectively,
and worse in 2 applying C4. Note that the number of selected attributes
is drastically less than the original set, retaining on average 15% (NB, Ta-

© 2008 by Taylor & Francis Group, LLC

160 Computational Methods of Feature Selection

TABLE 8.5: Accuracy of C4 on selected features for UCI
data. The symbols + and − respectively identify statistically
significant (at 0.05 level) wins or losses over BIC4.

Wrapper Filter Original
Data BIC4 SFC4 BICF SFCF FCBF
ADS 96.55 96.85 96.43 96.39 95.85 96.46
ARR 68.01 67.39 66.42 67.04 64.87 64.29
HYP 99.07 99.30 96.56− 96.56− 98.03 99.36
ISO 69.43 N/D 72.68 71.94 66.63 73.38
KRV 95.11 94.26 90.43− 90.43− 94.07 99.07+

LET 84.99 85.17 84.21− 84.21− 84.84 84.45
MUL 92.42 93.11 93.17 93.12 92.29 92.74
MUS 99.91 100.00+ 98.52− 98.52− 98.84− 100.00+

MUK 95.43 N/D 94.06 94.60 91.19− 95.12
SIC 98.28 98.19 96.33− 96.33− 97.50 98.42
SPL 93.05 93.04 92.54 92.61 93.17 92.92
WAV 76.20 75.44 76.46 76.56 74.52 74.75

time(s) 17914 40098 49 133 68

ble 8.4), 16.3% (C4, Table 8.5), and 13.1% (IB, Table 8.6) of the attributes.
As we can see, BIWR chooses less than 10% of the attributes in more than
half of all the cases studied in these tables.

BIWR versus SFWR: No significant statistical differences are shown be-
tween the accuracy of our wrapper approach and the accuracy of the sequen-
tial forward wrapper procedure (SFWR), except for the MUS dataset and C4
classifier (Table 8.5).

Notice that in two cases with C4 classifiers (ISO and MUK) and two with
IBs (ADS and MUL), SFWR did not report any results after three weeks
running; therefore, there are no selected attributes or success rates. Without
considering this lack of results with SFWR, the chosen subset by BIRS is con-
siderably smaller with the IB classifiers, 13.1% versus 20%, and less difference
with NB and C4, although it is supposed that the lack of results would favor
BIRS, since SF has not finished because of the inclusion of many attributes.

On the other hand, the advantage of BIRS with respect to the SF for
NB, IB1, and C4.5 is clear having to take into account the running time
needed. BIRS takes 6,112, 5,384, and 21,863 seconds applying NB, C4, and
IB, respectively, whereas SF takes 49,620, 40,098, and 210,642 seconds. We
can observe that BIRS is consistently faster than SFW , because the wrapper
subset evaluation is run less times. For example, for the ADS dataset and C4.5
classifier, BIRS and SF retain 8.5 and 12.4 features, respectively, on average.
To obtain these subsets, the first one evaluated 1,558 features individually
(to generate the ranking) and 1,558 subsets, while the second one evaluated
18,630 subsets (1,558 features + 1557 pairs of features + . . . + 1,547 sets of

© 2008 by Taylor & Francis Group, LLC

Efficient Incremental Feature Selection in Massive Data 161

TABLE 8.6: Accuracy of IB on selected features for UCI
data. The symbols + and − respectively identify statistically
significant (at 0.05 level) wins or losses over BIIB.

Wrapper Filter Original
Data BIIB SFIB BICF SFCF FCBF
ADS 95.28 N/D 95.93 96.07 95.75 95.95
ARR 62.74 57.12 61.37 61.06 58.67 54.12
HYP 83.66 83.57 85.75 85.75 94.88 90.85
ISO 80.64 78.61 79.37 80.28 72.57− 77.58
KRV 92.27 94.24 90.43 90.43 93.85 89.21
LET 95.52 95.58 93.62− 93.62− 94.81 94.23−
MUL 96.72 N/D 97.54 97.70 97.53 97.52
MUS 98.36 99.99 98.52 98.52 98.88 100.00
MUK 93.34 94.72 92.59 93.17 89.04− 95.14
SIC 96.55 97.05 94.73 94.73 95.82 95.58
SPL 86.35 85.62 86.40 86.34 79.21− 73.74−
WAV 76.39 77.18 78.89+ 78.72 71.76− 73.42−

time(s) 40253 210642 49 133 68

TABLE 8.7: Number of features selected by each feature selection
algorithm on UCI data. Last row shows number of features retained on
average. N - number of features of the original set, N ′ - number of features
selected.

Wrapper Filter
Data BINB SFNB BIC4 SFC4 BIIB SFIB BICF SFCF FCBF

ADS 10.5 16.4 8.5 12.4 5.2 N/A 6.7 9.2 83.1
ARR 5.8 8.4 6.7 8.6 14.1 12.7 11.4 17.2 8.0
HYP 4.6 8.5 4.2 5.9 1.0 1.0 1.0 1.0 5.3
ISO 68.5 29.0 22.5 N/A 35.5 29.4 68.8 95.2 22.9

KRV 5.0 5.2 6.2 4.9 6.5 10.0 3.0 3.0 6.5
LET 11.0 11.6 11.0 10.1 10.9 11.0 9.0 9.0 10.3
MUL 22.2 15.3 20.6 13.6 11.3 N/A 28.0 90.3 121.3
MUS 2.1 3.0 4.1 4.9 1.6 4.7 1.0 1.0 3.6
MUK 1.0 1.0 9.7 N/A 4.7 12.0 6.5 16.3 2.9

SIC 2.4 1.0 5.9 5.5 2.8 6.7 1.0 1.0 4.8
SPL 13.1 14.8 9.8 11.0 5.9 6.6 6.0 6.1 21.8

WAV 9.4 12.9 9.6 7.9 10.0 12.4 12.4 14.8 6.1
N′
N

∗ 100 15.0 16.8 16.3 18.2 13.1 20.3 11.7 14.1 18.1

© 2008 by Taylor & Francis Group, LLC

162 Computational Methods of Feature Selection

twelve features). The time savings of BIRS became more obvious when the
computer-load necessities of the mining algorithm increased. In many cases,
the time savings were 10 times less, and we must take into account that SF
did not report any results on several datasets.

These results verify the computational efficiency of incremental searches
applied by BIRS over greedy sequential searches used by SF , with a lower
number of features selected and without significant statistical differences on
accuracy.

BIRS wrappers versus filters: We noticed that the computer-load ne-
cessities of filter procedures can be considered as negligible regarding wrapper
models. Nevertheless, wrapper approaches of BIRS (BIWR) obtained bet-
ter accuracies: They showed significant gains to the filter version of BIRS,
CF BICF , in 4, 5, and 1 cases for NB, C4, and IB respectively, and they only
lost in one with IB; with respect to the sequential version SFCF , BIRS won
in 5, 5, and 1 occasions for NB, C4, and IB, respectively; and with respect to
FCBF, BIWR was better in 2, 2, and 4 cases with each respective classifier.

Table 8.7 reports the number of features selected by each feature selection
algorithm on UCI data, showing three different results for each wrapper ap-
proach, depending on the learning algorithm chosen. Obviously, there is one
value for filter approaches because filters do not depend on the classifier used.
From the last row, we can observe for each algorithm the number of features
retained on average. The filter approach of BIRS retains less attributes than
the rest of the algorithms. BICF retains 11.7% of the attributes on average
for the 12 databases, SFCF retains 14.1% of the attributes on average for all
datasets, whereas FCBF retains 18.1%.

We used the WEKA implementation of the FCBF algorithm with default
values. However, if the threshold by which features can be discarded is modi-
fied, the results obtained might vary. Note that if this threshold is set to the
upper value, the number of selected features diminishes considerably, together
with a notable reduction of prediction.

Another comparison can be between the versions filters, that is to say, as
the approach behaves filter of BIRS (BICF) with respect to the sequential
search SFCF and to the FCBF algorithm. About accuracies, results obtained
with both (BIRS and SF) first are similar and a little less than those obtained
with FCBF. Nevertheless, the most reduced datasets are obtained with the
filter model of BIRS. In addition, the time needed to reduce each dataset
with BICF was faster than the others.

NIPS datasets: Table 8.8 shows the results obtained by the three classi-
fiers, Näıve Bayes (NB), C4.5 (C4), and IB1 (IB), from the NIPS 2003-Neural
Information Processing Systems (Table 8.3) feature selection benchmark data.
The table gives the accuracy and number of features selected by each feature
selection algorithm and the original set. We conducted a Student’s paired

© 2008 by Taylor & Francis Group, LLC

Efficient Incremental Feature Selection in Massive Data 163

TABLE 8.8: BIRS accuracy of Näıve Bayes (NB), C4.5 (C4), and
IB1 (IB) on selected features for NIPS data: Acc records 5×2CV
classification rate (%) and #Att records the number of features
selected by each algorithm. The symbols + and − respectively identify
statistically significant (at 0.05 level) wins or losses over BIWR.

Data BIWR BICF FCBF Original
Acc #Att Acc #Att Acc #Att

ARC 64.60 15.3 63.20 39.2 61.20 35.2 65.40
DEX 81.33 30.2 82.47 11.3 85.07 25.1 86.47

NB DOR 93.23 10.5 93.80 11.9 92.38 75.3 90.68−
GIS 92.66 35.3 90.83 11.6 87.58− 31.2 91.88

MAD 59.00 11.8 60.56 5.8 58.20 4.7 58.24
ARC 65.80 7.9 59.00 39.2 58.80 35.2 57.00
DEX 80.27 18.9 81.47 11.3 79.00 25.1 73.80

C4 DOR 92.13 7.2 91.63 11.9 90.33 75.3 88.73
GIS 93.29 26.9 90.92 11.6 90.99− 31.2 92.68

MAD 73.02 17.0 69.77 5.8 61.11− 4.7 57.73−

ARC 69.00 15.1 68.60 39.2 62.00 35.2 78.00
DEX 81.00 34.1 81.73 11.3 79.20 25.1 56.67−

IB DOR 92.18 3.5 90.98 11.9 90.35 75.3 90.25
GIS 82.25 2.3 90.07 11.6 90.06 31.2 95.21

MAD 74.92 14.4 71.59 5.8 56.90 4.7 54.39

two-tailed t-test in order to evaluate the statistical significance of the differ-
ence between two averaged accuracy values: one resulted from BIWR (BINB ,
BIC4, or BIIB) and the other resulted from one of BICF , FCBF , and the
original set. The symbols + and − respectively identify statistic significance,
at 0.05 level, wins or losses over BIWR. Results obtained with SF algorithms
are not shown. The wrapper approach is too expensive in time, and its filter
approach selects so many attributes that the program ran out of memory af-
ter a long period of time due to its quadratic space complexity. On the other
hand, the CFS algorithm has been modified to be able to obtain results with
BIRS for the DEX and DOR databases. From Table 8.8 we can conclude the
following:

• BIRS is a good method to select attributes, because with a very reduced
set of attributes one can obtain similar results, even better, than with the
whole set of features in a massive database. About accuracies obtained
by the wrapper model of BIRS, it excels specially when the C4 classifier
is applied, winning in four of the five datasets; with the NB classifier,
BIRS obtains good results on the DEX dataset; and applying IB, it loses
in ARC and GIS, but nevertheless wins by approximately 20 points in
the DEX and MAD datasets. In all the cases, the reduction obtained
with respect to the original data is drastic, emphasizing that obtained
with the DOR dataset, where approximately 0.01% of the attributes (10

© 2008 by Taylor & Francis Group, LLC

164 Computational Methods of Feature Selection

of 100,000) is always retained.

• The behavior of the filter approach of BIRS is excellent. It produces
rates of successes similar to the wrapper approach, with the number of
attributes equal or even lower. Note that the number of attributes in
filter approaches does not depend on the classifier applied.

• If we study the comparison between BIRS approaches and the FCBF
algorithm, it can be verified that, except for the DEX dataset with an
NB classifier, the accuracies obtained applying FCBF are normally be-
low those obtained applying BIRS, emphasizing the existing differences
for MAD dataset with a C4 classifier, and for ARC and MAD datasets
with IB. The subsets selected by FCBF are greater than those chosen
by BIRS on average, however, the time cost is approximately six times
less.

8.6 Conclusions

The success of many learning schemes, in their attempts to construct data
models, hinges on the reliable identification of a small set of highly predictive
attributes. Traditional feature selection methods often select the top-ranked
features according to their individual discriminative powers. However, the
inclusion of irrelevant, redundant, and noisy features in the model building
process phase can result in poor predictive performance and increased com-
putation. The most popular search methods in machine learning cannot be
applied to massive datasets, especially when a wrapper approach is used as
an evaluation function. We use the incremental ranked usefulness definition
to decide at the same time whether or not a feature is relevant and non-
redundant. The technique extracts the best non-consecutive features from
the ranking, trying to avoid the influence of unnecessary features in further
classifications.

Our approach, named BIRS, uses a very fast search through the attribute
space, and any subset evaluation measure, the classifier approach included,
can be embedded into it as an evaluator. Massive datasets take a lot of compu-
tational resources when wrappers are chosen. BIRS reduces the search space
complexity as it works directly on the ranking, transforming the combinato-
rial search of a sequential forward search into a quadratic search. However,
the evaluation is much less expensive as only a few features are selected, and
therefore the subset evaluation is computationally inexpensive in comparison
to other approaches involving wrapper methodologies.

In short, our technique BIRS chooses a small subset of features from
the original set with similar predictive performance to others. For massive

© 2008 by Taylor & Francis Group, LLC

Efficient Incremental Feature Selection in Massive Data 165

datasets, wrapper-based methods might be computationally unfeasible, so
BIRS turns out to be a fast technique that provides good performance in
predicting accuracy.

Acknowledgment

The research was supported by the Spanish Research Agency CICYT under
grant TIN2004-00159 and TIN2004-06689-C03-03.

References

[1] D. Bell and H. Wang. A formalism for relevance and its application in
feature subset selection. Machine Learning, 41(2):175–195, 2000.

[2] A. L. Blum and P. Langley. Selection of relevant features and examples
in machine learning. Artificial Intelligence, 97(1-2):245–271, 1997.

[3] R. A. Caruana and D. Freitag. How useful is relevance? In Working
Notes of the AAAI Fall Symp. on Relevance, pages 25–29, 1994.

[4] M. Dash and H. Liu. Feature selection for classification. Intelligent Data
Analisys, 1(3):131–56, 1997.

[5] M. Dash, H. Liu, and H. Motoda. Consistency based feature selection.
In Pacific-Asia Conf. on Knowledge Discovery and Data Mining, pages
98–109, 2000.

[6] C. Ding and H. Peng. Minimum redundancy feature selection from mi-
croarray gene expression data. In IEEE Computer Society Bioinformat-
ics, pages 523–529, IEEE PRess, Poscataway, NJ, 2003.

[7] T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov,
H. Coller, M. Loh, J. Downing, M. Caligiuri, C. Bloomfield, and E. Lan-
der. Molecular classification of cancer: Class discovery and class predic-
tion by gene expression monitoring. Science, 286:531–37, 1999.

[8] I. Guyon and A. Elisseeff. An introduction to variable and feature selec-
tion. Journal of Machine Learning Research, 3:1157–1182, 2003.

[9] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the
nips 2003 feature selection challenge. In Advances in Neural Information
Processing Systems, pages 545–552. MIT Press, Cambridge, MA, 2005.

© 2008 by Taylor & Francis Group, LLC

166 Computational Methods of Feature Selection

[10] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for
cancer classification using support vector machine. Machine Learning,
46(1-3):389–422, 2002.

[11] M. A. Hall. Correlation-based feature selection for discrete and numeric
class machine learning. In 17th Int. Conf. on Machine Learning, pages
359–366. Morgan Kaufmann, San Francisco, CA, 2000.

[12] M. A. Hall and G. Holmes. Benchmarking attribute selection techniques
for discrete class data mining. IEEE Transactions on Knowledge and
Data Eng., 15(3), 2003.

[13] R. Kohavi and G. H. John. Wrappers for feature subset selection. Arti-
ficial Intelligence, 1-2:273–324, 1997.

[14] D. Koller and M. Sahami. Toward optimal feature selection. In 13th Int.
Conf. on Machine Learning, pages 284–292, 1996.

[15] P. Langley. Selection of relevant features in machine learning. In Proceed-
ings of the AAAI Fall Symposium on Relevance, pages 140–144, 1994.

[16] H. Liu and H. Motoda. Feature Selection for Knowlegde Discovery and
Data Mining. Kluwer Academic Publishers, London, UK, 1998.

[17] H. Liu and L. Yu. Toward integrating feature selection algorithms for
classification and clustering. IEEE Trans. on Knowledge and Data Eng.,
17(3):1–12, 2005.

[18] R. Ruiz, J. C. Riquelme, and J. S. Aguilar-Ruiz. Incremental wrapper-
based gene selection from microarray expression data for cancer classifi-
cation. Pattern Recognition, 39:2383–2392, 2006.

[19] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, San Francisco, CA, 2005.

[20] E. P. Xing, M. I. Jordan, and R. M. Karp. Feature selection for high-
dimensional genomic microarray data. In Proc. 18th Int. Conf. on Ma-
chine Learning, pages 601–608. Morgan Kaufmann, San Francisco, CA,
2001.

[21] L. Yu and H. Liu. Efficient feature selection via analysis of relevance and
redundancy. Journal of Machine Learning Research, 5:1205–24, 2004.

© 2008 by Taylor & Francis Group, LLC

Part III

Weighting and Local
Methods

167

© 2008 by Taylor & Francis Group, LLC

Chapter 9

Non-Myopic Feature Quality
Evaluation with (R)ReliefF

Igor Kononenko

University of Ljubljana

Marko Robnik Šikonja

University of Ljubljana

9.1 Introduction . 169
9.2 From Impurity to Relief . 170
9.3 ReliefF for Classification and RReliefF for Regression 175
9.4 Extensions . 178
9.5 Interpretation . 182
9.6 Implementation Issues . 184
9.7 Applications . 185
9.8 Conclusion . 188

References . 189

9.1 Introduction

Researchers in machine learning, data mining, and statistics have developed
a number of methods that estimate the usefulness of a feature for predicting
the target variable. The majority of these measures are myopic in a sense that
they estimate the quality of one feature independently of the context of other
features. Our aim is to show the idea, advantages, and applications of non-
myopic measures, based on the Relief algorithm, which is context sensitive,
robust, and can deal with datasets with highly interdependent features. For
a more thorough overview of feature quality measures, see [15].

The next section briefly overviews myopic impurity based measures for fea-
ture evaluation and defines the basic algorithm Relief for non-myopic feature
evaluation. The succeeding section develops a more realistic variant Reli-
efF that is able to evaluate the features in multi-class problems, can deal
with missing feature values, and is robust with respect to noise. Afterwards,
the basic idea is extended also to regressional problems, and we describe the
Regressional ReliefF (RReliefF). Section 9.4 describes various extensions of
the (R)ReliefF family of algorithms: evaluation of literals in inductive logic

169

© 2008 by Taylor & Francis Group, LLC

170 Computational Methods of Feature Selection

programming, cost-sensitive feature evaluation with ReliefF, and the ordEval
algorithm for the evaluation of features with ordered values. In Section 9.5
we define two approaches to comprehensively interpret ReliefF’s estimates.
Section 9.6 discusses implementation issues, such as time complexity, the im-
portance of sampling, and parallelization. Finally, in Section 9.7 we describe
several modes of applications of the (R)ReliefF family of algorithms.

9.2 From Impurity to Relief

The majority of feature evaluation measures are impurity based, meaning
that they measure the impurity of the class value distribution. These mea-
sures evaluate each feature separately by measuring the impurity of the splits
resulting from the partition of the learning instances according to the values
of the evaluated feature. Figure 9.1 illustrates the idea. The geometrical ob-
jects are learning instances, described with features: size (big, small), shape
(circle, triangle, square, star, ellipse), and contains circle (yes, no). The color
(white, black) represents the class value.

FIGURE 9.1: Illustration of the impurity based feature evaluation.

The impurity based measures assume the conditional independence of the
features upon the class, evaluate each feature separately, and do not take the
context of other features into account. In problems that possibly involve much
feature interactions, these measures are not appropriate. The general form of

© 2008 by Taylor & Francis Group, LLC

Non-Myopic Feature Quality Evaluation with (R)ReliefF 171

all impurity based measures is

W (Fi) = imp(y)−
ni∑

j=1

p(Fi = j) imp(y|Fi = j)

where imp(y) is the impurity of class values before the split, imp(y|Fi = j) is
the impurity after the split on Fi = j, ni is the number of values of feature Fi,
and p(Fi = j) is the (prior) probability of the feature value j. By subtracting
the expected impurity of the splits from the impurity of unpartitioned in-
stances we measure gain in the purity of class values resulting from the split.
Larger values of W (Fi) imply purer splits and therefore better features. We
cannot directly apply these measures to numerical features, but we can use
any discretization technique and then evaluate the discretized features.

9.2.1 Impurity Measures in Classification

There are several impurity based measures for classification problems, e.g.,
Two well-known impurity measures are entropy and Gini-index. With entropy
we get the information gain measure, also referred to as mutual information
due to its symmetry:

Gain(Fi) = HY −HY |Fi
= HY + HFi −HY Fi = I(Fi; Y) = I(Y ; Fi) (9.1)

where HY is the class entropy, and HY |Fi
is the conditional class entropy

given the value of feature Fi. Gini-index gain [1] is obtained by the difference
between the prior and the expected posterior Gini-indices:

Gini(Fi) =
ni∑

j=1

p(Fi = j)
C∑

c=1

p(y = c|Fi = j)2 −
C∑

c=1

p(y = c)2 (9.2)

where p(y = c) is the (prior) probability of the class value c and p(y = c|Fi =
j) is the conditional probability of the class c given the feature value j.

Both measures, Gain(Fi) and Gini(Fi), are nonnegative and they tend to
overestimate features with more values. Therefore, either all features have to
be binary or we have to use a normalization. For information gain there are
two frequently used normalizations. The first is gain-ratio, where information
gain is normalized with the feature entropy [21]. This normalization elimi-
nates the problem of overestimating the multi-valued features, however, the
gain-ratio overestimates features with small feature entropy HFi . A better
normalization is with the joint entropy HY Fi [15].

Another possibility is to generalize entropy in terms of the minimum de-
scription length (MDL) principle. The impurity can be defined as the number
of bits needed to code the classes. We need to code the class probability dis-
tribution and the class for each (training) instance. The MDL measure [14] is
the most appropriate among impurity measures for estimating the quality of

© 2008 by Taylor & Francis Group, LLC

172 Computational Methods of Feature Selection

multi-valued features. Its advantage is also in the detection of useless (non-
compressive) features. Since the optimal coding for both parts of the code
uses binomial coefficients, one has to be careful with the implementation (due
to incorrect implementations, some authors considered the MDL measure use-
less). The best way to avoid overly large numbers is to use the log of gamma
function.

9.2.2 Relief for Classification

All measures described so far evaluate the quality of a feature independently
of the context of other features, i.e., they assume the independence of features
with respect to the class. The term “myopic” characterizes their inability to
detect the information content of a feature that stems from a broader context
and dependencies between features.

The context of other features can be efficiently taken into account with
the algorithm ReliefF. Let us first describe a simpler variant, called Relief
[12], which is designed for two-class problems without missing values. The
basic idea of the algorithm, when analyzing learning instances, is to take
into account not only the difference in feature values and the difference in
classes, but also the distance between the instances. Distance is calculated
in the feature space, therefore similar instances are close to each other and
dissimilar are far apart. By taking the similarity of instances into account,
the context of all the features is implicitly considered.

The basic algorithm Relief [12] (see Algorithm 9.2.1), for each instance from
a random subset of m (m ≤M) learning instances, calculates the nearest in-
stance from the same class (nearest hit xH) and the nearest instance from
the opposite class (nearest miss xM). Then it updates the quality of each fea-
ture with respect to whether the feature differentiates two instances from the
same class (undesired property of the feature) and whether it differentiates
two instances from opposite classes (desired property). By doing so, the qual-
ity estimate takes into account the local ability of the feature to differentiate
between the classes. The locality implicitly takes into account the context of
other features.

Quality estimations W can also be negative, however, W [Fi] ≤ 0 means
that feature Fi is irrelevant.

Figure 9.2 illustrates the problem of conditionally dependent features and
the way Relief deals with it. On the left-hand side we see why impurity based
measures fail: Split on values of each feature (size or shape) does not reduce
class (color) impurity. On the right-hand side we illustrate Relief: It randomly
selects an instance and finds its nearest hit (small black square) and one of the
nearest misses (small white ellipse or big white square, both containing circle).
The values of both important features (size and shape) separate the selected
instance and its miss and do not separate the instance and its hit, so they
both get a positive update. The feature contains circle, which is irrelevant to
the class, does the opposite and gets a negative update.

© 2008 by Taylor & Francis Group, LLC

Non-Myopic Feature Quality Evaluation with (R)ReliefF 173

Algorithm 9.2.1 Basic algorithm Relief.
Input: M learning instances xk described by N features; sampling parameter m

Output: for each feature Fi a quality weight −1 ≤W [i] ≤ 1

for i = 1 to N do W[i] = 0.0; end for;

for l = 1 to m do

randomly pick an instance xk;

find its nearest hit xH and nearest miss xM ;

for i = 1 to N do

W[i] = W[i] – diff(i,xk,xH)/m + diff(i,xk,xM)/m;

end for;

end for;

return(W);

For (each) feature Fi the function diff(i,xj ,xk) in Algorithm 9.2.1 returns
the difference of feature values of two instances:

diff(i,xj ,xk) =

⎧
⎨

⎩

|xj,i−xk,i|
max(Fi)−min(Fi)

Fi is numerical
0 xj,i = xk,i ∧ Fi is nominal
1 xj,i �= xk,i ∧ Fi is nominal

(9.3)

If we have a dataset with mixed numerical and nominal features, the use
of (9.3) would underestimate the numerical features. Let us illustrate this
by taking two instances with 2 and 5 being values of feature Fi, respectively,
where the possible values of Fi are integers from [1..8]. If Fi is nominal, the
value of diff(Fi, 2, 5) = 1, since the two nominal values are different. If Fi

is numerical, diff(Fi, 2, 5) = |2−5|
7 ≈ 0.43. The Relief algorithm uses results

of the diff function to update their qualities; therefore, with (9.3) numerical
features are underestimated. We can overcome this problem with the ramp

erauqs
espille

bigsmall

size

epahs

erauqs
espille

bigsmall

size

epahs

se
lec

te
d

ins
ta

nc
e

nearest
misses

nearest hit

FIGURE 9.2: Problem of conditionally dependent features (left) and the idea of
the Relief algorithm (right).

© 2008 by Taylor & Francis Group, LLC

174 Computational Methods of Feature Selection

function as proposed by [8]. It can be defined as a generalization of the diff
function for the numerical features:

diff(i,xj ,xk) =

⎧
⎨

⎩

0 |xj,i − xk,i| ≤ teq

1 |xj,i − xk,i| > tdiff
|xj,i−xk,i|−teq

tdiff −teq
teq < |xj,i − xk,i| ≤ tdiff

(9.4)

where teq and tdiff are two user definable threshold values, teq is the maximum
distance between two feature values to still consider them equal, and tdiff is
the minimum distance between feature values to still consider them different.
If we set teq = 0 and tdiff = max(Fi) − min(Fi) we obtain (9.3). Default
values are teq = 0.05(max(Fi)−min(Fi)), tdiff = 0.10(max(Fi)−min(Fi)).

Relief estimates the following difference of probabilities:

W (Fi) = P (different value of Fi|near instance with different prediction)
− P (different value of Fi|near instance with same prediction) (9.5)
= P (same value of Fi|near instance with same prediction)
− P (same value of Fi|near instance with different prediction) (9.6)

If we omit the nearness condition, we get a function that is closely related
to Gini-index[13]:

Wm(Fi) = constant×
ni∑

j=1

p(Fi = j)2 ×Ginim(Fi) (9.7)

where Ginim(Fi) is strongly related with Gini(Fi) from Equation (9.2):

Ginim(Fi) =
ni∑

j=1

(
p(Fi = j)2

∑
j p(Fi = j)2

×
C∑

c=1

p(y = c|Fi = j)2
)

−
C∑

c=1

p(y = c)2

(9.8)
The only difference between Ginim(Fi) and Gini(Fi) is that instead of the

factor p(Fi=j)2P
j p(Fi=j)2 in Equation (9.2) we have p(Fi=j)P

j p(Fi=j) = p(Fi = j). However,
the crucial difference between the myopic Relief, defined by Equation (9.7),
and Gini(Fi) is in the factor in front of Ginim in Equation (9.7):

∑
j p(Fi =

j)2. This factor represents the prior probability that two randomly selected
instances have the same value of the given feature. The factor implicitly
normalizes the Relief’s quality estimates with respect to the number of feature
values. While Gini(Fi) overestimates multi-valued features, Relief and its
myopic variant (9.7) have no such undesired bias.

Basic Relief is able to evaluate the quality of numerical and discrete fea-
tures, which are highly interdependent. For example, for very hard parity
problems of arbitrary order, where the learning instances are described with
an additional number of irrelevant features, Relief is able to detect a subset
of relevant features.

© 2008 by Taylor & Francis Group, LLC

Non-Myopic Feature Quality Evaluation with (R)ReliefF 175

Algorithm 9.3.1 ReliefF.
Input: M learning instances xk (N features and C classes);

Probabilities of classes py; Sampling parameter m;

Number n of nearest instances from each class;

Output: for each feature Fi a quality weight −1 ≤W [i] ≤ 1;

1 for i = 1 to N do W[i] = 0.0; end for;

2 for l = 1 to m do

3 randomly pick an instance xk (with class yk);

4 for y = 1 to C do

5 find n nearest instances x[j, y] from class y, j = 1..n;

6 for i = 1 to N do for j = 1 to n do

7 if y = yk { nearest hit? }
8 then W[i] = W[i] – diff(i,xk,x[j, y])/(m ∗ n);

9 else W[i] = W[i] + py/(1− pyk)∗ diff(i,xk,x[j, y])/(m ∗ n);

10 end if;

11 end for; { j } end for; { i }
12 end for; { y }
13 end for; { l }
14 return(W);

9.3 ReliefF for Classification and RReliefF for Regres-
sion

A more realistic variant of Relief is its extension, called ReliefF [13] (see
Algorithm 9.3.1). The original Relief was designed for two-class problems
without missing values and is quite sensitive to noise. ReliefF is able to deal
with incomplete and noisy data and can be used for evaluating the feature
quality in multi-class problems:

Missing feature values: ReliefF can also use incomplete data. For that
purpose we generalize the function diff to calculate the probability that
two instances have different values of the given feature. We have two
possibilities. One of instances (xl) has an unknown value of feature Fi:

diff(Fi,xl,xk) = 1− p(Fi = xk,i|y = yl)

Both instances have unknown feature values:

diff(Fi,xl,xk) = 1−
ni∑

j=1

(
p(Fi = j|y = yl)× p(Fi = j|y = yk)

)

Noisy data: The most important part of algorithm Relief is searching for the
nearest hit and miss. Noise (mistake) in a class and/or feature value

© 2008 by Taylor & Francis Group, LLC

176 Computational Methods of Feature Selection

significantly affects the selection of nearest hits and misses. In order to
make this process more reliable in the presence of noise, ReliefF uses
n nearest hits and n nearest misses and averages their contributions
to the features’ quality estimates. n is a user defined parameter with
typical values n ∈ [5...10]. This simple extension significantly improves
the reliability of quality estimates.

Multi-class problems: Instead of n nearest hits and misses, ReliefF searches
for n nearest instances from each class. The contributions of different
classes are weighted with their prior probabilities. In Algorithm 9.3.1,
the weighting factor is py/(1−pyk

). The class of an instance is yk, while
y is the class of its nearest miss. The factor is therefore proportional to
the probability of class y, normalized with the sum of probabilities of
all classes, different from yk.

In regression, as an impurity measure, the variance of the numeric target
variable is used. It is defined as the mean squared error:

s2 =
1
M

M∑

k=1

(yk − y)2

where y is the mean of the target variable over all M learning instances.
Variance is closely related to Gini-index, which is an impurity measure. If
in the binary classification problem one class is transformed into value 0 and
the other into value 1 of the regression variable (the discrete class variable is
transformed into a numerical form), we get the following equality [1]:

Gini prior = 2s2

For evaluating the quality of a feature, the expected change of variance is
used. It behaves similarly to the expected change of impurity in classification
- it tends to overestimate the features with large numbers of values.

Like most of the feature quality measures defined for classification problems,
the expected change of variance is also a myopic measure. When estimating
the quality of a feature, it does not take into account the context of other
features. In the following, we develop a non-myopic measure for regression by
appropriately adapting algorithm ReliefF.

In regression problems the target variable is numerical, therefore nearest
hits and misses cannot be used in a strict sense as in algorithm ReliefF.
RReliefF (Regressional ReliefF) uses a kind of “probability” that two instances
belong to two “different” classes [23]. This “probability” is modeled with the
distance between the values of the target variable of two learning instances.

By omitting the nearness condition in Equation (9.6) we get

Wm(Fi) = P (diff(i,xj ,xk) = 0|yj = yk)− P (diff(i,xj ,xk) = 0|yj �= yk)

© 2008 by Taylor & Francis Group, LLC

Non-Myopic Feature Quality Evaluation with (R)ReliefF 177

Algorithm 9.3.2 RReliefF – Regressional ReliefF.
Input: M learning instances xk described with N features;

Sampling parameter m; Number n of nearest instances;

Output: for each feature Fi a quality weight −1 ≤W [i] ≤ 1;

set all NdY , NdF [i], NdY ∧dF [i], W [i] to 0;

for l = 1 to m do

randomly pick an instance xk;

find indices kj of n nearest instances, j ∈ [1..n];

for j = 1 to n do

{ index 0 in diff corresponds to target (regression) variable }
NdY = NdY + diff(0,xkj ,xk)/n;

for i = 1 to N do

NdF [i] = NdF [i] + diff(i,xkj ,xk)/n;

NdY ∧dF [i] = NdY ∧dF [i] + diff(0,xkj ,xk) · diff(i,xkj ,xk)/n;

end for; { i }
end for; { j }

end for; { l }
{ for each feature calculate the value of (9.10) }
for i = 1 to N do

W [i] = NdY ∧dF [i]/NdY – (NdF [i]−NdY ∧dF [i])/(m −NdY);

end for;

return(W);

where yl stands for the class of learning instance xl. Further, let

Peq val = P (diff(i,xj ,xk) = 0), Psamecl = P (yj = yk) and

Psamecl|eq val = P (yj = yk|diff(i,xj ,xk) = 0)

By using the Bayesian rule we get

W(Fi) =
Psamecl|eq valPeq val

Psamecl
−

(1− Psamecl|eq val)Peq val

1− Psamecl
(9.9)

The trick now is to bring back the nearness condition. For estimating the
quality in Equation (9.9) we need the (posterior) probability Psamecl|eq val

that two (nearest) instances belong to the same class provided they have
the same feature value, and the prior probability Psamecl that two instances
belong to the same class. We can transform the equation, so that it contains
the probability that two instances belong to different classes provided they
have different feature values:

W(Fi) =
Pdiffcl|diffPdiff

Pdiffcl
−

(1− Pdiffcl|diff)Pdiff

1− Pdiffcl
(9.10)

© 2008 by Taylor & Francis Group, LLC

178 Computational Methods of Feature Selection

Here Pdiff denotes the prior probability that two instances have different fea-
ture values, and Pdiffcl denotes the prior probability that two instances belong
to different classes.

Algorithm RReliefF has to approximate the probabilities in Equation (9.10).
The details are provided in Algorithm 9.3.2. The algorithm calculates the
“frequencies”:

• NdY – sum of “probabilities” that two nearest instances belong to dif-
ferent classes;

• NdF [i], – sum of “probabilities” that two nearest instances have different
feature values;

• NdY ∧dF [i] – sum of “probabilities” that two nearest instances belong to
different classes and have different feature values.

Finally, from the above “frequencies,” it calculates the feature qualities W [i]
using Equation (9.10).

Both algorithms, ReliefF and RReliefF, calculate the quality of features
according to Equation (9.10), which represents a unified view of the feature
quality estimation – in classification and regression.

When computing the diff function, it also makes sense to take distance
into account. The rationale is that closer instances should have greater in-
fluence, so we exponentially decrease the influence of the near instances with
the distance from the selected instance. Details of the implementation are in
[26].

9.4 Extensions

9.4.1 ReliefF for Inductive Logic Programming

When dealing with the classification problems, inductive logic program-
ming (ILP) systems often lag behind the state-of-the-art attributional learn-
ers. Part of the blame can be ascribed to a much larger hypothesis space that,
therefore, cannot be so thoroughly explored. ReliefF is suitable for the propo-
sitional representation of training instances. A slightly different approach is
needed when estimating the quality of literals when inducing the first order
theories with an ILP system.

The main difference stems from the fact that, while learning in the propo-
sitional language, we are only interested in the boundaries between different
classes. On the other hand, when learning in the first order language, we
are not searching for boundaries but for a theory that explains positive learn-
ing instances and does not cover negative ones. A crucial part of ReliefF

© 2008 by Taylor & Francis Group, LLC

Non-Myopic Feature Quality Evaluation with (R)ReliefF 179

is the function that measures the difference (distance) between the training
instances.

Algorithm 9.4.1 Literal quality assessment with ReliefF. Note that Diff is
used for nearest hits and DiffA for nearest misses.
Input:: Literal space LS; Current training set T = T+ ∪ T−;

T+,T−: positive and negative instances respectively; Sampling parameter m;

Output: Weight vector W where W [L] estimates the quality of literal L;

set all weights W[L] := 0.0;

for l := 1 to m do

randomly select an instance xk ∈ T+;

find n nearest hits xH [i] and n nearest misses xM [i];

for L := 1 to #literals do

for i := 1 to n do

W [L] := W [L] + (DiffA(L,xk,xM [i]) −Diff(L,xk,xH [i]))/(n×m);

end for; { i }
end for; { L }

end for; { l }

The key idea of using ReliefF within ILP is to estimate literals according to
how well they distinguish between the instances that are logically similar [20].
Algorithm 9.4.1 searches for n nearest hits/misses. The search for the nearest
hits and misses is guided by the total distance between the two instances
DiffT , computed as

DiffT (xk,xl) =
1
|LS|

∑

L∈LS

Diff(L,xk,xl) (9.11)

It is simply a normalized sum of differences over the literal space LS. It
estimates the logical similarity of two instances relative to the background
knowledge.

Both the total distance DiffT and the estimates W depend on the definition
of Diff (DiffA is an asymmetric version of Diff). Table 9.1 shows the definitions
of Diff and DiffA.

The first two columns represent the coverage of literal L over the instances
xk and xl, respectively. The coverage denotes the truth value of some par-
tially built clause Cl′ with literal L included when the head of the clause is
instantiated with instance xk or xl. Note that since xk is always from T + (see
Algorithm 9.4.1), the DiffA function gives the preference to literals covering
the positive instances.

The good performance of the learning system that uses this version of Re-
liefF was empirically confirmed in many learning problems in ILP [20].

© 2008 by Taylor & Francis Group, LLC

180 Computational Methods of Feature Selection

Table 9.1: Definitions of the Diff and DiffA functions.

L(xk) L(xl) Diff(L,xk,xl) DiffA(L,xk,xl)
0 0 0 0
0 1 1 0
1 0 1 1
1 1 0 0

9.4.2 Cost-Sensitive ReliefF

While historically the majority of machine learning research in classifica-
tion has been focused on reducing the classification error, there also exists a
corpus of work on cost-sensitive classification, where all errors are not equally
important (see an overview in [6]). In general, differences in the importance
of errors are handled through the cost of misclassification.

We assume that costs can be presented with the cost matrix C, where
Cc,u is the cost (could also be benefit) associated with the prediction that an
instance belongs to the class u where in fact it belongs to the class c. The
optimal prediction for an instance x is the class u that minimizes the expected
loss:

L(x, y = u) =
C∑

c=1

P (y = c|x)Cc,u

where P (y = c|x) is the probability of the class c given instance x. The task
of a learner is therefore to estimate these conditional probabilities. Feature
evaluation measures need not be cost-sensitive for decision tree building, as
shown by [1, 6]. However, cost-sensitivity is a desired property of an algorithm
that tries to rank or weight features according to their importance. We present
the best solutions for a cost-sensitive ReliefF from [25].

There are different techniques for incorporating cost information into learn-
ing. The key idea is to use the expected cost of misclassifying an instance with
class c and then change the probability estimates:

εc =
1

1− p(y = c)

C∑

u=1
u�=c

p(y = u)Cc,u p′(y = c) =
p(y = c)εc

∑C
u=1 p(y = u)εu

(9.12)

Using probabilities (9.12) in the impurity based functions Gain (9.1) and Gini
(9.2), we get their cost-sensitive variations. Similarly, we can use (9.12) in
ReliefF; we only have to replace the 9th line in Algorithm 9.3.1 with

else W[i] = W[i] + p′y/(1− p′yk
)∗ diff(i,xk,x[j, y])/(m ∗ n);

If we use just the information from a cost matrix and do not take prior
probabilities into account, similarly to (9.12), we can compute the average
cost of misclassifying an instance that belongs to the class c and the prior

© 2008 by Taylor & Francis Group, LLC

Non-Myopic Feature Quality Evaluation with (R)ReliefF 181

probability of class value:

αc =
1

C − 1

C∑

u=1
u�=c

Cc,u p̄(y = c) =
αc

∑C
u=1 αu

(9.13)

The use of p̄(y = c) instead of p(y = c) in the 9th line in Algorithm 9.3.1 also
enables ReliefF to successfully use cost information. For two-class problems,
ReliefF, ReliefF with p′, and ReliefF with p̄ are identical.

9.4.3 Evaluation of Ordered Features at Value Level

A context sensitive algorithm for evaluation of ordinal features was proposed
in [27]. The ordEval algorithm exploits the information hidden in ordering
of feature and class values and provides a separate score for each value of
the feature. Similarly to ReliefF, the contextual information is exploited via
the selection of nearest instances. The ordEval outputs probabilistic factors
corresponding to the effect an increase/decrease of a feature value has on
the class value. The difference to ReliefF is in handling each feature value
separately and in differentiating between the positive and negative changes of
the feature and their impact on the class value.

To present the algorithm we need some definitions. Let xR be a randomly
selected instance and xS its most similar instance. Let j be the value of feature
Fi at instance xR. We observe the necessary changes of the class value and
features (Fi in particular) that would change xS to xR. If these changes are
positive (increase of class and/or feature values), let

• P (yp
i,j) be a probability that the class value of xR is larger than the class

value of its most similar neighbor xS . P (yp
i,j) is therefore the probability

that the positive change in a similar instance’s class value is needed to
get from xS to xR.

• P (F p
i,j) be a probability that j (the value of Fi at xR) is larger than

the value of Fi at its most similar neighbor xS . By estimating P (F p
i,j),

we gather evidence of the probability that the similar instance xS has a
lower value of Fi and the change of xS to xR is positive.

• P (ypF p
i,j) be a probability that both the class and j (the value of Fi

at xR) are larger than the class and feature value of its most similar
neighbor xS . With P (ypF p

i,j) we estimate the probability that positive
change in both the class and Fi value of a similar instance xS is needed
to get the values of xR.

Similarly we define P (yn
i,j), P (Fn

i,j), and P (ynFn
i,j) for negative changes that

would turn xS into xR (decrease of class and/or feature values).
The output of the algorithm are conditional probabilities called upward

and downward reinforcement factors, which measure the upward/downward

© 2008 by Taylor & Francis Group, LLC

182 Computational Methods of Feature Selection

trends exhibited in the data. The upward reinforcement of the i-th feature’s
value j is

Ui,j = P (yp
i,j |F

p
i,j) =

P (ypF p
i,j)

P (F p
i,j)

(9.14)

This factor reports the probability that a positive class change is caused by
a positive feature change. This intuitively corresponds to the effect the pos-
itive change in the feature value has on the class. Similarly for downward
reinforcement:

Di,j = P (yn
i,j |Fn

i,j) =
P (ynFn

i,j)
P (Fn

i,j)
(9.15)

Di,j reports the effect the decrease of a feature value has on the decrease of
the class value. Analogously with numerical features, we could say that U
and D are similar to the partial derivatives of the prediction function.

Algorithm ordEval reliably estimates (9.14) and (9.15), borrowing from
ReliefF and RReliefF many implementation details (sampling, context, treat-
ment of distance, updates).

The ordEval algorithm is general and can be used for analysis of any survey
with graded answers; The authors of [27] have used it as an exploratory tool
on a marketing problem of customer (dis)satisfaction and also developed a
visualization technique. The use of Ui,j and Di,j for feature subset selection
seems possible, but is still an open research question.

9.5 Interpretation

There are two complementary interpretations of the quality evaluations
computed by Relief, ReliefF, and RReliefF. The first is based on the difference
of probabilities from Equation (9.5), and the second explains them as the
portions of the explained concept.

9.5.1 Difference of Probabilities

Equation (9.5) forms the basis for the difference of probabilities interpreta-
tion of the quality estimations of the Relief algorithms: the difference of the
probability that two instances have different values of the feature F if they
have different prediction values and the probability that two instances have
different values of the feature if they have similar prediction values. These two
probabilities contain the additional condition that the instances are close in
the problem space and form an estimate of how well the values of the feature
distinguish between the instances that are near to each other.

These two probabilities are mathematical transcriptions of Relief’s idea:
The first term rewards the feature if its values separate similar observations

© 2008 by Taylor & Francis Group, LLC

Non-Myopic Feature Quality Evaluation with (R)ReliefF 183

with different prediction values, and the second term punishes it if it does
not separate similar observations with similar prediction values. As it turned
out, this interpretation is nontrivial for human comprehension. Negated sim-
ilarity (different values) and subtraction of the probabilities are difficult to
comprehend for human experts.

9.5.2 Portion of the Explained Concept

The behavior of Relief, ReliefF, and RReliefF when the number of the in-
stances approached infinity, i.e., when the problem space is densely covered
with the instances, was analyzed in [26] and proved that Relief’s quality es-
timates can be interpreted as the ratio between the number of the explained
changes in the concept and the number of examined instances.

We say that feature F is responsible for the change of yk (the predicted value
of the instance xk) to the predicted value b(yk) if the change of its values is
one of the minimal number of changes required for changing the predicted
value from yk to b(yk). We denote this responsibility by rF (yk, b(yk)). As the
number of instances M goes to infinity, the quality evaluation W (F) computed
from m instances xk from the sample S (|S| = m) for each feature converges
to the ratio between the number of changes in the predicted values the feature
is responsible for and the cardinality m of the sample:

lim
M→∞

W (F) =
1
m

m∑

k=1

rF (yk, b(yk)) (9.16)

Note that as M →∞, the problem space is densely covered with instances;
therefore, the nearest hit comes from the same characteristic region as the
randomly selected instance and its contribution in Algorithm 9.2.1 is 0.

We interpret Relief’s weights W (F) as the contribution (responsibility) of
each feature to the explanation of the predictions. The actual quality evalua-
tions for the features in the given problem are approximations of these ideal
weights, which occur only with an abundance of data.

For ReliefF this property is somehow different. Recall that in this algorithm
we search nearest misses from each of the classes and weight their contribu-
tions with prior probabilities. This weighting is also reflected in the feature
evaluation when M → ∞. Let p(y = c) represent the prior probability of
the class value c, and under the same conditions as for Relief, rF (yk, bu(yk))
be the responsibility of feature F for the change of yk to the class u. Then
ReliefF behaves as

lim
M→∞

W (F) =
1
m

C∑

c=1

C∑

u=1
u�=c

p(y = c)p(y = u)
1− p(y = c)

m∑

k=1

rF (yk, bu(yk)). (9.17)

We can therefore explain the quality estimate as the ratio between the num-
ber of class value changes the feature is responsible for and the number of

© 2008 by Taylor & Francis Group, LLC

184 Computational Methods of Feature Selection

examined instances, weighted with the prior probabilities of class values.
In two-class problems, formulas (9.17) and (9.16) are equivalent (because
diff(F,xk,xl) = diff(F,xl,xk)).

The interpretation of the quality estimates with the ratio of the explained
changes in the concept is true for RReliefF as well, as it also computes Equa-
tion (9.5); however, the updates are proportional to the size of the difference
in the prediction value.

We have noticed that in various applications (medicine, ecology) trees pro-
duced with (R)ReliefF algorithms are more comprehensible for human experts.
Splits selected by them seem to mimic humans’ partition of the problem,
which we explain with the interpretation of Relief’s weights as the portion of
the explained concept.

9.6 Implementation Issues

9.6.1 Time Complexity

The time complexity of Relief and its extension ReliefF is O(mMN), where
m is the number of iterations in the main loop of the algorithm. For the
calculation of each nearest hit and miss we need O(MN) steps. Greater m
implies more reliable evaluation of the feature’s qualities but also greater time
complexity. If we set m = M , we get the most reliable quality estimates and
the highest time complexity. This is often unacceptably slow; therefore, for
large M , we set m	M , typically m ∈ [30...200].

The time complexity of RReliefF is equal to that of basic Relief, i.e.,
O(mMN). The most time-consuming operation is searching for n nearest
instances. We need to calculate M distances, which can be done in O(MN)
steps. Building the heap (full binary tree where each subtree contains the
minimal element in the root) requires O(M) steps, and n nearest instances
can be extracted from the heap in O(n log M) steps. In practice this is always
less than O(MN).

If we use a k-d tree to implement the search for nearest instances, we can re-
duce the complexity of all three algorithms to O(NM log M) [22]. In practice,
using k-d trees to select nearest instances only makes sense with reasonably
small feature dimensionality (N < 20).

9.6.2 Active Sampling

When dealing with datasets with a huge numbers of instances, feature selec-
tion methods typically perform a random sampling. Reference [18] introduces
the concept of active feature selection, and applies selective sampling based on
data variance to ReliefF. The authors reduce the required number of training

© 2008 by Taylor & Francis Group, LLC

Non-Myopic Feature Quality Evaluation with (R)ReliefF 185

instances and achieve considerable time savings without performance deteri-
oration. The idea of the approach is first to split the instances according to
their density with the help of a k-d tree and then, instead of randomly choos-
ing an instance from the whole training set, select a random representative
from each leaf (bucket) of the k-d tree.

9.6.3 Parallelization

Relief algorithms are computationally more complex than some other (my-
opic) feature estimation measures. However, they also have a possible advan-
tage that they can be naturally split into several independent tasks, which
is a prerequisite for the successful parallelization of an algorithm. Each it-
eration of the algorithm is a natural candidate for a separate process, which
would turn Relief into a fine-grained parallel algorithm. With the arrival of
microprocessors with multiple cores, this will be an easy speedup.

9.7 Applications

(R)ReliefF has been applied in a variety of different ways in machine learn-
ing and data mining. It is implemented in many data mining tools, including
Core, Weka, Orange, and R. Core (http://lkm.fri.uni-lj.si/rmarko/software)
is the most complete and efficient implementation in C++, containing most
of the extensions described in this chapter. Weka [30] contains Java code of
ReliefF and RReliefF that can be used for feature subset selection. Orange [4]
contains ReliefF and RReliefF, which can be used for many tasks within this
versatile learning environment. In R [9], the ReliefF is available in a dprep
package (http://math.uprm.edu/∼edgar/dprep.html).

Besides the usual application for filter subset selection, (R)ReliefF was used
for wrapper feature subset selection, feature ranking, feature weighing, build-
ing tree-based models and associative rules, feature discretization, controlling
the search in genetic algorithms, literal ranking in ILP, and constructive in-
duction.

9.7.1 Feature Subset Selection

Original Relief was designed for filter feature subset selection [12]. However,
any algorithm from the (R)ReliefF family can also be efficiently used within
the wrapper method: After ranking the features, the wrapper is used to select
the appropriate size of the feature subset [7]. The usual filter way of using
(R)ReliefF in a data mining process is to evaluate the features, select the
appropriate subset, and then run one or more machine learning algorithms

© 2008 by Taylor & Francis Group, LLC

http://lkm.fri.uni-lj.si
http://math.uprm.edu

186 Computational Methods of Feature Selection

on the resulting dataset. To select the set of the most important features,
[12] introduced the significance threshold θ. If the weight of a given feature is
below θ, it is considered unimportant and is excluded from the resulting set.
Bounds for θ were proposed, i.e., 0 < θ ≤ 1√

αm
, where α is the probability of

accepting an irrelevant feature as relevant and m is the number of iterations
used. The upper bound for θ is very loose and in practice much smaller values
can be used.

Another interesting application is the feature subset selection in bagging:
When K-NN classifiers are used it is important to reduce the number of fea-
tures in order to provide efficient classification [10].

Many researchers have reported good performance of the (R)ReliefF family
of algorithms in comparison with other feature selection methods, for example
[5, 7, 28], however, with respect to the time complexity, the myopic measures
are of course faster.

9.7.2 Feature Ranking

Feature ranking is needed when one has to decide the order of features in a
certain data mining process. For example, if one needs to manually examine
plots of features or pairs of features, in many applications it is practically
impossible to examine all the plots. Therefore, only the most promising are
examined. ReliefF seems to be a good choice in domains with strong inter-
dependencies between features [3], although one must bear in mind its sen-
sitivity to the context of redundant and irrelevant features. Feature ranking
is important for guiding the search in various machine learning tasks where
an exhaustive search is too complex and a heuristic search is required. Fea-
ture ranking dictates the order of features by which the algorithms search the
space. Examples of such algorithms are building of decision trees, genetic algo-
rithms, and constructive induction. Comparisons of ReliefF’s feature ranking
with that of other methods have confirmed ReliefF’s good performance [28].

9.7.3 Feature Weighing

Feature weighing is an important component of any lazy learning scheme.
Feature weights adjust the metric and therefore strongly influence the per-
formance of lazy learning. Feature weighting is an assignment of a weight to
each feature and can be viewed as a generalization of feature subset selection
in the sense that it does not assign just binary weights (include-exclude) to
each feature but rather an arbitrary real number. If (R)ReliefF algorithms are
used in this fashion, then we do not need a significance threshold but rather
use their weights directly. ReliefF was tested as the feature weighting method
in lazy learning [29] and was found to be very useful. ReliefF was also applied
to feature weighing in clustering [17].

© 2008 by Taylor & Francis Group, LLC

Non-Myopic Feature Quality Evaluation with (R)ReliefF 187

9.7.4 Building Tree-Based Models

Commonly used feature estimators in decision trees are Gini-index and Gain
ratio in classification and the mean squared error in regression [21, 1]. These
estimators are myopic and cannot detect conditional dependencies between
features and also have inappropriate bias concerning multi-valued features
[14]. ReliefF was successfully employed in classification [16] and RReliefF in
regression problems [23]. (R)ReliefF algorithms perform as well as myopic
measures if there are no conditional dependencies among the features and
surpass them if there are strong dependencies. When faced with an unknown
dataset, it is unreasonable to assume that it contains no strong conditional
dependencies and rely only on myopic feature estimators. Furthermore, us-
ing an impurity-based estimator near the fringe of the decision tree leads to
non-optimal splits concerning accuracy, and a switch to accuracy has been
suggested as a remedy. It was shown [24] that ReliefF in decision trees as
well as RReliefF in regression trees do not need such switches as they contain
them implicitly.

9.7.5 Feature Discretization

Discretization divides the values of the numerical feature into a number of
intervals. Each interval can then be treated as one value of the new discrete
feature. Discretization of features can reduce the learning complexity and help
to understand the dependencies between the features and the target concept.
There are several methods that can be used to discretize numerical features.

A usual top-down algorithm for the discretization of features starts with
one interval and iteratively divides one subinterval into two subintervals. At
each step the algorithm searches for a boundary that, when added to the
current set of boundaries, maximizes the heuristic estimate of the discretized
feature. The algorithm assumes that the heuristic feature quality measure
increases until a (local) optima is reached. Therefore, information gain (9.1)
and Gini-index gain (9.2) in classification and the expected change of variance
(see Section 9.3) in regression are useless as they monotonously increase with
the number of intervals. Appropriate measures are non-monotonic, such as
MDL [14] and (R)ReliefF.

The main advantage of (R)ReliefF is its non-myopic behavior. Therefore,
using ReliefF leads to a non-myopic discretization of numerical features. It
was shown that conditionally dependent features may have important bound-
aries, which cannot be detected by myopic measures. The regressional version
RReliefF can be used to discretize features in regression problems.

9.7.6 Association Rules and Genetic Algorithms

The use of ReliefF together with an association rules-based classifier [11] is
also connected with feature subset selection. The adaptation of the algorithm

© 2008 by Taylor & Francis Group, LLC

188 Computational Methods of Feature Selection

to association rules changes the diff function in a similar way as in ILP (see
Section 9.4.1).

In genetic algorithms, in order to speed up the learning process, one can
define operators that are less random and take into account the importance of
features. It was shown that ReliefF improves the efficiency of genetic searches
by providing estimates of features that are then used to control the genetic
operators [19].

9.7.7 Constructive Induction

In constructive induction one needs to develop new features from the exist-
ing ones describing the data. Due to the combinatorial explosion of possible
combinations of features it is necessary to limit the search to the most promis-
ing subset of features. As (R)ReliefF implicitly detects dependencies between
features, which are most important when constructing new features, it can be
used to effectively guide the search in constructive induction. We employed
(R)ReliefF algorithms to guide the constructive induction process during the
growing of the tree models. Only the most promising features were selected
for construction, and various operators were applied on them (conjunction,
disjunction, summation, product). The results were good and in some do-
mains the obtained constructs provided additional insight into the domain
[2].

One of the most promising approaches to constructive induction is based on
the function decomposition. Algorithm HINT [31] uses ReliefF to effectively
guide the search through the space of all possible feature hierarchies.

9.8 Conclusion

ReliefF in classification and RReliefF in regression exploit the context of
other features through distance measures and can detect highly conditionally
dependent features. We have described the basic idea and showed the relation
between myopic impurity measures and Relief. Then we extended Relief to
a more realistic variant ReliefF, which is able to deal with incomplete data,
with multi-class problems, and is robust with respect to noise. Afterwards,
the basic idea was also extended to regressional problems and implemented
in the Regressional ReliefF (RReliefF). The relation between Gini-index and
variance is analogous to the relation between ReliefF and RReliefF. Various
extensions of the (R)ReliefF family of algorithms, like the evaluation of literals
in inductive logic programming, cost-sensitive feature evaluation with ReliefF,
and the ordEval algorithm for the evaluation of features with ordered values,
show the general applicability of the basic idea. The (R)ReliefF family of

© 2008 by Taylor & Francis Group, LLC

Non-Myopic Feature Quality Evaluation with (R)ReliefF 189

algorithms has been used in many different machine learning subproblems
and applications. Besides, the comprehensive interpretability of (R)ReliefF’s
estimates makes it even more attractive. Although some authors claim that
(R)ReliefF is computationally demanding, our discussion shows that this is
not an inherent property and that efficient implementations exist.

References

[1] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsforth International Group, 1984.

[2] A. Dalaka, B. Kompare, M. Robnik-Šikonja, and S. Sgardelis. Mod-
eling the effects of environmental conditions on apparent photosynthe-
sis of Stipa bromoides by machine learning tools. Ecological Modelling,
129:245–257, 2000.

[3] J. Demsar, G. Leban, and B. Zupan. Freeviz - an intelligent visualization
approach for class-labeled multidimensional data sets. In J. Holmes and
N. Peek, editors, Proceedings of IDAMAP2005, pages 61–66, 2005.

[4] J. Demsar, B. Zupan, M. Kattan, N. Aoki, and J. Beck. Orange and
decisions-at-hand: Bridging medical data mining and decision support.
In Proceedings IDAMAP 2001, pages 87–92, 2001.

[5] T. G. Dietterich. Machine learning research: Four current directions. AI
Magazine, 18(4):97–136, 1997.

[6] C. Elkan. The foundations of cost-sensitive learning. In Proc. of the
Seventeenth Int. Joint Conf. on Artificaial Intelligence (IJCAI’01), 2001.

[7] M. A. Hall and G. Holmes. Benchmarking attribute selection techniques
for discrete class data mining. IEEE Trans. on Data and Knowledge
Engineering, 15(6):1437–1447, 2003.

[8] S. J. Hong. Use of contextual information for feature ranking and dis-
cretization. IEEE Trans. on Knowledge and Data Engineering, 9(5):718–
730, 1997.

[9] R. Ihaka and R. Gentleman. R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics, 5(3):299–314, 1996.

[10] Y. Jiang, J. Ling, G. Li, H. Dai, and Z. Zhou. Dependency bagging. In
Proc. Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing,
pages 491–500. Springer, Berlin, 2005.

[11] V. Jovanoski and N. Lavrač. Feature subset selection in association rules

© 2008 by Taylor & Francis Group, LLC

190 Computational Methods of Feature Selection

learning systems. In M. Grobelnik and D. Mladenič, editors, Prooc. Anal-
ysis, Warehousing and Mining the Data, pages 74–77, 1999.

[12] K. Kira and L. Rendell. A practical approach to feature selection. In
D. Sleeman and P. Edwards, editors, Int. Conf. on Machine Learning,
pages 249–256, Aberdeen, Scotland, Morgan Kaufmann, 1992.

[13] I. Kononenko. Estimating attributes: Analysis and extensions of RE-
LIEF. In L. D. Raedt and F. Bergadano, editors, European Conf. on
Machine Learning, pages 171–182, Catania, Italy, Springer Verlag, New
York, 1994.

[14] I. Kononenko. On biases in estimating multivalued attributes. In Proc.
IJCAI-95, pages 1034–1040, Montreal, August 20–25, 1995.

[15] I. Kononenko and M. Kukar. Machine Learning and Data Mining: In-
troduction to Principles and Algorithms. Horwood Publ., 2007.

[16] I. Kononenko, E. Šimec, and M. Robnik-Šikonja. Overcoming the myopia
of inductive learning algorithms with RELIEFF. Appl.Int., 7:39–55, 1997.

[17] J. Li, X. Gao, and L. Jiao. A new feature weighted fuzzy clustering
algorithm. In Rough Sets, Fuzzy Sets, Data Mining, and Granular Com-
puting, pages 412–420. Springer, Berlin, 2005.

[18] H. Liu, H. Motoda, and L. Yu. A selective sampling approach to active
feature selection. Artificial Intelligence, 159(1-2):49–74, 2004.

[19] J. J. Liu and J. T.-Y. Kwok. An extended genetic rule induction al-
gorithm. In Evolutionary Computation, 2000. Proceedings of the 2000
Congress on, pages 458–463, 2000. La Jolla, CA, July 16-19 2000.

[20] U. Pompe and I. Kononenko. Linear space induction in first order logic
with ReliefF. In G. Riccia, R. Kruse, and R. Viertl, editors, Mathematical
and Statistical Methods in Artificial Intelligence. Springer Verlag, New
York, 1995.

[21] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-
mann, 1993.

[22] M. Robnik Šikonja. Speeding up Relief algorithm with k-d trees. In
F. Solina and B. Zajc, editors, Proceedings of Electrotehnical and Com-
puter Science Conference (ERK’98), pages B:137–140, 1998.

[23] M. Robnik Šikonja and I. Kononenko. An adaptation of Relief for at-
tribute estimation in regression. In D. H. Fisher, editor, Machine Learn-
ing: Proceedings of ICML’97, pages 296–304, San Francisco, 1997.

[24] M. Robnik Šikonja and I. Kononenko. Attribute dependencies, under-
standability and split selection in tree based models. In I. Bratko and
S. Džeroski, editors, Machine Learning: ICML’99, pages 344–353, 1999.

© 2008 by Taylor & Francis Group, LLC

Non-Myopic Feature Quality Evaluation with (R)ReliefF 191

[25] M. Robnik-Šikonja. Experiments with cost-sensitive feature evaluation.
In N. Lavrač et al., editor, ECML2003, pages 325–336, 2003.

[26] M. Robnik-Šikonja and I. Kononenko. Theoretical and empirical analysis
of ReliefF and RReliefF. Machine Learning Journal, 53:23–69, 2003.

[27] M. Robnik-Šikonja and K. Vanhoof. Evaluation of ordinal attributes at
value level. Data Mining and Knowledge Discovery, 14:225–243, 2007.

[28] R. Ruiz, J. C. Riquelme, and J. S. Aguilar-Ruiz. Fast feature ranking
algorithm. In Knowledge-Based Intelligent Information and Engineering
Systems: KES 2003, pages 325–331. Springer, Berlin, 2003.

[29] D. Wettschereck, D. W. Aha, and T. Mohri. A review and empirical
evaluation of feature weighting methods for a class of lazy learning algo-
rithms. Artificial Intelligence Review, 11:273–314, 1997.

[30] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, 2nd edition, 2005.

[31] B. Zupan, M. Bohanec, J. Demsar, and I. Bratko. Learning by discovering
concept hierarchies. Artificial Intelligence, 109(1-2):211–242, 1999.

© 2008 by Taylor & Francis Group, LLC

Chapter 10

Weighting Method for Feature
Selection in K-Means

Joshua Zhexue Huang

The University of Hong Kong

Jun Xu

The University of Hong Kong

Michael Ng

Hong Kong Baptist University

Yunming Ye

Harbin Institute of Technology, China

10.1 Introduction . 193
10.2 Feature Weighting in k-Means . 194
10.3 W-k-Means Clustering Algorithm . 197
10.4 Feature Selection . 198
10.5 Subspace Clustering with k-Means . 200
10.6 Text Clustering . 201
10.7 Related Work . 204
10.8 Discussions . 207

Acknowledgment . 207
References . 208

10.1 Introduction

The k-means type of clustering algorithms [13, 16] are widely used in real-
world applications such as marketing research [12] and data mining due to
their efficiency in processing large datasets. One unavoidable task of using
k-means in real applications is to determine a set of features (or attributes). A
common practice is to select features based on business domain knowledge and
data exploration. This manual approach is difficult to use, time consuming,
and frequently cannot make a right selection. An automated method is needed
to solve the feature selection problem in k-means.

In this chapter, we introduce a recent development of the k-means algorithm
that can automatically determine the important features in the k-means clus-

193

© 2008 by Taylor & Francis Group, LLC

194 Computational Methods of Feature Selection

tering process [14]. This new algorithm is called W-k-means. In this algorithm
a new step is added to the standard k-means clustering process to calculate
the feature weights from the current partition of data in each iteration. The
weight of a feature is determined by the sum of the within-cluster disper-
sions of the feature. The larger the sum, the smaller the feature weight. The
weights produced by the W-k-means algorithm measure the importance of the
corresponding features in clustering. The small weights reduce or eliminate
the effect of insignificant (or noisy) features. Therefore, the feature weights
can be used in feature selection. Since the k-means clustering process is not
fundamentally changed in W-k-means, the efficiency and convergency of the
clustering process remain.

A further extension of this approach is to calculate a weight for each feature
in each cluster [4]. This is called subspace k-means clustering because the im-
portant features in each cluster identify the subspace in which the cluster is
discovered. Since the subsets of important features are different in different
clusters, subspace clustering is achieved. Subspace clustering has wide ap-
plications in text clustering, bio-informatics, and customer behavior analysis,
where high-dimensional data are involved. In this chapter, subspace k-means
clustering is also discussed.

10.2 Feature Weighting in k-Means

Given a dataset X with M records and N features, the k-means clustering
algorithm [16] searches for a partition of X into k clusters that minimizes the
sum of the within-cluster dispersions of all features. The clustering process is
conducted as follows:

1. Randomly select k distinct records as the initial cluster centers.

2. For each record in X, calculate the distances between the record and
each cluster center, and assign the record to the cluster with the shortest
distance.

3. Repeat the above step until all records have been assigned to clusters.
For each cluster, compute a new cluster center as the mean (average) of
the feature values.

4. Compare the new cluster centers with the previous centers. If the new
centers are the same as the previous centers, stop the clustering process;
otherwise, go back to Step 2.

In the above standard k-means clustering process, all features are treated
the same in the calculation of the distances between the data records and the

© 2008 by Taylor & Francis Group, LLC

Weighting Method for Feature Selection in K-Means 195

cluster centers. The importance of different features is not distinguishable.
The formal presentation of the k-means clustering algorithm can be found in
[13].

To identify the importance of different features, a weight can be assigned
to each feature in the distance calculation. As such, the feature with a large
weight will have more impact on determining the cluster a record is assigned
to. Since the importance of a feature is determined by its distribution in the
dataset, the feature weights are data dependent.

To automatically determine the feature weights, we add one step to the
standard k-means clustering process to calculate the feature weights from
the current partition of the data in each iteration. During the clustering
process, weights are updated automatically until the clustering process con-
verges. Then, the final weights of the features can indicate which features are
important in clustering the data and which are not.

Formally, the process is to minimize the following objective function:

P (U, Z, W) =
k∑

l=1

M∑

i=1

N∑

j=1

ui,lw
β
j d(xi,j , zl,j) (10.1)

subject to ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k∑

l=1

ui,l = 1, 1 ≤ i ≤M

ui,l ∈ {0, 1}, 1 ≤ i ≤M, 1 ≤ l ≤ k
N∑

j=1

wj = 1, 0 ≤ wj ≤ 1

(10.2)

where

• U is an M × k partition matrix, ui,l is a binary variable, and ui,l = 1
indicates that record i is allocated to cluster l.

• Z = {Z1, Z2, ..., Zk} is a set of k vectors representing the k-cluster cen-
ters.

• W = [w1, w2, ..., wN] is a set of weights.

• d(xi,j , zl,j) is a distance or dissimilarity measure between object i and
the center of cluster l on the jth feature. If the feature is numeric, then

d(xi,j , zl,j) = (xi,j − zl,j)2 (10.3)

If the feature is categorical, then

d(xi,j , zl,j) =
{

0 (xi,j = zl,j)
1 (xi,j �= zl,j)

(10.4)

© 2008 by Taylor & Francis Group, LLC

196 Computational Methods of Feature Selection

• β is a parameter.

The above optimization problem can be solved by iteratively solving the
following three minimization problems:

1. P1: Fix Z = Ẑ and W = Ŵ ; solve the reduced problem P (U, Ẑ, Ŵ).

2. P2: Fix U = Û and W = Ŵ ; solve the reduced problem P (Û , Z, Ŵ).

3. P3: Fix U = Û and Z = Ẑ; solve the reduced problem P (Û , Ẑ, W).

P1 is solved by

⎧
⎨

⎩
ui,l = 1 if

N∑

j=1

wβ
j d(xi,j , zl,j) ≤

N∑

j=1

wβ
j d(xi,j , zt,j) for 1 ≤ t ≤ k

ui,t = 0 for t �= l

(10.5)

and P2 is solved for the numeric features by

zl,j =

M∑

i=1

ui,l xi,j

M∑

i=1

ui,l

for 1 ≤ l ≤ k and 1 ≤ j ≤ N (10.6)

If the feature is categorical, then

zl,j = ar
j (10.7)

where ar
j is the mode of the feature values in cluster l [13].

The solution to P3 is given in the following theorem.

Theorem 1. Let U = Û and Z = Ẑ be fixed,
(i) When β > 1 or β ≤ 0, P (Û , Ẑ, W) is minimized iff

ŵj =

⎧
⎪⎪⎨

⎪⎪⎩

0 if Dj = 0

1

hP

t=1

[
Dj
Dt

] 1
β−1

if Dj �= 0 (10.8)

where

Dj =
k∑

l=1

M∑

i=1

ûi,ld(xi,j , zl,j) (10.9)

and h is the number of features with Dj �= 0.
(ii) When β = 1, P (Û , Ẑ, W) is minimized iff

ŵj′ = 1 and ŵj = 0, j �= j′

© 2008 by Taylor & Francis Group, LLC

Weighting Method for Feature Selection in K-Means 197

where Dj′ ≤ Dj for all j.
The proof is given in [14].
Theorem 1 shows that, given a data partition, a larger weight is assigned to

a feature with a smaller sum of the within-cluster dispersions and a smaller
weight to a feature with a larger sum of the within-cluster dispersions. There-
fore, the feature weight is reversely proportional to the sum of the within-
cluster dispersions of the feature.

The real weight wβ
j of feature xj in the distance calculation (see (1.5)) is

also dependent on the value of β. In using W-k-means, we can choose either
β < 0 or β > 1 for the following reasons:

• When β = 0, W-k-means is equivalent to k-means.

• When β = 1, wj is equal to 1 for the smallest value of Dj . The other
weights are equal to 0. Although the objective function is minimized,
the clustering is made by the selection of one variable. It may not be
desirable for high-dimensional clustering problems.

• When 0 < β < 1, the larger Dj , the larger wj , and similarly for wβ
j .

This is against the variable weighting principal, so we cannot choose
0 < β < 1.

• When β > 1, the larger Dj, the smaller wj and the smaller wβ
j . The

effect of variable xj with large Dj is reduced.

• When β < 0, the larger Dj , the larger wj . However, wβ
j becomes smaller

and has less weighting to the variable in the distance calculation because
of negative β.

10.3 W-k-Means Clustering Algorithm

The algorithm to solve (10.1) is an extension to the standard k-means al-
gorithm [13, 21].

Algorithm - (The W-k-means algorithm)
Step 1. Randomly choose an initial Z0 = {Z1, Z2, ..., Zk} and randomly

generate a set of initial weights W 0 = [w0
1, w

0
2, ..., w

0
N] (

N∑

j=1

wj = 1). Determine

U0 such that P (U0, Z0, W 0) is minimized. Set t = 0;
Step 2. Let Ẑ = Zt and Ŵ = W t, solve problem P (U, Ẑ, Ŵ) to obtain

U t+1. If P (U t+1, Ẑ, Ŵ) = P (U t, Ẑ, Ŵ), output (U t, Ẑ, Ŵ) and stop; other-
wise, go to Step 3;

© 2008 by Taylor & Francis Group, LLC

198 Computational Methods of Feature Selection

Step 3. Let Û = U t+1 and Ŵ = W t, solve problem P (Û , Z, Ŵ) to ob-
tain Zt+1. If P (Û , Zt+1, Ŵ) = P (Û , Zt, Ŵ), output (Û , Zt, Ŵ) and stop;
otherwise, go to Step 4;

Step 4. Let Û = U t+1 and Ẑ = Zt+1, solve problem P (Û , Ẑ, W) to obtain
W t+1. If P (Û , Ẑ, W t+1) = P (Û , Ẑ, W t), output (Û , Ẑ, W t) and stop; other-
wise, set t = t + 1 and go to Step 2.

Theorem 2. The above algorithm converges to a local minimal solution
in a finite number of iterations.

The proof is given in [14].
Since the W-k-means algorithm is an extension to the k-means algorithm

by adding a new step to calculate the variable weights in the iterative process,
it does not seriously affect the scalability in clustering large data; therefore,
it is suitable for data mining applications. The computational complexity of
the algorithm is O(tNMk), where t is the total number of iterations required
for performing Step 2, Step 3 and Step 4; k is the number of clusters; N is
the number of features; and M is the number of records.

10.4 Feature Selection

One of the drawbacks of the standard k-means algorithm is that it treats all
features equally when deciding the cluster memberships. This is not desirable
if the data contain a large number of diverse features. A cluster structure in a
high-dimensional dataset is often confined to a subset of features rather than
the entire feature set. Inclusion of all features can only obscure the discovery
of the cluster structure.

The W-k-means clustering algorithm can be used to select the subset of
features for clustering in real-world applications. In doing so, the clustering
work can be divided in the following steps. The first step is to use W-k-means
to cluster the dataset or a sample of the dataset to produce a set of weights.
The second step is to select a subset of features according to the weight values
and remove the unselected features from the dataset. The third step is to use
W-k-means or another clustering algorithm to cluster the dataset to produce
the final clustering result.

Figure 10.1 shows a dataset with three features (x1, x2, x3) and two clusters
in the subset of features (x1, x2). Feature x3 is noise in a uniform distribution.
We can see the two clusters in the plot of Figure 10.1(a) but cannot see any
cluster structure in the plots of Figure 10.1(b) and Figure 10.1(c). If we
did not know that the two clusters were existing in the subset of features
(x1, x2), we would find it difficult to discover them from the dataset using the
standard k-means algorithm. However, we can use W-k-means to cluster this

© 2008 by Taylor & Francis Group, LLC

Weighting Method for Feature Selection in K-Means 199

dataset and obtain the weights of the three features as 0.47, 0.40, and 0.13,
respectively. From these weights, we can easily identify the first two features
(x1, x2) as important features. After removing the data of feature x3, we can
run the standard k-means algorithm to discover the two clusters from the
subset of the features (x1, x2) as shown in Figure 10.1(d).

In fact, we can get the final result of Figure 10.1(d) directly from the first
run of W-k-means in this simple example. Real datasets often have features in
the hundreds and records in the hundreds of thousands, such as the customer
datasets in large banks. In such situations, several runs of W-k-means are
needed to identify the subset of important features.

 0

 1

 2

 3

 4

 5

 6

 2 3 4 5 6 7 8 9

(a) Two clusters in the subset of
features x1, x2.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 3 4 5 6 7 8 9

(b) Plot of the subset of features
x1, x3.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6

(c) Plot of the subset of features
x2, x3.

 0

 1

 2

 3

 4

 5

 6

 2 3 4 5 6 7 8 9

(d) Two discovered clusters plotted
in the subset of features x1, x2.

FIGURE 10.1: Feature selection from noise data.

© 2008 by Taylor & Francis Group, LLC

200 Computational Methods of Feature Selection

10.5 Subspace Clustering with k-Means

Subspace clustering refers to the process of identifying clusters from sub-
spaces of data, with each subspace being defined by a subset of features.
Different clusters are identified from different subspaces of data. Subspace
clustering is required when clustering high-dimensional data such as those in
text mining, bio-informatics, and e-commerce.

Subspace clustering can be achieved by feature weighting in k-means. In-
stead of assigning a weight to each feature for the entire dataset, we assign a
weight to each feature in each cluster. As such, if there are N features and
k clusters, we will obtain N × k weights. This is achieved by rewriting the
objective function (10.1) as follows:

P (U, Z, W) =
k∑

l=1

M∑

i=1

N∑

j=1

ui,lw
β
l,jd(xi,j , zl,j) (10.10)

subject to
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k∑

l=1

ui,l = 1, 1 ≤ i ≤M

ui,l ∈ {0, 1}, 1 ≤ i ≤M, 1 ≤ l ≤ k
N∑

j=1

wlj = 1, 0 ≤ wlj ≤ 1

(10.11)

where W is a k × N weight matrix and the other notations are the same as
in (10.1).

In a similar fashion, (10.10) can be reduced to three subproblems that are
solved iteratively.

The subproblem P1 is solved by

⎧
⎨

⎩
ui,l = 1 if

N∑

j=1

wβ
ljd(xi,j , zl,j) ≤

N∑

j=1

wβ
ljd(xi,j , zt,j) for 1 ≤ t ≤ k

ui,t = 0 for t �= l

(10.12)

The subproblem P2 is solved with (10.6) or (10.7), depending on the data
types.

The solution to the subproblem P3 is given in the following theorem.

Theorem 3. Let U = Û and Z = Ẑ be fixed. When β > 1 or β ≤ 0,
P (Û , Ẑ, W) is minimized iff

© 2008 by Taylor & Francis Group, LLC

Weighting Method for Feature Selection in K-Means 201

ŵlj =
1

N∑

t=1

[
Dlj

Dlt

] 1
β−1

(10.13)

where

Dlj =
M∑

i=1

ûi,ld(xi,j , zl,j) (10.14)

and N is the number of features with Dlj > 0.
In subspace clustering, if Dlj = 0, we cannot simply assign a weight 0 to

feature j in cluster l. Dlj = 0 means all values of feature j are the same
in cluster l. In fact, Dlj = 0 indicates that feature j may be an important
feature in identifying cluster l. Dlj = 0 often occurs in real-world data such
as text data and supplier transaction data. To solve this problem, we can
simply add a small constant σ to the distance function to make ŵlj always
computable, i.e.,

Dlj =
M∑

i=1

ûi,l(d(xi,j , zl,j) + σ) (10.15)

In practice, σ can be chosen as the average dispersion of all features in
the dataset. It can be proved that the subspace k-means clustering process
converges [4].

10.6 Text Clustering

A typical application of subspace clustering is text mining. In text cluster-
ing, text data are usually represented in the vector space model (VSM). A set
of documents is converted to a matrix where each row indicates a document
and each column represents a term or word in the vocabulary of the document
set. Table 10.1 is a simplified example of text data representation in VSM.
Each column corresponds to a term and each line represents a document.
Each entry value is the frequency of the corresponding term in the related
document.

If a set of text documents contains several classes, the documents related
to a particular class, for instance sport, are categorized by a particular subset
of terms, corresponding to a subspace of the vocabulary space. Different
document classes are categorized by different subsets of terms, i.e., different
subspaces. For example, the subset of terms describing the sport class is
different from the subset of terms describing the music class. As such, k-means
subspace clustering becomes useful for text data because different clusters
can be identified from different subspaces through the weights of the terms.

© 2008 by Taylor & Francis Group, LLC

202 Computational Methods of Feature Selection

TABLE 10.1: A simple example
of text representation.

t0 t1 t2 t3 t4
x0 1 2 3 0 6
x1 2 3 1 0 6
x2 3 1 2 0 6
x3 0 0 1 3 2
x4 0 0 2 1 3
x5 0 0 3 2 1

TABLE 10.2: Summary of the six text datasets.
Dataset Source nd Dataset Source nd

alt.atheism 100 talk.politics.mideast 100A2
comp.graphics 100

B2
talk.politics.misc 100

comp.graphics 100 comp.graphics 100
rec.sport.baseball 100 comp.os.ms-windows 100
sci.space 100 rec.autos 100A4
talk.politics.mideast 100

B4
sci.electronics 100

comp.graphics 120 comp.graphics 120
rec.sport.baseball 100 comp.os.ms-windows 100
sci.space 59 rec.autos 59A4-U
talk.politics.mideast 20

B4-U
sci.electronics 20

Besides, the weights can also be used to select the key words for semantic
representations of clusters.

10.6.1 Text Data and Subspace Clustering

Table 10.2 lists the six datasets built from the popular 20-Newsgroups
collection.1 The six datasets have different characteristics in sparsity, dimen-
sionality, and class distribution. The classes and the number of documents
in each class are given in the columns “Source” and “nd.” The classes in the
datasets A2 and A4 are semantically apart, while the classes in the datasets
B2 and B4 are semantically close. Semantically close classes have more over-
lapping words. The number of documents in the datasets A4-U and B4-U are
different, indicating unbalanced class distributions.

These datasets were preprocessed using the Bow toolkit.2 The preprocessing
steps included removing the headers, the stop words, and the words that
occurred in less than three documents or greater than the average number of
documents in each class, as well as stemming the remaining words with the
Porter stemming function. The standard tf · idf term weighting was used to
represent the document vector.

Table 10.3 shows the comparisons of accuracy in clustering these datasets
with the subspace k-means, the standard k-means, and four subspace clus-
tering algorithms: PROCLUS [1], HARP [23], COSA [10], and LAC [8]. The

© 2008 by Taylor & Francis Group, LLC

Weighting Method for Feature Selection in K-Means 203

TABLE 10.3: Comparisons of accuracies of the subspace k-means with
the standard k-mean and other four subspace clustering algorithms.

A2 B2 A4 B4 A4-U B4-U

Subspace k-means 0.9599 0.9043 0.9003 0.8631 0.9591 0.9205
Standard k-means 0.895 0.735 0.6 0.5689 0.95 0.8729
PROCLUS 0.7190 0.6604 0.6450 0.4911 0.5239 0.5739
HARP 0.8894 0.6020 0.5073 0.3840 0.4819 0.3364
COSA 0.5781 0.5413 0.3152 0.3621 0.4159 0.3599
LAC 0.9037 0.7981 0.6721 0.5816 0.9473 0.7363

weight intervals word number
0˜1: (0,1e-08] 8
1˜2: (1e-08,1e-07] 280
2˜3: (1e-07,1e-06] 433
3˜4: (1e-06,1e-05] 188
4˜5: (1e-05,1) 32

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

350

400

450

nu
m

be
r

of
 w

or
ds

weight intervals

comp.graphics

FIGURE 10.2: Distribution of words in different ranges of weights.

accuracy is calculated as the number of correctly classified documents divided
by the total number of documents in a dataset. We can see that the sub-
space k-means performed better than the standard k-means and the other
four subspace clustering algorithms on all datasets. This is due to the sub-
space nature of the text clusters, so the subspace k-means is more suitable in
text clustering.

10.6.2 Selection of Key Words

Another advantage of using the subspace k-means in text clustering is that
the weights produced by the algorithm can be used to identify the important
terms or words in each cluster. The higher the weight value in a cluster, the
more important the term feature in discovering the cluster. We can divide the
range of the weight values into intervals and plot the distribution of features
against the weight intervals as shown in Figure 10.2.

After the distribution is obtained, we remove the terms with the extremely
large weights because they correspond to the terms with zero frequency in
the cluster, i.e., the term did not occur in the cluster. Few terms with the
extremely large weights correspond to the terms with equal frequency in each
document of the cluster. Such terms can be easily identified in postprocessing.

Taking dataset B4 as an example, after preprocessing we got 1,322 feature
words. We used the subspace k-means to cluster it into four clusters. Each
cluster has more than 300 words with zero frequency. These words were
removed from the clusters.

Figure 10.2 shows distribution of the remaining words in cluster Computer

© 2008 by Taylor & Francis Group, LLC

204 Computational Methods of Feature Selection

Graphics of the dataset B4 against the weight intervals. Since we limit the
sum of the weights for all features in a cluster to 1, the weights for most words
are relatively small. Using a weight threshold, we identified 220 words with
relatively larger weights. This is less than 17% of the total words. These are
the words categorizing the cluster. From these words, we need to identify a
few that will enable use to interpret the cluster.

Figure 10.3 show the plots of the term weights in four clusters. The hor-
izontal axis is the index of the 220 words and the vertical lines indicate the
values of the weights. We can observe that each cluster has its own subset of
key words because the lines do not have big overlaps in different clusters. The
classes Computer Graphics and Microsoft Windows overlap a little, which in-
dicates that the semantics of the two classes are close to each other. Similarly,
the classes Autos and Electronics are close.

We extracted 10 words from each cluster, which had the largest weights and
were nouns. They are listed on the right side in Figure 10.3. We can see that
these noun words indeed represent the semantic meaning of the clusters. For
example, the words graphic, color, image, and point are good descriptions of
the cluster Computer Graphics. Comparing the word distribution on the left,
these words are identifiable from their large weight values. This shows that
the weights, together with the word function, are useful in selecting the key
words for representing the meanings of clusters.

We can also observe that some words have large weights in more than one
cluster. For example, the word request has large weight values in two classes,
Computer Graphics and Microsoft Windows. Such words indicate that the
two classes are semantically close.

10.7 Related Work

Feature selection has been an important research topic in cluster analysis
[5, 6, 7, 9, 10, 11, 12, 17, 18, 19, 20].

Desarbo et al. [7] introduced the first method for variable weighting in
k-means clustering in the SYNCLUS algorithm. The SYNCLUS process is
divided into two stages. Starting from an initial set of weights, SYNCLUS
first uses the k-means clustering to partition the data into k clusters. It
then estimates a new set of optimal weights by optimizing a weighted mean-
square, stress-like cost function. The two stages iterate until they converge to
an optimal set of weights. The algorithm is time consuming computationally
[12], so it cannot process large datasets.

De Soete [5, 6] proposed a method to find optimal variable weights for
ultrametric and additive tree fitting. This method was used in hierarchical
clustering methods to solve variable weighting problems. Since the hierar-

© 2008 by Taylor & Francis Group, LLC

Weighting Method for Feature Selection in K-Means 205

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4

word index

w
or

d
w

ei
gh

t

a: comp.graphics

request

graphic

color
image

graphic 6.70466e − 05
color 2.98961e − 05
image 2.45266e − 05
icon 1.42196e − 05
laser 9.52604e − 06
scope 9.52604e − 06
point 5.41076e − 06
sheet 4.94495e − 06
plain 3.21929e − 06
gui 2.20811e − 06

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4

word index

w
or

d
w

ei
gh

t

b: comp.os.ms−windows

request

win

intel
patch

win 6.13444e − 05
intel 2.14806e − 05
patch 1.90001e − 05
logic 1.15958e − 05
pc 9.37718e − 06
buffer 9.37718e − 06
demo 8.34777e − 06
function 5.32089e − 06
company 5.32089e − 06
database 3.91727e − 06

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4

word index

w
or

d
w

ei
gh

t

c: rec.autos

auto

vehicle

motor

auto 9.25063e − 05
vehicle 1.8565e − 05
motor 1.18095e − 05
driver 9.01719e − 06
park 8.57334e − 06
repair 5.74717e − 06
mile 4.15965e − 06
door 3.23471e − 06
show 3.21888e − 06
manufacture 1.94154e − 06

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−4

word index

w
or

d
w

ei
gh

t

d: sci.electronics

electronic
circuit

signal

electronic 2.89103e − 05
circuit 2.49422e − 05
signal 2.10053e − 05
chip 1.33768e − 05
volume 9.80421e − 06
thread 6.51865e − 06
charge 3.67175e − 06
raster 2.6509e − 06
science 2.2915e − 06
technology 1.91447e − 06

FIGURE 10.3: The noun words with large weights extracted from each cluster of
the dataset B4. We can see that these words indeed represent the semantic meaning
of the corresponding clusters.

© 2008 by Taylor & Francis Group, LLC

206 Computational Methods of Feature Selection

chical clustering methods are computationally complex, De Soete’s method
cannot handle large datasets. Makarenkov and Legendre [18] extended De
Soete’s method to optimal variable weighting for k-means clustering. The
basic idea is to assign each variable a weight wi in calculating the distance
between two objects and find the optimal weights by optimizing the cost func-

tion Lp(w1, w2, ..., wp) =
K∑

k=1

(
nk∑

i,j=1

d2
ij/nk). Here, K is the number of clusters,

nk is the number of objects in the kth cluster, and dij is the distance between
the ith and the jth objects. The Polak-Ribiere optimization procedure is used
in minimization, which makes the algorithm very slow. The simulation results
in [18] show that the method is effective in identifying important variables but
not scalable to large datasets.

Modha and Spangler [20] very recently published a new method for vari-
able weighting in k-means clustering. This method aims to optimize variable
weights in order to obtain the best clustering by minimizing the ratio of the
average within-cluster distortion over the average between-cluster distortion,
referred to as the generalized Fisher ratio Q. To find the minimal Q, a set
of feasible weight groups was defined. For each weight group, the k-means
algorithm was used to generate a data partition and Q was calculated from
the partition. The final clustering was determined as the partition having
the minimal Q. This method of finding optimal weights from a predefined
set of variable weights may not guarantee that the predefined set of weights
would contain the optimal weights. Besides, it is also a practical problem to
determine the predefined set of weights for high-dimensional data.

Friedman and Meulman [10] recently published a method to cluster objects
on subsets of attributes. Instead of assigning a weight to each variable for
the entire dataset, their approach is to compute a weight for each variable in
each cluster. As such, p∗L weights are computed in the optimization process,
where p is the total number of variables and L is the number of clusters. Since
the objective function is a complicated, highly non-convex function, a direct
method to minimize it has not been found. An approximation method is used
to find clusters on different subsets of variables by combining conventional
distance-based clustering methods with a particular distance measure. Fried-
man and Meulman’s work is related to the problem of subspace clustering [3].
Scalability is a concern because their approximation method is based on the
hierarchical clustering methods.

Projected clustering is another method for feature selection of high-dimen-
sional data. PROCLUS is the first algorithm [1]. It starts with a set of initial
cluster centers discovered from a small data sample. The initial centers are
made as far apart from each other as possible. For each center, a set of data
points within a distance δ to the center is identified as the center locality
Li. Here, δ is the minimal distance between the center and other centers.
For each Li, the average distance between the points in Li and the center
is computed in each dimension. The subset of dimensions whose average

© 2008 by Taylor & Francis Group, LLC

Weighting Method for Feature Selection in K-Means 207

distances are smaller than the average distance of all dimensions is considered
as the candidate subspace for cluster i. After all candidate subspaces are
identified, the clusters are discovered from the subspaces using the distance
measures on subsets of dimensions. A few extensions have been made recently
[2, 15, 22].

10.8 Discussions

k-means clustering is an important technique in data mining and many
other real-world applications. In current practice, when using k-means, fea-
ture selection is either done manually using business domain knowledge or
carried out in separate steps using statistical methods or data exploration.
This is time consuming and difficult to make a right selection. Automated
feature selection by feature weighting within the clustering process provides
an easy solution. When handling very large data, a sample can be first clus-
tered and features with large weights selected as the dimensions for clustering
the whole dataset. Since the k-means clustering process is not changed much,
this k-means feature weighting algorithm is efficient in clustering large data.
Comparatively, other feature weighting methods for clustering as mentioned
in the previous section are not scalable to large data.

Subspace clusters in high-dimensional data is a common phenomenon in
many real-world applications, such as text mining, bio-informatics, e-business,
supply chain management, and production scheduling/planning in manufac-
turing. In this chapter, we have demonstrated that the featuring weighting
method in k-means can be extended to subspace clustering and the experi-
mental results on text data are satisfactory. However, some further research
problems remain. One is how to specify parameters β and σ when using this
algorithm. To understand this, a sensitivity study needs to be conducted. The
other one is a well-known problem: how to specify k, the number of clusters.
To investigate this problem, a subspace cluster validation method needs to be
developed. In the next step, we will work on solutions to these problems.

Acknowledgment

Michael Ng and Yunming Ye’s work was supported by the National Natural
Science Foundation of China (NSFC) under grant No.60603066.

© 2008 by Taylor & Francis Group, LLC

208 Computational Methods of Feature Selection

Notes

1 http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html.

2 http://www.cs.cmu.edu/mccallum/bow.

References

[1] C. Aggarwal, C. Procopiuc, J. Wolf, P. Yu, and J. Park. Fast algorithms
for projected clustering. In Proc. of ACM SIGMOD, pages 61–72, 1999.

[2] C. Aggarwal and P. Yu. Finding generalized projected clusters in high
dimensional spaces. In Proc. of ACM SIGMOD, pages 70–81, 2000.

[3] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic
subspace clustering of high dimensional data for data mining applications.
In Proc. of ACM SIGMOD, pages 94–105, 1998.

[4] Y. Chan, W. K. Ching, M. K. Ng, and J. Z. Huang. An optimization
algorithm for clustering using weighted dissimilarity measures. Pattern
Recognition, 37(5):943–952, 2004.

[5] G. De Soete. Optimal variable weighting for ultrametric and additive
tree clustering. Quality and Quantity, 20(3):169–180, 1986.

[6] G. De Soete. OVWTRE: A program for optimal variable weighting for
ultrametric and addtive tree fitting. Journal of Classification, 5(1):101–
104, 1988.

[7] W. S. Desarbo, J. D. Carroll, L. A. Clark, and P. E. Green. Synthesized
clustering: A method for amalgamating clustering bases with differential
weighting variables. Psychometrika, 49(1):57–78, 1984.

[8] C. Domeniconi, D. Papadopoulos, D. Gunopulos, and S. Ma. Subspace
clustering of high dimensional data. In Proc. of SIAM International
Conference on Data Mining, 2004.

[9] E. Fowlkes, R. Gnanadesikan, and J. Kettenring. Variable selection in
clustering. Journal of Classification, 5(2):205–228, 1988.

[10] J. H. Friedman and J. J. Meulman. Clustering objects on subsets of
attributes with discussion. Journal of the Royal Statistical Society: Series
B, 66(4):815–849, 2004.

[11] R. Gnanadesikan, J. Kettenring, and S. Tsao. Weighting and selection
of variables for cluster analysis. Journal of Classification, 12(1):113–136,
1995.

© 2008 by Taylor & Francis Group, LLC

http://kdd.ics.uci.edu
http://www.cs.cmu.edu

Weighting Method for Feature Selection in K-Means 209

[12] P. E. Green, J. Carmone, and J. Kim. A preliminary study of opti-
mal variable weighting in k-means clustering. Journal of Classification,
7(2):271–285, 1990.

[13] Z. Huang. Extensions to the k-means algorithms for clustering large
data sets with categorical values. Data Ming and Knowledge Discovery,
2(3):283–304, 1998.

[14] Z. Huang, M. K. Ng, H. Rong, and Z. Li. Automated variable weighting
in k-means type clustering. IEEE Transactions on Pattern Analayis and
Machine Intelligence, 27(5):657–668, 2005.

[15] M. L. Liu. Iterative projected clustering by subspace mining. IEEE
Transactions on Knowledge and Data Engineering, 17(2):176–189, 2005.

[16] J. MacQueen. Some methods for classification and analysis of multivari-
ate observation. In Proc. of the 5th Berkeley Symposium on Mathematical
Statistica and Probability, pages 281–297, 1967.

[17] V. Makarenkov and P. Leclerc. An algorithm for the fitting of a tree
metric according to a weighted least-squares criterion. Journal of Clas-
sification, 16(1):3–26, 1999.

[18] V. Makarenkov and P. Leclerc. Optimal variable weighting for ultramet-
ric and additive trees and k-means partitioning: methods and software.
Journal of Classification, 18(2):245–271, 2001.

[19] G. Milligan. A validation study of a variable weighting algorithm for
cluster analysis. Journal of Classification, 6(1):53–71, 1989.

[20] D. S. Modha and W. S. Spangler. Feature weighting in k-means cluster-
ing. Machine Learning, 52(3):217–237, 2003.

[21] S. Selim and M. Ismail. K-means-type algorithms: a generalized conver-
gence theorem and characterization of local optimality. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 6(1):81–87, 1984.

[22] J. Yang, W. Wang, H. Wang, and P. Yu. δ-clusters: capturing subspace
correlation in a large data set. In Proc. of ICDE, pages 517–528, 2002.

[23] K. Y. Yip, D. W. Cheung, and M. K. Ng. A practical projected cluster-
ing algorithm. IEEE Transactions on knowledge and data engineering,
16(11):1387–1397, 2004.

© 2008 by Taylor & Francis Group, LLC

Chapter 11

Local Feature Selection for
Classification

Carlotta Domeniconi

George Mason University

Dimitrios Gunopulos

University of California Riverside

11.1 Introduction . 211
11.2 The Curse of Dimensionality . 212
11.3 Adaptive Metric Techniques . 214
11.4 Large Margin Nearest Neighbor Classifiers . 221
11.5 Experimental Comparisons . 228
11.6 Conclusions . 231

References . 231

11.1 Introduction

In a classification problem, we are given C classes and M training ob-
servations. The training observations consist of N feature measurements
x = (x1, · · · , xN)T ∈ �N and the known class labels y = 1, . . . , C. The
goal is to predict the class label of a given query x0.

The K nearest neighbor classification method [10, 14] is a simple and ap-
pealing approach to this problem: It finds the K nearest neighbors of x0 in
the training set, and then predicts the class label of x0 as the most frequent
one occurring in the K neighbors. Such a method produces continuous and
overlapping, rather than fixed, neighborhoods and uses a different neighbor-
hood for each individual query so that all points in the neighborhood are
close to the query, to the extent possible. It is based on the assumption of
smoothness of the target functions, which translates to locally constant class
posterior probabilities for a classification problem. That is, fj(x+δx) � fj(x)
for ||δx|| small enough, where {fj(x)}Cj=1 = {P (j|x)}Cj=1. Then,

fj(x0) �
1

|N(x0)|
∑

x∈N(x0)

fj(x) (11.1)

where N(x0) is a neighborhood of x0 that contains points x in the N -

211

© 2008 by Taylor & Francis Group, LLC

212 Computational Methods of Feature Selection

dimensional space that are “close” to x0. |N(x0)| denotes the number of
points in N(x0). Given the training data {(xn, yn)}Mn=1, this motivates the
estimates

f̂(j|x0) =
∑M

n=1 1(xn ∈ N(x0))1(yn = j)
∑M

n=1 1(xn ∈ N(x0))
(11.2)

where 1(·) is an indicator function such that it returns 1 when its argument
is true, and 0 otherwise.

A particular nearest neighbor method is defined by how the neighborhood
N(x0) is specified. K nearest neighbor methods (K-NN) define the region at
x0 to be the one that contains exactly the K closest training points to x0

according to a p-norm distance metric on the Euclidean space of the input
measurement variables:

Dp(x0,x) = {
N∑

i=1

|[W (x0)(x0 − x)]i|p}1/p (11.3)

The resulting neighborhood is determined by the value of K and by the choice
of the distance measure, which in turn depends on a norm p > 0 and a metric
defined by the matrix W (x0) ∈ �N×N .

The K nearest neighbor method has nice asymptotic properties. In par-
ticular, it has been shown [5] that the one nearest neighbor (1-NN) rule has
an asymptotic error rate that is at most twice the Bayes error rate, inde-
pendent of the distance metric used. The nearest neighbor rule becomes less
appealing with finite training samples, however. This is due to the curse of
dimensionality [4]. Severe bias can be introduced in the nearest neighbor rule
in a high-dimensional input feature space with finite samples. As such, the
choice of a distance measure becomes crucial in determining the outcome of a
nearest neighbor classification. The commonly used Euclidean distance mea-
sure, while simple computationally, implies that the input space is isotropic
or homogeneous. However, the assumption for isotropy is often invalid and
generally undesirable in many practical applications. Figure 11.1 illustrates
a case in point, where class boundaries are parallel to the coordinate axes.
For query a, dimension X is more relevant, because a slight move along the
X axis may change the class label, while for query b, dimension Y is more
relevant. For query c, however, both dimensions are equally relevant. This
implies that distance computation does not vary with equal strength or in
the same proportion in all directions in the feature space emanating from the
input query. Capturing such information, therefore, is of great importance to
any classification procedure in high-dimensional settings.

© 2008 by Taylor & Francis Group, LLC

Local Feature Selection for Classification 213

FIGURE 11.1: Feature relevance varies with query locations.

11.2 The Curse of Dimensionality

Related to the question of rate of convergence of the 1-NN rule is the one
on how well the rule works in finite-sample settings. The asymptotic results
rely on the fact that the bias of the estimate of each fj(x),

biasf̂j(x) = fj(x) − E[f̂j(x)] (11.4)

becomes arbitrarily small. This is because the region N(x0) will only contain
training points x arbitrarily close to x0 (provided that fj(x) is continuous at
x0 and K/M → 0). In a finite setting, if the number of training data M is
large and the number of input features N is small, then the asymptotic results
may still be valid. However, for a moderate to large number of input variables,
the sample size required for their validity is usually beyond feasibility.

This phenomenon is known as the curse of dimensionality [4]. It refers to the
fact that in high-dimensional spaces data become extremely sparse and are far
apart from each other. To get a quantitive idea of this phenomenon, consider
a random sample of size M drawn from a uniform distribution in the N -
dimensional unit hypercube. The expected diameter of a K = 1 neighborhood
using Euclidean distance is proportional to M−1/N , which means that for a
given N , the diameter of the neighborhood containing the closest training
point shrinks as M−1/N for increasing M . Table 11.1 shows the length d
of the diameter for various values of N and M . For example, for N = 20,
if M = 104, the length d of the diameter is 1.51; if M = 106, d = 1.20; if
M = 1010, d = 0.76. Considering that the entire range of each variable is 1, we
note that even for a moderate number of input variables, very large training
sample sizes are required to make a K = 1 nearest neighborhood relatively

"a

bc

a a’

.
..

..

X

Y

© 2008 by Taylor & Francis Group, LLC

214 Computational Methods of Feature Selection

TABLE 11.1:
Expected length of the
diameter d of a K = 1
neighborhood for
various values of N
and M .

N M d(N, M)
4 100 0.42
4 1000 0.23
6 100 0.71
6 1000 0.48
10 1000 0.91
10 104 0.72
20 104 1.51
20 106 1.20
20 1010 0.76

small. The proportion (diameter ∼ M−1/N) discussed here for p = 2 inflicts
all p > 0 norms.

The fact that the data become so sparse in high-dimensional spaces has the
consequence that the bias of the estimate can be quite large even for K = 1
and very large datasets. This high bias effect due to the curse of dimen-
sionality can be reduced by taking into consideration the fact that the class
probability functions may not vary with equal strength in all directions in the
feature space emanating from the query point x0. This can be accomplished
by choosing a metric W (x0) (11.3) that credits the highest influence to those
directions along which the class probability functions are not locally constant,
and have correspondingly less influence on other directions. As a result, the
class conditional probabilities tend to be approximately constant in the re-
sulting modified neighborhood, whereby better classification can be obtained,
as we will see later.

From the above discussion it should be clear that, in finite settings, the
choice of the metric W (x0) can strongly affect performance, and therefore the
choice of a distance measure becomes crucial in determining the outcome of
a nearest neighbor classification.

11.3 Adaptive Metric Techniques

Pattern classification faces a difficult challenge in finite settings and high-
dimensional spaces due to the curse of dimensionality. It becomes crucial
in estimating different degrees of relevance that input features may have in

© 2008 by Taylor & Francis Group, LLC

Local Feature Selection for Classification 215

various locations in feature space. In this section we discuss relevant work in
the literature on flexible metric computations.

11.3.1 Flexible Metric Nearest Neighbor Classification

Friedman [8] describes an adaptive approach for pattern classification that
combines some of the best features of K-NN learning and recursive partition-
ing. The resulting hybrid method inherits the flexibility of recursive parti-
tioning to adapt the shape of a region N(x0) as well as the ability of nearest
neighbor techniques to keep the points within the region close to the point
being predicted. The method is capable of producing nearly continuous prob-
ability estimates with the region N(x0) centered at x0, and the shape of
the region separately customized for each individual prediction point. In the
following we describe the method proposed in [8] in more detail.

Consider an arbitrary function f(x) of N arguments (x1, · · · , xN). In the
absence of values for any of the argument variables, the least-squares estimate
for f(x) is just the expected value Ef =

∫
f(x)p(x)dx, over the joint proba-

bility density of its arguments. Suppose now that the value of just one of the
argument variables xi were known, say xi = z. The least-squares prediction
for f(x) in this case would be the expected value of f(x), under the restriction
that xi assumes the known value z: E[f |xi = z] =

∫
f(x)p(x|xi = z)dx. The

improvement in the squared prediction error I2
i (z) associated with knowing

the value z of the ith input variable xi = z is therefore

I2
i (z) = (Ef − E[f |xi = z])2 (11.5)

I2
i (z) measures how much we gain by knowing that xi = z. It reflects the

influence of the ith input variable on the variation of f(x) at the particular
point xi = z. Note that if Ef = E[f |xi = z], then f(x) is independent of xi

at the particular point xi = z, and accordingly I2(z) = 0.
Consider an arbitrary point z = (z1, · · · , zN) in the N -dimensional input

space. A measure of the relative influence, relevance, of the ith input variable
xi to the variation of f(x) at x = z is given by

r2
i (z) =

I2
i (zi)

∑N
k=1 I2

k (zk)
(11.6)

In [8], Friedman proposes an algorithm, called machete, that uses the lo-
cal relevance measure (11.6) to define a splitting procedure centered at the
prediction point, overcoming some of the limitations of the static splitting
of recursive partitioning. As with recursive partitioning, the machete begins
with the entire input measurement space R0 and divides it into two regions
by a split on one of the input variables. However, the manner in which the
splitting variable is selected, and the nature of the split itself, are quite dif-
ferent. The input variable used for splitting is the one that maximizes the

© 2008 by Taylor & Francis Group, LLC

216 Computational Methods of Feature Selection

estimated relevance as evaluated at the point z to be predicted:

i∗(z) = arg max
1≤i≤N

r̂2
i (z) (11.7)

Thus, for the same training data, different input variables can be selected for
this first split at different prediction points z, depending on how the relevance
of each input variable changes with location in feature space. The space is
then split on the i∗th input variable so that the i∗th component of z, zi∗ , is
centered within the resulting subinterval that contains it. In particular, the
training data are sorted in increasing order on |zi∗ −xni∗ | and the new region
R1(z) is

R1(z) = {xn | |zi∗ − xni∗ | ≤ d(M1)} (11.8)

where d(M1) is a distance value such that R1(z) contains M1 < M training
observations.

As with all recursive methods, the entire machete procedure is defined by
successively applying its splitting procedure to the result of the previous split.
The algorithm stops when there are K training observations left in the region
under consideration, with K being one of the input parameters of the machete.

In [8], Friedman also proposes a generalization of the machete algorithm,
called scythe, in which the input variables influence each split in proportion to
their estimated local relevance, rather than according to the winner-take-all
strategy of the machete.

The major limitation concerning the machete/scythe method is that, like
recursive partitioning methods, it applies a “greedy” strategy. Since each
split is conditioned on its “ancestor” split, minor changes in an early split,
due to any variability in parameter estimates, can have a significant impact
on later splits, thereby producing different terminal regions. This makes the
predictions highly sensitive to the sampling fluctuations associated with the
random nature of the process that produces the training data, and therefore
may lead to high variance predictions.

We performed a comparative study (see Section 11.5) that shows that while
machete/scythe demonstrates performance improvement over recursive parti-
tioning, simple K-NN still remains highly competitive.

11.3.2 Discriminant Adaptive Nearest Neighbor Classifica-
tion

In [9], Hastie and Tibshirani propose a discriminant adaptive nearest neigh-
bor classification method (DANN) based on linear discriminant analysis. The
method computes a local distance metric as a product of properly weighted
within and between sum of squares matrices. The authors also describe a
method to perform global dimensionality reduction, by pooling the local di-
mension information over all points in the training set [9].

The goal of linear discriminant analysis (LDA) is to find an orientation in
feature space on which the projected training data are well separated. This

© 2008 by Taylor & Francis Group, LLC

Local Feature Selection for Classification 217

is obtained by maximizing the difference between the class means relative
to some measure of the standard deviations for each class. The difference
between the class means is estimated by the between-class scatter matrix B,
and the measure of the standard deviations for each class is given by the
within-class scatter matrix W . Both matrices are computed by using the given
training data. Once the data are rotated and scaled for the best separation
of classes, a query point is classified to the class of the closest centroid, with
a correction for the class prior probabilities.

In [9], the authors estimate B and W locally at the query point, and use
them to form a metric that behaves locally like the LDA metric. The metric
proposed is Σ = W−1BW−1, which has the effect of crediting larger weights
to directions in which the centroids are more spread out than to those in
which they are close. First the metric Σ is initialized to the identity matrix.
A nearest neighborhood of Km points around the query point x0 is identified
using the metric Σ. Then, the weighted within and between sum of squares
matrices W and B are calculated using the points in the neighborhood of
x0. The result is a new metric Σ = W−1BW−1 for use in a nearest neighbor
classification rule at x0. The algorithm can be either a single-step procedure,
or a larger number of iterations can be carried on.

The authors also show that the resulting metric used in DANN approxi-
mates the weighted Chi-squared distance:

D(x,x0) =
C∑

j=1

[P (j|x)− P (j|x0)]2

P (j|x0)
(11.9)

which measures the distance between the query point x0 and its nearest neigh-
bor x, in terms of their class posterior probabilities. The approximation,
derived by a Taylor series expansion, holds only under the assumption of
Gaussian class densities with equal covariance matrices.

While sound in theory, DANN may be limited in practice. The main concern
is that in high dimensions, we may never have sufficient data to fill in N ×N
matrices. Also, the fact that the distance metric computed by DANN ap-
proximates the weighted Chi-squared distance (11.9) only when class densities
are Gaussian and have the same covariance matrix may cause a performance
degradation in situations where data do not follow Gaussian distributions or
are corrupted by noise, which is often the case in practice. This hypothesis is
validated in our experimental results (Section 11.5).

11.3.3 Adaptive Metric Nearest Neighbor Algorithm

In [7], a technique (ADAMENN) based on the Chi-squared distance was
introduced to compute local feature relevance. ADAMENN uses the Chi-
squared distance to estimate to which extent each dimension can be relied on
to predict class posterior probabilities. A detailed description of the method
follows.

© 2008 by Taylor & Francis Group, LLC

218 Computational Methods of Feature Selection

11.3.3.1 Chi-Squared Distance

Consider a query point with feature vector x0. Let x be the nearest
neighbor of x0 computed according to a distance metric D(x,x0). The goal
is to find a metric D(x,x0) that minimizes E[r(x0,x)], where r(x0,x) =∑C

j=1 Pr(j|x0)(1 − Pr(j|x)). Here C is the number of classes, and Pr(j|x) is
the class conditional probability at x. That is, r(x0,x) is the finite sample
error risk given that the nearest neighbor to x0 by the chosen metric is x.
Equivalently, the following function can be minimized:

E(r∗(x0)− r(x0,x))2 (11.10)

where r∗(x0) =
∑C

j=1 Pr(j|x0)(1 − Pr(j|x0)) is the theoretical infinite sam-
ple risk at x0. By substituting this expression and that for r(x0,x) into
(11.10), we obtain the following metric that minimizes (11.10) [11]: D(x0,x) =
(
∑C

j=1 Pr(j|x0)(Pr(j|x) − Pr(j|x0)))2. The idea behind this metric is that if
the value of x for which D(x0,x) is small is selected, then the expectation
(11.10) will be minimized.

This metric is linked to the theory of the two-class case developed in [13].
However, a major concern with the above metric is that it has a cancellation
effect when all classes are equally likely [11]. This limitation can be avoided by
considering the Chi-squared distance [9] D(x,x0) =

∑C
j=1 [Pr(j|x)− Pr(j|x0)]2,

which measures the distance between the query x0 and the point x, in terms
of the difference between the class posterior probabilities at the two points.
Furhermore, by multiplying it by 1/ Pr(j|x0) we obtain the following weighted
Chi-squared distance:

D(x,x0) =
C∑

j=1

[Pr(j|x)− Pr(j|x0)]2

Pr(j|x0)
(11.11)

Note that in comparison to the Chi-squared distance, the weights 1/ Pr(j|x0)
in (11.11) have the effect of increasing the distance of x0 to any point x whose
most probable class is unlikely to include x0. That is, if j∗ = argmaxj Pr(j|x),
we have Pr(j∗|x0) ≈ 0. As a consequence, it becomes highly improbable for
any such point to be a nearest neighbor candidate.

Equation (11.11) computes the distance between the true and estimated
posteriors. The goal is to estimate the relevance of feature i by computing its
ability to predict the class posterior probabilities locally at the query point.
This is accomplished by considering the expectation of Pr(j|x) conditioned at
a location along feature dimension i. Then, the Chi-squared distance (11.11)
tells us the extent to which dimension i can be relied on to predict Pr(j|x).
Thus, Equation (11.11) provides a foundation upon which to develop a theory
of feature relevance in the context of pattern classification.

© 2008 by Taylor & Francis Group, LLC

Local Feature Selection for Classification 219

11.3.3.2 Local Feature Relevance

Based on the above discussion, the computation of local feature relevance
proceeds as follows. We first notice that Pr(j|x) is a function of x. Therefore,
we can compute the conditional expectation of Pr(j|x), denoted by Pr(j|xi =
z), given that xi assumes value z, where xi represents the ith component of
x. That is, Pr(j|xi = z) = E[Pr(j|x)|xi = z] =

∫
Pr(j|x)p(x|xi = z)dx. Here

p(x|xi = z) is the conditional density of the other input variables defined
as p(x|xi = z) = p(x)δ(xi − z)/

∫
p(x)δ(xi − z)dx, where δ(x − z) is the

Dirac delta function having the properties δ(x − z) = 0 if x �= z and∫ ∞
−∞ δ(x− z)dx = 1. Let

ri(z) =
C∑

j=1

[Pr(j|z) − Pr(j|xi = zi)]2

Pr(j|xi = zi)
(11.12)

ri(z) represents the ability of feature i to predict the Pr(j|z)s at xi = zi. The
closer Pr(j|xi = zi) is to Pr(j|z), the more information feature i carries for
predicting the class posterior probabilities locally at z.

We can now define a measure of feature relevance for x0 as

r̄i(x0) =
1
K

∑

z∈N(x0)

ri(z) (11.13)

where N(x0) denotes the neighborhood of x0 containing the K nearest train-
ing points, according to a given metric. r̄i measures how well on average the
class posterior probabilities can be approximated along input feature i within
a local neighborhood of x0. Small r̄i implies that the class posterior prob-
abilities will be well approximated along dimension i in the vicinity of x0.
Note that r̄i(x0) is a function of both the test point x0 and the dimension i,
thereby making r̄i(x0) a local relevance measure in dimension i.

The relative relevance, as a weighting scheme, can then be given by wi(x0) =
Ri(x0)

t

PN
l=1 Rl(x0)t , where t = 1, 2, giving rise to linear and quadratic weightings

respectively, and Ri(x0) = maxj{r̄j(x0)} − r̄i(x0). In [7], the following expo-
nential weighting scheme was proposed:

wi(x0) = exp(cRi(x0))/
N∑

l=1

exp(cRl(x0)) (11.14)

where c is a parameter that can be chosen to maximize (minimize) the influ-
ence of r̄i on wi. When c = 0 we have wi = 1/N , which has the effect of
ignoring any difference among the r̄i’s. On the other hand, when c is large, a
change in r̄i will be exponentially reflected in wi. The exponential weighting
is more sensitive to changes in local feature relevance and in general gives
rise to better performance improvement. In fact, it is more stable because it
prevents neighborhoods from extending infinitely in any direction, i.e., zero

© 2008 by Taylor & Francis Group, LLC

220 Computational Methods of Feature Selection

weight. This, however, can occur when either linear or quadratic weighting is
used. Thus, Equation (11.14) can be used to compute the weight associated
with each feature, resulting in the weighted distance computation:

D(x,y) =

√√√
√

N∑

i=1

wi(xi − yi)2 (11.15)

The weights wi enable the neighborhood to elongate less important feature
dimensions and, at the same time, to constrict the most influential ones. Note
that the technique is query-based because the weights depend on the query
[1].

Since both Pr(j|z) and Pr(j|xi = zi) in (11.12) are unknown, we must
estimate them using the training data {xn, yn}Mn=1 in order for the relevance
measure (11.13) to be useful in practice. Here yn ∈ {1, · · · , C}. The quantity
Pr(j|z) is estimated by considering a neighborhood N1(z) centered at z:

P̂r(j|z) =
∑M

n=1 1(xn ∈ N1(z))1(yn = j)
∑M

n=1 1(xn ∈ N1(z))
(11.16)

where 1(·) is an indicator function such that it returns 1 when its argument
is true, and 0 otherwise.

To compute Pr(j|xi = z) = E[Pr(j|x)|xi = z], we introduce an additional
variable gj such that gj|x = 1 if y = j, and 0 otherwise, where j ∈ {1, · · · , C}.
We then have Pr(j|x) = E[gj |x], from which it is not hard to show that
Pr(j|xi = z) = E[gj |xi = z]. However, since there may not be any data
at xi = z, the data from the neighborhood of z along dimension i are used
to estimate E[gj |xi = z], a strategy suggested in [8]. In detail, by noticing
gj = 1(y = j), the estimate can be computed from

P̂r(j|xi = zi) =

∑
xn∈N2(z)

1(|xni − zi| ≤ Δi)1(yn = j)
∑

xn∈N2(z)
1(|xni − zi| ≤ Δi)

(11.17)

where N2(z) is a neighborhood centered at z (larger than N1(z)), and the
value of Δi is chosen so that the interval contains a fixed number L of points:∑M

n=1 1(|xni − zi| ≤ Δi)1(xn ∈ N2(z)) = L. Using the estimates in (11.16)
and in (11.17), we obtain an empirical measure of the relevance (11.13) for
each input variable i.

11.3.3.3 The ADAMENN Algorithm

The adaptive metric nearest neighbor algorithm (ADAMENN) has six ad-
justable tuning parameters: K0: the number of neighbors of the test point
(query); K1: the number of neighbors in N1(z) (11.16); K2: the size of the
neighborhood N2(z) for each of the K0 neighbors (11.17); L: the number of
points within the Δ intervals; K: the number of neighbors in the final nearest

© 2008 by Taylor & Francis Group, LLC

Local Feature Selection for Classification 221

Given a test point x0, and input parameters K0, K1, K2, L, K,
and c:

1. Initialize wi in (11.15) to 1/N , for i = 1, . . . , N .

2. Compute the K0 nearest neighbors of x0 using the weighted
distance metric (11.15).

3. For each dimension i, i = 1, . . . , N , compute relevance esti-
mate r̄i(x0) (11.13) using Equations (11.16) and (11.17).

4. Update w according to (11.14).

5. Iterate steps 2, 3, and 4 (zero and five times in our imple-
mentation).

6. At completion of iterations, use w, hence (11.15), for K near-
est neighbor classification at the test point x0.

FIGURE 11.2: The ADAMENN algorithm

neighbor rule; and c: the positive factor for the exponential weighting scheme
(11.14).

Cross-validation can be used to determine the optimal values of the param-
eters. Note that K is common to all nearest neighbor rules. K0 is used to
reduce the variance of the estimates; its value should be a small fraction of
M , e.g., K0 = max(0.1M, 20). Often a smaller value is preferable for K1 to
avoid biased estimates. K2 and L are common to the machete and scythe
algorithms described in [8]. The values of K2 and L determine the bias and
variance trade-offs for the estimation of E[gj|xi = z]. The way these estimates
are used does not require a high accuracy. As a consequence, ADAMENN per-
formance is basically insensitive to the values chosen for K2 and L, provided
they are not too small (close to one) or too large (close to M). The value of
c should increase as the input query moves close to the decision boundary, so
that highly stretched neighborhoods will result; c can be chosen empirically
in practice. Arguably we have introduced a few more parameters that might
potentially cause overfitting. However, it is important to realize that one of
the parameters (K0) plays the role of averaging or smoothing. Because it
helps reduce variance, we can afford to have a few parameters that adapt to
avoid bias, without incurring the risk of overfitting.

At the beginning, the estimation of the r̄i values in (11.13) is accomplished
by using a weighted distance metric (11.15) with wi, ∀i = 1, . . . , N , being
initialized to 1/N . Then, the elements wi of w are updated according to
r̄i values via (11.14). The update of w can be iterated. At the completion
of the iterations, the resulting w is plugged into (11.15) to compute nearest
neighbors at the test point x0. An outline of the ADAMENN algorithm is
shown in Figure 11.2.

© 2008 by Taylor & Francis Group, LLC

222 Computational Methods of Feature Selection

11.4 Large Margin Nearest Neighbor Classifiers

The previously discussed techniques have been proposed to try to minimize
bias in high dimensions by using locally adaptive mechanisms. The “lazy
learning” approach used by these methods, while appealing in many ways,
requires a considerable amount of on-line computation, which makes it difficult
for such techniques to scale up to large datasets. In this section we discuss a
locally adaptive metric classification method that, although still founded on a
query-based weighting mechanism, computes off-line the information relevant
to define local weights [6].

The technique uses support vector machines (SVMs) as a guidance for the
process of defining a local flexible metric. SVMs have been successfully used
as a classification tool in a variety of areas [12], and the maximum margin
boundary they provide has been proved to be optimal in a structural risk
minimization sense. While the solution provided by SVMs is theoretically
sound, SVMs maximize the margin in feature space. However, the feature
space does not always capture the structure of the input space. As noted in
[2], the large margin in the feature space does not necessarily translate into
a large margin in the input space. In fact, it is argued that sometimes SVMs
give a very small margin in the input space, because the metric of the fea-
ture space is usually quite different from that of the input space [2]. Such a
situation is undesirable. The approach discussed here overcomes this limita-
tion. In fact, it can be shown that the proposed weighting scheme increases
the margin, and therefore the separability of classes, in the transformed space
where classification is performed (see Section 11.4.4).

The solution provided by SVMs guides the extraction of local informa-
tion in a neighborhood around the query. This process produces highly
stretched neighborhoods along boundary directions when the query is close to
the boundary. As a result, the class conditional probabilities tend to be con-
stant in the modified neighborhood, whereby better classification performance
can be achieved. The amount of elongation-constriction decays as the query
moves farther from the vicinity of the decision boundary. This phenomenon
is exemplified in Figure 11.1 by queries a, a

′
, and a

′′
.

Cross validation is avoided by using a principled technique for setting the
procedural parameters of the method. The approach to efficient and auto-
matic settings of parameters leverages the sparse solution provided by SVMs.
As a result, the algorithm has only one adjustable tuning parameter, namely,
the number K of neighbors in the final nearest neighbor rule. This parameter
is common to all nearest neighbor techniques.

© 2008 by Taylor & Francis Group, LLC

Local Feature Selection for Classification 223

11.4.1 Support Vector Machines

In this section we introduce the main concepts of learning with support vec-
tor machines (SVMs). Again, we are given M observations. Each observation
consists of a pair: a vector xi ∈ �N , i = 1, . . . , M , and the associated class
label yi ∈ {−1, 1}.

In the simple case of two linearly separable classes, a support vector machine
selects, among the infinite number of linear classifiers that separate the data,
the classifier that minimizes an upper bound on the generalization error. The
SVM achieves this goal by computing the classifier that satifies the maximum
margin property, i.e., the classifier whose decision boundary has the maximum
minimum distance from the closest training point.

If the two classes are non-separable, the SVM looks for the hyperplane
that maximizes the margin and that, at the same time, minimizes an upper
bound of the error. The trade-off between margin and upper bound of the
misclassification error is driven by a positive constant C that has to be chosen
beforehand. The corresponding decision function is then obtained by consid-
ering the sign(f(x)), where f(x) =

∑
i αiyixT

i x − b, and the coefficients αi

are the solutions of a convex quadratic problem, defined over the hypercube
[0, C]l. The parameter b is also computed from the data. In general, the
solution will have a number of coefficients αi equal to zero, and since there
is a coefficient αi associated to each data point, only the data points cor-
responding to non-zero αi will influence the solution. These points are the
support vectors. Intuitively, the support vectors are the data points that lie
at the border between the two classes, and a small number of support vectors
indicates that the two classes can be well separated.

This technique can be extended to allow for non-linear decision surfaces.
This is done by mapping the input vectors into a higher dimensional fea-
ture space, φ : �N → �N ′

, and by formulating the linear classification
problem in the feature space. Therefore, f(x) can be expressed as f(x) =∑

i αiyiφ
T (xi)φ(x) − b.

If one were given a function K(x,y) = φT (x)φ(y), one could learn and use
the maximum margin hyperplane in feature space without having to compute
explicitly the image of points in �N ′

. It has been proved (Mercer’s Theorem)
that for each continuous positive definite function K(x,y) there exists a map-
ping φ such that K(x,y) = φT (x)φ(y), ∀x,y ∈ �N . By making use of such
function K (kernel function), the equation for f(x) can be rewritten as

f(x) =
∑

i

αiyiK(xi,x)− b (11.18)

© 2008 by Taylor & Francis Group, LLC

224 Computational Methods of Feature Selection

11.4.2 Feature Weighting

The maximum margin boundary found by the SVM is used here to deter-
mine local discriminant directions in the neighborhood around the query. The
normal direction to local decision boundaries identifies the orientation along
which data points between classes are well separated. The gradient vector
computed at points on the boundary allows one to capture such information,
and to use it for measuring local feature relevance and weighting features
accordingly. The resulting weighting scheme improves upon the solution com-
puted by the SVM by increasing the margin in the space transformed by the
weights. Here are the major thrusts of the proposed method.

SVMs classify patterns according to the sign(f(x)). Clearly, in the case of a
non-linear feature mapping φ, the SVM classifier gives a non-linear boundary
f(x) = 0 in the input space. The gradient vector nd = ∇df , computed at any
point d on the level curve f(x) = 0, points to the direction perpendicular to
the decision boundary in the input space at d. As such, the vector nd identifies
the orientation in the input space onto which the projected training data are
well separated in the neighborhood around d. Therefore, the orientation given
by nd, and any orientation close to it, carries highly discriminant information
for classification. As a result, this information can be used to define a local
measure of feature relevance.

Let x0 be a query point whose class label we want to predict. Suppose x0 is
close to the boundary, which is where class conditional probabilities become
locally non-uniform, and therefore estimating local feature relevance becomes
crucial. Let d be the closest point to x0 on the boundary f(x) = 0:

d = arg min
p
‖x0 − p‖, subject to the constraint f(p) = 0 (11.19)

Then we know that the gradient nd identifies a discriminant direction.

As a consequence, the subspace spanned by the orientation nd intersects
the decision boundary and contains changes in class labels. Therefore, when
applying a nearest neighbor rule at x0, we desire to stay close to x0 along
the nd direction, because that is where it is likely to find points similar to x0

in terms of the class conditional probabilities. Distances should be increased
(due to large weight) along nd and directions close to it, thus excluding points
along nd that are away from x0. The farther we move from the nd direction,
the less discriminant the correspondending orientation. This means that class
labels are unlikely to change along those orientations, and distances should
be reduced (due to small weight), thus including points that are likely to be
similar to x0 in terms of the class conditional probabilities.

Formally, we can measure how close a direction t is to nd by considering
the dot product nT

d t. In particular, denoting ej the canonical unit vector
along input feature j, for j = 1, . . . , N , we can define a measure of relevance

© 2008 by Taylor & Francis Group, LLC

Local Feature Selection for Classification 225

for feature j, locally at x0 (and therefore at d), as

Rj(x0) ≡ |eT
j nd| = |nd,j | (11.20)

where nd = (nd,1, . . . , nd,N)T .

The measure of relative feature relevance, as a weighting scheme, can then
be given by

wj(x0) = (Rj(x0))t/

N∑

i=1

(Ri(x0))t (11.21)

where t is a positive integer, giving rise to polynomial weightings. The fol-
lowing exponential weighting scheme is used in [6]:

wj(x0) = exp(ARj(x0))/
n∑

i=1

exp(ARi(x0)) (11.22)

where A is a parameter that can be chosen to maximize (minimize) the in-
fluence of Rj on wj . When A = 0 we have wj = 1/N , thereby ignoring any
difference between the Rj ’s. On the other hand, when A is large a change in
Rj will be exponentially reflected in wj . Thus, (11.22) can be used as weights
associated with features for weighted distance computation:

D(x,y) =

√√√
√

N∑

i=1

wi(xi − yi)2. (11.23)

11.4.3 Large Margin Nearest Neighbor Classification

We desire that the parameter A in the exponential weighting scheme (11.22)
increases as the distance of x0 from the boundary decreases. By using the
knowledge that support vectors are mostly located around the boundary sur-
face, we can estimate how close a query point x0 is to the boundary by com-
puting its distance from the closest non-bounded support vector:

Bx0 = min
si

‖x0 − si‖ (11.24)

where the minimum is taken over the non bounded (0 < αi < C) support
vectors si. Following the same principle described in [3], the spatial resolution
around the boundary is increased by enlarging the volume elements locally in
neighborhoods of support vectors.

Then, we can achieve the goal by setting

A = max{D −Bx0 , 0} (11.25)

© 2008 by Taylor & Francis Group, LLC

226 Computational Methods of Feature Selection

where D is a constant (“meta”) parameter input to the algorithm. In practice,
D can be set equal to the approximated average distance between the training
points xk and the boundary:

D =
1
M

∑

xk

{min
si

‖xk − si‖} (11.26)

By doing so, the value of A nicely adapts to each query point according
to its location with respect to the boundary. The closer x0 is to the decision
boundary, the greater impact Rj will have on distance computation (when
Bx0 > D, A = 0, and therefore wj = 1/N).

Input: Decision boundary f(x) = 0 produced by an SVM; query
point x0 and parameter K.

1. Compute the closest point d to x0 on the boundary (11.19).

2. Compute the gradient vector nd = ∇df .

3. Set feature relevance values Rj(x0) = |nd,j| for j = 1, . . . , N .

4. Estimate the distance of x0 from the boundary as: Bx0 =
minsi ‖x0 − si‖.

5. Set A = max{D−Bx0 , 0}, where D is defined as in equation
(11.26).

6. Set w according to (11.21) or (11.22).

7. Use the resulting w for K nearest neighbor classification at
the query point x0.

FIGURE 11.3: The LaMaNNa algorithm

We observe that this principled technique for setting the parameters of our
method takes advantage of the sparse representation of the solution provided
by the SVM. In fact, for each query point x0, in order to compute Bx0 we
only need to consider the support vectors, whose number is typically small
compared to the total number of training examples. Furthermore, D can be
computed off-line and used in subsequent on-line classification.

The resulting locally flexible metric nearest classification algorithm based
on SVMs is summarized in Figure 11.3. We call our algorithm LaMaNNa
(Large Margin Nearest Neighbor algorithm) to highlight the fact that the
algorithm operates in a space with enlarged margins, as formally shown in
the next section. The algorithm has only one adjustable tuning parameter,

© 2008 by Taylor & Francis Group, LLC

Local Feature Selection for Classification 227

namely, the number K of neighbors in the final nearest neighbor rule. This
parameter is common to all nearest neighbor classification techniques.

dn

s

d

f(x)=0

FIGURE 11.4: Perpendicular distance and gradient vector.

11.4.4 Weighting Features Increases the Margin

We define the input space margin as the minimal distance from the training
points to the classification boundary in the input space [2]. More specifically,
let s ∈ �N be a sample point, and d (defined in (11.19)) the (nearest) foot
of the perpendicular on the separating surface f(x) = 0 from s (see Figure
11.4). We define the input space margin as

IM = min
s

D(s,d) = min
s

√√
√
√ 1

N

N∑

i=1

(si − di)2 (11.27)

where s is in the training set, and equal weights are assigned to the feature
dimensions. In the following we show that the weighting schemes implemented
by LaMaNNa increase the margin in the space transformed by the weights.
For lack of space we omit the proofs. The interested reader should see [6].

Consider the gradient vector nd = ∇df = (∂
∂x1

fd, . . . , ∂
∂xN

fd) computed
with respect to x at point d. Our local measure of relevance for feature j is
then given by

Rj(s) = |eT
j nd| = |nd,j|

and wj(s) is defined as in (11.21) or (11.22), with
∑N

j=1 wj(s) = 1.
Let

D2
w(s,d) =

N∑

i=1

wi(s)(si − di)2 (11.28)

be the squared weighted Euclidean distance between s and d. The main result
is summarized in the following theorem.
Theorem 1
Let s ∈ �N be a sample point and d ∈ �N the nearest foot of the perpendic-
ular on the separating surface f(x) = 0. Define D2(s,d) = 1

N

∑N
i=1(si − di)2

and D2
w(s,d) =

∑N
i=1 wi(s)(si−di)2, where wi(x0) are the weights computed

© 2008 by Taylor & Francis Group, LLC

228 Computational Methods of Feature Selection

according to (11.21) or (11.22). Then

D2(s,d) ≤ D2
w(s,d)

Using this result, it can be shown that the weighting schemes increase the
margin in the transformed space. Let

s∗ = arg min
s

D(s,d)

Then

IM =

√√
√√ 1

N

N∑

i=1

(s∗i − d∗i)2

We have the following result.
Corollary 1
IM ≤ Dw(s∗,d∗).

Theorem 1 shows that D2(s,d) ≤ D2
w(s,d). Now we show that the equality

holds only when wi = 1
N ∀i. This result guarantees an effective increase of the

margin in the transformed space whenever differential weights are credited to
features (according to the given weighting schemes), as stated in Corollary 3.
Corollary 2
D2(s,d) = D2

w(s,d) if and only if wi = 1
n ∀i.

And finally, from Corollaries 1 and 2, we obtain:
Corollary 3
IM = Dw(s∗,d∗) if and only if wi = 1

N ∀i.

11.5 Experimental Comparisons

In the following we compare the previously discussed classification tech-
niques using real data. In the experiments, we also included the RBF-SVM
classifier with radial basis kernels, the simple K-NN method using the Eu-
clidean distance measure, and the C4.5 decision tree method.

In our experiments we used seven different real datasets. They are all taken
from the UCI Machine Learning Repository at http://www.cs.uci.edu/∼mlearn/
MLRepository. For the Iris, Sonar, Liver, and Vote data we performed leave-
one-out cross-validation to measure performance, since the number of available
data is limited for these datasets. For the Breast, OQ-letter, and Pima data
we randomly generated five independent training sets of size 200. For each
of these, an additional independent test sample consisting of 200 observations
was generated. Table 11.2 shows the cross-validated error rates for the eight
methods under consideration on the seven real data. Procedural parameters

© 2008 by Taylor & Francis Group, LLC

http://www.ics.uci.edu

Local Feature Selection for Classification 229

TABLE 11.2: Average classification error rates for real data.
Iris Sonar Liver Vote Breast OQ Pima

LaMaNNa 4.0 11.0 28.1 2.6 3.0 3.5 19.3
RBF-SVM 4.0 12.0 26.1 3.0 3.1 3.4 21.3
ADAMENN 3.0 9.1 30.7 3.0 3.2 3.1 20.4
Machete 5.0 21.2 27.5 3.4 3.5 7.4 20.4
Scythe 4.0 16.3 27.5 3.4 2.7 5.0 20.0
DANN 6.0 7.7 30.1 3.0 2.2 4.0 22.2
K-NN 6.0 12.5 32.5 7.8 2.7 5.4 24.2
C4.5 8.0 23.1 38.3 3.4 4.1 9.2 23.8

(including K) for each method were determined empirically through cross
validation over training data.

LaMaNNa achieves the best performance in 2/7 of the real datasets; in one
case it shows the second best performance, and in the remaining four its error
rate is still quite close to the best one.

It seems natural to quantify this notion of robustness, that is, how well
a particular method m performs on average across the problems taken into
consideration. Following Friedman [8], we capture robustness by computing
the ratio bm of the error rate em of method m and the smallest error rate over
all methods being compared in a particular example:

bm = em/ min
1≤k≤8

ek

Thus, the best method m∗ for that example has bm∗ = 1, and all other
methods have larger values bm ≥ 1, for m �= m∗. The larger the value of bm,
the worse the performance of the m-th method is in relation to the best one
for that example, among the methods being compared. The distribution of
the bm values for each method m over all the examples, therefore, seems to
be a good indicator concerning its robustness. For example, if a particular
method has an error rate close to the best in every problem, its bm values
should be densely distributed around the value 1. Any method whose b value
distribution deviates from this ideal distribution reflects its lack of robustness.

Figure 11.5 plots the distribution of bm for each method over the seven
real datasets. The dark area represents the lower and upper quartiles of the
distribution that are separated by the median. The outer vertical lines show
the entire range of values for the distribution. The outer vertical lines for
the LaMaNNa method are not visible because they coincide with the limits
of the lower and upper quartiles. The spread of the error distribution for
LaMaNNa is narrow and close to one. The spread for ADAMENN has a
similar behavior, with the outer bar reaching a slightly higher value. The
results clearly demonstrate that LaMaNNa (and ADAMENN) obtained the
most robust performance over the datasets.

The poor performance of the Machete and C4.5 methods might be due to

© 2008 by Taylor & Francis Group, LLC

230 Computational Methods of Feature Selection

1

2

3

R
B

F
-
S

V
M

A
D

A
M

E
N

N

M
a
c
h
e
te

S
c
y
th

e

D
A

N
N

K
-
N

N

C
4
.5

L
a
M

a
N

N
a

FIGURE 11.5: Performance distributions for real data.

the greedy strategy they employ. Such a recursive peeling strategy removes
at each step a subset of data points permanently from further consideration.
As a result, changes in an early split, due to any variability in parameter
estimates, can have a significant impact on later splits, thereby producing
different terminal regions. This makes predictions highly sensitive to the
sampling fluctuations associated with the random nature of the process that
produces the traning data, thus leading to high variance predictions. The
Scythe algorithm, by relaxing the winner-take-all splitting strategy of the
Machete algorithm, mitigates the greedy nature of the approach, and thereby
achieves better performance.

In [9], the authors show that the metric employed by the DANN algorithm
approximates the weighted Chi-squared distance, given that class densities
are Gaussian and have the same covariance matrix. As a consequence, we
may expect a degradation in performance when the data do not follow Gaus-
sian distributions and are corrupted by noise, which is likely the case in real
scenarios like the ones tested here.

We observe that LaMaNNa avoids expensive cross-validation by using a
principled technique for setting the procedural parameters. The approach to
efficient and automatic settings of parameters leverages the sparse solution
provided by SVMs. As a result, LaMaNNa has only one adjudtable tuning
parameter, the number K of neighbors in the final nearest neighbor rule.
This parameter is common to all nearest neighbor techniques. On the other
hand, the competing techniques have multiple parameters whose values must
be determined through cross-validation: ADAMENN has six parameters; Ma-
chete/Scythe each has four parameters; and DANN has two parameters.

The LaMaNNa technique offers accuracy improvements over the RBF-SVM
algorithm alone. The reason for such performance gain may rely on the effect
of the local weighting scheme on the margin in the transformed space, as
shown in Section 11.4.4. Assigning large weights to input features close to the

© 2008 by Taylor & Francis Group, LLC

Local Feature Selection for Classification 231

gradient direction, locally in neighborhoods of support vectors, corresponds
to an increase in the spatial resolution along those orientations, and therefore
to improve the separability of classes.

11.6 Conclusions

Pattern classification faces a difficult challenge in finite settings and high-
dimensional spaces due to the curse of dimensionality. In this chapter we have
presented and compared techniques to address data exploration tasks such as
classification. All methods design adaptive metrics or parameter estimates
that are local in input space in order to dodge the curse of dimensionality
phenomenon. Such techniques have been demonstrated to be effective for the
achievement of accurate predictions.

References

[1] D. Aha. Lazy learning. Artificial Intelligence Review, 11:1–5, 1997.

[2] S. Akaho. Svm maximizing margin in the input space. In 6th Kernel
Machines Workshop on Learning Kernels, Proceedings of Neural Infor-
mation Processing Systems, (NIPS), 2002.

[3] S. Amari and S. Wu. Improving support vector machine classifiers by
modifying kernel functions. Neural Networks, 12:783–789, 1999.

[4] R. Bellman. Adaptive Control Processes. Princeton Univ. Press, Prince-
ton, NJ, 1961.

[5] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE
Trans. on Information Theory, 13:21–27, 1967.

[6] C. Domeniconi, D. Gunopulos, and J. Peng. Large margin nearest neigh-
bor classifiers. IEEE Trans. on Neural Networks, 16:899–909, 2005.

[7] C. Domeniconi, J. Peng, and D. Gunopulos. Locally adaptive metric
nearest neighbor classification. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 24:1281–1285, 2002.

[8] J. Friedman. Flexible metric nearest neighbor classification. Technical
Report, Dept. of Statistics, Stanford University, 1994.

[9] T. Hastie and R. Tibshirani. Discriminant adaptive nearest neighbor clas-

© 2008 by Taylor & Francis Group, LLC

232 Computational Methods of Feature Selection

sification. IEEE Trans. on Pattern Analysis and Machine Intelligence,
18:607–615, 1996.

[10] G. McLachlan. Discriminant Analysis and Statistical Pattern Recogni-
tion. Wiley, New York, 1992.

[11] J. Myles and D. Hand. The multi-class metric problem in nearest neigh-
bor discrimination rules. Pattern Recognition, 23:1291–1297, 1990.

[12] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, New York, 2004.

[13] R. Short and K. Fukunaga. Optimal distance measure for nearest neigh-
bor classification. IEEE Transactions on Information Theory, 27:622–
627, 1981.

[14] C. Stone. Nonparametric regression and its applications (with discus-
sion). Ann. Statist., 5, 1977.

© 2008 by Taylor & Francis Group, LLC

Chapter 12

Feature Weighting through Local
Learning

Yijun Sun

University of Florida

12.1 Introduction . 233
12.2 Mathematical Interpretation of Relief . 235
12.3 Iterative Relief Algorithm . 236
12.4 Extension to Multiclass Problems . 239
12.5 Online Learning . 240
12.6 Computational Complexity . 242
12.7 Experiments . 242
12.8 Conclusion . 250

References . 251

12.1 Introduction

Feature selection is one of the fundamental problems in machine learning.
The role of feature selection is critical, especially in applications involving
many irrelevant features. Yet, compared to classifier design (e.g., SVM and
AdaBoost), much rigorous theoretical treatment to feature selection is needed.
Most feature selection algorithms rely on heuristic searching and thus cannot
provide any guarantee of optimality. This is largely due to the difficulty in
defining an objective function that can be easily optimized by well-established
optimization techniques. It is particularly true for wrapper methods when a
nonlinear classifier is used to evaluate the goodness of selected feature subsets.
This problem can to some extent be alleviated by using a feature-weighting
strategy, which assigns to each feature a real-valued number, instead of a bi-
nary one, to indicate its relevance to a learning problem. Among the existing
feature weighting algorithms, the Relief algorithm [10] is considered one of
the most successful ones due to its simplicity and effectiveness [5]. However,
it is unclear to date what objective function Relief optimizes. In this chap-
ter, we first prove that Relief implements an online algorithm that solves a
convex optimization problem with a margin-based objective function. The
margin is defined based on a 1-NN classifier. Therefore, compared with filter
methods, Relief usually performs better due to the performance feedback of

233

© 2008 by Taylor & Francis Group, LLC

234 Computational Methods of Feature Selection

a nonlinear classifier when searching for useful features; and compared with
conventional wrapper methods, by optimizing a convex problem, Relief avoids
any exhaustive or heuristic combinatorial search and thus can be implemented
very efficiently. The new interpretation clearly explains the simplicity and ef-
fectiveness of Relief.

The new interpretation of Relief enables us to identify and address some
weaknesses of the algorithm. One major drawback of Relief is that the nearest
neighbors are defined in the original feature space, which are highly unlikely
to be the ones in the weighted space. Moreover, Relief lacks a mechanism to
deal with outlier data. In the presence of a large number of irrelevant features
and mislabeling, the solution quality of Relief can be severely degraded. To
mitigate these problems, in Section 12.3, we propose a new feature weighting
algorithm, referred to as I-Relief, by following the principle of the Expectation-
Maximization (EM) algorithm [4]. I-Relief treats the nearest neighbors and
identity of a pattern as hidden random variables, and iteratively estimates
feature weights until convergence. We provide a convergence theorem for
I-Relief, which shows that under certain conditions I-Relief converges to a
unique solution irrespective of the initial starting points. We also extend I-
Relief to multiclass problems. In Section 12.4, by using the fact that Relief
optimizes a margin-based objective function, we propose a new multiclass
Relief algorithm using a new multiclass margin definition. We also consider
online learning for I-Relief. The new proposed I-Relief algorithms are based
on batch learning. In the case where there exists a large number of training
samples, online learning is computationally much more attractive. We develop
an online I-Relief algorithm in Section 12.5, wherein a convergence theorem
is also provided. To verify the effectiveness of the newly proposed algorithms
and confirm the established theoretical results, we conduct some experiments
in Section 12.7 on six UCI datasets and six microarray datasets. We finally
conclude this chapter in Section 12.8.

Relief Algorithm

(1) Initialization: D = {(xn, yn)}Nn=1, wi = 0, 1 ≤ i ≤ I, T ;
(2) for t = 1 : T

(3) Randomly select a pattern x from D;
(4) Find the nearest hit NH(x) and miss NM(x) of x;
(5) for i = 1 : I

(6) Compute: wi = wi + |x(i) −NM(i)(x)| − |x(i) −NH(i)(x)|;
(7) end

(8) end

FIGURE 12.1: Pseudo-code of Relief.

© 2008 by Taylor & Francis Group, LLC

Feature Weighting through Local Learning 235

12.2 Mathematical Interpretation of Relief

We first present a brief review of Relief. The pseudo-code of Relief is pre-
sented in Fig. 12.1. Let D = {(xn, yn)}Nn=1∈R

I×{±1} denote a training
dataset, where N is the sample size and I is the data dimensionality. The
key idea of Relief is to iteratively estimate the feature weights according to
their ability to discriminate between neighboring patterns. In each iteration,
a pattern x is randomly selected and then two nearest neighbors of x are
found, one from the same class (termed the nearest hit or NH) and the other
from the different class (termed the nearest miss or NM). The weight of the
i-th feature is then updated as wi = wi + |x(i)−NM(i)(x)|− |x(i)−NH(i)(x)|,
for ∀i ∈ NI .

We provide below a mathematical interpretation for the seemingly heuristic
Relief algorithm. Following the margin definition in [7], we define the margin
for pattern xn as ρn = d(xn − NM(xn)) − d(xn − NH(xn)), where d(·) is
a distance function. For the moment, we define d(x) =

∑
i |xi|, which is

consistent with the distant function used in the original Relief algorithm.
Other distance functions can also be used. Note that ρn > 0 if only if xn

is correctly classified by 1-NN. One natural idea is to scale each feature such
that the averaged margin in a weighted feature space is maximized:

max
w

N∑

n=1

ρn(w)

= max
w

N∑

n=1

(
I∑

i=1

wi|x(i)
n −NM(i)(xn)| −

I∑

i=1

wi|x(i)
n −NH(i)(xn)|

)

s.t. ‖w‖22 = 1,w � 0 ,

(12.1)

where ρn(w) is the margin of xn computed with respect to w. The constraint
‖w‖22 = 1 prevents the maximization from increasing without bound, and
w � 0 ensures that the learned weight vector induces a distance measure. By
defining z =

∑N
n=1 |xn−NM(xn)|−|xn−NH(xn)|, where | · | is the point-wise

absolute operator, Equation (12.1) can be simplified as

max
w

wTz,

s.t. ‖w‖22 = 1,w � 0
(12.2)

By using the Lagrangian technique, the solution can be expressed as w =
1
2λ (z + ζ), where λ and ζ � 0 are the Lagrangian multipliers. With the
Karush-Kuhn-Tucker condition [3], namely,

∑
i ζiwi = 0, it is easy to verify

the following three cases: (1) zi = 0⇒ ζi = 0⇒ wi = 0; (2) zi > 0⇒ zi+ζi >
0 ⇒ wi > 0 ⇒ ζi = 0; and (3) zi < 0 ⇒ ζi > 0 ⇒ wi = 0 ⇒ zi = −ζi. It
immediately follows that the optimum solution can be calculated in a closed
form as w = (z)+/‖(z)+‖2, where (z)+ = [max(z1, 0), · · · , max(zI , 0)]T .

© 2008 by Taylor & Francis Group, LLC

236 Computational Methods of Feature Selection

By comparing the expression of w with the update rule of Relief, we con-
clude that Relief is an online solution to the optimization scheme in Eq. (12.1).
This is true except when wi = 0 for zi ≤ 0, which usually corresponds to
irrelevant features. From the above analysis, we note that Relief learns dis-
criminant information locally through a highly nonlinear 1-NN classifier and
solves a simple convex problem globally with a closed-form solution. In this
sense, Relief combines the merits of both filter and wrapper methods, which
clearly explains its simplicity and effectiveness.

Other distance functions can also be used. If Euclidean distance is used,
the resulting algorithm is Simba [7]. However, Simba returns many local
maxima, for which the mitigation offered in Simba is to restart the algorithm
from several starting points. Hence, the acquisition of the global minimum is
not guaranteed through its invocation.

12.3 Iterative Relief Algorithm

Two major drawbacks of Relief become clear from above analysis: First, the
nearest neighbors are defined in the original feature space, which are highly
unlikely to be the ones in the weighted space; second, the objective function
optimized by Relief is actually the average margin. In the presence of outliers,
some margins can take large negative values. In a highly noisy data case with
a large amount of irrelevant features or mislabelling, the aforementioned two
issues can become so severe that the performance of Relief may be greatly
deteriorated. A heuristic algorithm, called ReliefF [11], has been proposed to
address the first problem. ReliefF averages K, instead of just one, nearest
neighbors in computing the sample margins. Empirical studies have shown
that ReliefF can achieve significant performance improvement over the original
Relief. As for the second problem, to our knowledge, no such algorithm exists.
In this section, we propose an analytic solution capable of handling these two
issues simultaneously.

12.3.1 Algorithm

We first define two sets, Mn = {i : 1 ≤ i ≤ N, yi �= yn} and Hn = {i : 1 ≤
i ≤ N, yi = yn, i �= n}, associated with each pattern xn. Suppose now that
we have known, for each pattern xn, its nearest hit and miss, the indices of
which are saved in the set Sn = {(sn1, sn2)}, where sn1 ∈Mn and sn2 ∈ Hn.
For example, sn1 = 1 and sn2 = 2 mean that the nearest miss and hit of
xn are x1 and x2, respectively. We also denote o = [o1, · · · , oN]T as a set
of binary parameters, such that on = 0 if xn is an outlier, or on = 1 other-
wise. Then the objective function we want to optimize may be formulated

© 2008 by Taylor & Francis Group, LLC

Feature Weighting through Local Learning 237

as C(w) =
∑N

{n=1,on=1} (‖xn − xsn1‖w − ‖xn − xsn2‖w) , which can be easily
optimized by using the conclusion drawn in Section 12.2. Of course, we do
not know the set S = {Sn}Nn=1 and the vector o. However, if we assume the
elements of {Sn}Nn=1 and o are random variables, we can proceed by deriving
the probability distributions of the unobserved data. We first make a guess
on the weight vector w. By using the pairwise distances that have been com-
puted when searching for the nearest hits and misses, the probability of the
i-th data point being the nearest miss of xn can be defined as

Pm(i|xn,w) =
f(‖xn − xi‖w)

∑
j∈Mn

f(‖xn − xj‖w)

Similarly, the probability of the i-th data point being the nearest hit of xn is

Ph(i|xn,w) =
f(‖xn − xi‖w)

∑
j∈Hn

f(‖xn − xj‖w)

and the probability of xn being an outlier can be defined as:

Po(on = 0|D,w) =

∑
i∈Mn

f(‖xn − xi‖w)
∑

xi∈D\xn
f(‖xn − xi‖w)

(12.3)

where f(·) is a kernel function. One commonly used example is f(d) =
exp(−d/σ), where the kernel width σ is a user-defined parameter. Through-
out the chapter, the exponential kernel is used. Other kernel functions can
also be used, and the descriptions of their properties can be found in [1].

Now we are ready to derive the following iterative algorithm. Although
we adopt the idea of the EM algorithm that treats unobserved data as ran-
dom variables, it should be noted that the following method is not an EM
algorithm since the objective function is not a likelihood. For brevity of nota-
tion, we define αi,n = Pm(i|xn,w(t)), βi,n = Ph(i|xn,w(t)), γn = 1 − Po(on =
0|D,w(t)),W = {w : ‖w‖2 = 1,w ≥ 0},mn,i = |xn − xi| if i ∈ Mn, and
hn,i = |xn − xi| if i ∈ Hn.

Step 1: After the t-th iteration, the Q function is calculated as

Q(w|w(t)) = E{S,o}[C(w)]

=
N∑

n=1

γn(
∑

i∈Mn

αi,n‖xn − xi‖w −
∑

i∈Hn

βi,n‖xn − xi‖w)

=
N∑

n=1

γn(
∑

j

wj

∑

i∈Mn

αi,nmj
n,i

︸ ︷︷ ︸
m̄j

n

−
∑

j

wj

∑

i∈Hn

βi,nhj
n,i

︸ ︷︷ ︸
h̄j

n

)

= wT
N∑

n=1

γn(m̄n − h̄n) = wT ν

(12.4)

© 2008 by Taylor & Francis Group, LLC

238 Computational Methods of Feature Selection

Step 2: The re-estimation of w in the (t + 1)-th iteration is

w(t+1) = arg max
w∈W

Q(w|w(t)) = (ν)+/‖(ν)+‖2

The above two steps iterate alternatively until convergence, i.e., ‖w(t+1) −
w(t)‖ < θ.

We name the above algorithm as iterative Relief, or I-Relief for short. Since
Pm, Ph, and Po return us with reasonable probability estimates and the re-
estimation of w is a convex optimization problem, we expect a good con-
vergence behavior and reasonable performance from I-Relief. We provide a
convergence analysis below.

12.3.2 Convergence Analysis

We begin by studying the asymptotic behavior of I-Relief. If σ → +∞, we
have lim

σ→+∞ Pm(i|xn,w) = 1/|Mn| for ∀w ∈ W since lim
σ→+∞ f(d) = 1. On

the other hand, if σ → 0, by assuming that for ∀n, di,n � ‖xi − xn‖w �=
dj,n if i �= j, it can be shown that lim

σ→0
Pm(i|xn,w) = 1 if din = min

j∈Mn

djn

and 0 otherwise. Ph(i|xn,w) and Po(n|w) can be computed similarly. We
observe that if σ → 0, I-Relief is equivalent to iterating the original Relief
(NM = NH = 1) provided that outlier removal is not considered. In our
experiments, we rarely observe that the resulting algorithm converges. On
the other hand, if σ → +∞, I-Relief converges in one step because the term ν
in Eq. (12.4) is a constant vector for any initial feature weights. This suggests
that the convergence behavior of I-Relief and the convergent rates are fully
controlled by the choice of the kernel width. In the following, we present a
proof by using the Banach fixed point theorem. We first state the theorem
without proof. For detailed proofs, we refer the interested reader to [12].

DEFINITION 12.1 Let U be a subset of a norm space Z, and ‖ · ‖ is a
norm defined in Z. An operator T : U → Z is called a contraction operator
if there exists a constant q ∈ [0, 1) such that ‖T (x) − T (y)‖ ≤ q‖x − y‖ for
∀x, y ∈ U . q is called the contraction number of T .

DEFINITION 12.2 An element of a norm space Z is called a fixed point
of T : U → Z if T (x) = x.

THEOREM 12.1 (Banach Fixed Point Theorem)

Let T be a contraction operator mapping a complete subset U of a norm space
Z into itself. Then the sequence generated as x(t+1) = T (x(t)), t = 0, 1, 2, · · ·
with arbitrary x(0) ∈ U converges to the unique fixed point x∗ of T . Moreover,

© 2008 by Taylor & Francis Group, LLC

Feature Weighting through Local Learning 239

the following error bounds hold:

‖x(t) − x∗‖ ≤ qt

1−q ‖x(1) − x(0)‖
and ‖x(t) − x∗‖ ≤ q

1−q ‖x(t) − x(t−1)‖
(12.5)

In order to apply the fixed point theorem to prove the convergence of I-
Relief, the gist is to identify the contraction operator in I-Relief and check
if all conditions in Theorem 12.1 are met. To this end, let P = {p : p =
[Pm, Ph, Po]} and we specify the two steps of I-Relief in a functional form as
A1 : W → P , A1(w) = p and A2 : P → W , A2(p) = w. By indicating
the functional composition by a circle (◦), I-Relief can be written as w(t) =
(A2◦A1)(w(t−1)) � T (w(t−1)), where T :W →W . SinceW is a closed subset
of a norm space RI and complete, T is an operator mapping a complete
subset W into itself. However, it is difficult to directly verify that T is a
contraction operator satisfying Definition 12.1. Noting that for σ → +∞,
I-Relief converges with one step, we have lim

σ→+∞ ‖T (w1, σ) − T (w2, σ)‖ = 0

for ∀w1,w2 ∈ W . Therefore, in the limit, T is a contraction operator with
contraction constant q = 0, that is, lim

σ→+∞ q(σ) = 0. Therefore, for ∀ε > 0,

there exists a σ̄ such that q(σ) ≤ ε whenever σ > σ̄. By setting ε < 1,
the resulting operator T is a contraction operator. Combining the above
arguments, we establish the following convergence theorem for I-Relief.

THEOREM 12.2

Let I-Relief be defined as above. There exists a σ̄ such that lim
t→+∞ ‖w

(t) −

w(t−1)‖ = 0 for ∀σ > σ̄. Moreover, for a fixed σ > σ̄, I-Relief converges to
the unique solution for any initial weight w(0) ∈ W.

Theorem 12.2 ensures the convergence of I-Relief but does not tell us how
large a kernel width should be. In our experiment, we find that with a rel-
atively large σ value, say σ > 0.5, the convergence is guaranteed. Also, the
error bound in Ineq. (12.5) tells us that the smaller the contraction number q,
the tighter the error bound and hence the larger the convergence rate. Since
it is difficult to explicitly express q as a function of σ, it is difficult to prove
that q monotonically decreases with σ. However, in general, a larger kernel
width yields a larger convergence rate, which is experimentally confirmed in
Section 12.7.3. It is also worthwhile to emphasize that, unlike other machine
learning algorithms, such as neural networks, the convergence and the solu-
tion of I-Relief are not affected by the initial value if the kernel width is fixed.
We experimentally find that setting the initial feature weights all to be 1/I
can only lead to a slight but negligible improvement of the convergence rate
compared to a randomly generated initial value.

© 2008 by Taylor & Francis Group, LLC

240 Computational Methods of Feature Selection

12.4 Extension to Multiclass Problems

The original Relief algorithm can only handle binary problems. ReliefF
overcomes this limitation by modifying the weight update rule as

wi = wi+
∑

{c∈Y,c �=y(x)}

P (c)
1− P (y(x))

|x(i)−NM(i)
c (x)|−|x(i)−NH(i)(x)| (12.6)

where Y = {1, · · · , C} is the label space, NMc(x) is the nearest miss of x from
class c, and P (c) is the a priori probability of class c. By using the conclusions
drawn in Section 12.2, it can be shown that ReliefF is equivalent to defining
a sample margin as

ρ =
∑

{c∈Y,c �=y(x)}

P (c)
1− P (y(x))

d(x−NMc(x)) − d(x−NH(x)) (12.7)

Note that a positive sample margin does not necessarily imply a correct clas-
sification. The extension of ReliefF to the iterative version is quite straight-
forward, and therefore we skip the detailed derivations here. We name the
resulting algorithm as I-Relief-1.

From the commonly used margin definition for multiclass problems, how-
ever, it is more natural to define a margin as

ρ = min
{c∈Y,c �=y(x)}

d(x−NMc(x))− d(x −NH(x))

= min
{xi∈D\Dy(x)}

d(x− xi)− d(x−NH(x)) (12.8)

where Dc is a subset of D containing only the patterns from class c. Com-
pared to the first definition, this definition regains the property that a positive
sample margin corresponds to a correct classification. The derivation of the
iterative version of multiclass Relief using the new margin definition, which
we call I-Relief-2, is straightforward.

12.5 Online Learning

I-Relief is based on batch learning, i.e., feature weights are updated after
seeing all of the training data. In case the amount of training data is enor-
mous, or we do not have the luxury of seeing all of the data when starting
training, online learning is computationally much more attractive than batch
learning. In this section, we derive an online algorithm for I-Relief. Conver-

© 2008 by Taylor & Francis Group, LLC

Feature Weighting through Local Learning 241

gence analysis is also presented.
Recall that in I-Relief one needs to compute ν =

∑N
n=1 γn(m̄n − h̄n).

Analogously, in online learning, after the T -th iteration, we may consider
computing ν(T) = 1

T

∑T
t=1 γ(t)(m̄(t)−h̄(t)). Denote π(t) = γ(t)(m̄(t)−h̄(t)). It

is easy to show that ν(T) = ν(T−1)+ 1
T (π(T)−ν(T−1)). By defining η(T) = 1/T

as a learning rate, the above formulation states that the current estimate can
be simply computed as a linear combination of the previous estimate and
the current observation. Moreover, it suggests that other learning rates are
possible. One simple example is to set η(T) = 1/aT with a ∈ (0, 1]. Below we
establish the convergence property of online I-Relief. We first present a useful
lemma without proof.

LEMMA 12.1

Let {an} be a bounded sequence, i.e., for ∀n, M1 ≤ an ≤M2. If lim
n→+∞ an =

a∗, then lim
n→+∞

1
n

n∑

i=1

ai = a∗.

THEOREM 12.3

Online I-Relief converges when the learning rate is appropriately selected. If
both algorithms converge, I-Relief and online I-Relief converge to the same
solution.

PROOF The proof of the first part of the theorem can be easily done
by recognizing that the above formulation has the same form as the Robbins-
Moron stochastic approximation algorithm [13]. The conditions on the learn-
ing rate η(t) : lim

t→+∞ η(t) = 0,
∑+∞

t=1 η(t) = +∞, and
∑+∞

t=1 (η(t))2 < +∞ ensure

the convergence of online I-Relief. η(t) = 1/t meets the above conditions.
Now we prove the second part of the theorem. To eliminate the ran-

domness, instead of randomly selecting a pattern from D, we divide the
data into blocks, denoted as B(m) = D. Online I-Relief successively per-
forms online learning over B(m), m = 1, 2, · · · . For the m-th block, denote
π̃(m) = 1

N

∑m×N
t=(m−1)×N+1 π(t). After running over M blocks of data, we have

ν(M×N) = 1
M×N

∑M×N
t=1 π(t) = 1

M

∑M
m=1 π̃(m). From the proof of the first

part, we know that lim
t→+∞ ν(t) = ν∗. It follows that lim

m→+∞ π̃(m) = π̃∗. Using

Lemma 12.1, we have lim
M→+∞

ν(M×N) = π̃∗ = ν∗. The last equality is due to

the fact that a convergent sequence cannot have two limits.
We prove the convergence of online I-Relief to I-Relief by using the unique-

ness of the fixed point for a contraction operator. Recall that if the ker-
nel width is appropriately selected, T : W → W is a contraction oper-
ator for I-Relief, i.e., T (w∗) = w∗. We then construct an operator T̃ :

© 2008 by Taylor & Francis Group, LLC

242 Computational Methods of Feature Selection

W → W for online I-Relief, which, in the m-th iteration, uses w̃(m−1) =
(ν((m−1)×N))+/‖(ν((m−1)×N))+‖2 as input, and then computes ν(m×N) by
performing online learning on B(m) and returns w̃(m) = (ν(m×N))+/‖(ν(m×N))
+‖2. Since lim

t→+∞ν(t) = ν∗ = π̃∗, it follows that as m → +∞, we have

T̃ (w̃∗) = w̃∗, where w̃∗ = (ν∗)+/‖ν∗‖2. Therefore, w̃∗ is the fixed point of
T̃ . The only difference between T and T̃ is that T̃ performs online learning
while T does not. Since {ν(t)} is convergent, it is also a Cauchy sequence.
In other words, as m → +∞, the difference between every pair of ν within
one block goes to zero with respect to some norms. The operator T̃ , there-
fore, is identical to T in the limit. It follows that w̃∗ = w∗, since otherwise
there would be two fixed points for a contraction operator, which contradicts
Theorem 12.1.

12.6 Computational Complexity

One major advantage of Relief and its variations over other algorithms is
their computational efficiency. The computational complexities of Relief, I-
Relief and online I-Relief are O(TNI), O(TN2I), and O(TNI), respectively,
where T is the number of iterations, I is the feature dimensionality, and N is
the number of data points. If Relief runs over the entire dataset, i.e., T = N ,
then the complexity is O(N2I). In the following section, we show that online
I-Relief can attain similar solutions to I-Relief after one pass of the training
data. Therefore, the computational complexity of online I-Relief is of the
same order as that of Relief.

12.7 Experiments

12.7.1 Experimental Setup

We conducted large-scale experiments to demonstrate the effectiveness of
the proposed algorithms and to study their behavior. Since in most practical
applications one typically does not know the true feature set, it is necessary to
conduct experiments in a controlled manner. We performed experiments on
two test-beds. The first test-bed contains six datasets: twonorm, waveform,
ringnorm, f-solar, thyroid, and segmentation, all publicly available at the UCI
Machine Learning Repository [2]. The data information is summarized in
Table 17.2. We added 50 independently Gaussian distributed irrelevant fea-

© 2008 by Taylor & Francis Group, LLC

Feature Weighting through Local Learning 243

TABLE 12.1: Data summary of six UCI and six
microarray datasets.

Dataset Train Test Feature Class
twonorm 400 7000 20 2
waveform 400 4600 21 2
ringnorm 400 7000 20 2
f-solar 666 400 9 2
thyroid 140 75 5 2
segmentation 210 2100 19 7
9-tumors 60 / 5726 9
Brain-tumor2 60 / 10367 4
Leukemia-1 72 / 5327 3
Prostate-tumors 83 / 2308 4
SRBCT 102 / 10509 2
DLBCL 77 / 5469 2

tures to each pattern, representing different levels of signal-to-noise ratios1.
In real applications, it is also possible that some patterns are mislabeled. To
evaluate the robustness of each algorithm against mislabeling, we introduced
noise to the training data but kept the testing data intact. The level of noise
represents a percentage of randomly selected training data for which its class
labels are changed.

The second test-bed contains six microarray datasets: 9-tumors [17], Brain-
tumor2 [14], Leukemia-1 [8], prostate-tumors [16], DLBCL [15], and SRBCT
[9]. Except for prostate-tumors and DLBCL, the remaining four datasets
are multiclass problems (from three to nine classes). One characteristic of
microarray data, different from most of the classification problems we en-
counter, is the extremely large feature dimensionality (from 2308 to 10509)
compared to the small sample numbers (from 60 to 102). The data informa-
tion is presented in Table 17.2. For all of the datasets, except for a simple
scaling of each feature value to be between 0 and 1 as required in Relief, no
other preprocessing was performed.

We used two metrics to evaluate the performance of the feature weighting
algorithms. In most applications, feature weighting is performed for selecting
a small feature subset to defy the curse of dimensionality. Therefore, a natural
choice of a performance metric is classification errors. The classification-error
metric, however, may not be able to fully characterize algorithmic perfor-
mance. We found experimentally that in some cases, including a few irrelevant
features may not change classification errors significantly. Indeed, improving
classification performance sometimes is not the only purpose for performing
feature weighting. In applications where the acquisition of data is quite ex-
pensive, including some useless features is highly undesirable. For microarray
data, including irrelevant genes may complicate subsequent research. This
consideration was the main motivation for us to add 50 useless features to the

© 2008 by Taylor & Francis Group, LLC

244 Computational Methods of Feature Selection

original feature sets in the UCI datasets. We treat feature selection as a target
recognition problem. Though the features in the original feature sets may be
weakly relevant or even useless, it is reasonable to assume that the original
features contain at least the same or more information than the useless ones
that are added artificially. By changing a threshold, we can plot a receiver
operating characteristic (ROC) curve [6] that gives us a direct view on the
capabilities of each algorithm to identify useful features and at the same time
rule out useless ones. However, as the classification-error metric, the ROC
metric is not exclusive. Some algorithms are down-biased and tend to assign
zero weights to not only useless features but also to some presumably useful
features in original feature sets (c.f. Fig. 12.3), resulting in a small area under
a ROC curve. Since we do not know the true status of the features in the
original feature sets, in this case, we need to check classification errors to see
if the studied algorithm does select all of the useful features.

12.7.2 Experiments on UCI Datasets

We first performed experiments on the UCI datasets. For binary problems,
we compared I-Relief with ReliefF and Simba. For multiclass problems, we
compared ReliefF with I-Relief-1 and I-Relief-2.

To make the experiment computationally feasible, we used KNN to estimate
classification errors for each feature weighting algorithm. KNN is certainly
not an optimal classifier for each dataset. However, the focus of the chapter
is not on the optimal classification but on feature weighting. KNN provides
us with a platform where we can compare different algorithms fairly with a
reasonable computational cost. The number of the nearest neighbors K was
estimated through a stratified 10-fold cross validation using training data. We
did not spend extra effort on re-estimating K when only a subset of features
were used in training and testing, rather opting to use the one estimated in
the original feature space. Though the value of K is surely not optimal, we
found that it is fair for each algorithm.

The kernel width σ is the only free parameter in I-Relief. We show in
Section 12.7.3 that σ is not a critical parameter. Nevertheless, we estimated
it through 10-fold cross validation in the experiment. One problem associated
with the estimation with cross validation using classification errors as criterion
is that it requires us to specify the optimal number of features used in KNN.
To overcome this difficulty, the following heuristic method was used: For
a given candidate of σ, feature weights were estimated, and then KNN was
performed in the induced weighted feature space [18]. The optimal σ was then
chosen as the one with the smallest classification error. Likewise, we found
the number of NH and NM in ReliefF through cross validation, rather than
presetting it to 10 as suggested in [11]. The code of Simba used in the study
was downloaded from [7]. As we have discussed in Section 12.2, there are
some local maxima in Simba’s objective function. Simba tries to overcome
this problem by performing a gradient ascent from serval different starting

© 2008 by Taylor & Francis Group, LLC

Feature Weighting through Local Learning 245

points. We set the number of starting points to be 5, which is the default
value of Simba. Also, we set the number of passes of the training data to be
5, the default value of which is 1.

To eliminate statistical variations, each algorithm was run 20 times for each
dataset. In each run, a dataset was randomly partitioned into training and
testing, and 50 irrelevant features were added. The averaged testing errors of
KNN as a function of the number of the top ranked features and the ROC
curves of the algorithms are plotted in Fig. 12.2. (In the notation 50/10, the
first number refers to the number of irrelevant features and the second one to
the percentage of mislabeled samples.) As a reference, the classification errors
of KNN on the clean data (without irrelevant features and mislabeling) and
noisy data are reported in Table 12.2. From these experimental results, we
arrive at the following observations.

(1) The performance of KNN is degraded significantly in the presence of a
large amount of irrelevant features, as reported in the literature, while misla-
beling has less influence on the performance of KNN than irrelevant features.

(2) From Fig. 12.2, we can see that with respect to classification errors,
in nearly all of the datasets, I-Relief performs the best, ReliefF the second,
and Simba the worst. For a more rigorous comparison between I-Relief and
ReliefF, a Student’s paired two-tailed t-test was performed. The p-value of
the t-test reported in Table 12.2 represents the probability that two sets of
compared samples come from distributions with equal means. The smaller
the p-value, the more significant the difference of the two average values is.
At the 0.03 p-value level, I-Relief wins on seven cases (ringnorm (50/10),
twonorm (50/10), thyroid (50/0), waveform, and f-solar), and ties with Reli-
efF on the remaining five cases. As we argued before, the classification-error
metric may not fully characterize algorithmic performance. Therefore, we
checked the ROC curves plotted in Fig. 12.2. In almost all of the datasets,
I-Relief has the largest area under an ROC curve, ReliefF the second, and
Simba the smallest. For three cases (ringnorm (50/0), heart (50/10), and
thyroid (50/10)) that have no significant differences in classification errors, it
is clear from the ROC curves that I-Relief performs much better than Re-
liefF with respect to the ROC metric. This suggests that when comparing
feature selection and weighting algorithms, using classification errors as the
only performance metric may not be enough.

To further demonstrate the performance of each algorithm, we particularly
focused on waveform datasets. We plotted the learned feature weights of one
realization in Fig. 12.3. For ease of comparison, the maximum value of each
feature weight vector is normalized to be 1. Without mislabeling, the weights
learned in ReliefF are similar to those of I-Relief, but the former have larger
weights on the useless features than the latter. It is interesting to note that
Simba assigns zero weights to not only useless features but also to some pre-
sumably useful ones. In this case, we need to go back to the classification-error
metric. Particularly, for waveform (50/0), we observe that the testing error of
Simba becomes flat after the tenth feature since, except for these 10 features,

© 2008 by Taylor & Francis Group, LLC

246 Computational Methods of Feature Selection

2 4 6 8 10 12 14 16 18 20
0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

Number of Features

C
la

ss
ifi

ca
tio

n
E

rr
or

ringnorm(50/0)

Relief
Simba
I−Relief

2 4 6 8 10 12 14 16 18 20
0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

Number of Features

C
la

ss
ifi

ca
tio

n
E

rr
or

ringnorm(50/10)

Relief
Simba
I−Relief

2 4 6 8 10 12 14 16 18 20

10
−1

Number of Features

C
la

ss
ifi

ca
tio

n
E

rr
or

twonorm(50/0)

Relief
Simba
I−Relief

2 4 6 8 10 12 14 16 18 20

10
−1

Number of Features

C
la

ss
ifi

ca
tio

n
E

rr
or

twonorm(50/10)

Relief
Simba
I−Relief

4 6 8 10 12 14 16 18 20
0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

Number of Features

C
la

ss
ifi

ca
tio

n
E

rr
or

waveform(50/0)

Relief
Simba
I−Relief

2 4 6 8 10 12 14 16 18 20
0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

Number of Features

C
la

ss
ifi

ca
tio

n
E

rr
or

waveform(50/10)

Relief
Simba
I−Relief

1 1.5 2 2.5 3 3.5 4 4.5 5

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Number of Features

C
la

ss
ifi

ca
tio

n
E

rr
or

thyroid(50/0)

Relief
Simba
I−Relief

1 1.5 2 2.5 3 3.5 4 4.5 5

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Number of Features

C
la

ss
ifi

ca
tio

n
E

rr
or

thyroid(50/10)

Relief
Simba
I−Relief

1 2 3 4 5 6 7 8 9

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

Number of Features

C
la

ss
ifi

ca
tio

n
E

rr
or

flare−solar(50/0)

Relief
Simba
I−Relief

1 2 3 4 5 6 7 8 9

0.36

0.38

0.4

0.42

0.44

0.46

0.48

Number of Features

C
la

ss
ifi

ca
tio

n
E

rr
or

flare−solar(50/10)

Relief
Simba
I−Relief

2 4 6 8 10 12 14 16 18

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Number of Features

C
la

ss
ifi

ca
tio

n
E

rr
or

Segmentation(50/0)

Relief
I−Relief−1
I−Relief−2

2 4 6 8 10 12 14 16 18

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Number of Features

C
la

ss
ifi

ca
tio

n
E

rr
or

Segmentation(50/10)

Relief
I−Relief−1
I−Relief−2

0 10 20 30 40 50

2

4

6

8

10

12

14

16

18

20

Selected Useless Features

S
el

ec
te

d
U

se
fu

l F
ea

tu
re

s

ringnorm(50/0)

I−Relief
Relief
Simba

0 10 20 30 40 50

2

4

6

8

10

12

14

16

18

20

Selected Useless Features

S
el

ec
te

d
U

se
fu

l F
ea

tu
re

s

ringnorm(50/10)

I−Relief
Relief
Simba

0 10 20 30 40 50

2

4

6

8

10

12

14

16

18

20

Selected Useless Features

S
el

ec
te

d
U

se
fu

l F
ea

tu
re

s

twonorm(50/0)

I−Relief
Relief
Simba

0 10 20 30 40 50

2

4

6

8

10

12

14

16

18

20

Selected Useless Features

S
el

ec
te

d
U

se
fu

l F
ea

tu
re

s

twonorm(50/10)

I−Relief
Relief
Simba

0 10 20 30 40 50

2

4

6

8

10

12

14

16

18

20

Selected Useless Features

S
el

ec
te

d
U

se
fu

l F
ea

tu
re

s

waveform(50/0)

I−Relief
Relief
Simba

0 10 20 30 40 50

2

4

6

8

10

12

14

16

18

20

Selected Useless Features

S
el

ec
te

d
U

se
fu

l F
ea

tu
re

s

waveform(50/10)

I−Relief
Relief
Simba

0 10 20 30 40 50
1

1.5

2

2.5

3

3.5

4

4.5

5

Selected Useless Features

S
el

ec
te

d
U

se
fu

l F
ea

tu
re

s

thyroid(50/0)

I−Relief
Relief
Simba

0 10 20 30 40 50
1

1.5

2

2.5

3

3.5

4

4.5

5

Selected Useless Features

S
el

ec
te

d
U

se
fu

l F
ea

tu
re

s

thyroid(50/10)

I−Relief
Relief
Simba

0 10 20 30 40 50
1

2

3

4

5

6

7

8

9

Selected Useless Features

S
el

ec
te

d
U

se
fu

l F
ea

tu
re

s

flare−solar(50/0)

I−Relief
Relief
Simba

0 10 20 30 40 50

1

2

3

4

5

6

7

8

9

Selected Useless Features

S
el

ec
te

d
U

se
fu

l F
ea

tu
re

s

flare−solar(50/10)

I−Relief
Relief
Simba

0 10 20 30 40 50

2

4

6

8

10

12

14

16

18

Selected Useless Features

S
el

ec
te

d
U

se
fu

l F
ea

tu
re

s

Segmentation(50/0)

I−Relief−1
I−Relief−2
Relief

0 10 20 30 40 50

2

4

6

8

10

12

14

16

18

Selected Useless Features

S
el

ec
te

d
U

se
fu

l F
ea

tu
re

s

Segmentation(50/10)

I−Relief−1
I−Relief−2
Relief

FIGURE 12.2: Comparison of three algorithms using the classification error and
ROC metrics on six UCI datasets.

© 2008 by Taylor & Francis Group, LLC

Feature Weighting through Local Learning 247

TABLE 12.2: The testing errors and standard deviations (%) on six UCI
datasets. The last row (W/L/T) summarizes win/loss/tie in comparing
Relief and I-Relief based on the 0.03 p-value level.

Dataset KNN Mislabel KNN I-Relief Relief P-value
(clean data) (noisy data)

Ringnorm 39.2(1.3) 0% 45.1(1.2) 22.0(1.2) 21.7(1.1) 0.47
10% 44.2(1.1) 28.1(1.5) 34.0(4.5) 0.00

Twonorm 3.1(0.2) 0% 4.8(0.6) 3.1(0.7) 3.2(0.5) 0.96
10% 6.4(0.7) 3.7(0.7) 6.2(1.3) 0.00

Waveform 12.6(0.7) 0% 14.2(1.7) 10.5(1.1) 11.2(1.1) 0.03
10% 14.7(1.6) 11.2(1.2) 12.2(1.3) 0.00

Thyroid 4.4(2.4) 0% 24.1(3.8) 5.8(3.2) 8.7(4.3) 0.02
10% 26.0(4.1) 9.8(3.8) 11.3(3.6) 0.20

F-solar 34.8(2.4) 0% 34.5(2.6) 34.5(3.3) 37.1(3.8) 0.03
10% 36.1(1.7) 35.1(2.1) 38.7(3.7) 0.00

Segment 12.5(1.4) 0% 27.9(1.7) 17.0(1.4) 17.7(1.7) 0.17
10% 29.2(1.8) 17.3(1.4) 17.4(1.2) 0.92

W/T/L =9/9/0

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Features

S
co

re

waveform(50/0)

I−Relief

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Features

S
co

re

waveform(50/0)

Relief

10 20 30 40 50 60 70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Features

S
co

re

waveform(50/0)

Simba

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Features

S
co

re

waveform(50/10)

I−Relief

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Features

S
co

re

waveform(50/10)

Relief

10 20 30 40 50 60 70

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Features

S
co

re

waveform(50/10)

Simba

FIGURE 12.3: Feature weights learned in three algorithms on waveform dataset.
The first 21 features are presumably useful.

the weights of the remaining features are all zero. This implies that Simba
in effect does not identify all of the useful features. With 10% mislabeling,
the weight quality of both ReliefF and Simba degrades significantly, whereas
I-Relief performs similarly as before. For example, for waveform (50/10),
Simba mistakenly identifies an irrelevant feature as the top feature. These
observations imply that both Simba and ReliefF are not robust against label
noise.

© 2008 by Taylor & Francis Group, LLC

248 Computational Methods of Feature Selection

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Features

S
co

re
s

waveform(50/10)

σ = 0.05
0.3
1
3
5

10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Features

S
co

re
s

twonorm(50/10)

σ = 0.05
0.3
1
3
5

FIGURE 12.4: Feature weights learned using different σ values on the twonorm
and waveform datasets.

12.7.3 Choice of Kernel Width

The kernel width σ in I-Relief can be estimated through cross validation on
training data. It is well-known that the cross-validation method may result in
an estimate with a large variance. Fortunately, this problem does not pose a
serious concern. In this subsection, we show that σ is not a critical parameter.
In Fig. 12.4, we plot the feature weights learned on twonorm and waveform
using different σ values. We observe that for relatively large σ values, the
resulting feature weights do not have much difference. This indicates that the
performance of I-Relief is not sensitive to the choice of σ values, which makes
model selection easy in practical applications.

We also conducted some experiments to confirm the convergence results
established in Section 12.3.2. Plotted in Fig. 12.5(a) are the convergence
rates of I-Relief with different σ values on the waveform dataset. We observe
that the algorithm diverges when σ = 0.05 but converges in all other cases.
Moreover, with the increase of σ values, the convergence becomes faster. In
Fig. 12.5(b), we plotted the convergence rates of I-Relief with different initial
values for a fixed kernel width. The line with stars is for the uniformly dis-
tributed initial value, and the line with circles for randomly generated initial
values, both averaged from 10 runs. This experimental result confirms that
I-Relief converges from any starting point, and using the uniform initial value
does improve convergence, but the improvement is negligible.

12.7.4 Online Learning

In this subsection, we perform some experiments to verify the convergence
properties of online I-Relief established in Section 12.5. The feature weights
learned in I-Relief are used as a target vector. The stopping criterion θ is
set to be 10−5 to ensure that the target vector is a good approximation of
the true solution (c.f. Ineq. The convergence results with different

© 2008 by Taylor & Francis Group, LLC

(12.5)).

Feature Weighting through Local Learning 249

5 10 15 20

10
−10

10
−5

10
0

Number of Iterations

θ
0.05
0.1
0.2
0.3
1
3
5

(a)

1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of Iterations

θ

random
uniform

(b)

FIGURE 12.5: The convergence rates of I-Relief using (a) different σ, and (b)

different initial values on the waveform dataset. The y-axis θ = ‖w(t+1) −w(t)‖.

200 400 600 800 1000 1200 1400 1600 1800 2000

0.05

0.1

0.15

0.2

0.25

0.3
Difference from target weight

Number of Iterations

D
iff

er
en

ce

0.8
0.9
1

(a)

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Features

S
co

re
s

ringnorm(50/10)

Online
I−Relief
Relief

(b)

FIGURE 12.6: Convergence analysis of online I-Relief on the ringnorm dataset.

learning rates (different a in η(t) = 1/at), averaged from 20 runs, are plotted
in Fig. 12.6(a). We only present the results of ringnorm since the results for
other datasets are almost identical. From the figure, we first observe that
online I-Relief, regardless of the learning rates, converges to I-Relief, which
confirms the theoretical findings in Theorem 12.3. We also find that after 400
iterations (ringnorm has only 400 training samples), the feature weights are
already very close to the target vector. In Fig. 12.6(b), we plotted the target
vector and the feature weights learned in online I-Relief (after 400 iterations).
For comparison, the feature weights of ReliefF are also plotted.

© 2008 by Taylor & Francis Group, LLC

250 Computational Methods of Feature Selection

10
1

10
2

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of Genes

C
la

ss
ifi

ca
tio

n
E

rr
or

s

9−Tumors

Relief
IRelief−1
IRelief−2
All Genes

10
1

10
2

0.2

0.25

0.3

0.35

0.4

0.45

Number of Genes

C
la

ss
ifi

ca
tio

n
E

rr
or

s

Brain−Tumor2

Relief
IRelief−1
IRelief−2
All Genes

10
0

10
1

10
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Genes

C
la

ss
ifi

ca
tio

n
E

rr
or

s

Leukemia1

Relief
IRelief−1
IRelief−2
All Genes

10
0

10
1

10
2

0.05

0.1

0.15

0.2

0.25

Number of Genes

C
la

ss
ifi

ca
tio

n
E

rr
or

s

Prostate−Tumor

Relief
IRelief
All Genes

10
0

10
1

10
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Genes

C
la

ss
ifi

ca
tio

n
E

rr
or

s

SRBCT

Relief
IRelief−1
IRelief−2
All Genes

10
0

10
1

10
2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Genes

C
la

ss
ifi

ca
tio

n
E

rr
or

s

DLBCL

Relief
IRelief
All Genes

FIGURE 12.7: Classification errors on six microarray datasets.

12.7.5 Experiments on Microarray Data

We finally compare ReliefF to I-Relief on six microarray datasets. Due to
the limited sample numbers, the leave-one-out method is used to evaluate the
performance of each algorithm.

The classification errors of KNN as a function of the 500 top ranked fea-
tures are plotted in Fig. 12.7. Since Prostate-Tumor and DLBCL are binary
problems, I-Relief-1 is equivalent to I-Relief-2. From the figure, we observe
that except for DLBCL, in which I-Relief performs similar to ReliefF, for the
remaining five datasets, I-Relief-2 is the clear winner compared to Relief and
I-Relief-1. For Leukemia-1 and SRBCT, though the performances of the three
algorithms all converge after 100 genes, it is clear that I-Relief is much more
accurate than Relief in ranking genes. For comparison, we report the clas-
sification errors of KNN using all genes. We can see that gene selection can
significantly improve the performance of KNN .

We note that the numbers of genes found by I-Relief that correspond to
the minimum classification errors are all less than 200. With these small gene
sets, oncologists may be able to work on them directly to infer the molecu-
lar mechanisms underlying disease causes. Also, for classification purposes,
some computationally expensive methods such as wrapper methods can be
used to further filter out some redundant genes. By using some sophisticated
classification algorithms such as SVM, much improvement on classification
performance is expected.

© 2008 by Taylor & Francis Group, LLC

Feature Weighting through Local Learning 251

12.8 Conclusion

In this chapter, we have provided a mathematical interpretation of the
seemingly heuristic Relief algorithm as an online method solving a convex
optimization problem with a margin-based objective function. Starting from
this new interpretation, we have proposed a set of new feature weighting al-
gorithms. The key idea is to learn non-linear discriminant information of
features locally and solve a set of convex optimization problems globally. Due
to the existence of analytic solutions, these algorithms can be implemented
extremely easily. The core module of these algorithms is just the finding of
the nearest neighbors of each pattern. We have shown that the performance
of our algorithms is not sensitive to the choice of the free parameter, which
makes model selection easy in practical applications. Another merit of these
algorithms is that the LOOCV-based objective function optimized by our algo-
rithms provides built-in regularization to prevent from overfitting, and hence
no explicit regularization is needed. We have conducted a large-scale exper-
iment showing that our algorithms perform significantly better than Relief
and Simba.

Considering the many heuristic approaches used in feature selection, we
believe that the contribution of our work is not merely limited to the algo-
rithmic aspects. The I-Relief algorithms are one of the first feature weighting
methods that use the performance of a non-linear classifier as a guidance
in searching for informative features and yet can be solved efficiently by us-
ing numerical analysis and optimization techniques, instead of combinatorial
searching. They provide a promising direction for the future research of the
difficult feature selection problem.

Notes

1 The signal-to-noise ratio refers to the ratio between the number of original
features and that of the artificially added useless ones.

References

[1] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning.
Artificial Intelligence Review, 11(15):11–73, 1997.

[2] C. Blake and C. Merz. UCI Repository of Machine Learning Databases,
1998.

© 2008 by Taylor & Francis Group, LLC

252 Computational Methods of Feature Selection

[3] E. K. P. Chong and S. H. Zak. An Introduction to Optimization. John
Wiley and Sons, New York, 2001.

[4] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society
B, 39(1):1–38, 1977.

[5] T. G. Dietterich. Machine learning research: Four current directions. AI
Magazine, 18(4):97–136, 1997.

[6] R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley and
Sons, New York, 2000.

[7] R. Gilad-Bachrach, A. Navot, and N. Tishby. Margin based feature se-
lection - theory and algorithms. In Proc. 21st International Conference
on Machine Learning, pages 43–50. ACM Press, 2004.

[8] T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov,
H. Coller, M. Loh, J. Downing, M. Caligiuri, C. Bloomfield, and E. Lan-
der. Molecular classification of cancer: class discovery and class predic-
tion by gene expression monitoring. Science, 286(5439):531–537, October
1999.

[9] J. Khan, J. Wei, M. Ringner, L. Saal, M. Ladanyi, F. Westermann,
F. Berthold, M. Schwab, C. Antonescu, C. Peterson, and P. Meltzer.
Classification and diagnostic prediction of cancers using gene expression
profiling and artificial neural networks. Nature Medicine, 7(6):673–679,
2001.

[10] K. Kira and L. A. Rendell. A practical approach to feature selection.
In Proc. 9th International Conference on Machine Learning, pages 249 –
256. Morgan Kaufmann, 1992.

[11] I. Kononenko. Estimating attributes: Analysis and extensions of RE-
LIEF. In Proc. European Conference on Machine Learning, pages 171–
182, 1994.

[12] R. Kress. Numerical Analysis. Springer-Verlag, New York, 1998.

[13] H. Kushner and G. Yin. Stochastic Approximation and Recursive Algo-
rithms and Applications. Springer-Verlag, New York, 2 edition, 2003.

[14] C. Nutt, D. Mani, R. Betensky, P. Tamayo, J. Cairncross, C. Ladd,
U. Pohl, C. Hartmann, M. McLaughlin, T. Batchelor, P. Black, A. von
Deimling, S. Pomeroy, T. Golub, and D. N. Louis. Gene expression-
based classification of malignant gliomas correlates better with survival
than histological classification. Cancer Research, 63(7):1602–1607, April
2003.

[15] M. Shipp, K. Ross, P. Tamayo, A. Weng, J. Kutok, R. Aguiar, M. Gaasen-

© 2008 by Taylor & Francis Group, LLC

Feature Weighting through Local Learning 253

beek, M. Angelo, M. Reich, G. Pinkus, T. Ray, M. Koval, K. Last,
A. Norton, T. Lister, J. Mesirov, D. Neuberg, E. Lander, J. Aster, and
T. Golub. Diffuse large b-cell lymphoma outcome prediction by gene-
expression profiling and supervised machine learning. Nature Medicine,
8(1):68–74, 2002.

[16] D. Singh, P. Febbo, K. Ross, D. Jackson, J. Manola, C. Ladd, P. Tamayo,
A. Renshaw, A. D’Amico, J. Richie, E. Lander, M. Loda, P. Kantoff,
T. Golub, and W. Sellers. Gene expression correlates of clinical prostate
cancer behavior. Cancer Cell, 1(2):203–209, March 2002.

[17] J. Staunton, D. Slonim, H. Coller, P. Tamayo, M. Angelo, J. Park,
U. Scherf, J. Lee, W. Reinhold, J. Weinstein, J. Mesirov, E. Lander,
and T. Golub. Chemosensitivity prediction by transcriptional profiling.
Proc. Natl. Acad. Sci. USA, 98(19):10787–10792, September 2001.

[18] D. Wettschereck, D. W. Aha, and T. Mohri. A review and empirical
evaluation of feature weighting methods for a class of lazy learning algo-
rithms. Artificial Intelligence Review, 11(1–5):273–314, 1997.

© 2008 by Taylor & Francis Group, LLC

Part IV

Text Classification and
Clustering

255

© 2008 by Taylor & Francis Group, LLC

Chapter 13

Feature Selection for Text
Classification

George Forman

Hewlett-Packard Labs

13.1 Introduction . 257
13.2 Text Feature Generators . 261
13.3 Feature Filtering for Classification . 265
13.4 Practical and Scalable Computation . 271
13.5 A Case Study . 272
13.6 Conclusion and Future Work . 274

References . 275

13.1 Introduction

Applications of text classification technology are becoming widespread. In
the defense against spam email, suspect messages are flagged as potential
spam and set aside to facilitate batch deletion. News articles are automatically
sorted into topic channels and conditionally routed to individuals based on
learned profiles of user interest. In content management, documents are cate-
gorized into multi-faceted topic hierarchies for easier searching and browsing.
Shopping and auction Web sites do the same with short textual item descrip-
tions. In customer support, the text notes of call logs are categorized with
respect to known issues in order to quantify trends over time [3].These are but
a few examples of how text classification is finding its way into applications.
Readers are referred to the excellent survey by Sebastiani [13].

All these applications are enabled by standard machine learning algorithms,
such as support vector machines (SVMs) and näıve Bayes variants, coupled
with a pre-processing step that transforms the text string representation into
a numeric feature vector. By far, the most common transformation is the
“bag of words,” in which each column of a case’s feature vector corresponds
to the number of times it contains a specific word of the training corpus.
Strikingly, although this representation is oblivious to the order of the words
in the document, it achieves satisfactory accuracy in most topic-classification
applications. For intuition behind this: If the word “viagra” appears anywhere
in an email message, regardless of its position, the probability that it is spam

257

© 2008 by Taylor & Francis Group, LLC

258 Computational Methods of Feature Selection

is much greater than if it had not appeared at all.
Rather than allocate every unique word in the training corpus to a distinct

feature column, one can optionally perform feature selection to be more dis-
criminating about which words to provide as input to the learning algorithm.
This has two major motivations:

1. Accuracy (error rate, F-measure, ROC area, etc.): The accuracy of
many learning algorithms can be improved by selecting the most pre-
dictive features. For example, näıve Bayes tends to perform poorly
without feature selection in text classification settings. The purpose of
feature selection is sometimes described as a need to eliminate useless
noise words, but a study showed that even the lower ranked words con-
tinue to have predictive value [8]—only a small set of words are truly
equally likely to occur in each class. Thus, feature selection may be
viewed as selecting those words with the strongest signal-to-noise ratio.
Pragmatically, the goal is to select whatever subset of features yields a
highly accurate classifier.

2. Scalability: A large text corpus can easily have tens to hundreds of thou-
sands of distinct words. By selecting only a fraction of the vocabulary
as input, the induction algorithm may require a great deal less compu-
tation. This may also yield savings in storage or network bandwidth.
These benefits could be an enabling factor in some applications, e.g.,
involving large numbers of classifiers to train or large numbers of cases.

Even so, the need for feature selection has been somewhat lessened by
continuing advances in the accuracy and scalability of core machine learning
algorithms. For example, Joachims recently demonstrated a new linear SVM
classifier that can be trained on over 800,000 text cases with nearly 50,000
word features in less than 3 minutes on a 3.6GHz PC processor [9]. What
is more, for some training sets, feature selection provides no improvement in
accuracy. Hence, the additional complexity of feature selection can be omitted
for many researchers who are not interested in feature selection, but simply
need a fixed and easily replicable input representation.

Nevertheless, a data-mining practitioner faced with a given training set
from which to produce the best possible classifier should not ignore feature
selection. It can significantly boost accuracy for some datasets, and may at
least produce modest improvements on average. Thus, feature selection still
has a role to play for those who seek to maximize accuracy, e.g., industrial
practitioners, application programmers, and contestants in data-mining com-
petitions.

Moreover, the accuracy and scalability benefits accrue more substantially
when one considers other possibilities for feature terms besides just individual
words. For example, having a single feature representing the occurrence of the
phrase “John Denver” can be far more predictive for some classification tasks
than just having one feature for the word “John” and another for the word

© 2008 by Taylor & Francis Group, LLC

Feature Selection for Text Classification 259

“Denver.” Other potentially useful features include any consecutive sequence
of characters (n-grams) and, for domains that include multiple text fields (e.g.,
title, authors, abstract, keywords, body, and references), separate feature sets
may be generated for each field or any combination of concatenated fields.
It can be prohibitive simply to extend the bag of terms to include every
potential feature that occurs in the training corpus. Thus, feature selection
is also needed for scalability into large feature spaces. One can then search
via cross validation to improve the input representation to the core induction
algorithm. That is, different choices for feature generators can be tried, as
well as different choices for feature selectors. In this way, the scalability
improvements of feature selection can also benefit accuracy by extending the
space that may be searched in a reasonable time.

In an ideal world, we might know, for any task domain, the best feature
generator and feature selection method that dominates all others. However,
in the research literature, no single dominant method appears. We must
either choose one ourselves from among many reasonable options, or use cross
validation to select one of many. If the latter, then our role becomes one of
providing a sufficiently large (but not intractable) search space to cover good
possibilities. This changes the game somewhat—we can propose features that
might be useful, without having to assure their usefulness.

Section 13.2 describes a variety of common feature generators, which may
be used to produce many potentially useful features. Section 13.3 describes
the details of feature selection for binary and multi-class settings. Section 13.4
discusses the efficient evaluation of feature selection and the computational
corners that may be cut for repeated evaluations. Section 13.5 illustrates
the gains that the described methods can provide, both in selecting a subset
of words and in selecting a good combination of feature generators. The
remainder of this introduction describes the three major paradigms of feature
selection, and the common characteristics of the text domain.

13.1.1 Feature Selection Phyla

There are three major paradigms of feature selection: Filter methods evalu-
ate each feature independently with respect to the class labels in the training
set and determine a ranking of all features, from which the top-ranked fea-
tures are selected [1]. Wrapper methods use classic AI search methods—such
as greedy hill-climbing or simulated-annealing—to search for the “best” subset
of features, repeatedly evaluating different feature subsets via cross validation
with a particular induction algorithm. Embedded methods build a usually lin-
ear prediction model that simultaneously tries to maximize the goodness-of-fit
of the model and minimize the number of input features [6]. Some variants
build a classifier on the full dataset, and then iteratively remove features the
classifier depends on least [7]. By beginning with the full dataset, they qualify
as the least scalable. Given large feature spaces, memory may be exceeded
simply to realize the full feature vectors with all potential features. We will not

© 2008 by Taylor & Francis Group, LLC

260 Computational Methods of Feature Selection

consider such methods further. Filter methods are the simplest to implement
and the most scalable. Hence, they are appropriate to treat very large feature
spaces and are the focus here. They can also be used as a pre-processing step
to reduce the feature dimensionality sufficiently to enable other, less scalable
methods. Wrapper methods have traditionally sought specific combinations
of individual features from the power set of features, but this approach scales
poorly for the large number of features inherent with classifying text. Using
cross validation to select among feature generators and optimize other param-
eters is somewhat like a wrapper method, but one that involves far fewer runs
of the induction algorithm than typical wrapper feature selection.

13.1.2 Characteristic Difficulties of Text Classification Tasks

Besides the high dimensionality of the feature space, text classification prob-
lems are also characterized as frequently having a high degree of class imbal-
ance. Consider training a text classifier to identify pages on any particular
topic across the entire Web. High class skew is problematic for induction
algorithms. If only 1% of the training cases are in the positive class, then
the classifier can obtain 99% accuracy simply by predicting the negative class
for all cases. Often the classifier must have its decision threshold adjusted
in a separate post-processing phase, or else it must explicitly optimize for
F-measure—which pressures it to increase recall of the positive class, without
sacrificing too much precision.

One complication of high class skew is that even large training sets can
end up having very few positive examples from which to characterize the
positive class. Given 1% positives, a training set with 5000 randomly selected,
manually labeled examples ends up with only 50 positives on average. This
leads to significantly more uncertainty in the frequency estimates of words
in the positive class than in the negative class. And if a predictive word is
spelled “color” in half the positive cases and “colour” in the other half, then
this dispersion of information into separate features yields more uncertainty.
In technical notes or Web text, we often encounter misspellings, which may
yield other variants, such as “collor.” This problem is exacerbated by the fact
that natural language provides many ways to express the same idea, e.g., hue,
tint, shade, dye, or paint.

Another common aspect of text classification is that the large feature space
typically follows a Zipf-like distribution [10]. That is, there are a few very
common words, and very many words that rarely appear. By contrast, the
most predictive features would be those that appear nearly always in one
class, but not in the other.

Finally, text classification problems sometimes have only small amounts
of training data available, perhaps more often than in other domains. This
may partly be because a person’s judgment is often needed to determine the
topic label or interest level. By contrast, non-text classification problems may

© 2008 by Taylor & Francis Group, LLC

Feature Selection for Text Classification 261

sometimes have their training sets labeled by machines, e.g., classifying which
inkjet pens during manufacture ultimately fail their final quality test.

13.2 Text Feature Generators

Before we address the question of how to discard words, we must first deter-
mine what shall count as a word. For example, is “HP-UX” one word, or is it
two words? What about “650-857-1501”? When it comes to programming, a
simple solution is to take any contiguous sequence of alphabetic characters, or
alphanumeric characters, which includes identifiers such as “ioctl32”, which
may sometimes be useful. By using the Posix regular expression \p{L&}+ we
avoid breaking “näıve” in two, as well as many accented words in French,
German, etc. But what about “win 32”, “can’t,” or words that may be hy-
phenated over a line break? Like most data cleaning endeavors, the list of
exceptions is endless, and one must simply draw a line somewhere and hope
for an 80%-20% trade off. Fortunately, semantic errors in word parsing are
usually only seen by the core learning algorithm, and it is their statistical
properties that matter, not their readability or intuitiveness to people. Our
purpose is to offer a range of feature generators so that the feature selector
may discover the strongly predictive features. The most beneficial feature
generators will vary according to the characteristics of the domain text.

13.2.1 Word Merging

One method of reducing the size of the feature space somewhat is to merge
word variants together and treat them as a single feature. More importantly,
this can also improve the predictive value of some features.

Forcing all letters to lowercase is a nearly ubiquitous practice. It normalizes
for capitalization at the beginning of a sentence, which does not otherwise
affect the word’s meaning, and helps reduce the dispersion issue mentioned in
the introduction. For proper nouns, it occasionally conflates with other words
in the language, e.g., “Bush” or “LaTeX.”

Likewise, various word stemming algorithms can be used to merge multiple
related word forms. For example, “cat,” “cats,” “catlike,” and “catty” may
all be merged into a common feature. Various studies find that stemming
typically benefits recall but at a cost of precision. If one is searching for
“catty” and the word is treated the same as “cat,” then a certain amount
of precision is necessarily lost. For extremely skewed class distributions, this
loss may be unsupportable.

Stemming algorithms make both over-stemming errors and under-stemming
errors, but again, the semantics are less important than the feature’s statistical

© 2008 by Taylor & Francis Group, LLC

262 Computational Methods of Feature Selection

properties. Unfortunately, stemmers must be separately designed for each
natural language, and while many good stemmers are available for Romance
languages, languages such as Hebrew and Arabic continue to be quite difficult
to stem well. Another difficulty is that in some text classification applications,
multiple natural languages are mixed together, sometimes even within a single
training case. This would require a language recognizer to identify which
stemming algorithm should be used on each case or each sentence. This
level of complexity and slowdown is unwelcome. Simply taking the first few
characters of each word may yield equivalent classification accuracy for many
classification problems.

For classifying technical texts or blogs, misspellings may be common to
rampant. Inserting an automatic spelling correction step into the processing
pipeline is sometimes proposed, but the mistakes introduced may outweigh
the purported benefit. One common problem is that out-of-vocabulary (OOV)
words of the spell checker may be forced to the nearest known word, which
may have quite a different meaning. This often happens with technical terms,
which may be essential predictors. For misspellings that are common, the
misspelled form may occur frequently enough to pose a useful feature, e.g.,
“volcanoe.”

A common source of OOV words is abbreviations and acronyms, especially
in governmental or technical texts. Where glossaries are available, the short
and long forms may be merged into a single term. Although many acronym
dictionaries are available online, there are many collisions for short acronyms,
and they tend to be very domain-specific and even document-specific. Some
research has shown success recognizing acronym definitions in text, such as
“(OOV)” above, which provides a locally unambiguous definition for the term.

Online thesauruses can also be used to merge different words together,
e.g., to resolve the “color” vs. “hue” problem mentioned in the introduc-
tion. Unfortunately, this approach rarely helps, as many words have multiple
meanings, and so their meanings become distorted. To disambiguate word
meanings correctly would require a much deeper understanding of the text
than is needed for text classification. However, there are domain-specific sit-
uations where thesauruses of synonyms can be helpful. For example, if there
is a large set of part numbers that correspond to a common product line, it
could be very advantageous to have a single feature to represent this.

13.2.2 Word Phrases

Whereas merging related words together can produce features with more
frequent occurrence (typically with greater recall and lower precision), identi-
fying multiple word phrases as a single term can produce rarer, highly specific
features (which typically aid precision and have lower recall), e.g., “John Den-
ver” or “user interface.” Rather than require a dictionary of phrases as above,
a simple approach is to treat all consecutive pairs of words as a phrase term,
and let feature selection determine which are useful for prediction. The re-

© 2008 by Taylor & Francis Group, LLC

Feature Selection for Text Classification 263

cent trend to remove spaces in proper names, e.g., “SourceForge,” provides
the specificity of phrases without any special software consideration—perhaps
motivated by the modern world of online searching.

This can be extended for phrases of three or more words with strictly de-
creasing frequency, but occasionally more specificity. A study by Mladenic
and Grobelnik [12] found that most of the benefit is obtained by two-word
phrases. This is in part because portions of the phrase may already have the
same statistical properties, e.g., the four-word phrase “United States of Amer-
ica” is covered already by the two-word phrase “United States.” In addition,
the reach of a two-word phrase can be extended by eliminating common stop-
words, e.g., “head of the household” becomes “head household.” Stopword
lists are language specific, unfortunately. Their primary benefit to classifica-
tion is in extending the reach of phrases, rather than eliminating commonly
useless words, which most feature selection methods can already remove in a
language-independent fashion.

13.2.3 Character N-grams

The word identification methods above fail in some situations, and can miss
some good opportunities for features. For example, languages such as Chi-
nese and Japanese do not use a space character. Segmenting such text into
words is complex, whereas nearly equivalent accuracy may be obtained by
simply using every pair of adjacent Unicode characters as features—n-grams.
Certainly many of the combinations will be meaningless, but feature selec-
tion can identify the most predictive ones. For languages that use the Latin
character set, 3-grams or 6-grams may be appropriate. For example, n-grams
would capture the essence of common technical text patterns such as “HP-
UX 11.0”, “while (<>) {’, “#!/bin/”, and “ :).” Phrases of two adjacent
n-grams simply correspond to (2n)-grams. Note that while the number of po-
tential n-grams grows exponentially with n, in practice only a small fraction
of the possibilities occur in actual training examples, and only a fraction of
those will be found predictive.

Interestingly, the common Adobe PDF document format records the posi-
tion of each character on the page, but does not explicitly represent spaces.
Software libraries to extract the text from PDF use heuristics to decide where
to output a space character. That is why text extracts are sometimes missing
spaces between words, or have a space character inserted between every pair
of letters. Clearly, these types of errors would wreak havoc with a classifier
that depends on spaces to identify words. A more robust approach is for
the feature generator to strip all whitespace, and generate n-grams from the
resulting sequence.

© 2008 by Taylor & Francis Group, LLC

264 Computational Methods of Feature Selection

13.2.4 Multi-Field Records

Although most research deals with training cases as a single string, many
applications have multiple text (and non-text) fields associated with each
record. In document management, these may be title, author, abstract, key-
words, body, and references. In technical support, they may be title, product,
keywords, engineer, customer, symptoms, problem description, and solution.
The point is that multi-field records are common in applications, even though
the bulk of text classification research treats only a single string. Further-
more, for classifying long strings such as arbitrary files, the first few kilobytes
may be treated as a separate field and often prove sufficient for generating
adequate features, avoiding the overhead of processing huge files, such as tar
or zip archives.

The simplest approach is to concatenate all strings together. However, sup-
posing the classification goal is to separate technical support cases by product,
then the most informative features may be generated from the product de-
scription field alone, and concatenating all fields will tend to water down the
specificity of the features.

Another simple approach is to give each field its own separate bag-of-words
feature space. That is, the word “OfficeJet” in the title field would be treated
as though it were unrelated to a feature for the same word in the product field.
Sometimes multiple fields need to be combined while others are kept separate,
and still others are ignored. These decisions are usually made manually today.
Here, again, an automated search can be useful to determine an effective
choice of which fields to combine and which to keep separate. This increases
computation time for search, but more importantly it saves the expert’s time.
And it may discover better choices than would have been explored manually.

13.2.5 Other Properties

For some classification tasks, other text properties besides words or n-grams
can provide the key predictors to enable high accuracy. Some types of spam
use deceptions such as “4ree v!@gr@ 4 u!” to thwart word-based features,
but these might easily be recognized by features revealing their abnormal
word lengths and the density symbols. Likewise, to recognize Perl or awk
code, the specific alphanumeric identifiers that appear are less specific than
the distribution of particular keywords and special characters. Formatting
information, such as the amount of whitespace, the word count, or the average
number of words per line, can be key features for particular tasks.

Where task-specific features are constructed, they are often highly valuable,
e.g., parsing particular XML structures that contain name-value pairs. By
being task-specific, it is naturally difficult to make generally useful comments
about their generation or selection. The little that is said about task-specific
features in the research literature on general text classification belies their
true importance in many practical applications.

© 2008 by Taylor & Francis Group, LLC

Feature Selection for Text Classification 265

13.2.6 Feature Values

Once a decision has been made about what to consider as a feature term, the
occurrences of that term can be determined by scanning the texts. For some
purposes, a binary value is sufficient, indicating whether the term appears
at all. This representation is used by the Bernoulli formulation of the näıve
Bayes classifier[11]. Many other classifiers use the term frequency tft,k (the
word count in document k) directly as the feature value, e.g., the multinomial
näıve Bayes classifier[11].

The support vector machine (SVM) has proven highly successful in text
classification. For such kernel methods, the distance between two feature
vectors is typically computed as their dot product (cosine similarity), which
is dominated by the dimensions with larger values. To avoid the situation
where the highly frequent but non-discriminative words (such as stopwords)
dominate the distance function, one can either use binary features or else
weight the term frequency value tft,k inversely to the feature’s document
frequency dft in the corpus (the number of documents in which the word
appears one or more times). In this way, very common words are downplayed.
This idea, widely known as “TF.IDF,” has a number of variants, one form
being tft,k× log(M+1

dft+1). While this representation requires more computation
and more storage per feature than simply using binary features, it can often
lead to better accuracy for kernel methods.

If the document lengths vary widely, then a long document will exhibit
larger word counts than a short document on the same topic. To make these
feature vectors more similar, the tft,k values may be normalized so that the
length (Euclidean norm) of each feature vector equals 1.

13.3 Feature Filtering for Classification

With a panoply of choices for feature generation laid out, we now turn
to feature filtering, which independently scores each feature with respect to
the training class labels. The subsections below describe how this can be
done for different classification settings. After the scoring is completed, the
final issue is determining how many of the best features to select for the best
performance. Unfortunately, the answer varies widely from task to task, so
several values should be tried, including the option of using all features. This
parameter can be tuned automatically via cross validation on the training
data.

Cross validation may also be needed to select which feature generators
to use, as well as selecting parameters for the induction algorithm, such as
the well-known complexity constant C in the SVM model. The simplest to
program is to optimize each parameter in its own nested loop. However, with

© 2008 by Taylor & Francis Group, LLC

266 Computational Methods of Feature Selection

each successive nesting a smaller fraction of the training data is being given
to the induction algorithm. For example, if nested 5-fold cross validation is
being used to select the feature generator, the number of features, and the
complexity constant, the innermost loop trains with only half of the training
set (4

5×
4
5×

4
5 = 51%). Unfortunately, for some parameters, the optimal value

found in this way can be a poor choice for the full training set size. This is one
reason why 10-fold cross validation, despite its computational cost, is usually
preferred to 2-fold cross validation, which trains on nearly half as much of the
data.

Instead, a single loop of cross validation should be married with a multi-
parameter search strategy. The simplest to program is to measure the cross
validation accuracy (or F-measure) at each point on a simple grid, and then
select the best parameters. There is a large literature in multi-parameter
optimization that has yielded methods that are typically much more efficient,
if more complex to program.

13.3.1 Binary Classification

We first discuss the setting where there are two classes. Binary classification
is a fundamental case, because (1) binary domain tasks are common, e.g.,
identifying spam email from good email, and (2) it is used as a subroutine to
solve most types of multi-class tasks.

To clarify the nature of the problem, we demonstrate with an exemplary
binary task: identifying papers about probabilistic machine learning meth-
ods among a collection of other computer science papers. The dataset has
1800 papers altogether, with only 50 of them in the positive class—2.8% pos-
itive. Each is represented by its title and abstract, which generate 12,500
alphanumeric words when treated as a single text string. Figure 13.1 shows
the document frequency counts tpt for each of the word features t with respect
to the 50 documents in the positive class (y-axis) and separately fpt for the
1750 documents in the negative class (x-axis), similar to an ROC graph. A
feature in the topmost left corner (or bottommost right corner) would be per-
fectly predictive of the positive (negative) class, and would aid the induction
algorithm a great deal. Unfortunately, these regions are typically devoid of
features.

Common stopwords such as “of” and “the” occur frequently in both classes,
and approximate the diagonal. These have no predictive value. The slightly
larger points indicate which words appear on a generic list of 570 common
English stopwords. Observe that the non-stopwords “paper” and “algorithm”
behave like stopwords in this dataset, unsurprisingly. This illustrates that
stopwords are not only language-specific, but also domain-specific.

Because of the Zipf-like distribution of words, most words occur rarely in
each class. In fact, the majority of the points are plotted atop one another
near the origin, belying their overwhelming density in this region. Over half
of the words appear only once in the dataset and are plotted at just two

© 2008 by Taylor & Francis Group, LLC

Feature Selection for Text Classification 267

 0

 10

 20

 30

 40

 50

 0 200 400 600 800 1000 1200 1400 1600

po

si
ti

ve
 d

oc
um

en
ts

 c
on

ta
in

in
g

w
or

d

negative documents containing word

 learning

 causal
 bayesian

 p
ro

ba
bi

lis
ti

c

 inference

 networks

 models

 model

 algorithms
 algorithm

 these
 data

 from
 which

 can

 as
 be

 paper

 by
 with

 are

 an

 on w
e

 t
ha

t
 t

hi
s

 is

 for
 to

 in
 a

 and
 the

 of

BNS
Chi IG

FIGURE 13.1: Word document frequencies in the positive and negative classes
for a typical problem with class imbalance.

points—(1,0) and (0,1). One often removes such extremely rare words via a
minimum count threshold dfmin; in this case, dfmin = 2 removes about half
the features. Whether this is a good idea depends on the induction algorithm
and the character of the dataset.

Filter methods typically evaluate each feature term t according to a function
of its document frequency counts in the positive tpt and negative fpt classes.
Three commonly used feature selection formulas are given in Table 13.1: In-
formation Gain (IG), Chi-Squared (Chi), and Bi-Normal Separation (BNS).

Returning to Figure 13.1, the contour lines on the graph show the decision
boundaries that these three feature selection methods would make for this
dataset when the top 100 features are requested. That is, for each method,
the points along its contour lines all evaluate to the same “goodness” value
by its function, and there are 100 features with greater values. Naturally,
they all devalue and remove the stopwords near the diagonal, without being
language- or domain-specific, as stopword lists would be.

The features that are selected lie above the upper contour as well as below
the matching lower contour; the contours are rotationally symmetric about
the center point. Despite this symmetry, these two areas differ in character
because the Zipfian word distribution focuses the selection decisions to be near
the origin, and the feature selection methods each have an asymmetry. The

© 2008 by Taylor & Francis Group, LLC

268 Computational Methods of Feature Selection

TABLE 13.1: Three common feature selection formulas, computed from
document frequency counts in the positive and negative classes.

Name Formula

Information Gain e(pos, neg)− [Pworde(tp, fp) + (1− Pword)e(fn, tn)]
(IG) where e(x, y) = −xlx(x

x+y)−xlx(y
x+y),

and xlx(x) = x log2(x)

Chi-Squared, χ2 g(tp, (tp + fp)Ppos) + g(fn, (fn + tn)Ppos)+
(Chi) g(fp, (tp + fp)Pneg) + g(tn, (fn + tn)Pneg)

where g(count, expect) = (count−expect)2

expect

Bi-Normal Separation |F−1(tpr)− F−1(fpr)|
(BNS) where F−1 is the inverse of the Normal CDF

Notation:
pos: number of positive cases = tp + fn
neg: number of negative cases = fp + tn
tp: true positives = number of positive cases containing the word
fp: false positives = number of negative cases containing the word
fn: false negatives
tn: true negatives
tpr: true positive rate = tp/pos
fpr: false positive rate = fp/neg
Ppos: percentage of positive cases = pos/all
Pneg : percentage of negative cases = neg/all
Pword: percentage of cases containing word = (tp + fp)/all

most noticeable asymmetry is that the chi-squared method results in a strong
bias toward positive features; there are no features under its lower contour.
Information gain selects some negative features, but still has a bias for positive
features. This is more easily seen at the top, where there are no word points
obscuring the place where the contour meets the top of the graph.

By contrast, the BNS decision boundary comes much closer to the origin
on the x-axis. Compared to the other methods, BNS prefers many more of
the negative features—in this case, only those occurring more than 50 times
among the negatives and not once among the 50 positives. It is for this reason
that BNS excels in improving recall, usually at a minor cost to precision. This
trade off often yields an overall improvement in F-measure compared to other
methods.

Why is BNS asymmetric, given that its formula is symmetric? It stems from
the class skew. Since the inverse Normal cumulative distribution function
(CDF) is undefined at zero, whenever there are zero occurrences of a word in

© 2008 by Taylor & Francis Group, LLC

Feature Selection for Text Classification 269

a class, we must substitute a small constant, e.g., ξ = 0.1 occurrences. Since
there are typically more negatives than positives, the minimum false positive
rate fpr = ξ

neg is smaller than the minimum true positive rate tpr = ξ
pos . In

this way, a feature that occurs x times in only the majority class is correctly
preferred to one that occurs x times in only the minority class.

Likewise, to avoid the undefined value F−1(1.0), if ever a feature occurs
in every single positive (negative) case, we back off the tp (fp) count by
ξ. This does not occur naturally with language texts, but text classifi-
cation techniques are regularly used to treat string features of all sorts of
classification problems. In industrial settings with many classes to process,
it sometimes happens that there is a perfect indicator in the texts, e.g.,
<meta name="Novell_ID" val="Win32">, which may be discovered by long
n-grams or phrases of alphanumeric words. Note that without feature selec-
tion, an SVM classifier will not make effective use of a few excellent features
[4].

As a side note, sometimes the purpose of feature selection is just to char-
acterize a class for user understanding rather than machine classification. In
this case, ordinarily one only wants to see the positive words and phrases.

13.3.2 Multi-Class Classification

There are two major forms of multi-class classification: single-label (1-of-
n) classification, where each case is known to belong in exactly one of the n
classes, and multi-label (m-of-n) classification, where each case may belong to
several, none, or even all classes.

In the multi-label case, the problem is naturally decomposed into n binary
classification tasks: classi vs. not classi. Each of these binary tasks is solved
independently, and each can have its own feature selection to maximize its
accuracy. In the single-label case, many induction algorithms operate by
decomposing the problem into n binary tasks as above, and then making
a final decision by some form of voting. Here also, feature selection can
be optimized independently for each binary subtask. However, some 1-of-n
induction algorithms do not perform binary decompositions, and need multi-
class feature selection to select a single set of features that work well for the
many classes. Other 1-of-n induction algorithms perform very many binary
decompositions, e.g., those that search for optimal splitting hierarchies, or
error-correcting code classifiers that consider O(n2) dichotomies. For these it
would be impractical to perform a separate feature selection for each binary
task.

Setting aside such incompatible induction algorithms, all multi-class tasks
could be dealt with by binary decompositions in theory, and so there would
be no need for multi-class feature selection. But practice often recants theory.
The APIs for many good software products and libraries expect the trans-
formation of text into numerical feature vectors to be performed as a pre-
processing step, and there is no facility for injecting it into the inner loops

© 2008 by Taylor & Francis Group, LLC

270 Computational Methods of Feature Selection

where the decompositions occur. Even some m-of-n applications that can be
programmed de novo demand multi-class feature selection for performance
and scalability reasons. For example, where a centralized server must classify
millions of objects on the network into multiple, orthogonal taxonomies, it can
be much more efficient to determine a single, reasonably sized feature vector
to send across the network than to send all the large documents themselves.
As another example, a large database of unstructured, multi-field (technical
support) cases is represented in memory by a cached, limited size feature
vector representation. This is used for quick interactive exploration, classi-
fication, and labeling into multiple 1-of-n and m-of-n taxonomies, where the
classifiers are periodically retrained in real time [3]. It would be impractical
to re-extract features for each binary decomposition, or to union all the fea-
tures into a very long feature vector that would be requested by all the binary
feature selection subtasks.

Many multi-class feature selection schemes have been devised, and some
methods such as Chi-squared naturally extend to multiple classes. However,
most of them suffer from the following liability: Suppose in a typical, multi-
class topic recognition problem in English, one of the classes happens to con-
tain all German texts, which will generate many extremely predictive words.
Nearly all feature selection schemes will prefer the stronger features, and my-
opically starve the other classes. Likewise, if one class is particularly difficult,
multi-class feature selectors will tend to ignore it.

A solution to this problem is to perform feature selection for each class sep-
arately via binary decompositions, and then to determine the final ranking
of features by a round-robin algorithm where each class gets to nominate its
most desired features in turn [2]. This scheme was devised to improve ro-
bustness for such situations that arise in practice occasionally. Usually efforts
to improve robustness come at some loss in average performance. Remark-
ably, this improves performance even for well-balanced research benchmarks.
Why? Inevitably, some classes are easier to recognize than others, and this
disparity causes most feature selection methods to slight the very classes that
need more help.

13.3.3 Hierarchical Classification

Hierarchy is among the most powerful of organizing abstractions. Hierarchi-
cal classification includes a variety of tasks where the goal is to classify items
into a set of classes that are arranged into a tree or directed acyclic graph,
such as the Yahoo Web directory. In some settings, the task is a single-label
problem to select 1-of-n nodes—or even restricted to the leaf classes in the case
of a “virtual hierarchy.” In other settings, the problem is cast as a multi-label
task to select multiple interior nodes, optionally including all super-classes
along the paths to the root.

Despite the offered hierarchy of the classes, these problems are sometimes
treated simply as flat multi-class tasks, aggregating training examples up the

© 2008 by Taylor & Francis Group, LLC

Feature Selection for Text Classification 271

tree structure for each class. Alternately, a top-down hierarchy of classifiers
can be generated to match the class hierarchy. The training set for each
step down the tree is composed of all the training examples under each child
subtree, optionally including a set of items positioned at the interior node
itself, which terminates the recursion. Although this decomposition of classes
is different from a flat treatment of the problem, in either decomposition, the
same single-label or multi-label feature selection methods apply to the many
sub-problems. It has been suggested that each internal hierarchical classifier
may be faster because each may depend on only a few features (selected by
feature selection), and may be more accurate because it only considers cases
within a limited context. For example, an interior node about recycling that
has subtopics for glass recycling and can recycling would have a classifier
under it that need only consider cases that have to do with recycling. In this
way, the training sets for each of the interior classifiers may be more balanced
than with a flat treatment of the problem.

13.4 Practical and Scalable Computation

We discuss briefly the matter of programming software feature selection,
with some practical pointers for efficient implementation. These issues are
usually not recorded in the research literature or in product documentation.
Since feature selection is usually accompanied by multiple runs of cross valida-
tion to select the best number of features, it makes sense to save computation
where possible, rather than run each fold from scratch.

We begin with the binary case. By dividing the training cases into F folds
in advance, the true positive and false positive counts can be kept track of sep-
arately for each fold. It then becomes very fast to determine the tp, fp counts
for any subset of folds using just 2F integers per feature. This makes feature-
filtering methods extremely scalable, and requires only one pass through the
dataset.

Furthermore, for M training cases, each fold has only M/F cases, and an
8-bit counter will often suffice. For the 1800 paper dataset—which altogether
can generate over 300,000 word, phrase, 3-gram, 4-gram, and 5-gram features –
we can efficiently support feature selection for 10-fold cross validation with less
than 6MB of memory. This is nowadays an insignificant amount of memory
and its computation takes only seconds on a PC. For 10-folds on M ≤ 640K
cases, 100MB is sufficient for 2.6 million features. Moreover, likely half or
more of the features will occur only once, and they can be discarded after
one pass through the dataset, freeing up memory for inductions that follow
in cross validation.

Large generated feature spaces need not be stored on the first pass through

© 2008 by Taylor & Francis Group, LLC

272 Computational Methods of Feature Selection

the dataset. Once the counts are made—possibly on a subset of the training
cases—the best, say 100K, features are determined (if done carefully, con-
sidering the separate 10-fold views). Then a second feature-generation pass
through the dataset stores only these useful features. The ensuing cross vali-
dations then work with ever decreasing subsets of the realized dataset.

In the multi-class setting, further optimization is possible. If the total num-
ber of distinct classes is C, then we can efficiently determine the tp, fp counts
for “class vs. not class” binary subtasks using C+1 integers per feature (for
this exposition, we ignore the orthogonal issue of the F-folds). The number of
occurrences of the feature in each of the C classes is tracked separately, plus
one integer tracks the total number of occurrences in the dataset. This miss-
ing fp counter is determined from the total minus the tp counter. Further,
if we know the classes are mutually exclusive (1-of-n classification), then we
can efficiently determine the tp, fp count for any dichotomy between sets of
classes.

It is fortunate that feature selection for cross validation can be so efficient.
The bottleneck is then the induction algorithm. Reducing the number of
folds from 10-fold to 2-fold cuts the workload substantially, but the smaller
training sets can yield different behavior that misleads the search for optimum
parameters. For example, using smaller training sets on the two folds may
prefer substantially fewer features than is optimal for the full training set.

Rather than reduce the data folds, early termination can be used. With
only a few of the fold measurements completed, the current parameter settings
may be deemed inferior to the best result found so far. For example, suppose
the best parameters made 80 misclassifications on all 10 folds, and the current
parameters have already committed 80 mistakes on just 3.2 of the folds. Early
termination can be done more aggressively with various statistical methods.
Or by being less conservative. After all, even with exhaustive evaluation of the
folds, it is only a somewhat arbitrary subset of possibilities that are explored.

Concerns about computational workload for practical text applications may
gradually become insignificant, considering that 80-core CPUs are within a
five-year horizon and that algorithmic breakthroughs often yield super-linear
improvements.

13.5 A Case Study

The overall benefit of feature selection can vary to the extremes for different
datasets. For some, the accuracy can be greatly improved by selecting ∼1000
features, or for others, by selecting only a few strongly predictive features. For
still others, the performance is substantially worse with anything fewer than
all words. In some cases, including 5-grams among the features may make

© 2008 by Taylor & Francis Group, LLC

Feature Selection for Text Classification 273

 50

 60

 70

 80

 90

 100

F
-m

ea
su

re

6 different classes x 5 different splits of the dataset

C
as

e-
B

as
ed

G
en

et
ic

 A
lg

or
it

hm
s

N
eu

ra
l N

et
w

or
ks

P
ro

ba
bi

lis
ti

c
M

et
ho

ds

R
ei

nf
or

ce
m

en
t

L
ea

rn
in

g

R
ul

e
L

ea
rn

in
g

FIGURE 13.2: F-measure improvement via feature selection. The dot shows the
best performance with feature selection; the other end of the whisker shows the best
performance without feature selection, i.e., simply using all words.

all the difference. Because large gains are sometimes possible, text feature
selection will never become obsolete—although it would be welcome if it were
hidden under layers of software the way SVM solvers are today.

Nonetheless, the chapter would not be complete without an example. Fig-
ure 13.2 shows the improvement in F-measure for including feature selection
vs. just giving all word features to the state-of-the-art SVM-Perf classifier.
The improvement is shown for six different (mutually exclusive) classes, corre-
sponding to different computer science topics in machine learning (each with
2.8% positives). Half the dataset was used for training, and the other half was
used for testing; five such splits were evaluated and their results are shown
separately. Apparently identifying papers on rule learning approaches is gen-
erally harder, but the main point is how large a gain is sometimes made by
considering feature selection. In every case, the SVM complexity constant C
was optimized from a set of five values ranging from 0.01 to 1. Where feature
selection was employed, the number of features evaluated ranged from 100
upwards in steps of 1.5×, using all features. The optimal parameters were
chosen according to which showed the best F-measure on the test set. Cer-
tainly this is not a large enough study or dataset to draw general conclusions,
but the trend in the illustration is clear. A full scale study would also need to
optimize its parameters via cross validation on the training set, rather that
taking the omniscient view we have here for expediency.

Once we have paid the software complexity price to have the cross validation
framework in place, we can also use it to try different feature generators.
Figure 13.3 shows the further improvement in F-measure over the previous
figure that is available by trying different combinations of feature generators.
The three settings tried were: (1) words; (2) words plus 2-word phrases;

© 2008 by Taylor & Francis Group, LLC

274 Computational Methods of Feature Selection

 50

 60

 70

 80

 90

 100

F
-m

ea
su

re

6 different classes x 5 different splits of the dataset

C
as

e-
B

as
ed

G
en

et
ic

 A
lg

or
it

hm
s

N
eu

ra
l N

et
w

or
ks

P
ro

ba
bi

lis
ti

c
M

et
ho

ds

R
ei

nf
or

ce
m

en
t

L
ea

rn
in

g

R
ul

e
L

ea
rn

in
g

FIGURE 13.3: Further F-measure improvement for trying different feature gen-
erators. The plot from Figure 13.2 is reproduced, and the whiskers are extended
up to the maximum performance for using words, + 2-word phrases, + 3-, 4-, and
5-grams.

and (3) words plus 2-word phrases, plus 3-grams, 4-grams and 5-grams. (The
maximum performance without the latter is shown by the cross-hair, revealing
that most of the performance gain is usually captured by 2-word phrases.
Nonetheless, n-grams do sometimes improve performance.)

13.6 Conclusion and Future Work

Text classification is an elephant among blind researchers. As we approach
it from different sides, we inevitably find that different strategies are called for
in feature generation and feature selection. Unfortunately for the practitioner,
there is much sound advice that is conflicting. A challenge for research in this
decade is to develop methods and convenient software packages that consis-
tently generate feature sets leading to good accuracy on most any training
set, without requiring the user to spend their time trying different modules
and parameter settings. Today, when faced with lackluster text classification
performance on a new domain problem, one has to wonder whether it could
be greatly improved by “tweaking the many knobs,” or whether the poor
performance is inherent to the task.

Cross validation for model selection and parameter tuning appears to be
the straightforward solution. However, proposing a large number of poten-
tial features for a class that has few training cases can lead to overfitting
the training data—generating features that are only predictive for the par-

© 2008 by Taylor & Francis Group, LLC

Feature Selection for Text Classification 275

ticular training cases studied. Small training sets are a common problem,
since obtaining correct topic labels requires people’s time and concentration.
Even a seemingly large training set can be meager if it is divided into many
classes, if the class sizes are highly imbalanced, or if the words used for a sin-
gle topic are diverse. Examples of the latter include multilingual texts, many
creative authors, or topics that consist of many implicit subtopics, such as
sports. These are common situations in real-world datasets and pose worthy
research challenges, since obtaining additional labeled training examples usu-
ally comes with a cost. One direction may be to develop priors that leverage
world knowledge, e.g., gathered from many other available training sets [5].

Other open problems arise in generating and selecting useful features for
classes that are not topic-based. For example, one may need to classify texts
as business vs. personal, by author, or by genre (e.g., news, scientific liter-
ature, or recipes). In these situations, the specific topic words used are less
predictive, and instead one may need features that represent the verb tenses
used, complexity of sentences, or pertinence to company products. While
there is a healthy and growing literature in authorship, genre, and sentiment
classification, there are many other types of desirable and challenging classi-
fications that have not been addressed, for example, determining the writing
quality of an article containing figures, or classifying company Web sites into a
multi-faceted yellow pages, such as UDDI.org. There is certainly no shortage
of research opportunities.

References

[1] G. Forman. An extensive empirical study of feature selection metrics for
text classification. J. of Machine Learning Research, 3:1289–1305, 2003.

[2] G. Forman. A pitfall and solution in multi-class feature selection for text
classification. In ICML ’04: Proc. of the 21st Int’l Conf. on Machine
learning, pages 297–304. ACM Press, 2004.

[3] G. Forman, E. Kirshenbaum, and J. Suermondt. Pragmatic text mining:
minimizing human effort to quantify many issues in call logs. In KDD
’06: Proc. of the 12th ACM SIGKDD int’l conf. on Knowledge discovery
and data mining, pages 852–861. ACM Press, 2006.

[4] E. Gabrilovich and S. Markovitch. Text categorization with many redun-
dant features: using aggressive feature selection to make SVMs compet-
itive with C4.5. In ICML ’04: Proc. of the 21st Int’l Conf. on Machine
learning, pages 321–328, 2004.

[5] E. Gabrilovich and S. Markovitch. Feature generation for text catego-

© 2008 by Taylor & Francis Group, LLC

276 Computational Methods of Feature Selection

rization using world knowledge. In Proc. of The 19th Int’l Joint Conf.
for Artificial Intelligence, pages 1048–1053, Edinburgh, Scotland, 2005.

[6] I. Guyon and E. Elisseef, A. Special issue on variable and feature selec-
tion. J. of Machine Learning Research, 3:1157–1461, 2003.

[7] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for
cancer classification using support vector machines. Machine Learning,
46(1-3):389–422, 2002.

[8] T. Joachims. Text categorization with suport vector machines: Learning
with many relevant features. In ECML’98: Proc. of the European Conf.
on Machine Learning, pages 137–142. Springer-Verlag, New York, 1998.

[9] T. Joachims. Training linear SVMs in linear time. In Proc. of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 217–226, 2006.

[10] C. D. Manning and H. Schütze. Foundations of Statistical Natural Lan-
guage Processing. MIT Press, Cambridge, MA, 1999.

[11] A. McCallum and K. Nigam. A comparison of event models for naive
bayes text classification. In AAAI/ICML-98 Workshop on Learning for
Text Categorization, TR WS-98-05, pages 41–48. AAAI Press, 1998.

[12] D. Mladenic and M. Globelnik. Word sequences as features in text learn-
ing. In Proceedings of the 17th Electrotechnical and Computer Science
Conference (ERK98), Ljubljana, Slovenia, pages 145–148, 1998.

[13] F. Sebastiani. Machine learning in automated text categorization. ACM
Comput. Surveys, 34(1):1–47, 2002.

© 2008 by Taylor & Francis Group, LLC

Chapter 14

A Bayesian Feature Selection Score
Based on Näıve Bayes Models

Susana Eyheramendy

Ludwig-Maximilians Universität München

David Madigan

Rutgers University

14.1 Introduction . 277
14.2 Feature Selection Scores . 279
14.3 Classification Algorithms . 286
14.4 Experimental Settings and Results . 287
14.5 Conclusion . 290

References . 293

14.1 Introduction

The past decade has seen the emergence of truly massive data analysis chal-
lenges across a range of human endeavors. Standard statistical algorithms
came into being long before such challenges were even imagined, and spurred
on by a myriad of important applications, much statistical research now fo-
cuses on the development of algorithms that scale well. Feature selection
represents a central issue on this research.

Feature selection addresses scalability by removing irrelevant, redundant, or
noisy features. Feature or variable selection has been applied to many different
problems for many different purposes. For example, in text categorization
problems, feature selection is often applied to select a subset of relevant words
that appear in documents. This can help to elucidate the category or class of
unobserved documents. Another area of application that is becoming popular
is in the area of genetic association studies, where the aim is to try to find genes
responsible for a particular disease (e.g., [13]). In those studies, hundreds of
thousands or even a couple of million positions in the genome are genotyped in
individuals who have the disease and individuals who do not have the disease.
Feature selection in this context seeks to reduce the genotyping of correlated
positions in order to decrease the genotyping cost while still being able to find
the genes responsible for a given disease.

277

© 2008 by Taylor & Francis Group, LLC

278 Computational Methods of Feature Selection

Feature selection is an important step in the preprocessing of the data. Re-
moving irrelevant and noisy features helps generalization performance, and in
addition reduces the computational cost and the memory demands. Reducing
the number of variables can also aid in the interpretation of data and in the
better distribution of resources.

In this chapter, we introduce a new feature selection method for classifica-
tion problems. In particular, we apply our novel method to text categorization
problems and compare its performance with other prominent feature selection
methods popular in the field of text categorization.

Since many text classification applications involve large numbers of can-
didate features, feature selection algorithms play a fundamental role. The
text classification literature tends to focus on feature selection algorithms
that compute a score independently for each candidate feature. This is the
so-called filtering approach. The scores typically contrast the counts of occur-
rences of words or other linguistic artifacts in training documents that belong
to the target class with the same counts for documents that do not belong
to the target class. Given a predefined number of words to be selected, d,
one chooses the d words with the highest scores. Several score functions exist
(Section 14.2 provides definitions). The authors of [14] show that Information
Gain and χ2 statistics performed best among five different scores. Reference
[4] provides evidence that these two scores have correlated failures. Hence,
when choosing optimal pairs of scores, these two scores work poorly together.
Reference [4] introduced a new score, the Bi-Normal Separation, that yields
the best performance on the greatest number of tasks among 12 feature se-
lection scores. The authors of [12] compared 11 scores under a näıve Bayes
classifier and found that the Odds Ratio score performs best in the highest
number of tasks.

In regression and classification problems in statistics, popular feature se-
lection strategies depend on the same algorithm that fits the models. This is
the so-called wrapper approach. For example, best subset regression finds for
each k the best subset of size k based on residual sum of squares. Leaps and
bounds is an efficient algorithm that finds the best set of features when the
number of predictors is no larger than about 40. An extensive discussion on
subset selection on regression problems is provided in [11]. The recent paper
[9] gives a detailed categorization of all existing feature selection methods.

In a Bayesian context and under certain assumptions, reference [1] shows
that for selection among normal linear models, the best model contains those
features that have overall posterior probability greater than or equal to 1/2.
Motivated by this study, we introduce a new feature selection score (PIP)
that evaluates the posterior probability of inclusion of a given feature over
all possible models, where the models correspond to a set of features. Unlike
typical scores used for feature selection via filtering, the PIP score does depend
on a specific model. In this sense, this new score straddles the filtering and
wrapper approaches.

We present experiments that compare our new feature selection score with

© 2008 by Taylor & Francis Group, LLC

A Bayesian Feature Selection Score Based on Näıve Bayes Models 279

TABLE 14.1:
Two-way contingency
table of word F and
category k.

k k
F nkF nkF nF

F nkF nkF nF
nk nk M

five other feature selection scores that have been prominent in the studies
mentioned above. The feature selection scores that we consider are evaluated
on two widely-used benchmark text classification datasets, Reuters-21578 and
20-Newsgroups, and implemented on four classification algorithms. Following
previous studies, we measure the performance of the classification algorithms
using the F1 measure.

We have organized this chapter as follows. Section 14.2 describes the var-
ious feature selection scores we consider, both our new score and the various
existing alternatives. In Section 14.3 we mention the classification algorithms
that we use to compare the feature selection scores. The experimental set-
tings and experimental results are presented in Section 14.4. We conclude in
Section 14.5.

14.2 Feature Selection Scores

In this section we introduce a new methodology to define a feature score
and review the definitions of other popular feature selection scores.

Before we list the feature selection scores that we study, we introduce some
notation. In the context of our text categorization application, Table 14.1
show the basic statistics for a single word and a single category (or class).
nkF : n◦ of documents in class k with word F .
nkF : n◦ of documents in class k without word F .
nkF : n◦ of documents not in class k with word F .
nkF : n◦ of documents not in class k without word F .
nk : total n◦ of documents in class k.
nk : total n◦ of documents that are not in class k.
nF : total n◦ of documents with word F .
nF : total n◦ of documents without word F .
M : total n◦ of documents.

We refer to F as a word or feature occuring in documents and x as the value
that depends on the number of times the word F appears in a document. For

© 2008 by Taylor & Francis Group, LLC

280 Computational Methods of Feature Selection

example, consider a document that consists of the phrase “curiosity begets
curiosity”. If F1 represents the word “curiosity”, then x1 can take the value
1 if we consider the presence or absence of the words in the documents, or x1

can take the value 2 if the actual frequency of appearance is considered.

14.2.1 Posterior Inclusion Probability (PIP)

Consider a classification problem in which one has M instances in training
data, Data = {(y1,x1), . . . , (yM ,xM)}, where yi denotes the class label of in-
stance i that takes values in a finite set of C classes, and xi is its corresponding
vector of N features. We consider a näıve Bayes model where the probability
of the training data instances can be expressed as the product of the individ-
ual conditional probablities of each feature given the class membership, times
the probablities of the class memberships,

Pr((y1,x1), . . . , (yM ,xM)) = ΠM
i=1Pr(yi)ΠN

j=1Pr(xij |yi) (14.1)

We aim to select a subset of the features with which one can infer accurately
the class label of new instances using a prediction function or rule that links
the vector of features with the class label.

Given N features, one can consider 2N different models, each one containing
a different subset of features. We denote each model by a vector of length
the number of features N , where each component is either 1 if the feature
is present or 0 if the feature is absent. For two features, Figure 14.1 shows
a graphical representation of the four possible models. For example, model
M(1,1) contains both features, and the distribution of each feature depends
on the class label of the document. This is represented in the graph with an
arrow from the node y to each of the features x1 and x2.

Without assuming any distribution on the conditional probabilities in Equa-
tion (14.1), we propose as a feature score the Posterior Inclusion Probability
(PIP) for feature Fj and class k, which is defined as

PIP (Fj , k) =
∑

l:lj=1

Pr(Ml|Data) (14.2)

where l is a vector of length the number of features and the jth component
takes the value 1 if the jth feature Fj is included in model Ml, otherwise it
is 0. In other words, we define as the feature selection score the posterior
probability that each feature is included in a model, for all features appearing
in documents or instances of class k.

Each feature appears in 2N−1 models. For moderate values of N , the sum
in Equation (14.2) can be extremely large. Fortunately, we show in the next
section that it is not necessary to compute the sum in Equation (14.2) because
it can be expressed in closed form.

Note that for each class, each feature is assigned a different score. The
practitioner can either select a different set of features for each of the classes

© 2008 by Taylor & Francis Group, LLC

A Bayesian Feature Selection Score Based on Näıve Bayes Models 281

FIGURE 14.1: Graphical model representation of the four models with two fea-
tures, x1 and x2.

or a single score can be obtained by weighting the scores over all the classes
by the frequency of instances in each class. We follow the latter approach
in all features selection scores considered in this study. The next two sec-
tions implement the PIP feature selection score. The next section assumes a
Bernoulli distribution for the conditional probabilities in Equation (14.1) and
the subsequent section assumes a Poisson distribution.

14.2.2 Posterior Inclusion Probability (PIP) under a Bernoulli
distribution

Consider first that the conditional probabilities P (xij |yi, θ) are Bernoulli
distributed with parameter θ, and assume a Beta prior distribution on θ.
This is the binary näıve Bayes model for the presence or absence of words in
the documents. Section 14.2.3 considers a näıve Bayes model with Poisson
distributions for word frequency. This score for feature F and class k can be
expressed as

PIP (F, k) =
l0Fk

l0Fk + lFk
(14.3)

where

l0Fk =
B(nkF + αkF , nkF βkF)

B(αkF , βkF)
(14.4)

×B(nkF + αkF , nkF + βkF)
B(αkF , βkF)

(14.5)

lFk =
B(nF + αF , nF + βF)

B(αF , βF)
(14.6)

B(a, b) is the Beta function, which is defined as B(a, b) = Γ(a)Γ(b)
Γ(a+b) , and

αkF , αkF , αF , βkF , βkF , βF are constants set by the practitioner. In our
experiments we set them to be αF = 0.2, βF = 2/25 for all words F , αkF =
0.1, αkF = 0.1, βkF = 1/25, and βkF = 1/25 for all categories k and feature
F . These settings correspond to rather diffuse priors.

We explain this score in the context of a two-candidate-word model. The
likelihoods for each model and category k are given by

© 2008 by Taylor & Francis Group, LLC

282 Computational Methods of Feature Selection

M(1,1) :
M∏

i=1

Pr(xi1, xi2, yi|θ1k, θ2k) =
M∏

i=1

B(xi1, θk1)B(xi1, θk1)B(xi2, θk2)

× B(xi2, θk2)Pr(yi|θk)

M(1,0) :
M∏

i=1

Pr(xi1, xi2, yi|θ1k, θ2) =
M∏

i=1

B(xi1, θk1)B(xi1, θk1)B(xi2, θ2)

× B(xi2, θ2)Pr(yi|θk)

M(0,1) :
M∏

i=1

Pr(xi1, xi2, yi|θ1, θ2k) =
M∏

i=1

B(xi1, θ1)B(xi1, θ1)B(xi2, θk2)

× B(xi2, θk2)Pr(yi|θk)

M(0,0) :
M∏

i=1

Pr(xi1, xi2, yi|θ1, θ2) =
M∏

i=1

B(xi1, θ1)B(xi1, θ1)B(xi2, θ2)

× B(xi2, θ2)Pr(yi|θk)

where xij takes the value 1 if document i contains word Fj and 0 otherwise, yi

is 1 if document i is in category k, and otherwise is 0, Pr(yi|θk) = B(yi, θk),
and B(x, θ) = θx(1− θ)1−x denotes a Bernoulli probability distribution.

Therefore, in model M(1,1), the presence or absence of both words in a given
document depends on the document class. θk1 corresponds to the proportion
of documents in category k with word F1 and θk1 to the proportion of docu-
ments not in category k with word F1. In model M(1,0), only word F1 depends
on the category of the document and θ2 corresponds to the proportion of doc-
uments with word F2 regardless of the category associated with them. θk is
the proportion of documents in category k and Pr(yi|θk) is the probability
that document i is in category k.

We assume the following prior probability distributions for the parameters:
θkF ∼ Beta(αkF , βkF), θkF ∼ Beta(αkF , βkF), θF ∼ Beta(αF , βF), and θk ∼
Beta(αk, βk), where Beta(α, β) denotes a Beta distribution, i.e., Pr(θ|α, β) =

1
B(α,β)θ

α−1(1− θ)β−1, k ∈ {1, ..., C}, and F ∈ {F1, ..., FN}.
Then the marginal likelihoods for each of the four models above can be

expressed as the products of three terms,

Pr(data|M(1,1)) = l0 × l0F1k × l0F2k

Pr(data|M(1,0)) = l0 × l0F1k × lF2k

Pr(data|M(0,1)) = l0 × lF1k × l0F2k

Pr(data|M(0,0)) = l0 × lF1k × lF2k

where l0Fk and lFk are defined in Equations (14.4) for F ∈ {F1, F2, ..., FN}

© 2008 by Taylor & Francis Group, LLC

A Bayesian Feature Selection Score Based on Näıve Bayes Models 283

and l0 is defined as

l0 =
∫ 1

0

∏

i

Pr(yi|θk)Pr(θk|αk, βk)dθk (14.7)

which is the marginal probability for the category of the documents.
It is straightforward to show that PIP (F, k) in Equation (14.2) is equivalent

to PIP (F, k) in Equation (14.3) if we assume that the prior probability density
for the models is uniform, e.g., Pr(Ml) ∝ 1.

In the example above, the posterior inclusion probability for feature F1 is
given by

Pr(F1|yk) = Pr(M(1,1)|data) + Pr(M(1,0)|data)

=
l0F1k

l0F1k + lF1k

To get a single “bag of words” for all categories we compute the weighted
average of PIP (F, k) over all categories:

PIP (F) =
∑

k

Pr(y = k)PIP (F, k)

We note that the authors of [2] present similar manipulations of the näıve
Bayes model but for model averaging purposes rather than finding the median
probability model.

14.2.3 Posterior Inclusion Probability (PIPp) under Poisson
distributions

A generalization of the binary näıve Bayes model assumes class-conditional
Poisson distributions for the word frequencies in a document. As before,
assume that the probability distribution for a word in a document might or
might not depend on the category of the document. More precisely, if the
distribution for feature x depends on the category k of the document, we
have

Pr(x|y = k) =
e−λkF λx

kF

x!

Pr(x|y �= k) =
e−λkF λx

kF

x!
where x is the number of times word F appears in the document and λkF

(λkF) represents the expected number of times word F appears in documents
in category k (k). If the distribution for x does not depend on the category
of the document, we then have

Pr(x) =
e−λF λx

F

x!

© 2008 by Taylor & Francis Group, LLC

284 Computational Methods of Feature Selection

where λF represents the expected number of times word F appears in a doc-
ument regardless of the category of the document.

Assume the following conjugate prior probability densities for the parame-
ters:

λkF ∼ Gamma(αkF , βkF)
λkF ∼ Gamma(αkF , βkF)
λF ∼ Gamma(αF , βF)

where αkF , βkF , αkF , βkF , αF , and βF are hyperparameters to be set by the
practitioner.

Now, as before, the posterior inclusion probability for Poisson distributions
(PIPp) is given by

PIPp(F, k) =
l0Fk

l0Fk + lFk

where

l0Fk =
Γ(NkF + αkF)
Γ(αkF)βαkF

kF

Γ(NkF + αkF)
Γ(αkF)βαkF

kF

×(
βkF

nkβkF + 1
)nkF +αkF (

βkF

nkβkF + 1
)nkF +αkF

lFk =
Γ(NF + αF)

Γ(αF)
(

βF

βF n + 1
)nF +αF

1
βαF

F

.

This time, NkF , NkF , and NF denote:
NkF : n◦ of times word F appears in documents in class k.
NkF : n◦ of times word F appears in documents not in class k.
NF : total n◦ of times that word F appears in all documents.

As before, to get a single “bag of words” for all categories, we compute the
weighted average of PIPp(F, k) over all categories:

PIPp(F) =
C∑

k

Pr(y = k)PIPp(F, k)

14.2.4 Information Gain (IG)

Information gain is a popular score for feature selection in the field of ma-
chine learning. In particular, it is used in the C4.5 decision tree inductive
algorithm. Reference [14] compared five different feature selection scores on
two datasets and showed that Information Gain is among the two most effec-
tive. The information gain of word F is defined to be

© 2008 by Taylor & Francis Group, LLC

A Bayesian Feature Selection Score Based on Näıve Bayes Models 285

IG(F) = −
C∑

k=1

Pr(y = k) log Pr(y = k)

+Pr(F)
C∑

k=1

Pr(y = k|F) log Pr(y = k|F)

+Pr(F)
C∑

k=1

Pr(y = k|F) log Pr(y = k|F)

where {1, . . . , C} is the set of categories and F is the absence of word F . It
measures the decrease in entropy when the feature is present versus when the
feature is absent.

14.2.5 Bi-Normal Separation (BNS)

The Bi-Normal Separation score, introduced in [4], is defined as

BNS(F, k) = |Φ−1(
nkF

nk
)− Φ−1(

nkF

nk

)|

where Φ is the standard normal distribution and Φ−1 is its corresponding
inverse. Φ−1(0) is set to be equal to 0.0005 to avoid numerical problems
following [4]. By averaging over all categories, we get a score that selects a
single set of words for all categories:

BNS(x) =
C∑

k=1

Pr(y = k)|Φ−1(
nkF

nk
)− Φ−1(

nkF

nk

)|

To get an idea of what this score is measuring, assume that the probability
that a word F is contained in a document is given by Φ(δk) if the document
belongs to class yk and otherwise is given by Φ(δk). A word will discriminate
with high accuracy between a document that belongs to a category from one
that does not, if the value of δk is small and the value of δk is large, or
vice versa, if δk is large and δk is small. Now, if we set δk = Φ−1(nkF

nk
) and

δk = Φ−1(nkF

n−nk
), the Bi-Normal Separation score is equivalent to the distance

between these two quantities, |δk − δk|.

14.2.6 Chi-Square

The chi-square feature selection score, χ2(F, k), measures the dependence
between word F and category k. If word F and category k are independent,
χ2(F, k) is equal to zero. When we select a different set of words for each
category, we utilize the following score:

χ2(F, k) =
n(nkF nkF − nkF nkF)2

nknF nknF

Again, by averaging over all categories, we get a score for selecting a single

© 2008 by Taylor & Francis Group, LLC

286 Computational Methods of Feature Selection

set of words for all categories:

χ2(F) =
C∑

k=1

Pr(y = k)χ2(F, k)

14.2.7 Odds Ratio

The Odds Ratio measures the odds of word F occuring in documents in
category k divided by the odds of word F not occuring in documents in
category k. Reference [12] found this to be the best score among eleven scores
for a näıve Bayes classifier. For category k and word F , the oddsRatio is given
by

OddsRatio(F, k) =
nkF +0.1
nk+0.1 /

nkF +0.1

nk+0.1
nkF +0.1

nk+0.1 /
nkF +0.1

nk+0.1

where we add the constant 0.1 to avoid numerical problems. By averaging
over all categories we get

OddsRatio(F) =
C∑

k=1

Pr(y = k)OddsRatio(F, k)

14.2.8 Word Frequency

This is the simplest of the feature selection scores. In the study in [14]
they show that word frequency is the third best after information gain and
χ2. They also point out that there is a strong correlation between these two
scores and word frequency. For each category k, word frequency (WF) for
word F is the number of documents in category k that contain word F , i.e.,
WF (F, k) = nkF .

Averaging over all categories we get a score for each F :

WF (F) =
C∑

k=1

Pr(y = k)WF (F, k) =
C∑

k=1

Pr(y = k)nkF

14.3 Classification Algorithms

To determine the performance of the different feature selection scores, the
classification algorithms that we consider are the Multinomial, Poisson, and
Binary näıve Bayes classifiers (e.g., [10], [8], and [3]), and the hierarchical pro-
bit classifier of [5]. We choose these classifiers for our analysis for two reasons.

© 2008 by Taylor & Francis Group, LLC

A Bayesian Feature Selection Score Based on Näıve Bayes Models 287

The first one is the different nature of the classifiers. The näıve Bayes models
are generative models while the probit is a discriminative model. Generative
classifiers learn a model of the joint probability Pr(x, y), where x is the input
and y the label. These classifiers make their predictions by using Bayes rule
to calculate Pr(y|x). In contrast, discriminative classifiers model the condi-
tional probability of the label given the input (Pr(y|x)) directly. The second
reason is the good performance that they achieve. In [3], the multinomial
model, notwithstanding its simplicity, achieved the best performance among
four näıve Bayes models. The hierarchical probit classifier of [5] achieves state-
of-the-art performance, comparable to the performance of the best classifiers
such as SVM ([7]). We decided to include the binary and Poisson naive Bayes
models (see [3] for details) because they allow us to incorporate information
of the probability model used to fit the categories of the documents into the
feature selection score. For instance, in the Binary näıve Bayes classifiers, the
features that one can select using the PIP score correspond exactly to the
features with the highest posterior inclusion probability. We want to examine
whether or not that offers an advantage over other feature selection scores.

14.4 Experimental Settings and Results

Before we start the analysis we remove common noninformative words taken
from a standard stopword list of 571 words and we remove words that appear
less than three times in the training documents. This eliminates 8, 752 words
in the Reuters dataset (38% of all words in training documents) and 47, 118
words in the Newsgroups dataset (29% of all words in training documents).
Words appear on average in 1.41 documents in the Reuters dataset and in
1.55 documents in the Newsgroups dataset.

We use F1 to measure the performance of the different classifiers and feature
selection scores. F1 is the harmonic mean between recall and precision. We
average the F1 scores across all categories to get a single value. The micro F1
is a weighted average, where the weights for each category are proportional to
the frecuency of documents in the category. The macro F1 gives equal weight
to all categories.

14.4.1 Datasets

The 20-Newsgroups dataset contains 19, 997 articles divided almost evenly
into 20 disjoint categories. The category topics are related to computers,
politics, religion, sports, and science. We split the dataset randomly into 75%
for training and 25% for testing. We took this version of the dataset from
http://www.ai.mit.edu/people/jrennie/20Newsgroups/. Another dataset that we
used comes from the Reuters-21578 news story collection. We used a subset of

© 2008 by Taylor & Francis Group, LLC

http://www.csail.mit.edu

288 Computational Methods of Feature Selection

the ModApte version of the Reuters−21, 578 collection, where each document
has assigned at least one topic label (or category) and this topic label belongs
to any of the 10 most populous categories - earn, acq, grain, wheat, crude,
trade, interest, corn, ship, money-fx. It contains 6, 775 documents in the
training set and 2, 258 in the testing set.

14.4.2 Experimental Results

In these experiments we compare seven feature selection scores, on two
benchmark datasets, Reuters-21578 and Newgroups (see Section 14.4.1), un-
der four classification algorithms (see Section 14.3).

Multinomial−Reuters

WF
PIPp
BNS
IG
CHI
OR
PIP

10 50 100 200 500 1000

number of words

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

m
ic

ro
 F

1

FIGURE 14.2: Performance (for the multinomial model) for different numbers of
words measured by micro F1 for the Reuters dataset.

We compare the performance of the classifiers for different numbers of words
and vary the number of words from 10 to 1000. For larger numbers of words,
the classifiers tend to perform somewhat more similarly, and the effect of
choosing the words using a different feature selection procedure is less notice-
able.

Figures 14.2 - 14.5 show the micro average F1 measure for each of the
feature selection scores as we vary the number of features selected for the

© 2008 by Taylor & Francis Group, LLC

A Bayesian Feature Selection Score Based on Näıve Bayes Models 289

Probit−Reuters

WF
PIPp
BNS
IG
CHI
OR
PIP

10 50 100 200 500 1000

number of words

0.
5

0.
6

0.
7

0.
8

0.
9

m
ic

ro
 F

1

FIGURE 14.3: Performance (for the probit model) for different numbers of words
measured by micro F1 for the Reuters dataset.

four classification algorithms we considered: multinomial, probit, Poisson,
and binary respectively.

We notice that PIP gives, in general, high values to all very frequent words.
To avoid that bias we remove words that appear more than 2000 times in the
Reuters dataset (that accounts for 15 words) and more than 3000 times in the
Newsgroups dataset (that accounts for 36 words). We now discuss the results
for the two datasets:

Reuters. Like the results of [4], if for scalability reasons one is limited
to a small number of features (< 50), the best available metrics are IG and
χ2, as Figures 14.2 – 14.5 show. For larger numbers of features (> 50),
Figure 14.2 shows that PIPp and PIP are the best scores for the mutinomial
classifier. Figures 14.4 and 14.5 show the performance for the Poisson and
binary classifiers. PIPp and BNS achive the best performance in the Poisson
classifier and PIPp achieves the best performance in the binary classifier. WF
performs poorly compared to the other scores in all the classifiers, achieving
the best performance with the Poisson one.

Newsgroups. χ2 followed by BNS, IG, and PIP are the best-performing
measures in the probit classifier. χ2 is also the best one in the multinomial
model, followed by BNS and the binary classifier with the macro F1 measure.
OR performs best in the Poisson classifier. PIPp is best in the binary classifier
under the micro F1 measure. WF performs poorly compared to the other

© 2008 by Taylor & Francis Group, LLC

290 Computational Methods of Feature Selection

Poisson−Reuters

WF
PIPp
BNS
IG
CHI
OR
PIP

10 50 100 200 500 1000

number of words

0.
4

0.
5

0.
6

0.
7

0.
8

m
ic

ro
 F

1

FIGURE 14.4: Performance (for the poisson model) for different numbers of words
measured by micro F1 for the Reuters dataset.

scores in all classifiers. Because of lack of space we do not show a graphical
display of the performance of the classifiers in the Newsgroups dataset, and
only the micro F1 measure is displayed graphically for the Reuters dataset.

In Table 14.2 and Table 14.3 we summarize the overall performance of the
feature selection scores considered by integrating the curves formed when the
dots depicted in Figures 14.2 – 14.5 are joined. Each column corresponds
to a given feature selection. For instance, the number 812 under the header
“Multinomial model Reuters-21578” and the row “micro F1” corresponds to
the area under the IG “curve” in Figure 14.2. In 7 out of 16 instances, χ2 is
the best-performing score and in 3 it is the second best. PIPp in 4 out of 16
is the best score and in 6 is the second best. BNS is the best in 2 and second
best in 6. In bold are the best two performance scores.

14.5 Conclusion

Variable or feature selection has become the research focus of many re-
searchers working in applications that contain a large number of potential
features. The main goals of feature selection procedures in classification prob-
lems are to reduce data dimensionality in order to allow for a better interpre-

© 2008 by Taylor & Francis Group, LLC

A Bayesian Feature Selection Score Based on Näıve Bayes Models 291

Binary−Reuters

WF
PIPp
BNS
IG
CHI
OR
PIP

10 50 100 200 500 1000

number of words

0.
4

0.
5

0.
6

0.
7

0.
8

m
ic

ro
 F

1

FIGURE 14.5: Performance (for the binary näıve Bayes model) for different num-
bers of words measured by micro F1 for the Reuters dataset.

tation of the underlying process generating the data, and to provide faster,
computationally tractable, and accurate predictors.

In this chapter, we introduced a flexible feature selection score, PIP. Unlike
other popular feature selection scores following the filtering approach, PIP is
a model-dependent score, where the model can take several different forms.
The advantage of this score is that the selected features are easy to interpret,
the computation of the score is inexpensive, and, when the predicting model
corresponds to a näıve Bayes model, the score depends also on the predicting
model, which can lead to better classification performance. While feature se-
lection scores following the filtering approach are computationally inexpensive
as well, most do not provide a clear interpretation of the selected features.

The value that the PIP score assigns to each word has an appealing Bayesian
interpretation, being the posterior probability of inclusion of the word in a
näıve Bayes model. Such models assume a probability distribution on the
words of the documents. We consider two probability distributions, Bernoulli
and Poisson. The former takes into account the presence or absence of words
in the documents, and the latter, the number of times each word appears in
the documents. Future research could consider alternative PIP scores corre-
sponding to different probabilistic models.

This score can be applied as a regular filtering score as part of the prepro-
cessing of the data for dimensinality reduction, before fitting the predicting

© 2008 by Taylor & Francis Group, LLC

292 Computational Methods of Feature Selection

TABLE 14.2: Performance of the Binary and
Poisson models.

IG χ2 OR BNS WF PIP PIPp
Poisson model Reuters-21578 dataset

micro F1 708 719 670 763 684 699 755
macro F1 618 628 586 667 590 618 667

Poisson model 20-Newsgroups dataset
micro F1 753 808 928 812 684 777 854
macro F1 799 841 936 841 773 813 880

Berboulli model Reuters-21578 dataset
micro F1 779 794 669 804 721 786 822
macro F1 680 698 618 709 614 696 746

Bernoulli model 20-Newsgroups dataset
micro F1 531 566 508 556 436 534 650
macro F1 628 673 498 652 505 627 650

This table summarizes an overall performance of the feature selec-
tion scores considered by integrating the curves formed by joining
the dots depicted in Figures 14.2 – 14.5. In bold are the best two
performing score.

model. Alternatively, it can be applied in conjuction with a näıve Bayes
model, in which case the score is built based on the predicting model, which
bears a resemblance to the scores that follow the so-called wrapper approach
for feature selection.

The wrapper approach attempts to identify the best feature subset to use
with a particular algorithm and dataset, whereas the filtering approach at-
tempts to assess the merits of features from the data alone. For some näıve
Bayes models like the Binary näıve model or Poisson näıve model, the score
computed by PIP Bernoulli and PIP Poisson depends on the classification
algorithm. Our empirical results do not corroborate the benefit of using the
same model in the feature selection score and in the classification algorithm.
The strong assumption that näıve Bayes models make about the independence
of the features given the label is well known not to be suitable for textual
datasets, as words tend to be correlated. Despite the correlation structure of
words, näıve Bayes classifiers have been shown to give highly accurate pre-
dictions. The reasons for that are clearly explained in [6]. The authors are
currently exploring extensions of this method of feature selection to applica-
tions where the näıve Bayes assumption appears to be more suitable.

Our results regarding the performance of the different scores are consistent
with [14] in that χ2 and IG seem to be strong scores for feature selection in
discriminative models, but disagree in that WF appears to be a weak score in
most instances. Note that we do not use exactly the same WF score. Ours is
a weighted average by the category proportion.

χ2, PIPp, and BNS are the best-performing scores. Still, feature selec-
tion scores and classification algorithms seem to be highly data- and model-

© 2008 by Taylor & Francis Group, LLC

A Bayesian Feature Selection Score Based on Näıve Bayes Models 293

TABLE 14.3: Performance of the Multinomial
and Probit models.

IG χ2 OR BNS WF PIP PIPp
Multinomial model Reuters-21578 dataset

micro F1 812 822 644 802 753 842 832
macro F1 723 733 555 713 644 762 753

Multinomial model 20-Newsgroups dataset
micro F1 535 614 575 584 456 564 575
macro F1 594 644 565 634 486 604 585

Probit model Reuters-21578 dataset
micro F1 911 921 674 891 881 901 891
macro F1 861 861 605 842 753 842 851

Probit model 20-Newsgroups dataset
micro F1 703 723 575 713 565 693 644
macro F1 693 723 565 703 565 683 624

This table summarizes an overall performance of the feature selec-
tion scores considered by integrating the curves formed by joining
the dots depicted in Figures 14.2 – 14.5. In bold are the best two
performing score.

dependent. The feature selection literature reports similarly mixed findings.
For instance, the authors of [14] found that IG and χ2 are the strongest
feature selection scores. They performed their experiments on two datasets,
Reuters-22173 and OHSUMED, and under two classifiers, kNN and a linear
least square fit. The authors of [12] found that OR is the strongest feature
selection score. They performed their experiments on a näıve Bayes model
and used the Yahoo dataset. Reference [14] favors bi-normal separation.

A better understanding of the dependency between the correlation structure
of textual datasets, potential feature selection procedures, and classification
algorithms is still an important challenge to be further addressed that we
intend to pursue in the future.

References

[1] M. Barbieri and J. Berger. Optimal predictive model selection. Annals
of Statistics, 32:870–897, 2004.

[2] D. Dash and G. Cooper. Exact model averaging with naive bayesian
classifiers. In Proceedings of the Nineteenth International Conference on
Machine Learning, pages 91–98, 2002.

[3] L. D. Eyheramendy, S. and D. Madigan. On the naive bayes classifiers for
text categorization. In Proceedings of the ninth international workshop
on Artificial Intelligence and Statistics, 2003.

© 2008 by Taylor & Francis Group, LLC

294 Computational Methods of Feature Selection

[4] G. Forman. An extensive empirical study of feature selection metrics for
text classification. Journal of Machine Learning Research, 3:1289–1305,
2003.

[5] L. D. E. S. J. W. Genkin, A. and D. Madigan. Sparse bayesian classifiers
for text categorization. JICRD, 2003.

[6] D. Hand and K. Yu. Idiot’s bayes not so stupid after all? International
Statistical Review, 69:385–398, 2001.

[7] T. Joachims. Text categorization with support vector machines: Learning
with many relevant features. In Proceedings of ECML-98, pages 137–142,
1998.

[8] D. Lewis. Naive (bayes) at forty: The independence assumption in infor-
mation retrieval. In Proceedings of ECML-98, pages 4–15, 1998.

[9] H. Liu and L. Yu. Towards integrating feature selection algorithms for
classification and clustering. IEEE Transactions in Knowledge and Data
Ingeneering, 17(3):1–12, 2005.

[10] A. McCallum and K. Nigam. A comparison of event models for naive
bayes text classification. In AAAI/ICML Workshop on Learning for Text
Categorization, pages 41–48, 1998.

[11] A. Miller. Subset selection in regression. second edition edition, 2002.

[12] D. Mladenic and M. Grobelnik. Feature selection for unbalanced class
distribution and naive bayes. In Proceedings ICML-99, pages 258–267,
1999.

[13] L. C. Pardi, F. and J. Whittaker. Snp selection for association stud-
ies: maximizing power across snp choice and study size. Ann Human
Genetics, 69:733–746, 2005.

[14] Y. Yang and J. Pedersen. A comparative study on feature selection in
text categorization. In Proceedings ICML-97, pages 412–420, 1997.

© 2008 by Taylor & Francis Group, LLC

Chapter 15

Pairwise Constraints-Guided
Dimensionality Reduction

Wei Tang

Florida Atlantic University

Shi Zhong

Yahoo! Inc.

15.1 Introduction . 295
15.2 Pairwise Constraints-Guided Feature Projection . 297
15.3 Pairwise Constraints-Guided Co-clustering . 301
15.4 Experimental Studies . 302
15.5 Conclusion and Future Work . 310

References . 311

15.1 Introduction

High-dimensional data are commonly seen in many practical machine learn-
ing and data mining problems and present a challenge in both classification
and clustering tasks. For example, document classification/clustering often
deals with tens of thousands of input features based on bag-of-words rep-
resentation (where each unique word is one feature dimension). In market
basket data analysis, the input dimensionality is the same as the number of
products seen in transactions, which can also be huge. Although there are
already some algorithms that can handle high-dimensional data directly (e.g.,
support vector machines and näıve Bayes models), it is still a good practice to
reduce the number of input features. There are several good reasons for this
practice: a) Many features may be irrelevant to or uninformative about the
target of our classification/clustering tasks; b) reduced dimensionality makes
it possible to use more choices of classification/clustering algorithms; and c)
lower dimensionality is more amenable to computational efficiency.

Common dimensionality reduction approaches include feature projection [11],
feature selection [13], and feature clustering [9]. Feature projection methods
project high-dimensional data to a lower-dimensional space, where each pro-
jected feature is a linear combination of the original features. The objective of
feature projection is to learn a projection matrix PN×K that maps the original

295

© 2008 by Taylor & Francis Group, LLC

296 Computational Methods of Feature Selection

N -dimensional instances into a K-dimensional space. Feature selection refers
to selecting a small set of input features based on some measure of feature
usefulness. Most feature selection algorithms are used for classification prob-
lems since the usefulness metric for a feature can be more well-defined with
class labels available. Feature clustering aims to cluster the original feature
set into different groups and use cluster centroids to form the reduced feature
set. Both feature selection and feature clustering can be considered as special
cases of feature projection with specific projection matrices.

The widely-used principal component analysis (PCA) and linear discrimi-
nant analysis (LDA) are two representative feature projection techniques – the
former is for unsupervised learning and the latter for classification. PCA [17]
is an orthonormal transformation of data to a low-dimensional space such that
maximum variance of the original data is preserved. latent semantic indexing
(LSI) [7], essentially just a different name for PCA when applied to analyzing
text data, has been used to map text documents to a low-dimensional “topic”
space spanned by some underlying latent concept vectors. PCA works well for
a lot of data analysis problems but does not fit well for classification purposes.
LDA and other supervised feature selection techniques are better positioned
for classification in that they reduce the input features in such a way that
maximum separability between target classes is preserved.

This chapter focuses on dimensionality reduction for semi-supervised clus-
tering problems. In this learning task, the exact class labels are not available.
Instead, there is some “weak” supervision in the form of pairwise instance
constraints. The goal of semi-supervised clustering is still to categorize data
instances into a set of groups, but the groups are usually not pre-defined due to
the lack of class labels. A pairwise instance constraint specifies whether a pair
of instances must or must not be in the same group, naturally called must-link
constraints and cannot-link constraints, respectively. Pairwise instance con-
straints are a common type of background knowledge that appears in many
practical applications. For example, in text/image information retrieval, user
feedback on which retrieved results are similar to a query and which are not
can be used as pairwise constraints. These constraints help better organize
the underlying text/image database for more efficient retrievals. For clus-
tering GPS data for lane-finding [19], or grouping different actors in movie
segmentation [1], the complete class information may not be available, but
pairwise instance constraints can be extracted automatically with minimal
effort. Also, a user who is not a domain expert is more willing to provide an
answer to whether two objects are similar/dissimilar than to specify explicit
group labels.

The techniques mentioned above (PCA or LDA) cannot easily exploit pair-
wise constraints for reducing the number of features. To the best of our
knowledge, the most related work is the relevant component analysis (RCA)
algorithm [1], which learns a Mahalanobis distance based on must-link con-
straints and using a whitening transform [12]. Since there are no class labels,
such methods are usually evaluated on (semi-supervised) clustering problems.

© 2008 by Taylor & Francis Group, LLC

Pairwise Constraints-Guided Dimensionality Reduction 297

Another related work is metric learning with pairwise constraints [20, 3], which
learn the parameters associated with a parameterized distance metric func-
tion from pairwise data constraints. This kind of approach, however, does not
reduce the input dimensionality directly.

In this chapter, we propose two methods of leveraging pairwise instance
constraints for dimensionality reduction: pairwise constraints-guided feature
projection and pairwise constraints-guided co-clustering. The first approach
projects data onto a low-dimensional space such that the sum-squared dis-
tance between each group of must-link data instances (and their centroids)
is minimized and that between cannot-link instance pairs is maximized in
the projected space. The solution to this formulation reduces to an elegant
eigenvalue decomposition problem similar in form to PCA and LDA. The
second approach is a feature clustering approach and benefits from pairwise
constraints via a constrained co-clustering mechanism [8]. Even though the
constraints are imposed only on data instances (rows), the feature clusters
(columns) are influenced since row clustering and column clustering are inter-
leaved together and mutually reinforced in the co-clustering process.

We evaluate our proposed techniques in three sets of experiments on various
real-world datasets. The evaluation metric is based on the improvement to
the clustering performance through pairwise instance constraints. The exper-
iments reported in this chapter were conducted separately at different times
during the period we worked on this topic. The first set of experiments aim
to show the effectiveness of pairwise constraints-guided feature projection in
improving the clustering performance and the superiority of feature projec-
tion over adaptive metric learning [20]. In the second set of experiments, we
compare our constraints-guided feature projection method with RCA. The
last set of experiments are to demonstrate the superiority of the proposed
pairwise constraints-guided co-clustering algorithm.

This chapter is organized as follows. Section 15.2 describes the proposed
pairwise constraints-guided feature projection algorithm. Section 15.3 presents
the pairwise constraints-guided co-clustering algorithm. Three experimental
studies are presented in Section 15.4. Section 15.5 concludes this chapter with
discussions and remarks on future work.

15.2 Pairwise Constraints-Guided Feature Projection

In this section, we first present the pairwise constraints-guided feature pro-
jection approach, and then describe how it can be used in conjunction with
semi-supervised clustering algorithms.

© 2008 by Taylor & Francis Group, LLC

298 Computational Methods of Feature Selection

15.2.1 Feature Projection

Given a set of pairwise data constraints, we aim to project the original data
to a low-dimensional space, in which must-link instance pairs become close
and cannot-link pairs far apart.

Let X = {x|x ∈ RN} be a set of N -dimensional column vectors (i.e.,
data instances) and PN×K = {P1, . . . , PK} a projection matrix containing K
orthonormal N -dimensional vectors. Suppose the function f : RN �→ C maps
each data instance to its target group. Then Cml = {(x1, x2)|f(x1) = f(x2)}
is the set of all must-link instance pairs and Ccl = {(x1, x2)|f(x1) �= f(x2)}
the set of all cannot-link instance pairs. We aim to find an optimal projection
matrix P that maximizes the following objective function:

f(P) =
∑

(x1,x2)∈Ccl

‖PT x1 − PT x2‖2 −
∑

(x1,x2)∈Cml

‖PT x1 − PT x2‖2 (15.1)

subject to the constraints

PT
i Pj =

{
1 if i = j
0 if i �= j

(15.2)

where ‖·‖ denotes the L2 norm.

There exists a direct solution to the above optimization problem. The
following theorem shows that the optimal projection matrix PN×K is given by
the first K eigenvectors of matrix Q = CDCT , where each column of matrix
CN×M is a difference vector x1 − x2 for a pair (x1, x2) in Cml or Ccl and
DM×M is a diagonal matrix with each value on the diagonal corresponding
to a constraint (1 for a cannot-link pair and −1 for a must-link pair).

THEOREM 15.1

Given the reduced dimensionality K, the set of must-link constraints Cml,
and cannot-link constraints Ccl, construct matrix Q = CDCT , where C and
D are defined above. Then the optimal projection matrix PN×K is comprised
of the first K eigenvectors of Q corresponding to the K largest eigenvalues.

© 2008 by Taylor & Francis Group, LLC

Pairwise Constraints-Guided Dimensionality Reduction 299

PROOF Consider the objective function

f(P) =
∑

(x1,x2)
∈Ccl

‖PT (x1 − x2)‖2 −
∑

(x1,x2)
∈Cml

‖PT (x1 − x2)‖2

=
∑

(x1,x2)
∈Ccl

∑

l

PT
l (x1 − x2)(x1 − x2)T Pl

−
∑

(x1,x2)
∈Cml

∑

l

PT
l (x1 − x2)(x1 − x2)T Pl

=
∑

l

PT
l

⎡

⎢
⎢
⎣

∑

(x1,x2)
∈Ccl

(x1 − x2)(x1 − x2)T −
∑

(x1,x2)
∈Cml

(x1 − x2)(x1 − x2)T

⎤

⎥
⎥
⎦Pl

=
∑

l

PT
l (CDCT)Pl

=
∑

l

PT
l QPl (15.3)

where the Pl’s are subject to the constraints PT
l Ph = 1 for l = h and 0

otherwise.
Using the traditional Lagrange multiplier optimization technique, we write

the Lagrangian to be

LP1,...,Pk
= f(P1, . . . , Pk) +

k∑

l=1

ξl(P T
l Pl − 1) (15.4)

By taking the partial derivative of LP1,...,Pk
with respect to each Pl and set it

to zero, we get

∂L

∂Pl
= 2QPl + 2ξlPl = 0 ∀l = 1, . . . , K (15.5)

⇒ QPl = −ξlPl ∀l = 1, . . . , K (15.6)

Now it is obvious that the solution Pl is an eigenvector of Q and −ξl the corre-
sponding eigenvalue of Q. To maximize F , P must be the first K eigenvectors
of Q that makes F the sum of the K largest eigenvalues of Q.

When N is very large, QN×N is a huge matrix that can present difficulties
to the associated eigenvalue decomposition task. In this case, we don’t really
need to compute Q since its rank is most likely much lower than N and we
can use the Nystrom method [4] to calculate the top K eigenvectors more
efficiently.

© 2008 by Taylor & Francis Group, LLC

300 Computational Methods of Feature Selection

Algorithm: Projection-based semi-supervised spherical k-means using pairwise
constraints (PCSKM+P)
Input: Set of unit-length documents X = {xi}N1 , set of must-links Cml, set of
cannot-links Ccl, pre-specified reduced dimension K, and number of clusters C.
Output: C partitions of the documents.
Steps:

1. Use the method stated in Theorem 15.1 to project the original N-
dimensional documents into K-dimensional vectors

2. Initialize the C unit-length cluster centroids {μh}Ch=1, set t← 1

3. Repeat until convergence
For i = 1 to N

(a) For each document xi which does not involve any cannot-links, find
the closest centroid yn = arg maxk xT

i μk ;

(b) For each pair of documents (xi, xj) involved in must-link constraints,
find the closest centroid yn = arg maxk xT

i μk + xT
j μk ;

(c) For each pair of documents (xi, xj) involved in cannot-links, find two
different centroids μk and μk′ that maximize xT

i μk + xT
j μx′ ;

(d) For cluster k, let Xk = {xi|yi = k}, the centroid is estimated as
μk =

P
x∈Xk

/‖P
x∈Xk

‖ ;

4. t← t + 1 .

FIGURE 15.1: Projection-based semi-supervised spherical k-means using pairwise
constraints.

15.2.2 Projection-Based Semi-supervised Clustering

The feature projection method enables us to represent the original instances
in a low-dimensional subspace that conforms to the pairwise instance con-
straints. In this section, we will show how we can enhance the performance
of semi-supervised clustering using feature projection. Since we shall apply
this to text document clustering problems and text documents are often repre-
sented as unit-length vectors [10], we shall use the standard spherical k-means
algorithm as the baseline method to construct our algorithm.

Given a set of documents X = {x1, . . . , xM}, a set of must-link constraints
Cml, a set of cannot-link constraints Ccl, and a predefined number of clusters
C, we aim to find C disjoint partitions that conform to the given constraints.
For the must-link constraints, since they represent an equivalence relation,
we can easily put any pair of instances involved in Cml into the same cluster.
For the cannot-link constraints, finding a feasible solution for the cannot-link
constraints is much harder than that for the must-link constraints (actually
NP-complete) [6]. Therefore, we adopt a local greedy heuristic to update the
cluster centroids. Given each cannot-link constraint Ccl(xi, xj), we find two
different cluster centroids μxi and μxj such that

© 2008 by Taylor & Francis Group, LLC

Pairwise Constraints-Guided Dimensionality Reduction 301

xT
i μxi + xT

j μxj (15.7)

is maximized and assign xi and xj to these two different centroids to avoid
violating the cannot-link constraints. Note that all x’s and μ’s need to be
L2-normalized vectors for (15.7) to work. Our algorithm for semi-supervised
clustering using feature projection is shown in Figure 15.1.

It is worth noting that the constrained spherical k-means incorporated in
our algorithm does not distinguish the different priorities among the cannot-
link constraints as shown in [3]. For fair comparison in our experiment, we
adopt this version of constrained k-means algorithm to implement the typical
distance-based method in [20]. We will hold off the detailed discussion until
Section 15.4.

15.3 Pairwise Constraints-Guided Co-clustering

As we mentioned in Section 15.1, feature clustering in general can be re-
garded as a special case of feature projection, with each cell in the projec-
tion matrix restricted to be a binary value. Usually dimensionality reduction
method only acts as a pre-processing step in data analysis. The transformed
data in the reduced low-dimensional space will be used for subsequent clas-
sification or clustering. However, the co-clustering method discussed in this
section cannot be simply regarded as a special case of feature projection since
it involves clustering the instances and features at the same time. The co-
clustering algorithm used here is proposed in [8] and aims to minimize the
following objective function:

I(X ; Y)− I(X̂; Ŷ) (15.8)

subject to the constraints on the number of row and column clusters. I(X ; Y)
is the mutual information between the row random variable X , which governs
the distribution of rows, and the column random variable Y , which governs
the distribution of columns. X̂ and Ŷ are variables governing the distribution
of clustered rows and clustered columns, respectively. An iterative algorithm
was used in [8] to alternate between clustering rows and clustering columns
to reach a local minimum of the above objective function.

Due to space limits, we omit a detailed discussion of the co-clustering al-
gorithm and readers are referred to [8]. Also, here we just concisely describe
how we involve constraints in the co-clustering process: The constraints only
affect the row/data clustering step algorithmically and the impact on col-
umn/feature clustering is implicit. For must-link data pairs, we merge the
rows and replace each instance by the average; for cannot-link data pairs, we

© 2008 by Taylor & Francis Group, LLC

302 Computational Methods of Feature Selection

separate a pair if they are in the same cluster after an iteration of row cluster-
ing, by moving the instance that is farther away from the cluster centroid to a
different cluster. Essentially, the idea of handling constraints is similar to the
existing work [19, 2], but we get features clustered through the co-clustering
process. This combination of pairwise constraints and co-clustering seems to
have not appeared before in the literature.

15.4 Experimental Studies

To measure clustering performance, we adopt normalized mutual informa-
tion (NMI) as the evaluation criterion. NMI is an external validation metric
and estimates the quality of clustering with respect to the given true labels of
the datasets [18]. Let Ẑ be the random variable denoting the cluster assign-
ments of the instances and Z the random variable denoting the underlying
class labels. Then, NMI is defined as

NMI =
I(Ẑ; Z)

(H(Ẑ) + H(Z))/2
(15.9)

where I(Ẑ; Z) = H(Z) − H(Z|Ẑ) is the mutual information between the
random variables Ẑ and Z, H(Z) the Shannon entropy of Z, and H(Z|Ẑ) is
the conditional entropy of Z given Ẑ [5].

15.4.1 Experimental Study – I

In our first set of experiments, we used four subsets from the 20-newsgroup
data [14] for comparison. The 20-newsgroup dataset consists of approxi-
mately 20, 000 newsgroup articles collected evenly from 20 different Usenet
newsgroups. Many of the newsgroups share similar topics and about 4.5% of
the documents are cross-posted over different newsgroups making the class
boundary rather fuzzy. We applied the same pre-processing steps as in [8],
i.e., removing stopwords, ignoring file headers and subject lines, and selecting
the top 2000 words by mutual information. Specific details of the datasets
are given in Table 15.1. The Bow [15] library was used for generating these
four subsets from the 20-newsgroup corpus.

The algorithms we compared are listed below:

• SPKM: the standard spherical k-means algorithm that does not make
use of any pairwise constraints [10];

• PCSKM: the pairwise constrained spherical k-means algorithm described
in Section 15.2.2;

© 2008 by Taylor & Francis Group, LLC

Pairwise Constraints-Guided Dimensionality Reduction 303

TABLE 15.1: Datasets from 20-newsgroup corpus for Experiment I.

Dataset Newsgroup No. doc. per group Tot. doc.
Binary talk.politics.mideast 250 500

talk.politics.misc

comp.graphics
rec.motorcycles

Multi5 rec.sports.baseball 100 500
sci.space
talk.politics.mideast

alt.atheism
comp.sys.mac.hardware
misc.forsale

Multi10 rec.autos, sci.crypt 50 500
rec.sport.hockey
sci.electronics
sci.med, sci.space
talk.politics.gun

Science sci.crypt, sci.med
sci.electronics 500 2000
sci.space

• PCSKM+M: the distance-based pairwise constrained spherical k-means
algorithm introduced in [20];

• PCSKM+P: the projection-based pairwise constrained spherical k-means
algorithm described in Figure 15.1 that reduces dimensionality first us-
ing our proposed feature projection algorithm.

We implemented all the algorithms in MATLAB and conducted our ex-
periments on a machine running Linux with 4 Intel Xeon 2.8GHz CPUs and
2G main memory. For each dataset, we randomly repeated each experiment
for 20 trials. In each trial, we randomly generated 500 pairwise constraints
from half of the dataset and tested the clustering performance on the whole
dataset. The average results over 20 trials are presented.

We performed an extensive comparative study on the algorithms listed
above (SPKM, PCSKM, PCSKM+M, and PCSKM+P). The clustering per-
formance of different algorithms are compared at different numbers of pairwise
constraints.

The results are shown in Figure 15.2, where the x-axis denotes the number
of pairwise constraints, and the y-axis denotes the clustering performance in
terms of NMI. The number of reduced dimensionality K is set to 30 in the
SPKM+P algorithm for all the datasets. It is worth noting that we did not
utilize the pairwise constraints to initialize the cluster centroids. Although
it has been demonstrated that seeding the initial centroids by constraint in-
formation can give further improvement to the clustering result [2], here we

© 2008 by Taylor & Francis Group, LLC

304 Computational Methods of Feature Selection

decided not to do so because we want to measure the improvement contributed
from the feature projection or metric learning only.

50 100 150 200 250 300 350 400 450 500

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of constraints

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

SPKM
PCSKM
PCSKM+M
PCSKM+P

(a) Binary

50 100 150 200 250 300 350 400 450 500

0.2

0.25

0.3

0.35

0.4

Number of constraints

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

SPKM
PCSKM
PCSKM+M
PCSKM+P

(b) Multi5

50 100 150 200 250 300 350 400 450 500

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of constraints

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

SPKM
PCSKM
PCSKM+M
PCSKM+P

(c) Multi10

50 100 150 200 250 300 350 400 450 500
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of constraints

N
or

m
al

iz
ed

 m
ut

al
 in

fo
rm

at
io

n

SPKM
PCSKM
PCSKM+M
PCSKM+P

(d) Science

FIGURE 15.2: Clustering performance by pairwise constraints-guided feature
projection on four datasets from the 20-newsgroup collection.

It is clear that, on most datasets, clustering performance is constantly im-
proved along with the increasing number of pairwise constraints. Specifically,
the PCSKM+P algorithm (i.e., PCSKM + feature projection) is more stable
compared to all the other methods and almost always outperforms all the
other methods. This may be due to the fact that constraint-guided feature
projection can produce more condensed and more meaningful representations
for each instance. On the other hand, PCSKM+M is not significantly better
than the PCSKM algorithm except for the Multi10 datasets. This indicates
that, for the original high-dimensional sparse data, it is difficult for metric
learning to get a meaningful distance measure.

We also compared the impact of must-link and cannot-link constraints on
the performance of the PCSKM+P algorithm on the first three datasets. To
compare the different impacts of these two types of constraints on improving
clustering performance, we incorporated a parameter β into the objective

© 2008 by Taylor & Francis Group, LLC

Pairwise Constraints-Guided Dimensionality Reduction 305

function in Equation (15.8) to adjust the relative importance between the
must-link and cannot-link constraints:

f = (1− β) ·
∑

(x1,x2)∈CCL

‖FT (x1 − x2)‖2

−β ·
∑

(x1,x2)∈CML

‖FT (x1 − x2)‖2 (15.10)

It is clear that β = 0 is equivalent to using only cannot-link constraints and
β = 1 is equivalent to using only must-link constraints. In our experiments,
we varied the value of β from 0 to 1 with a stepsize of 0.1. The performances
of the clustering results, measured by NMI, are plotted in Figure 15.3. In the
figure, the x-axis denotes the different values of parameter β and the y-axis
the clustering performance measured by NMI.

0.1 0.3 0.5 0.7 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ratio between must−link and cannot−link constraints (Beta)

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

Binary
Multi5
Multi10

FIGURE 15.3: Relative importance of must-link vs. cannot-link constraints.

As can be seen, there is no significant difference when β is in the range of
0.1–0.9. However, when using only must-link constraints (β = 1) the clus-
tering performance deteriorates sharply, indicating that must-link constraints
have little value compared to cannot-link constraints in guiding the feature
projection process to find a good low-dimensional representation.

© 2008 by Taylor & Francis Group, LLC

306 Computational Methods of Feature Selection

15.4.2 Experimental Study – II

Our second set of experiments were performed on a couple of real-world
datasets from rather different application domains. For the low-dimensional
datasets, we used six UCI datasets [16]: balance-scale, ionosphere, iris, soy-
bean, vehicle, and wine. These datasets have been used for distance metric
learning [20] and for constrained feature projection via RCA [1]. For the
high-dimensional datasets, we chose six subsets derived from some TREC
collections (available at http://trec.nist.gov).

For each test dataset, we repeated each experiment for 20 trials. For the
UCI datasets, we randomly generated 100 pairwise constraints in each trial.
For the TREC datasets collection, we randomly generated 500 pairwise con-
straints from half of the dataset and tested the clustering performance on the
whole dataset. Also, the final result is the average of the results from the 20
trials.

We evaluated the performance of our feature projection method relative
to other dimensionality reduction methods such as PCA and RCA (source
code available at http://www.cs.huji.ac.il/∼tomboy/code/RCA.zip). For a
thorough comparison, we used both relatively low-dimensional datasets from
the UCI repository and high-dimensional data from the TREC corpus. As for
the low-dimensional UCI datasets, we used the standard k-means algorithm to
serve as the baseline algorithm. As for the high-dimensional TREC datasets,
we again chose the spherical k-means algorithm [10] as the baseline.

Figure 15.4 shows the clustering performance of standard k-means ap-
plied to the original and projected data from different algorithms on six UCI
datasets with different numbers of pairwise constraints. Note that N repre-
sents the size of the dataset, C the number of clusters, D the dimensionality
of original data, and d the reduced dimensionality after projection. As shown
in Figure 15.4, RCA performs extremely well on the low-dimensional datasets
and the performance improves significantly when the number of available con-
straints increases. However, for some datasets such as vehicle and wine, when
only providing limited constraints, the performance of RCA is even worse than
PCA, which is unsupervised and does not use any pairwise constraints. Our
method, Projection, on the other hand, is always comparable to or better than
PCA. In some cases, such as for the soybean and iris datasets, Projection has
comparable performance to RCA.

Although the performance of RCA is good for low-dimensional datasets,
it is computationally prohibitive to directly apply RCA to high-dimensional
datasets, such as the TREC datasets. Our projection-based methods, on
the other hand, have no problem handling very high-dimensional text data.
For the purpose of getting some comparison between Projection and RCA
for high-dimensional text data, we first applied PCA to project the original
data into a 100-dimensional subspace, and then applied different algorithms
to further reduce the dimensionality to 30. Note that, even without the PCA
step, our method is applicable and generates similar performance. Figure 15.5

© 2008 by Taylor & Francis Group, LLC

http://trec.nist.gov
http://www.cs.huji.ac.il

Pairwise Constraints-Guided Dimensionality Reduction 307

10 20 30 40 50 60 70 80 90 100
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Number of constraints

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

Original
PCA
RCA
Projection

(a) balance-scale (N=625,C=3,D=4,d=2)

10 20 30 40 50 60 70 80 90 100
0.12

0.14

0.16

0.18

0.2

0.22

0.24

Number of constraints

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

Original
PCA
RCA
Projection

(b) Ionosphere (N=351,C=2,D=34,d=5)

10 20 30 40 50 60 70 80 90 100
0.7

0.75

0.8

0.85

0.9

0.95

Number of constraints

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

Original
PCA
RCA
Projection

(c) Iris (N=150,C=3,D=4,d=2)

10 20 30 40 50
0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of constraints

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

Original
PCA
RCA
Projection

(d) Soybean (N=47,C=4,D=35,d=4)

10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Number of constraints

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

Original
PCA
RCA
Projection

(e) Vehicle (N=846,C=4,D=18,d=5)

10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

Number of constraints

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

Original
PCA
RCA
Projection

(f) Wine (N=178,C=3,D=13,d=5)

FIGURE 15.4: Clustering performance on UCI datasets with different feature
projection methods (N : size of dataset; C: number of clusters; D: dimensionality
of original data; d: reduced dimensionality after projection).

gives the clustering performance of spherical k-means applied to the original
and projected data from different algorithms on six TREC datasets with dif-
ferent numbers of pairwise constraints. In Figure 15.5, we also included the
clustering performance by directly applying PCA without any other addi-
tional dimensionality reduction algorithms. As can be seen in Figure 15.5,

© 2008 by Taylor & Francis Group, LLC

308 Computational Methods of Feature Selection

10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of constraints

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

Original
PCA
PCA+RCA
PCA+Projection

(a) tr11

10 20 30 40 50 60 70 80 90 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of constraints

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

Original
PCA
PCA+RCA
PCA+Projection

(b) tr12

10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of constraints

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

Original
PCA
PCA+RCA
PCA+Projection

(c) tr23

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of constraints

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

Original
PCA
PCA+RCA
PCA+Projection

(d) tr31

10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of constraints

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

Original
PCA
PCA+RCA
PCA+Projection

(e) tr41

10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of constraints

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

Original
PCA
PCA+RCA
PCA+Projection

(f) tr45

FIGURE 15.5: Clustering performance on TREC datasets with different feature
projection methods, where “PCA+RCA” denotes the method with PCA being ap-
plied first, followed by RCA, and “PCA+Projection” means the method with PCA
being applied first, followed by our Projection method.

PCA+Projection almost always achieves the best performance of dimension-
ality reduction on all test datasets. In contrast, RCA performs the worst for
the text datasets, indicating that RCA is not a desirable method for high-
dimensional data.

© 2008 by Taylor & Francis Group, LLC

Pairwise Constraints-Guided Dimensionality Reduction 309

TABLE 15.2: Datasets from 20-newsgroup corpus for Experiment III.

Dataset Newsgroups Instances Dims Classes
comp.graphics

News-Similar-3 comp.os.ms-windows 295 1864 3
comp.windows.x

talk.politics.misc
News-Related-3 talk.politics.guns 288 3225 3

talk.politics.mideast

alt.atheism
News-Different-3 rec.sport.baseball 300 3251 3

sci.space

15.4.3 Experimental Study – III

In our third set of experiments, we compared our pairwise constraints-
guided co-clustering algorithm with the standard information theoretic co-
clustering [8]. We constructed three datasets from the 20-newsgroup collec-
tion [14]. From the original dataset, three datasets were created by selecting
some particular group categories. News-Similar-3 consists of three news-
groups on similar topics: comp.graphics, comp.os.ms-windows, and comp.wind-
ows.x, with significant overlap between clusters due to cross-posting. News-
Related-3 consists of three newsgroups on related topics: talk.politics.misc,
talk.politics.guns, and talk.politics.mideast. News-Different-3 consists of three
well-separat-ed newsgroups that cover quite different topics: alt.atheism,
rec.sport.baseball and sci.space. All the datasets were converted to the vector-
space representation following several steps—tokenization, stop-word removal,
and removing words with very high frequency and low frequency [10]. The
semi-supervised co-clustering algorithm directly clusters the normalized docu-
ment-term matrix (treated as a probability distribution) without any TF-IDF
weighting. Table 15.4.3 summarizes the properties of the datasets.

We denoted our method as co-clustering+pc and the algorithm proposed
in [8] as co-clustering. The results are shown in Figure 15.6, from which we
can see that as the number of pairwise constraints increases, the performance
of the constrained co-clustering algorithm improves significantly compared
to the unguided version. As the co-clustering algorithm does simultaneous
instance (row) clustering and feature (column) clustering, imposing pairwise
constraints on instances indirectly contributes to the feature clustering part
as well.

It is interesting to see that, when the number of constraints is small (e.g.,
smaller than 100), the constraints-guided co-clustering algorithm actually per-
forms worse than the regular co-clustering algorithm. We suspect the reason
is that the constraints-guided co-clustering algorithm runs into worse local
optima more frequently when the guidance is too limited, but this needs to
be further investigated in future research.

© 2008 by Taylor & Francis Group, LLC

310 Computational Methods of Feature Selection

0 100 200 300 400 500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of constraints

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

co−clustering+pc
co−clustering

(a) News-Similar-3

0 100 200 300 400 500
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Number of constraints

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

co−clustering+pc
co−clustering

(b) News-Related-3

0 100 200 300 400 500
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of constraints

N
or

m
al

iz
ed

 m
ut

ua
l i

nf
or

m
at

io
n

co−clustering+pc
co−clustering

(c) News-Different-3

FIGURE 15.6: Performance of pairwise constraints-guided co-clustering on
dataset from the 20-newsgroup collection.

15.5 Conclusion and Future Work

In this chapter, we have introduced two different pairwise constraints-guided
dimensionality reduction techniques, and investigated how they can be used
to improve semi-supervised clustering performance, especially for very high-
dimensional data. The proposed pairwise constraints-guided dimensionality
reduction techniques seem to be a promising new way of leveraging “weak”
supervision to improve the quality of clustering, as demonstrated by the ex-
perimental results on the selected text datasets.

Although the feature projection via pairwise constraints can make certain
achievements, the number of projected features is currently chosen in an ad
hoc way in our experiments. How to find out the “best” number for the
feature projection is an interesting problem for future research.

© 2008 by Taylor & Francis Group, LLC

Pairwise Constraints-Guided Dimensionality Reduction 311

References

[1] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning distance
functions using equivalence relations. In Proc. of the Twentieth Interna-
tional Conference on Machine Learning, 2003.

[2] S. Basu, A. Banerjee, and R. J. Mooney. Semi-supervised clustering
by seeding. In Proc. of Ninteenth International Conference on Machine
Learning, pages 19–26, 2002.

[3] S. Basu, M. Bilenko, and R. Mooney. A probabilistic framework for
semi-supervised clustering. In Proc. of Tenth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pages 59–
68, Seattle, WA, August 2004.

[4] C. Burges. Geometric methods for feature extraction and dimensionality
reduction: a guided tour. Technical Report MSR-TR-2004-55, Microsoft,
2004.

[5] T. Cover and J. Thomas. Elements of Information Theory. Wiley-
Interscience, 1991.

[6] I. Davidson and S. S. Ravi. Clustering with constraints: Feasibility is-
sues and the k-means agorithm. In Proc. of Fifth SIAM International
Conference on Data Mining, Newport Beach, CA, April 2005.

[7] S. Deerwester, S. Dumais, T. Landauer, G. Furnas, and R. Harshman.
Indexing by latent semantic analysis. Journal of the American Society of
Information Science, 41(6):391, 1990.

[8] I. Dhillon, S. Mallela, and D. Modha. Information-theoretic co-clustering.
In Proc. of Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 89–98, August 2003.

[9] I. S. Dhillon, S. Mallela, and R. Kumar. Enhanced word clustering for
hierarchical text classification. In Proc. of Eighth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages
446–455, July 2002.

[10] I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse
text data using clustering. Machine Learning, 42(1):143–175, 2001.

[11] R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley-Inter-
science, 2nd edition, 2000.

[12] K. Fukunaga. Statistical pattern recognition. Academic Press, San Diego,
CA, 2nd edition, 1990.

[13] I. Guyon and A. Elisseeff. An introduction to variable and feature selec-

© 2008 by Taylor & Francis Group, LLC

312 Computational Methods of Feature Selection

tion. Journal of Machine Learning Research, 3:1157–1182, 2003.

[14] K. Lang. News weeder: learning to filter netnews. In Proc. of Twelfth
International Conference on Machine Learning, pages 331–339, 1995.

[15] A. K. McCallum. Bow: A toolkit for statistical language
modeling, text retrieval, classification and clustering, 1996.
http://www.cs.cmu.edu/∼mccallum/bow.

[16] D. J. Newman, S. Hettich, C. L. Blake, and C. J.
Merz. UCI repository of machine learning databases, 1998.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[17] K. Pearson. On lines and planes of closest fit to systems of points in
space. Philosophical magazine, 2(6):559, 1901.

[18] A. Strehl, J. Ghosh, and R. J. Mooney. Impact of similarity measures on
web-page clustering. In AAAI Workshop on AI for Web Search, pages
58–64, July 2000.

[19] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-
means clustering with background knowledge. In Proc. of Eighteenth
International Conference on Machine Learning, pages 577–584, 2001.

[20] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance metric
learning with application to clustering with side-information. In S. T.
S. Becker and K. Obermayer, editors, Proc. of Advances in Neural Infor-
mation Processing Systems 13, pages 505–512, MIT Press, Cambridge,
MA, 2003.

© 2008 by Taylor & Francis Group, LLC

http://www.cs.cmu.edu
http://www.ics.uci.edu

Chapter 16

Aggressive Feature Selection by
Feature Ranking

Masoud Makrehchi

University of Waterloo

Mohamed S. Kamel

University of Waterloo

16.1 Introduction . 313
16.2 Feature Selection by Feature Ranking . 314
16.3 Proposed Approach to Reducing Term Redundancy . 320
16.4 Experimental Results . 326
16.5 Summary . 330

References . 331

16.1 Introduction

Recently, text classification has become one of the fastest growing applica-
tions of machine learning and data mining [15]. There are many applications
that use text classification techniques, such as natural language processing
and information retrieval [9]. All of these applications use text classification
techniques in dealing with natural language documents. Since text classifica-
tion is a supervised learning process, a good many learning methods such as
K-nearest neighbor (KNN), regression models, näıve Bayes classifier (NBC),
decision trees, inductive rule learning, neural networks, and support vector
machines (SVM) can be employed [1].

Most text classification algorithms use vector space model, and bag-of-
words representation, as proposed by Salton [22], to model textual docu-
ments. Some extensions of the vector space model have also been proposed
that utilize the semantic and syntactic relationships between terms [14]. In
the vector space model, every word or group of words (depending on whether
one is working with a single word or a phrase) is called a term, which repre-
sents one dimension of the feature space. A positive number, reflecting the
relevancy and significance, is assigned to each term. This number can be the
frequency of the term in the document [19].

The major problem of text classification with vector space modeling is its

313

© 2008 by Taylor & Francis Group, LLC

314 Computational Methods of Feature Selection

high dimensionality. A high-dimensional feature space addresses a very large
vocabulary that consists of all terms occurring at least once in the collection of
documents. High-dimensional feature space has a destructive influence on the
performance of most text classifiers. Additionally, it increases the complexity
of the system. To deal with high dimensionality and avoid its consequences,
dimensionality reduction is strongly advised [12, 21].

One well-known approach for excluding a large number of irrelevant fea-
tures is feature ranking [12, 6]. In this method, each feature is scored by a
feature quality measure such as information gain, χ2, or odds ratio. All fea-
tures are sorted based on their scores. For feature selection, a small number
of best features are kept and the rest are removed. This method has a serious
disadvantage, however, in that it ignores the redundancies among terms. This
is because the ranking measures consider the terms individually. An experi-
ment, detailed in the next section, shows that the impact of term redundancy
is as destructive as noise.

Due to the high dimensionality of text classification problems, computa-
tional efficiency and complexity reduction are very important issues. One
strategy in dimensionality reduction is aggressive feature selection, in which
the classification task is performed by very few features with minimum loss of
performance and maximum reduction of complexity. In aggressive feature se-
lection, more than 90% of non-discriminant, irrelevant, and non-informative
features are removed. In [12], the number of selected features is as low as
3% of features. More aggressive feature selection, including only 1% of all
features, has also been reported in [6].

In this chapter, a new approach for feature selection is proposed, with a
more than 98% reduction in features. The method is based on a multi-stage
feature selection including: (i) pre-processing tasks to remove stopwords, in-
frequent words, noise, and errors; (ii) a feature ranking, such as information
gain, to identify the most informative terms; and (iii) removing redundant
terms among those that have been already selected by the feature ranking
measure.

This chapter consists of five sections. After the introduction, feature selec-
tion by feature ranking is briefly reviewed in Section 16.2. In Section 16.3, the
proposed approach to reducing redundancy is detailed. Experimental results
and the summary are presented in Sections 16.4 and 16.5, respectively.

16.2 Feature Selection by Feature Ranking

A class of filter approach of feature selection algorithms is feature ranking
methods. Feature ranking aims to retain a certain number of features, spec-
ified by ranking threshold, with scores determined according to a measure

© 2008 by Taylor & Francis Group, LLC

Aggressive Feature Selection by Feature Ranking 315

of term relevance, discriminating capability, information content, or quality
index. Simply defined, feature ranking is sorting the features according to
a “feature quality index,” which reflects the relevance, information, and dis-
criminating power of the feature.

Feature ranking requires a decision about the following three factors:

• The Feature Ranking Scope: The process of feature ranking is either
local or global. In the local case, feature ranking is performed for each
class individually, which implies employing a local vocabulary. In global
feature ranking, we are dealing with one unified vocabulary associated
with the training dataset.

• The Type of Feature Ranking Measure: Selecting a ranking mea-
sure must be performed by considering the classification model and the
characteristics of the dataset. There is a link between feature rank-
ing measures and classifiers. It means some classifiers work better with
a particular set of feature ranking measures. For example, the NBC
classifier works better with odds ratio, one of the feature ranking meth-
ods, such that features with a higher ranking in odds ratio are more
influential in NBC [2, 11]. It can be also shown that the performance
of feature ranking methods vary from one dataset to the other. For
instance, in [11], it has been shown that odds ratio feature ranking per-
forms more successfully with moderately sparse datasets, for example,
10 to 20 terms per document vector, while the classifiers are NBC or
SVM. Due to this correlation, one challenging problem is selecting the
appropriate ranking method for a particular dataset.

• Feature Ranking Threshold: One crucial problem in feature ranking
is to determine the appropriate threshold at which to filter out noise and
stopwords. This threshold represents the number of desired features and
reflects the complexity of the classifier. The ranking threshold can be
applied either to the value of the scoring metrics or to the number of
features.

Feature ranking methods, despite their scalability and lower cost algo-
rithms, suffer from lower performance as compared to the search-based feature
selection such as wrappers. The low performance of feature ranking techniques
arises from two major issues: (i) ignoring the correlation between terms and
implementing an univariate scheme while the nature of text classification prob-
lems is multivariate; and (ii) failing in rejecting redundant terms. These two
issues are investigated, but the focus in this chapter will be on improving
the feature ranking performance by extracting and removing the redundant
terms.

© 2008 by Taylor & Francis Group, LLC

316 Computational Methods of Feature Selection

16.2.1 Multivariate Characteristic of Text Classifiers

As a major disadvantage, feature ranking methods ignore the correlation
and dependency between terms because of their univariate function nature.
Feature selection based on ranking is a univariate approach, in which only
one feature is considered to be retained or removed. In other words, fea-
ture ranking measures such as information gain simply ignore the dependency
and correlation between terms. The consequences can be low discriminating
capacity and increased redundancy. Neglecting term correlation causes two
problems. Let t1 and t2 be two relevant, and t3 and t4 be two irrelevant terms:

1. Most feature ranking measures rank t1 and t2 higher than t3 and t4,
while in textual data, especially in natural language texts, sometimes
two individually irrelevant terms, such as t3 and t4, are jointly relevant.
A well-known example is the phrase “to be or not to be,” in which all
terms are individually noise but are meaningful as part of a phrase.

2. By any feature ranking, t1 and t2 will be kept, while in textual data
these two terms can be redundant as well as relevant, such as synonym
terms.

In spite of feature ranking, text classifiers behave based on the combination
of features. Adopted from [5], a simple test is provided here to explain the im-
pact of the multivariate characteristic of text classifiers on their performance.
Two scoring metrics including information gain and random feature ranking
(RND) are applied to the “20 newsgroups” dataset. In RND, the rank of
each feature is randomly assigned. In addition to these two ranking meth-
ods, the third ranking measure called single term prediction (STP), which is
defined based on the predicting capacity of every feature, is introduced. Let
h(fi), 1 ≤ i ≤ m be a classifier using the feature set including only feature
fi. Here h is a Rocchio classifier. STP (fi) is defined as the performance (for
example, the accuracy or macro-averaged F-measure) of the h(fi) when it is
applied to the dataset. After estimating STP for all features, the terms are
sorted based on their corresponding STPs.

The classifier performance of the three ranking methods is estimated across
all levels of filtering (ranking threshold) for the dataset. Figure 16.1 depicts
the classifier performance vs. filter levels for 50% of the best features for
the three ranking methods. It shows that STP ranking always performs very
poorly as compared to the other methods, including random ranking. It means
ignoring the correlation and dependency between terms is as destructive as
noise in feature ranking.

16.2.2 Term Redundancy

All terms of the vocabulary with respect to their contribution to the cate-
gorization and retrieval processes can be grouped into four classes: (i) non-
redundant and relevant; (ii) non-redundant and irrelevant; (iii) redundant

© 2008 by Taylor & Francis Group, LLC

Aggressive Feature Selection by Feature Ranking 317

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Filter Level

C
la

ss
ifi

er
 P

er
fo

rm
an

ce

Information Gain
Random Ranking
Single Term Prediction

FIGURE 16.1: The impact of ignoring term correlation on classifier performance.

and relevant; and (iv) redundant and irrelevant. In feature selection for text
classifiers, we are only interested in the first group, which is non-redundant
and relevant terms. Measuring the relevancy of the terms, by employing
strong feature ranking methods, such as information gain, is quite feasible.
The difficulty is to extract term redundancies.

Redundancy is a kind of data dependency and correlation that can be esti-
mated by different measures, such as the Jaccard, cosine, co-occurrence, and
correlation coefficients [4, 20, 16]. In this chapter, redundancy between two
terms is measured by mutual information. If two terms have similar proba-
bility distributions on class labels, one of the terms might be considered as a
redundant term such that removing it does not hurt the classifier performance.
The problem is to find the possible redundancies and identify the redundant
terms to be removed.

In this section, the result of an experiment illustrating the influence of
redundancy on the classifier performance is presented. Two different text
classifiers are employed: a Rocchio classifier, which is a weak classifier and
sensitive to noise, and an SVM classifier with a linear kernel, as an optimum
classifier that is commonly used as a text classifier. The data collection is
the well-known 20-Newsgroups (20NG) dataset. Macro-averaged F-measure
is employed to evaluate the classifiers.

We show that adding redundancy, in the case of a very low number of
features, can degrade the accuracy. The testing process is as follows: Let T
be the set of N terms of the vocabulary, T = {t1, t2, . . . , tN}. The terms are
ranked by a feature ranking method, for instance, information gain, such that
t1 is the best term and tN the worst. A smaller set V , called the set of selected
features, is a subset of T with n terms such that V = {v1, v2, . . . , vn}, V ⊂
T, n	 N . Three different versions of V are generated by the following setups:

© 2008 by Taylor & Francis Group, LLC

318 Computational Methods of Feature Selection

• n best terms: The n first terms of the set T are selected such that
vi = ti, 1 ≤ i ≤ n.

• n/2 best terms + n/2 redundant terms: The vector V has two parts.
For the first part, n/2 best terms of T are selected. The n/2 terms of
the second part are artificially generated by adding a very small amount
of noise to each term of the first part. The result is a set of redundant
terms. Using this setup, the rate of redundancy is at least 50%.

• n/2 best terms + n/2 noise: It is the same as the previous setup, except
that the second part consists of noise and stopwords. Due to the use of
feature ranking measures, n/2 last (worst) terms should be noisy and
less informative. Therefore, we do not have to generate artificial noise.

T = {
P1︷ ︸︸ ︷

t1, t2, . . . , tn/2, . . . ,

P2︷ ︸︸ ︷
tN+1−n/2, . . . , tN−1, tN}, V = P1 ∪ P2 (16.1)

where P1 is the set of the most informative terms and P2 includes noise.

We use five-fold cross validation for estimating the performance of classi-
fiers. In this process, the collection (whole dataset) is divided into five subsets.
The experiment is repeated five times. Each time we train the classifier with
four subsets and leave the fifth one for the test phase. The average of the
five measures is the estimated classifier performance, which is the macro-
average F-measure. Since the main objective is to select a very small number
of features, all three feature vectors with different and very small values for
n, n = {5, 10, . . . , 40}, are submitted to the SVM and Rocchio classifiers and
the average of the performance of eight classifications is calculated. Figure
16.2 illustrates the results. It clearly shows that redundancy and noise reduce
accuracy. Comparing the performance of the two last feature vectors, includ-
ing redundant and noisy terms, they have a similar impact on both classifiers.
Precisely speaking, Table 16.1 shows that Rocchio, as the weaker classifier
with less generalization capability in comparison with SVM, is more sensitive
to redundancy. This fact is clearly seen in Figure 16.2(a) and 16.2(b). In
the figures, relative performance measures vs. the number of features have
been depicted. Let F be the performance measure of a classifier, for exam-
ple, accuracy, using the original feature vector (100% best features) with no
added extra noise or redundancy; Fr the measure using artificially added re-
dundancy; and Fn the same measure using added noise. The relative measure
is calculated using Fr/F and Fn/F . Figure 16.2(b) shows that Rocchio’s de-
viation from the original performance by adding redundancy is worse than
the case of adding noise to the original feature vector.

In a small feature vector, the risk of having redundant terms is quite high.
For example, in a five-term feature vector, if there is only one redundant term,
we are actually using four terms instead of five because one of the terms is
useless. By removing the redundant term, we make room for other terms (or

© 2008 by Taylor & Francis Group, LLC

Aggressive Feature Selection by Feature Ranking 319

any next non-redundant term), which can improve the discriminating power
of the feature vector.

5 10 15 20 25 30 35 40
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Number of Features

R
el

at
iv

e
M

ac
ro

−
av

er
ag

e

(a)

5 10 15 20 25 30 35 40
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of Features

R
el

at
iv

e
M

ac
ro

−
av

er
ag

e

(b)

FIGURE 16.2: The effect of noise and redundancy on classifier performance. The
solid lines represent added redundant terms, while the dashed lines represent added
noise terms. (a) SVM, and (b) Rocchio classifier.

In conclusion, redundant terms not only have no discriminating benefits
for the classifier, but also reduce the chance that other less informative but
non-redundant terms can contribute to the classification process.

© 2008 by Taylor & Francis Group, LLC

320 Computational Methods of Feature Selection

TABLE 16.1: The impact of redundancy and noise on the
accuracy of the SVM and Rocchio text classifiers with feature
selection using information gain ranking.

feature vector scheme SVM Classifier Rocchio Classifier
100% best terms (original) 0.6190 0.5946
50% redundancy 0.4067 0.3642
50% noise 0.4040 0.4289

16.3 Proposed Approach to Reducing Term Redundancy

In this chapter, a technique is proposed for feature selection with a high
rate of reduction, by which the number of selected features V is much less
than those in the original vocabulary T . We propose a three-stage feature se-
lection strategy including pre-processing tasks, feature ranking, and removing
redundant terms.

16.3.1 Stemming, Stopwords, and Low-DF Terms Elimina-
tion

In most information retrieval and text classification problems, stopwords
are removed and whole terms reduced to their root by a stemming algorithm
such as a Porter stemmer. Unlike stopword removal, which removes only a
few hundred terms from the vocabulary, stemming can reduce by up to 40%
the vocabulary size [7].

In most text classification researches, low document frequency terms (low-
DF terms) are also removed from the vocabulary. Low-DF terms include very
rare terms or phrases, spelling errors, and those having no significant contri-
bution to classification. Although these words from an information retrieval
point of view may play a critical role for indexing and retrieval, in the classifi-
cation process, they have no information content and can be treated as noise.
Another reason can be explained as follows: Since a class of feature ranking
methods, in particular χ2, behave unreliably and are not robust in the case of
low frequent features, eliminating low-DF terms can prevent this drawback.

Although major low-DF terms are considered as noise, misspellings, or non-
informative terms, in the case of difficult classes having less sparse vocabulary,
or classes with very few samples, they may have a more discriminating role. In
conclusion, in eliminating low-DF terms, one should be aware of class difficulty
and class imbalance.

16.3.2 Feature Ranking

In the second stage, a feature ranking measure is employed to select the
most informative and relevant terms. Adopted from [21], information gain is

© 2008 by Taylor & Francis Group, LLC

Aggressive Feature Selection by Feature Ranking 321

one of the most effective ranking measures and calculated as follows:

IG(tj) = −
C∑

k=1

P (ck). log P (ck) +

P (tj)
C∑

k=1

P (ck|tj). log P (ck|tj) + (16.2)

P (t̄j)
C∑

k=1

P (ck|t̄j). log P (ck|t̄j)

where P (ck) is the probability of a document belonging to the class ck, P (tj)
is the probability of a document containing the term tj , and P (ck|tj) is the
conditional probability of ck given term tj . The number of classes is denoted
by C. In practice, information gain is estimated as follows:

IG(tj) = −
C∑

k=1

n(ck)
n

log
n(ck)

n
+

n(tj)
n

C∑

k=1

n(tj ; ck)
n(tj)

log
n(tj ; ck)

n(tj)
+(16.3)

(1− n(tj)
n

)
C∑

k=1

n(ck)− n(tj ; ck)
n− n(tj)

log
n(ck)− n(tj ; ck)

n− n(tj)

where n is the total number of documents in the training data, n(ck) depicts
the number of documents in the kth class, and n(ti) is the number of docu-
ments, which contain term ti. The number of documents, which belongs to
the kth class and includes the term ti, is expressed by n(ti; ck).

Using the entropy of tj , information gain can be normalized as follows:

NIG(tj) =
IG(tj)

−n(tj)
n log n(tj)

n

(16.4)

Information gain is one of the most efficient measures of feature ranking in
classification problems [6]. Yang and Pedersen [21] have shown that with
various classifiers and different initial corpora, sophisticated techniques such
as information gain or χ2 can reduce the dimensionality of the vocabulary by
a factor of 100 with no loss (or even with a small increase) of effectiveness. In
our application, the original vocabulary after pre-processing, including 28, 983
terms, is ranked by information gain. Next, the best 10% of terms are chosen
for this stage. Similar to other ranking methods, information gain has serious
drawbacks such as ignoring the redundancy among higher ranked features.

© 2008 by Taylor & Francis Group, LLC

322 Computational Methods of Feature Selection

16.3.3 Redundancy Reduction

It has been previously explained that by employing a small number of fea-
tures, any term redundancy can influence the classifier performance. It has
also been reported that redundancy reduction can improve the performance
of feature selection algorithms [12]. In the third stage, by reducing term
redundancies, about 80% to 95% of ranked features are removed.

The problem of redundancy reduction is to find an efficient redundancy
extraction algorithm in terms of low computational complexities. The major
difficulty in redundancy extraction, in addition to choosing proper correlation
measure, is calculating pairwise correlation between features. This last calcu-
lation can be expensive. Although few simplified term redundancy reductions
such as the μ-occurrence measure proposed by [16] have been reported, they
propose special cases such as binary class problems or assessing only pairwise
term redundancy without considering the class labels of the terms, which can
increase the complexity of the problem.

The proposed approach has two core elements, mutual information and
inclusion index. These are detailed in the following subsections:

16.3.3.1 Mutual Information

Mutual information is a measure of statistical information shared between
two probability distributions. Based on the definition in [10], mutual informa-
tion I(x; y) is computed by the relative entropy of a joint probability distribu-
tion, such as P (x, y) and the product of the marginal probability distributions
P (x) and P (y):

I(x; y) = D(P (x, y)||P (x)P (y)) =
∑

x

∑

y

P (x, y)log
P (x, y)

P (x)P (y)
(16.5)

which is called the Kullback-Leibler divergence. Mutual information, such
as other information theoretic measures, widely used in language modeling,
has been applied in text mining and information retrieval for applications
such as word association [3] and feature selection [18]. Mutual information
is viewed as the entropy of co-occurrence of two terms when observing a
class. We practically compute mutual information between two other mutual
information measures. Each measure represents shared information between
a term such as ti and a class such as ck. Since we are interested in the
distribution of a pair of terms given a specific class, the joint distribution
is considered as the probability of occurrence of the two terms ti and tj in
those documents belonging to the class ck. Equation 16.5 can be rewritten as
follows:

I(ti; ck) = P (ti, ck)log
P (ti, ck)

P (ti)P (ck)
(16.6)

© 2008 by Taylor & Francis Group, LLC

Aggressive Feature Selection by Feature Ranking 323

where I(ti; ck) is the mutual information of the distribution of term ti and
class ck. Equation 16.6 might be written for term tj in exactly the same
way. In other words, I(ti; ck) is the entropy of P (ti, ck), which is the joint
probability distribution of the term ti and the class ck. The total mutual
information (ϕ) of the distribution of two terms when observing the class ck

is calculated as follows:

ϕ {I(ti; ck); I(tj ; ck)} = ϕ(ti ∩ ck, tj ∩ ck) (16.7)

ϕ(ti ∩ ck, tj ∩ ck) = P (ti ∩ ck, tj ∩ ck)log
P (ti ∩ ck, tj ∩ ck)

P (ti ∩ ck).P (tj ∩ ck)
(16.8)

ϕ {I(ti; ck); I(tj ; ck)} is a pointwise mutual information. The total mutual
information of two terms when observing whole class information is the av-
erage of the mutual information over ck, 1 ≤ k ≤ C. This measure is simply
represented by the summarized form ϕ(ti; tj):

ϕ(ti; tj) =
C∑

k=1

ϕ(ti ∩ ck, tj ∩ ck) (16.9)

Although the Venn diagram is widely used to illustrate information theo-
retic concepts, Mackay [10] showed that it is sometimes misleading, especially
in the case of three or more joint probability ensembles such as (ti, tj , ck).
Adopted from [10], Figure 16.3 depicts the concept of ϕ more precisely. Since
ϕ has no upper bound, normalized mutual information Φ, which has an upper
bound and is a good measure to compare two pieces of shared information, is
proposed as follows [17]:

Φ(ti; tj) =
ϕ(ti; tj)√

I(ti; c).I(tj ; c)
, 0 ≤ Φ(t1; t2) ≤ 1 (16.10)

From [17], ϕ and I(ti; c) can be estimated by

I(ti; c) =
C∑

k=1

n(ti; ck)
n

log
n(ti;ck)

n
n(ti)

n .n(ck)
n

=
1
n

C∑

k=1

n(ti; ck)log
n.n(ti; ck)
n(ti).n(ck)

(16.11)

ϕ(ti; tj) =
C∑

k=1

n(ti, tj; ck)
n

log
n(ti,tj ;ck)

n
n(ti,tj)

n .n(ck)
n

=
1
n

C∑

k=1

n(ti, tj ; ck)log
n.n(ti, tj ; ck)
n(ti, tj).n(ck)

(16.12)
where n(ti, tj) is the number of documents that contain both terms ti and tj .
The number of documents that belong to the kth class and include ti and tj

© 2008 by Taylor & Francis Group, LLC

324 Computational Methods of Feature Selection

H(t1)

H(t1,t2)

H(c)

H(t2)

H(t1|c)

H(t2|c)

H(c|t1)

H(t1,c)

I(t1;c)

H(t2,c)

I(t2;c) H(c|t2)

H(t2|t1) H(t1|t2)I(t1;t2)

(t1;t2)

FIGURE 16.3: ϕ(t1; t2) is the mutual information between two other mutual
information measures I(t1; c) and I(t2; c).

is expressed by n(ti, tj ; ck). Equation 16.10 is estimated as follows:

Φ(ti; tj) =

∑C
k=1 n(ti, tj; ck)log n.n(ti,tj ;ck)

n(ti,tj).n(ck)√∑C
k=1 n(ti; ck) log n.n(ti;ck)

n(ti).n(ck) .
∑C

k=1 n(tj ; ck) log n.n(tj ;ck)
n(tj).n(ck)

(16.13)

If the two terms are completely identical and correlated when observing
a class, then Φ = 1, and Φ = 0 if the two terms are completely uncor-
related. It should be noted that, although pointwise mutual information
ϕ {I(ti; ck); I(tj ; ck)} can be negative [10], the average mutual information
ϕ(ti; tj) is always positive and its normalized version is less than or equal to
one.

The Φ measure is calculated for all possible pairs of terms in the vocabu-
lary. The result is a matrix such as Φ ∈ RM×M, where M is the size of the
vocabulary or the number of terms. We know that Φ is a symmetric measure
and Φ(ti; ti) = 1. Then, to construct the matrix Φ, we need to calculate
M(M−1)

2 mutual information values. One approach to reduce this number is
to calculate the matrix Φ for a very small subset of the most relevant terms
V of the vocabulary T . This means that, instead of the full Φ matrix, a sub-
matrix of Φ is provided. In other words, we need to calculate Φ measures for
the most likely correlated terms. Let us suppose that there are ns groups of
correlated terms in the vocabulary. The problem is identifying these groups
and calculating Φ for each of them. We propose an inclusion matrix for this
purpose.

© 2008 by Taylor & Francis Group, LLC

Aggressive Feature Selection by Feature Ranking 325

t1

t2

(a)

t1
t2

(b)

t1 t2

(c)

FIGURE 16.4: Inclusion relations between terms t1 and t2: (a) t1 includes t2, (b)
t1 partially includes t2, (c) no inclusion relation between t1 and t2.

16.3.3.2 Inclusion Index

Let D = {d1, d2, . . . , dn} be the collection of documents. Every document
is represented by a vector of words, called the document vector. For example,

di = {wi,1.t1, wi,2.t2, . . . , wi,M .tM} (16.14)

where wi,j is the weight of the jth term in the ith document. Here we use
binary weighting, which reflects if the term is in the document or not. As a
consequence, D can be represented by an n ×M matrix in which every row
(di) shows a document and every column (tj) represents the occurrence of
the term in every document. Based on this notation, inclusion, which is a
term-term relation, is defined [13]. The inclusion index Inc(ti, tj), measuring
how much ti includes tj , is calculated by:

Inc(ti, tj) =
||ti ∩ tj ||
||tj ||

=
n(ti, tj)
n(tj)

, Inc(ti, tj) �= Inc(tj , ti) (16.15)

where ||.|| is the cardinal number of the set. Inc(ti, tj) = 1 when ti is
completely covering tj and is full inclusive. Inc(ti, tj) = 0 means there
is no overlap between the two terms. There is also partial inclusion when
0 < Inc(ti, tj) < 1. tj is called more inclusive than ti if Inc(ti, tj) < Inc(tj , ti)
(see Figure 16.4). The inclusion matrix Inc is an M ×M matrix in which
each entry is an inclusion index between two terms.

16.3.4 Redundancy Removal Algorithm

The main idea in identifying redundant terms is finding the sets of correlated
terms. For example, {“rec”, “hockei”, “motorcycl”, “bike”, “nhl”, “playoff”}
shows one of these sets including six correlated terms. The sets are extracted
using the inclusion matrix Inc.

Let Sq be the qth set of correlated terms. Instead of calculating the full
matrix of Φ, it is only obtained for the terms in Sq. The resulting matrix
is represented by Φq, which is a submatrix of Φ. We do the same for Incq.
Matrix Rq, which is called a redundancy matrix, is calculated by entry-entry

© 2008 by Taylor & Francis Group, LLC

326 Computational Methods of Feature Selection

multiplication of Φq and Incq as follows:

Rq(i, j) = Φq(i, j).Incq(i, j), 1 ≤ i, j ≤ nq (16.16)

where nq is the number of terms in Sq. The ith row of Rq, which is an nq×nq

matrix, shows the ith term (in Sq) with which terms are being covered. In
each row the maximum entry is kept and the others are set to zero. Finally,
every term and its corresponding column in Rq is full zero (all elements are
zero) is assigned as a redundant term because it does not include any other
term. Table 16.2 shows the resulting matrices for a set of correlated terms.

16.3.5 Term Redundancy Tree

A tree representation is also proposed for visualizing the redundant terms.
A term redundancy tree is a directed and incomplete graph in which both
initial and terminal nodes are assigned to terms such as t1 = “hockei” and
t2 = “nhl”. An edge, connecting t1 to t2, states that t1 includes t2 and can
effectively cover most of its occurrences. Figure 16.5 shows four examples.
The direction of each edge depends on the value of Rq(i, j) and Rq(j, i) (see
Table 16.2(d)). If Rq(i, j) < Rq(j, i), then the direction is from the jth to
ith node, otherwise the direction is reversed. Finally, each node that is the
terminal node (and not the initial node for another edge) is assigned as the
redundant term (Figure 16.5).

16.4 Experimental Results

The proposed approach has been applied to the 20-Newsgroups (20NG)
dataset using the SVM (with linear kernel) and Rocchio text classifiers. Re-
cently, SVM has outperformed most classifiers in text categorization [8, 6].
Although there are some reports showing feature selection for an SVM classi-
fier is not only unnecessary but also can reduce its performance [12, 8], in this
chapter we show that for a very small size of feature vector, SVM performance
can be improved by feature selection through redundancy reduction [6].

The proposed approach has been evaluated by comparing its results with
those of stand-alone information gain ranking. A five-fold cross validation is
used for better estimation of classifier performance. Each method has been
applied to the SVM and Rocchio classifiers with eight levels of aggressive
feature selections. The detailed results of both classifiers for eight different
lengths of feature vector are presented in Figure 16.6(a) and 16.6(b).

The results show that in both classifiers, the proposed method outperforms
the stand-alone information gain ranking. From the findings, the following
conclusions can be made:

© 2008 by Taylor & Francis Group, LLC

Aggressive Feature Selection by Feature Ranking 327

TABLE 16.2: An example of the process of extracting redundant
terms: (a) Normalized mutual information matrix Φq for qth set of
correlated terms, (b) inclusion sub-matrix Incq for qth set of correlated
terms, (c) multiplication of the two matrices (Φq and Incq), (d) term
redundancy matrix Rq for qth set of correlated terms. Based on Rq, all
terms whose corresponding columns are entirely zero are redundant and
should be removed.

a
rec hockei motorcycl bike nhl playoff

rec 1 0.4448 0.4415 0.2866 0.2078 0.2059
hockei 0.4448 1 0 0 0.4555 0.4300
motorcycl 0.4415 0 1 0.5886 0 0
bike 0.2866 0 0.5886 1 0 0
nhl 0.2078 0.4555 0 0 1 0.1754
playoff 0.2059 0.4300 0 0 0.1754 1

b
rec hockei motorcycl bike nhl playoff

rec 1 0.2221 0.2255 0.1162 0.0669 0.0680
hockei 0.9951 1 0 0 0.2998 0.2883
motorcycl 0.9903 0 1 0.4911 0 0
bike 0.9906 0 0.9530 1 0 0
nhl 0.9945 0.9945 0 0 1 0.2623
playoff 1 0.9459 0 0 0.2595 1

c
rec hockei motorcycl bike nhl playoff

rec 0 0.0988 0.0995 0.0333 0.0139 0.0140
hockei 0.4426 0 0 0 0.1366 0.1240
motorcycl 0.4372 0 0 0.2891 0 0
bike 0.2839 0 0.5609 0 0 0
nhl 0.2067 0.4530 0 0 0 0.0460
playoff 0.2059 0.4067 0 0 0.0455 0

d
rec hockei motorcycl bike nhl playoff

rec 0 0 0.0995 0 0 0
hockei 0.4426 0 0 0 0 0
motorcycl 0.4372 0 0 0 0 0
bike 0 0 0.5609 0 0 0
nhl 0 0.4530 0 0 0 0
playoff 0 0.4067 0 0 0 0

© 2008 by Taylor & Francis Group, LLC

328 Computational Methods of Feature Selection

(a) (b)

(c) (d)

FIGURE 16.5: Four examples of term redundancy tree. The terminal nodes
are representing the redundant terms: (a)“bike”, “nhl”, and “playoff”; (b) “es-
crow”, “crypto”, “encrypt”, and “sci”; (c) “religion”, and “atho”; (d) “armenia”,
and “atho” are redundant.

• Let ns be the number of selected features in an aggressive approach
before removing redundancies. In both classifiers, with high and low
values of ns (less than 10 and more than 30), information gain performs
better than the proposed method. The main reason can be understood
intuitively as follows: Referring to Figure 16.7, illustrating the sorted
information gain for the first 100 best terms, when ns is less than 10,
term redundancy reduction is being held in the sharp slope region of the
curve (between points “A” and “B”). It means with removing a redun-
dant term from the feature vector, most likely a much less informative
term will be substituted, but in the case of working in a smooth region
of the curve (between points “B” and “C”), the proposed method may
outperform information gain. It is referring to the cost of redundancy
reduction, which might be high if the set of features to be substituted is
unexpectedly poor in information content and less discriminant in com-
parison with the redundant term to be removed. These results confirm
the findings in [6].

© 2008 by Taylor & Francis Group, LLC

Aggressive Feature Selection by Feature Ranking 329

5 10 15 20 25 30 35 40
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Features

M
ac

ro
−

av
er

ag
e

(a)

5 10 15 20 25 30 35 40
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Features

M
ac

ro
−

av
er

ag
e

(b)

FIGURE 16.6: Text classifier performance vs. the number of features for two
aggressive feature selection methods. Solid lines represent the proposed method
and dashed lines represent information gain feature ranking: (a) SVM, and (b)
Rocchio classifier.

• The SVM classifier result, according to Table 16.3, shows better over-
all performance than that of Rocchio. The fact is, although an SVM
classifier rarely needs feature selection, and by employing the complete
feature vector in the classifier we usually achieve good results, it can
perform more efficiently if redundancy is reduced. Informally, let V1

and V2 be two feature vectors including the best features according to
the information gain ranking. Unlike V1, which includes some redun-
dant terms, there is no redundancy in V2. If the removed redundant
term is from the smoothly sloped region of the sorted information gain

© 2008 by Taylor & Francis Group, LLC

330 Computational Methods of Feature Selection

TABLE 16.3: Comparing the results of two aggressive feature selections
using information gain ranking and the proposed method on SVM and Rocchio
text classifiers.

Feature Selection SVM Classifier Rocchio Classifier
information gain 0.6190 0.5946
Information gain + redundancy reduction 0.6868 0.6298

curve (Figure 16.7), most likely the SVM classifier performance with V2

will be superior to that of the V1 feature vector. Otherwise, redundancy
reduction can be risky.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Terms sorted by information gain

In
fo

rm
at

io
n

ga
in

B

A

C

E

D

FIGURE 16.7: Sorted information gain for first 100 best terms. Redundancy
reduction may hurt the performance if the redundant terms are located in the sharp
slope of the curve (such as “A” to “B” and “C” to “D”). On the other hand, it can
improve the performance in regions whose slope is smooth (such as “B” to “C” and
“D” to “E”).

16.5 Summary

Aggressive feature selection with higher than 95% feature reduction was
discussed. The proposed approach is applicable to text classifiers while hav-
ing a large vocabulary. Since the length of the feature vector in this strategy
is quite short, the text classifiers, working with very small feature vectors,
are very sensitive to noise, outliers, and redundancies. Because of these re-
strictions, improving any classical feature selection method such as feature
ranking for aggressive reduction is strongly necessary.

Term redundancies in text classifiers cause a serious complication in most
feature rankings, such as information gain, because they always ignore cor-

© 2008 by Taylor & Francis Group, LLC

Aggressive Feature Selection by Feature Ranking 331

relation between terms. The results of an experiment in the chapter showed
that the effect of term redundancies can be worse than noise. To deal with
redundancy, a method for improving aggressive feature selection by informa-
tion gain ranking for text classifiers was proposed. The method was based on
identifying and removing term redundancy using a mutual information mea-
sure and inclusion index. Terms were grouped in a few sets of correlated terms
using an inclusion matrix. In the next step, each set was modeled by the term
redundancy matrix. Using this matrix, term redundancies were recognized.
In addition to the matrix representation, term redundancies were visualized
by a graph called a term redundancy tree.

Aggressive feature selection approaches by stand-alone information gain
ranking and the proposed method (removing the redundant terms from the
ranked feature vector by information gain) were compared in SVM and Roc-
chio text classifier frameworks. Results showed that the proposed approach
outperformed the aggressive feature selection by the stand-alone information
gain. The proposed method improved information gain results 9.5% in macro-
average F-measure. Better results are expected for other feature ranking
methods such as χ2 and odds ratio, since information gain is obviously more
effective than other feature ranking methods and it has already been outper-
formed by the proposed method.

References

[1] M. W. Berry. Survey of Text Mining: Clustering, Classification, and
Retrieval. Springer, New York, 2004.

[2] J. Brank, M. Groblenik, N. Milic-Frayling, and D. Mladenic. Interac-
tion of feature selection methods and linear classification models. In
ICML-2002 Workshop on Text Learning of International Conference on
Machine Learning, Sydney, Australia, 2002.

[3] K. W. Church and P. Hanks. Word association norms, mutual informa-
tion, and lexicography. Comput. Linguist., 16(1):22–29, 1990.

[4] I. Dagan, L. Lee, and F. C. N. Pereira. Similarity-based models of word
cooccurrence probabilities. Machine Learning, 34(1-3):43–69, 1999.

[5] E. R. Dougherty. Feature-selection overfitting with small-sample classifier
design. IEEE Intelligent Systems, 20(6):64–66, 2005.

[6] E. Gabrilovich and S. Markovitch. Text categorization with many redun-
dant features: Using aggressive feature selection to make SVMs competi-
tive with C4.5. In Proceedings of the Twenty-First International Confer-
ence on Machine learning, pages 321–328, Banff, Alberta, Canada, 2004.

© 2008 by Taylor & Francis Group, LLC

332 Computational Methods of Feature Selection

Morgan Kaufmann.

[7] S. Haynes. Stemming and stopwording effects on word frequency. In Pro-
ceedings of the Thirteenth Midwest Artificial Intelligence and Cognitive
Science Conference: MAICS 2002, S. Conlon, ed., Chicago, IL, pages
71–75, 2002.

[8] T. Joachims. Text categorization with support vector machines: learn-
ing with many relevant features. In C. Nédellec and C. Rouveirol, ed-
itors, Proceedings of ECML-98, 10th European Conference on Machine
Learning, number 1398, pages 137–142, Chemnitz, DE, Springer-Verlag,
Heidelberg, 1998.

[9] W. Lam, M. E. Ruiz, and P. Srinivasan. Automatic text categorization
and its applications to text retrieval. IEEE Transactions on Knowledge
and Data Engineering, 11(6):865–879, 1999.

[10] D. Mackay. Information Theory, Inference and Learning Algorithms.
Cambridge University Press, New York, 2003.

[11] D. Mladenic, J. Brank, M. Grobelnik, and N. Milic-Frayling. Feature se-
lection using linear classifier weights: interaction with classification mod-
els. In Proceedings of the 27th Annual International Conference on Re-
search and Development in Information Retrieval, pages 234–241, 2004.

[12] M. Rogati and Y. Yang. High-performing feature selection for text clas-
sification. In Proceedings of the 11th International Conference on Infor-
mation and Knowledge Management, pages 659–661, 2002.

[13] G. Salton. Recent trends in automatic information retrieval. In SIGIR
’86: Proceedings of the 9th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 1–10, 1986.

[14] S. Scott and S. Matwin. Feature engineering for text classification. In
Proceedings of the 16th International Conference on Machine Learning,
pages 379–388. Morgan Kaufmann, 1999.

[15] F. Sebastiani. Machine learning in automated text categorization. ACM
Computing Surveys, 34(1):1–47, 2002.

[16] P. Soucy and G. W. Mineau. A simple feature selection method for
text classification. In B. Nebel, editor, Proceeding of IJCAI-01, 17th
International Joint Conference on Artificial Intelligence, pages 897–902,
Seattle, US, 2001.

[17] A. Strehl and J. Ghosh. Cluster ensembles – a knowledge reuse framework
for combining partitionings. In Proceedings of AAAI 2002, Edmonton,
Canada, pages 93–98. AAAI, July 2002.

[18] G. Wang and F. H. Lochovsky. Feature selection with conditional mutual

© 2008 by Taylor & Francis Group, LLC

Aggressive Feature Selection by Feature Ranking 333

information maximin in text categorization. In CIKM ’04: Proceedings
of the Thirteenth ACM conference on Information and Knowledge Man-
agement, pages 342–349, 2004.

[19] S. K. M. Wong and V. V. Raghavan. Vector space model of information
retrieval: a reevaluation. In Proceedings of the 7th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 167–185, 1984.

[20] J. Xu and W. B. Croft. Corpus-based stemming using cooccurrence of
word variants. ACM Trans. Inf. Syst., 16(1):61–81, 1998.

[21] Y. Yang and J. O. Pedersen. A comparative study on feature selection
in text categorization. In D. H. Fisher, editor, Proceedings of ICML-
97, 14th International Conference on Machine Learning, pages 412–420,
Nashville, TN, Morgan Kaufmann, San Francisco, 1997.

[22] C. T. Yu, K. Lam, and G. Salton. Term weighting in information retrieval
using the term precision model. J. ACM, 29(1):152–170, 1982.

© 2008 by Taylor & Francis Group, LLC

Part V

Feature Selection in
Bioinformatics

335

© 2008 by Taylor & Francis Group, LLC

Chapter 17

Feature Selection for Genomic Data
Analysis

Lei Yu

Binghamton University

17.1 Introduction . 337
17.2 Redundancy-Based Feature Selection . 340
17.3 Empirical Study . 347
17.4 Summary . 351

References . 352

17.1 Introduction

The rapid advances of gene expression microarray technology have provided
scientists, for the first time, the opportunity of observing complex relation-
ships between various genes in a genome by simultaneously measuring the
expression levels of the tens of thousands of genes in massive experiments.
Analysis of large-scale genomic data in order to extract biologically mean-
ingful insights presents unprecedented opportunities and challenges for data
mining in areas such as gene clustering [3], sample class discovery, and classifi-
cation [4]. In this chapter, we first introduce the challenges of microarray data
analysis and some traditional solutions of feature selection, and then present a
redundancy-based feature selection solution and demonstrate its effectiveness
and efficiency on some benchmark microarray datasets.

17.1.1 Microarray Data and Challenges

The description of microarray technologies is beyond the scope of this chap-
ter. In a nutshell, gene expression microarrays are silicon chips that simultane-
ously measure the mRNA expression levels of tens of thousands of genes. The
expression levels of the same sets of genes under study are normally measured
from different samples or under different conditions, and eventually recorded
in a data matrix. In a typical microarray data matrix as shown in Table 17.1,
each column represents a gene and each row represents a sample (or a con-
dition). Each value fij is the measurement of the expression level of the jth

337

© 2008 by Taylor & Francis Group, LLC

338 Computational Methods of Feature Selection

gene for the ith sample, where i = 1, ..., M and j = 1, ..., N . In a classification
task, a microarray dataset is provided as a training set of samples with class
labels cM . The task is to build a classifier that accurately predicts the classes
(diseases or phenotypes) of unlabeled samples.

TABLE 17.1: A typical gene expression matrix.
Gene 1 Gene 2 . . . Gene N Class

Sample 1 f11 f12 . . . f1N c1

Sample 2 f21 f22 . . . f2N c2

.

.

.
Sample M fM1 fM2 . . . fMN cM

A typical microarray dataset has the following three characteristics: (1)
high dimensionality due to tens of thousands of genes; (2) severely limited
amount of samples - usually in tens or at most a couple of hundreds due to the
expense of obtaining microarray samples; and (3) abundance of redundancy
among genes - if the change of expression of one gene is correlated to the
change of the phenotypes, a great many of other genes can be co-regulated in
the same or opposite way. Such data characteristics pose severe challenges to
classification tasks. Computational learning theory suggests that the search
space is exponentially large in terms of N and the required number of samples
for reliable learning about given phenotypes is on the scale of O(2N) [13].
However, even the minimum requirement (M = 10 ∗N) as a statistical “rule
of thumb” is patently impractical for a microarray dataset [7]. With very
limited samples, a large set of genes leads to too many statistically relevant
hypotheses that are equally valid in interpreting the same dataset. Therefore,
selecting a small number of discriminative genes is essential for successful
classification. From a practical point of view, the selection of a small subset
of discriminative genes often helps identify genes that are relevant to the
cause or consequences of disease or can be used as biomarkers for diagnostic
of diseases, measuring drug toxicology, and efficacy [20]. A compact gene
set is desirable to biologists because of the heavy expenses associated with
follow-up biological or clinical validation of selected genes.

17.1.2 Feature Selection for Microarray Data

Feature selection methods can broadly fall into the wrapper model and
the filter model [9]. The wrapper model uses the predictive accuracy of a
predetermined learning algorithm to determine the goodness of a selected
subset. It is computationally very expensive for data with a large number
of features, and the selected subset is dependent on the learning algorithm

© 2008 by Taylor & Francis Group, LLC

Feature Selection for Genomic Data Analysis 339

used [9]. The filter model separates feature selection from classifier learning
and relies on the general characteristics of the training data to select features.

Traditional methods in gene selection are within the filter model, and of-
ten evaluate genes in isolation without considering the gene-to-gene correla-
tion. They rank genes according to their individual relevance or discriminative
power to the target class and select top-ranked genes. Some methods based on
statistical tests or information gain have been used in [4, 12]. These methods
are computationally efficient due to linear time complexity O(N) in terms of
dimensionality N . However, they cannot remove redundant genes. The issue
of redundancy among genes has been studied in recent literature. It is pointed
out in a number of studies [2, 20] that simply combining a highly ranked gene
with another highly ranked gene often does not form a better gene set be-
cause these two genes could be highly correlated. The effect of redundancy
among selected genes is two-fold. On one hand, the selected gene set can have
a less comprehensive representation of the target class than one of the same
size but without redundant genes; on the other hand, in order to include all
representative genes, redundant genes will unnecessarily increase the size of
the selected gene set, which will in turn affect the mining performance on the
small sample. Besides incapability of handling redundant genes, most gene
ranking methods require certain domain knowledge or trial-and-error to de-
termine a threshold for the number of genes to be selected (e.g., a threshold
of the top 50 genes was arbitrarily determined in the work of Golub et al. [4]).

Subset search methods have also been applied to select discriminative genes
while taking into account gene redundancy [2, 19, 20]. In Xiong’s work [20], a
method in the wrapper model was developed that searches through possible
subsets of genes using the classification accuracy as a measure of goodness for a
particular subset. A sequential forward floating search was applied to generate
subsets. Different subsets of genes were selected based on three learning al-
gorithms: linear discriminant analysis, logistic regression, and support vector
machines. Because a classifier has to be built for every subset of genes visited
in the search procedure, these methods are very expensive to run. In [2, 19],
subset search methods within the filter model were proposed that employ cor-
relation measures to evaluate the relevance and redundancy of various gene
sets of the same size during the search. In order to determine a threshold for
the size of the finally selected gene set, different learning algorithms were ap-
plied to evaluate the classification accuracy of subsets of different sizes. These
“hybrid” methods are more efficient than wrapper methods, but they are de-
pendent on the classifiers used and computationally more costly than filter
methods. In addition, expertise in various classifiers is needed to empirically
tune these methods in determining an optimal size of the final subset.

A key challenge in gene selection from microarray data is to provide biol-
ogists an efficient filter method that effectively identifies and removes both
irrelevant and redundant genes in an automatic manner. In the rest of this
chapter, we tackle this challenge by providing a general framework for redun-
dancy analysis and an efficient algorithm developed under this framework.

© 2008 by Taylor & Francis Group, LLC

340 Computational Methods of Feature Selection

17.2 Redundancy-Based Feature Selection

In this section, we first introduce definitions on feature relevance and re-
dundancy, we next propose a framework of efficient feature selection based
on explicit redundancy analysis, and we then present and evaluate a specific
algorithm developed under this framework.

17.2.1 Feature Relevance and Redundancy

In general, the goal of feature selection can be formalized as selecting a
minimum subset G such that p(C | G) is equal or as close as possible to
p(C | F), where p(C | F) or p(C | G) is the probability distribution of the class
values C given the feature values in F or G, respectively. Such a minimum
subset is also called an optimal feature subset in feature selection [10] and can
be illustrated by the example below.

Let features F1, ..., F5 be Boolean. The target concept is C = g(F1, F2),
where g is a Boolean function. With F2 = F3 and F4 = F5, there are only
eight possible instances. In order to determine the target concept, F1 is in-
dispensable; one of F2 and F3 can be disposed of (note that C can also be
determined by g(F1, F3)), but we must have one of them; both F4 and F5 can
be discarded. Either {F1, F2} or {F1, F3} is an optimal subset. The goal of
feature selection is to find either of them.

Based on a review of previous definitions of feature relevance, John, Kohavi,
and Pfleger classified features into three disjoint categories, namely, strongly
relevant, weakly relevant, and irrelevant features [9]. Let F be a full set of
features, Fi a feature, and Si = F − {Fi}. These categories of relevance can
be formalized as follows.

DEFINITION 17.1 (Strong relevance) A feature Fi is strongly rele-
vant iff

P (C | Fi, Si) �= P (C | Si)

DEFINITION 17.2 (Weak relevance) A feature Fi is weakly relevant
iff

P (C | Fi, Si) = P (C | Si), and

∃ S′
i ⊂ Si, such that P (C | Fi, S′

i) �= P (C | S′
i)

© 2008 by Taylor & Francis Group, LLC

Feature Selection for Genomic Data Analysis 341

DEFINITION 17.3 (Irrelevance) A feature Fi is irrelevant iff

∀ S′
i ⊆ Si, P (C | Fi, S′

i) = P (C | S′
i)

Strong relevance of a feature indicates that the feature is always necessary
for an optimal subset; it cannot be removed without loss of discriminative
power. Weak relevance suggests that the feature is not always necessary
but may become necessary to the discrimination of the class under certain
conditions. Irrelevance indicates that the feature can never contribute to the
discrimination of the class. According to these definitions, it is clear that in
our illustrative example, feature F1 is strongly relevant; F2; F3 are weakly
relevant; and F4, F5 are irrelevant. An optimal subset should only include all
strongly relevant features and a subset of weakly relevant features. However,
the definition of weak relevance only reveals feature redundancy (i.e., the
information a feature has about the class is subsumed by other features) but
cannot help identify which features among the weakly relevant ones should be
selected while others eliminated. Therefore, it is necessary to define feature
redundancy among relevant features.

Notions of feature redundancy are normally in terms of feature correlation.
It is widely accepted that two features are redundant to each other if their
values are completely correlated (for example, features F2 and F3). In reality,
it may not be so straightforward to determine feature redundancy when a
feature is correlated (perhaps partially) with a set of features. In order to
devise an approach to explicitly identify and eliminate redundant features, in
our previous work [21], we formally defined feature redundancy based on the
definition of a feature’s Markov blanket [14].

DEFINITION 17.4 (Markov blanket) Given a feature Fi, let Mi ⊂
F (Fi /∈Mi). Mi is said to be a Markov blanket for Fi iff

P (F −Mi − {Fi}, C | Fi, Mi) = P (F −Mi − {Fi}, C | Mi)

It is easy to see that if Mi is a Markov blanket of Fi, the class C is condi-
tionally independent of Fi given Mi. Moreover, the Markov blanket condition
is stronger than conditional independence. It requires that Mi subsume not
only the information that Fi has about C, but also about all of the other fea-
tures. While it might be difficult to find such a set Mi, it is pointed out in [10]
that an optimal subset can be obtained by using Markov blankets as the basis
for feature elimination. Let G be the current set of features (G = F in the
beginning), at any phase, if there exists a Markov blanket for Fi within G, Fi

is judged as unnecessary for an optimal subset and thus removed from G. It
is proved that this process guarantees a feature removed in an earlier phase

© 2008 by Taylor & Francis Group, LLC

342 Computational Methods of Feature Selection

will still find a Markov blanket in any later phase, that is, removing a feature
in a later phase will not render the previously removed features necessary to
be included in an optimal subset [10]. Thus, the Markov blanket criterion
only removes features that are really unnecessary: features that are irrele-
vant to the target class, and features that are weakly relevant but redundant
given other features. According to previous definitions of feature relevance,
we can prove that strongly relevant features cannot find any Markov blankets.
Since irrelevant features should be removed anyway, we exclude them from
our definition of redundant features.

DEFINITION 17.5 (Redundant feature) Let G be the current set of
features. A feature is redundant and hence should be removed from G iff it is
weakly relevant and has a Markov blanket Mi within G.

From the property of a Markov blanket, it is easy to see that a redundant
feature removed earlier remains redundant when other features are removed.
Figure 17.1 depicts the relationships between definitions of feature relevance
and redundancy introduced so far. It shows that an entire feature set can
be conceptually divided into four basic disjoint parts: irrelevant features (I),
redundant features (II, part of weakly relevant features), weakly relevant but
non-redundant features (III), and strongly relevant features (IV). An optimal
subset essentially contains all the features in parts III and IV. It is worthy
to point out that although parts II and III are disjoint, different partitions
of them can result from the process of Markov blanket filtering. In our il-
lustrative example, either of F2 or F3, but not both, should be removed as a
redundant feature.

FIGURE 17.1: A view of feature relevance and redundancy.

In terms of gene selection, an optimal subset of genes is a minimum subset

© 2008 by Taylor & Francis Group, LLC

Feature Selection for Genomic Data Analysis 343

of genes of maximum discriminative power; it should only include all strongly
relevant genes and a subset of weakly relevant but mutually non-redundant
genes. In search of an optimal subset for gene expression microarray data,
efficient methods are needed for two reasons. First, the Markov blanket crite-
rion given in Definition 17.4 is combinatorial in nature. It is obvious that an
exhaustive or complete search is prohibitive with thousands of genes. Second,
an optimal subset is defined based on the full population where the true data
distribution is known. It is generally assumed that a training dataset is only
a small portion of the full population, especially in a high-dimensional space
as in microarray data.

In search of a suboptimal subset of genes, our goal is to efficiently find for
a gene Fi an approximate Markov blanket Mi that subsumes the information
content of Fi. As mentioned previously, if Mi is a true Markov blanket for Fi,
the class C is conditionally independent of Fi given Mi, i.e., p(C | Fi, Mi) =
p(C | Mi). However, finding a subset Mi for every gene is still combinatorial
in nature. We present an efficient framework in the next section.

17.2.2 An Efficient Framework for Redundancy Analysis

In our framework, we first differentiate two types of correlations between
genes and the class: individual C-correlation and combined C-correlation.

DEFINITION 17.6 (Individual C-correlation) The correlation be-
tween any gene Fi and the class C is called individual C-correlation, denoted
by r(Fi, C).

DEFINITION 17.7 (Combined C-correlation) The correlation be-
tween any pair of genes Fi and Fj (i �= j) and the class C is called combined
C-correlation, denoted by r(Fi,j , C).

In combined C-correlation, we treat genes Fi and Fj as one single feature
Fi,j . An immediate issue is how to decide the feature values of a virtual gene
represented by the vector Fi,j . If the expression values of genes Fi and Fj

are numerical values, Fi,j can be some linear combination of Fi and Fj . If
the expression values have been discretized into nominal states, we can use
the cartesian product of the domains of Fi and Fj as the domain of Fi,j .
For example, if both Fi and Fj assume binary values (0 or 1), the combined
C-correlation aims to measure the correlation between the joint states (0,0),
(0,1), (1,0) (1,1) and the class label C.

Our method determines whether a single gene Fi can be an approximate
Markov blanket for another gene Fj based on both individual C-correlations
and the combined C-correlation. It assumes that a gene with a larger indi-
vidual C-correlation value contains by itself more information about the class
than a gene with a smaller individual C-correlation value. For two genes Fi

© 2008 by Taylor & Francis Group, LLC

344 Computational Methods of Feature Selection

and Fj with r(Fi, C) ≥ r(Fj , C), it chooses to evaluate whether gene Fj can be
approximately redundant to gene Fi (instead of Fi to Fj) in order to maintain
more information about the class. In addition, if combining Fj with Fi does
not provide more discriminative power than Fi alone, it heuristically decides
that Fi forms an approximate Markov blanket for Fj . Thus, an approximate
Markov blanket is defined as follows.

DEFINITION 17.8 (Approximate Markov blanket) For two genes
Fi and Fj, Fi forms an approximate Markov blanket for Fj iff r(Fi, C) ≥
r(Fj , C) and r(Fi, C) ≥ r(Fi,j , C).

Recall that Markov blanket filtering, a backward elimination procedure
based on a feature’s Markov blanket in the current set, guarantees that a
feature removed in an earlier phase will still find a Markov blanket in any
later phase when another feature is removed. It is easy to verify that this
is not the case for backward elimination based on a feature’s approximate
Markov blanket in the current set. For instance, if Fj is the only gene that
forms an approximate Markov blanket for Fk, and Fi forms an approximate
Markov blanket for Fj , after removing Fk based on Fj , further removing Fj

based on Fi will result in no approximate Markov blanket for Fk in the current
set. However, we can avoid this situation by removing a gene only when it can
find an approximate Markov blanket formed by a predominant gene, defined
as follows.

DEFINITION 17.9 (Predominant gene) A gene is predominant iff it
does not have any approximate Markov blanket in the current set.

Predominant genes will not be removed at any stage. If a gene Fj is removed
based on a predominant gene Fi in an earlier phase, it is guaranteed that it
will still find an approximate Markov blanket (the same Fi) in any later phase
when another gene is removed. To determine predominant genes, all genes can
be ranked according to their individual C-correlation values. Since the gene
with the highest individual C-correlation value does not have any approximate
Markov blanket, it must be one of the predominant genes and can be used as
the starting point to eliminate other unnecessary genes.

In summary, our framework for redundancy analysis is to find all predomi-
nant genes and eliminate the rest. Comparing with traditional gene selection
methods that evaluate the relevance of each gene individually, our framework
has the following distinct characteristics: (1) It efficiently handles redundancy
among relevant genes; (2) it is able to consider gene-to-gene interactions to
some extent by evaluating combined C-correlation; and (3) it removes irrele-
vant genes as well as relevant but redundant genes based on the same criterion.
The last characteristic makes it unnecessary to determine a threshold for se-
lecting relevant genes. In search of approximate Markov blankets, we can ex-

© 2008 by Taylor & Francis Group, LLC

Feature Selection for Genomic Data Analysis 345

tend the algorithm to consider more complex combinations of genes other than
a combined C-correlation of two genes. However, this will not only increase
the time complexity of the search, but also cause an over-searching problem [8]
due to the data characteristics of limited samples in a high-dimensional space.

17.2.3 RBF Algorithm

Under our search framework, different correlation measures can be applied
to calculate individual C-correlations and combined C-correlations. For data
with continuous gene expression values, linear correlation measures are widely
used. Of linear correlation, the most well-known measure is linear correlation
coefficient. For a pair of variables (X, Y), the linear correlation coefficient ρ
is given by

ρ (X, Y) =

∑

i

(xi − xi)(yi − yi)
√∑

i

(xi − xi)2
√∑

i

(yi − yi)2

where xi is the mean of X , and yi is the mean of Y . The value of ρ lies between
-1 and 1, inclusive. If X and Y are completely correlated, ρ takes the value of
1 or -1; if X and Y are independent, ρ is zero. Other measures in this category
are basically variations of the above formula [4]. Linear correlation measures
may not be able to capture relationships that are not linear in nature and are
limited to numerical values.

To reduce the variance and noise of the original data, continuous expression
values are often discretized into discrete values [2, 11]. For discrete data,
information-theoretic measures are widely adopted [15]. They are based on
the well-known concept of entropy, a measure of the uncertainty of a random
variable. For nominal variables, the entropy of a variable X is defined as

H(X) = −
∑

i

P (xi) log2(P (xi))

and the entropy of X after observing values of another variable Y is defined
as

H(X |Y) = −
∑

j

P (yj)
∑

i

P (xi | yj) log2(P (xi | yj))

where P (xi) is the prior probability for all values of X , and P (xi | yi) is the
posterior probability of X given the values of Y . The amount by which the
entropy of X decreases reflects additional information about X provided by
Y and is called information gain, given by

IG(X | Y) = H(X)−H(X | Y)

Information gain tends to favor variables with more values and can be nor-
malized by their corresponding entropy. One way to normalize information

© 2008 by Taylor & Francis Group, LLC

346 Computational Methods of Feature Selection

gain is by symmetrical uncertainty (SU), defined as

SU(X, Y) = 2
[

IG(X | Y)
H(X) + H(Y)

]

which compensates for information gain’s bias toward features with more val-
ues and restricts its values to the range [0, 1]. A value of 1 indicates that
knowing the values of either feature completely predicts the values of the
other; a value of 0 indicates that X and Y are independent.

We experimented with both linear correlation coefficient and symmetrical
uncertainty under our general search framework and found that symmetrical
uncertainty works more effectively than linear correlation coefficient. There-
fore, we chose symmetrical uncertainty as the correlation measure in our algo-
rithm RBF (redundancy-based filter). Individual C-correlation and combined
C-correlation are thus measured by SU(Fi, C) and SU(Fi,j , C), respectively.
For simplicity we refer to SU(Fi, C) as ISUi and SU(Fi,j , C) as CSUi,j .

input: D(F1, F2, ..., FN , C) // a training dataset
output: Sbest // a selected subset
1 begin
2 for i = 1 to N do begin
3 calculate ISUi for Fi;
4 append Fi to Slist;
5 end;
6 order Slist in descending ISUi value;
7 Fi = getF irstElement(Slist);
8 while (Fi �= NULL) do begin
9 Fj = getNextElement(Slist, Fi);
10 while (Fj �= NULL) do begin
11 if (ISUi ≥ CSUi,j) remove Fj from Slist;
12 Fj = getNextElement(Slist, Fj);
13 end;
14 Fi = getNextElement(Slist, Fi);
15 end;
16 Sbest = Slist;
17 end;

FIGURE 17.2: RBF algorithm.

As shown in Figure 17.2, the RBF algorithm first calculates the ISU value
for each gene and orders all genes in a descending order according to their

© 2008 by Taylor & Francis Group, LLC

Feature Selection for Genomic Data Analysis 347

ISU values (lines 2–6). It then further processes the ordered list Slist to
select predominant genes (lines 7–15). Recall that a gene that has already
been determined to be a predominant gene can always be used to filter out
other genes for which it forms an approximate Markov blanket. Since the gene
with the highest ISU value does not have any approximate Markov blanket,
it must be one of the predominant genes. So the iteration starts from the
first element in Slist (line 7) and continues as follows. For all the remaining
genes, if Fi happens to form an approximate Markov blanket for Fj , Fj will
be removed from Slist (line 11). After one round of filtering genes based on
Fi, the algorithm will take the remaining gene right next to Fi as the new
reference (line 14) to repeat the filtering process. The algorithm stops when
no more predominant genes can be selected.

The majority of computation time of RBF involves calculation of ISU and
CSU values, which has a linear time complexity in terms of the number of
instances in a dataset. In terms of dimensionality N , to determine and rank
the discriminative power of each gene, the algorithm has a linear time com-
plexity O(N); to determine predominant genes, it has a best-case complexity
O(N) when only one gene is selected and all of the remaining genes are re-
moved, and a worse-case complexity O(N2) when all genes are selected. Such
best-case and worse-case time complexities are comparable to gene selection
methods based on greedy sequential search through possible gene sets, in
which genes are, one at a time, added to the current subset (i.e., sequential
forward selection) or removed from the current subset (i.e., sequential back-
ward elimination). However, in general cases when k (1 < k < N) genes are
selected, the number of evaluations performed by RBF will typically be much
less (and certainly never more) than the number of evaluations performed
by a greedy sequential search because genes removed in each round are not
considered in the next round and RBF typically removes a large number of
genes in each round. This makes RBF substantially faster than gene selection
methods based on greedy subset searches.

17.3 Empirical Study

In this section, we empirically evaluate the effectiveness and efficiency of
our method on public gene expression microarray data sets.

17.3.1 Datasets

To evaluate our proposed framework of redundancy analysis and the RBF
algorithm, we conducted experiments on four publicly available microarray
datasets: colon cancer, leukemia, lung cancer, and breast cancer. We next

© 2008 by Taylor & Francis Group, LLC

348 Computational Methods of Feature Selection

briefly describe these datasets and previously published results on them. A
summary of these datasets are presented in Table 17.2.

TABLE 17.2: Summary of microarray datasets used in experiments.
Dataset # Genes # Samples # Samples per Class
Colon cancer 2000 62 Tumor 40 Normal 22
Leukemia 7129 72 ALL 47 AML 25
Lung cancer 12533 181 MPM 31 ADCA 150
Breast cancer 24481 97 Relapse 46 Non-relapse 51

Colon cancer data [1] has been frequently used in previous studies in can-
cer classification. It consists of gene expression profiles of 2000 genes for 62
tissue samples among which 40 are colon cancer tissues and 22 are normal
tissues. In [1], a hierarchical clustering method was applied to separate tu-
mor and normal samples into two distinct clusters. Based on 20 genes with
the most statistically significant difference between tumors and normal tissues
according to t-test, the resulting dendrogram from hierarchical clustering mis-
classified 5 tumor samples and 3 normal samples into the opposite clusters.

Leukemia data [4] is another widely used benchmark dataset in cancer clas-
sification. It consists of gene expression profiles of two classes of leukemia:
acute lymphoblastic leukemia (ALL) and acute myeloblastic leukemia (AML).
The dataset consists of 7129 genes and 72 samples (47 ALL and 25 AML).
In [4], in order to distinguish between AML and ALL, a set of 50 genes mostly
correlated with AML-ALL distinction were selected from 38 training samples.
These genes were used to build a linear class predictor for the remaining 34
testing samples and achieved 85% predictive accuracy.

Lung cancer data [5] consists of gene expression profiles of 12533 genes
for 181 tissue samples (31 MPM and 150 ADCA). The problem is to distin-
guish between malignant pleural mesothelioma (MPM) and adenocarcinoma
(ADCA) of the lung. In [5], 8 genes were selected according to the most statis-
tically significant difference in average expression levels between both tumor
types in the training set of 16 MPM and 16 ADCA samples. Based on these
genes, a ratio-based classifier was built on the training set and achieved 95%
accuracy in predicting diagnoses for the remaining 149 samples.

Breast cancer data [17] consists of gene expression profiles of 24481 genes for
97 samples (46 relapse breast cancer and 51 non-relapse breast cancer). In [17],
the correlation coefficient of the expression for each gene with disease outcome
was calculated, and 231 genes were found to be significantly associated with
disease outcome. These 231 genes were ranked according to the magnitude of
the correlation coefficient. A wrapper approach was then applied to determine
the optimal number of genes for the classifier by sequentially adding subsets
of 5 genes from the top of the ranking list and evaluating its power for correct
classification using ‘leave-one-out’ cross validation. The best accuracy (83%)
was achieved at a number of 70 genes.

© 2008 by Taylor & Francis Group, LLC

Feature Selection for Genomic Data Analysis 349

17.3.2 Experimental Settings

We limit our comparisons to gene selection algorithms in the filter model as
RBF is a filter algorithm designed for high-dimensional data. We choose two
representative algorithms. One algorithm is ReliefF [16], which evaluates the
discriminative power of individual genes without handling gene redundancy.
ReliefF searches for the nearest neighbors of samples of different classes and
weights genes according to how well they differentiate samples of different
classes. The other algorithm is CFS [6], which exploits heuristic subset search
based on some correlation measure. It evaluates the goodness of a subset by
considering the discriminative power of each individual gene and the degree of
correlation between them. Sequential forward selection is employed in CFS.
For each of the four datasets, we use two classification algorithms, K-Nearest
Neighbors (KNN) and Naive Bayes (NB) [18], to evaluate the predictive per-
formance of subsets of genes selected by various gene selection algorithms.
All these selected algorithms are from Weka’s collection [18]. RBF is also
implemented in the Weka environment.

The four original datasets contain continuous gene expression values. In
order to reduce the noise, various discretization methods [11] can be used
to transform continuous expression values of each gene into several nominal
states. In this work, continuous values of each gene were discretized into three
values -1, 0, and 1, representing the over-expression, baseline, and under-
expression of genes, which correspond to (−∞, μ− σ/2), [μ− σ/2, μ + σ/2],
and (μ + σ/2, +∞), respectively. μ and σ respectively refer to the mean and
standard deviation of all expression values for a given gene.

For each dataset, we apply KNN and NBC classifiers on the full set of genes
in the original data and each subset of genes selected by RBF, ReliefF, and
CFS, respectively. Since researchers who previously worked on these datasets
either divided data into training and testing parts or employed “leave-one-
out” cross validation (LOOCV) in assessing predictive performance of various
gene sets, we adopt LOOCV in our experiments.

17.3.3 Results and Discussion

TABLE 17.3: Accuracy of KNN on selected genes for microarray data:
Acc records leave-one-out cross validation accuracy rate (%).

RBF Full Set ReliefF CFS
Genes Acc # Genes Acc # Genes Acc # Genes Acc

Colon cancer 4 93.55 2000 70.97 4 87.10 26 85.48
Leukemia 16 94.44 7129 86.11 60 81.94 54 97.22
Lung cancer 7 99.45 12533 93.92 64 98.34 N/A N/A
Breast cancer 34 94.85 24481 59.79 70 81.44 N/A N/A

© 2008 by Taylor & Francis Group, LLC

350 Computational Methods of Feature Selection

Table 17.3 reports the number of genes and associated predictive accu-
racy rates of KNN (K = 3) classifier for various gene sets across the four
microarray datasets. From Table 17.3 we can clearly observe the degree of
dimensionality reduction and the improvement on predictive accuracy due to
RBF gene selection comparing with the full set. For example, based on the
original colon cancer data (2000 genes), 18 out of 62 samples were incorrectly
classified in LOOCV, resulting in an overall accuracy of 70.97%. RBF se-
lected only 4 genes and helped to reduce the number of misclassified samples
to 4 (increasing the overall accuracy to 93.55%). A similar trend of accuracy
improvement with only a few genes selected by RBF can also be observed
from other datasets. It is worth mentioning that accuracy improvement is
not the sole purpose for gene selection. The selection of a small subset of
discriminative genes often helps identify genes that are relevant to the cause
or consequences of disease or can be used as biomarkers for the diagnosis of
diseases, measuring drug toxicology, and efficacy [20]. Comparing RBF with
ReliefF, RBF selected much smaller sets of genes than ReliefF for all the four
datasets (except colon cancer data) and resulted in higher predictive accuracy.
A similar trend can be observed when comparing RBF with CFS on colon can-
cer and leukemia data, except that CFS resulted in slightly higher accuracy
than RBF on leukemia data. For lung cancer and breast cancer data, CFS
did not produce any results because the program ran out of memory after a
period of time due to its quadratic space complexity.

TABLE 17.4: Accuracy of NBC on selected genes for microarray data:
Acc records leave-one-out cross validation accuracy rate (%).

RBF Full Set ReliefF CFS-FS
Genes Acc # Genes Acc # Genes Acc # Genes Acc

Colon cancer 4 88.71 2000 58.06 4 85.48 26 85.48
Leukemia 16 98.61 7129 97.22 60 97.22 54 100.00
Lung cancer 7 97.79 12533 97.79 64 96.13 N/A N/A
Breast cancer 34 93.81 24481 51.55 70 79.38 N/A N/A

Table 17.4 reports the predictive accuracy rates of the NBC classifier on the
same set of gene sets across the four microarray datasets. From Table 17.4
we can observe the same trend of dimensionality reduction and accuracy im-
provement due to RBF gene selection comparing with the full set as well as
ReliefF and CFS. It is worth mentioning that, to our knowledge, the best
reported result on breast cancer data was the LOOCV accuracy of 83% with
70 selected genes produced by the wrapper approach introduced in [17]. Our
method, RBF, achieved an LOOCV accuracy of 94.85% (by KNN) with only
34 selected genes. Overall, the above results suggest that RBF is an effective
method for gene selection in microarray sample classification.

We further evaluate the efficiency of RBF by examining its running time
on different datasets. Table 17.5 records the running time of RBF, ReliefF,

© 2008 by Taylor & Francis Group, LLC

Feature Selection for Genomic Data Analysis 351

TABLE 17.5: Comparison of
running times (seconds) between
RBF, ReliefF, and CFS.

RBF ReliefF CFS
Colon cancer 0.1 2.5 16.4
Leukemia 0.4 12.1 702.4
Lung cancer 1.4 130.6 N/A
Breast cancer 3.5 75.1 N/A

and CFS on a Pentium IV PC for the four datasets used. It is clear that
RBF is significantly faster (in degrees of magnitude) than ReliefF and CFS.
The high efficiency of RBF allows us to exploit different variations of RBF.
In the beginning of the search for approximate Markov blankets, all genes
are ordered according to their individual C-correlation measure (ISU value
in RBF). Different measures used to rank genes will result in different subsets
of selected genes through the filtering process. Because of its efficiency, RBF
can be easily repeated with different ranking strategies to get different gene
selection results.

17.4 Summary

In this chapter, we have introduced the concept of an optimal gene set
based on a Markov blanket, and proposed an efficient filter method to ap-
proximate the selection of discriminative and non-redundant genes. RBF has
two desirable properties: First, it combines sequential forward selection with
redundancy elimination and thus substantially reduces the number of gene
pairs evaluated for redundancy; second, it removes both irrelevant and redun-
dant genes in the filtering process and thus does not require a threshold for
the number of selected genes. Experiments on microarray data have demon-
strated RBF’s effectiveness and efficiency.

Current research in gene selection mainly focuses on the selection of statisti-
cally significant predictors. One future research direction is to take advantage
of available domain knowledge in finding both statistically significant and bi-
ologically relevant genes. The high efficiency of the RBF algorithm allows
it to be used to search for biologically relevant genes by incorporating prior
biological knowledge into the gene selection process. For example, a few seed
genes of particular biological relevance can be appointed as predominant genes
and placed on the very top of the ranking list, and the selection of additional
predominant genes can then follow the filtering process of the RBF algorithm.
By changing the seed genes, one can also exploit prior biological knowledge

© 2008 by Taylor & Francis Group, LLC

352 Computational Methods of Feature Selection

during gene selection.

References

[1] U. Alon, N. Barkai, and D. A. Notterman. Broad patterns of gene ex-
pression revealed by clustering analysis of tumor and normal colon tissues
probed by oligonucleotide arrays. Proc. Natl Acad. Sci. USA, 96:6745–
6750, 1999.

[2] C. Ding and H. Peng. Minimum redundancy feature selection from mi-
croarray gene expression data. In Proceedings of the Computational Sys-
tems Bioinformatics conference (CSB’03), pages 523–529, 2003.

[3] M. Eisen, P. Spellman, P. Brown, and D. Botstein. Cluster analysis and
display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA,
95:14863–14868, 1998.

[4] T. R. Golub, D. K. Slonim, and P. Tamayo. Molecular classification of
cancer: class discovery and class prediction by gene expression monitor-
ing. Science, 286:531–537, 1999.

[5] G. J. Gordon, R. V. Jensen, and L. Hsiaoand. Translation of microarray
data into clinically relevant cancer diagnostic tests using gene expression
ratios in lung cancer and mesothelioma. Cancer Research, 62:4963–4967,
2002.

[6] M. A. Hall. Correlation-based feature selection for discrete and numeric
class machine learning. In Proceedings of the Seventeenth International
Conference on Machine Learning, pages 359–366, 2000.

[7] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer-Vergag, New York, 2001.

[8] D. D. Jensen and P. R. Cohen. Multiple comparisions in induction algo-
rithms. Machine Learning, 38(3):309–338, 2000.

[9] R. Kohavi and G. H. John. Wrappers for feature subset selection. Arti-
ficial Intelligence, 97(1-2):273–324, 1997.

[10] D. Koller and M. Sahami. Toward optimal feature selection. In Proceed-
ings of the Thirteenth International Conference on Machine Learning,
pages 284–292, 1996.

[11] H. Liu, F. Hussain, C. L. Tan, and M. Dash. Discretization: An enabling
technique. Data Mining and Knowledge Discovery, 6(4):393–423, 2002.

[12] H. Liu, J. Li, and L. Wong. A comparative study on feature selection

© 2008 by Taylor & Francis Group, LLC

Feature Selection for Genomic Data Analysis 353

and classification methods using gene expression profiles and proteomic
patterns. Genome Informatics, 13:51–60, 2002.

[13] T. M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[14] J. Pearl, editor. Probabilistic reasoning in intelligent systems. Morgan
Kaufmann, 1988.

[15] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in C. Cambridge University Press, Cambridge, UK,
1988.

[16] M. Robnik-Sikonja and I. Kononenko. Theoretical and empirical analysis
of Relief and ReliefF. Machine Learning, 53:23–69, 2003.

[17] L. J. van’t Veer, H. Dai, and M. J. van de Vijver. Gene expression
profiling predicts clinical outcome of breast cancer. Nature, 415:530–536,
2002.

[18] I. H. Witten and E. Frank. Data Mining - Pracitcal Machine Learning
Tools and Techniques with JAVA Implementations. Morgan Kaufmann,
2000.

[19] E. Xing, M. Jordan, and R. Karp. Feature selection for high-dimensional
genomic microarray data. In Proceedings of the Eighteenth International
Conference on Machine Learning, pages 601–608, 2001.

[20] M. Xiong, Z. Fang, and J. Zhao. Biomarker identification by feature
wrappers. Genome Research, 11:1878–1887, 2001.

[21] L. Yu and H. Liu. Efficient feature selection via analysis of relevance and
redundancy. Journal of Machine Learning Research, 5:1205–1224, 2004.

© 2008 by Taylor & Francis Group, LLC

Chapter 18

A Feature Generation Algorithm
with Applications to Biological
Sequence Classification

Rezarta Islamaj Dogan
University of Maryland at College Park and National Center for Biotechnology
Information

Lise Getoor

University of Maryland at College Park

W. John Wilbur

National Center for Biotechnology Information

18.1 Introduction . 355
18.2 Splice-Site Prediction . 356
18.3 Feature Generation Algorithm . 359
18.4 Experiments and Discussion . 366
18.5 Conclusions . 372

References . 374

18.1 Introduction

Many real-world data mining problems involve data best represented as
sequences. Sequence data comes in many forms, including: 1) human com-
munication such as speech, handwriting, and printed text; 2) time series such
as stock market prices, temperature readings and web-click streams; and 3)
biological sequences such as DNA, RNA and proteins. Sequence data in all
domains contains useful “signals,” or features, that enable the construction of
classification algorithms.

In handwriting recognition, features may include horizontal and vertical
profiles, internal holes, strokes, and other characteristics of the handwrit-
ten characters. In speech recognition, features may include the recognized
phonemes, noise ratios, length of sounds, and many others. In the spam
detection domain, features may include whether certain email headers are
present or absent, whether the headers are well formed, the grammatical cor-

355

© 2008 by Taylor & Francis Group, LLC

356 Computational Methods of Feature Selection

rectness of the text, n-gram frequency analysis, and many others. In biological
sequence classification problems, gene and protein sequence features may be
nucleotide or amino-acid blocks, their respective positions in the sequence, as
well as many possible combinations.

In all these cases, extracting and interpreting the most useful features is
known to be a hard problem and hand selection of good features forms the
basis of almost all classification algorithms. Automatic methods usually take a
brute force approach in which the sequence classification models are provided
with a huge number of features in the hope that the important features are not
overlooked. The large number of features introduces a dimensionality problem
that has several disadvantages. First, enumerating all possible features is
impractical. Second, many features are irrelevant to the classification task and
have an adverse effect on accuracy. And third, knowledge discovery becomes
difficult because of the large number of parameters involved.

As a result, feature selection methods are employed to select a represen-
tative feature set from the available features for application to classification
algorithms. Here we present a scalable method for automatic feature gener-
ation for sequences. The algorithm uses sequence components and domain
knowledge to construct features, explores the space of possible features, and
identifies the most useful ones. This focused feature generation algorithm
(FGA) integrates feature construction and feature selection in a systematic
way. The method is scalable because it incrementally generates more complex
features from currently selected ones.

18.2 Splice-Site Prediction

We validate the FGA method in the biological domain on the task of splice-
site prediction for pre-mRNA sequences, which is an increasingly important
task in bioinformatics. In the context of bioinformatics, automatic sequence
classification can also be employed in a multitude of applications ranging from
fast database search to the identification of patterns for some specific physical
properties.

18.2.1 The Splice-Site Prediction Problem

Splice sites are the locations in the DNA sequence that are boundaries
between protein coding and non-coding regions. Accurate location of splice
sites is an important component in the gene finding problem. Gene finding
is one of the first and most important steps in understanding the genome
of a species once it has been sequenced. In eukaryotic organisms, especially
complex organisms like humans, gene finding is challenging because of the

© 2008 by Taylor & Francis Group, LLC

Feature Generation for Biological Sequence Classification 357

splicing mechanism. A protein coding sequence in these genomes is divided
into several parts known as exons, separated by intervening non-coding se-
quences known as introns. Typically, a protein-coding human gene sequence
might be divided into a dozen exons, each often less than 200 nucleotides
in length, some as short as 10 or 20. It may also include an exceptionally
long exon that may extend more than 1,000 nucleotides. Notably, sequence
characteristics like pre-mRNA sequence length, coding sequence length, num-
ber of exons and their lengths, and interrupting intron sequence lengths do
not follow any known pattern, making it hard to design a highly effective
computational approach.

Splice sites belong to two different categories: the acceptor splice site, which
marks the start of an exon, and the donor splice site, which marks the end of
an exon, as shown in Figure 18.1. The splice-site signals are short sequences
of nucleotides that are preferred in the immediate splice-site neighborhood.
These signals are probably the most critical signals used in the detection of
splice sites. They can be compiled from thousands of sequences aligned at
the annotated splice-site location. However, the resulting consensus sequence
alone is not enough for an accurate prediction. A linear search along any
genome sequence for splice-site signals produces false locations matching the
consensus at a very high frequency [6]. To eliminate the false positives, and
find missing true splice sites, other information is needed.

FIGURE 18.1: Depiction of a portion of a DNA gene sequence. The protein coding
regions are called exons and the non-coding regions are called introns. Donor and
acceptor sites mark the intron boundaries.

18.2.2 Current Approaches

Splice-site detection algorithms use statistical methods that are designed to
capture the consensus signal. The weight matrix model (WMM) [15] computes
the probabilities of nucleotides in each position in the splice-site sequence as-
suming independence between positions. The weight array model (WAM) [22]
extends WMM by taking into account the dependencies between the adjacent

© 2008 by Taylor & Francis Group, LLC

358 Computational Methods of Feature Selection

nucleotides in the sequence. The maximal dependency decomposition (MDD)
[3] is a decision tree model that improves on the previous models by captur-
ing dependencies between non-adjacent as well as adjacent nucleotides in the
splice-site sequence.

GeneSplicer, proposed by Pertea et al. [13], is a state-of-the-art computa-
tional tool for detecting splice sites that employs a combination of MDD and
Markov modeling techniques. GeneSplicer views a splice site as a complex
entity and is based on the following premise: Since a splice site (by definition)
is surrounded by a coding region and a non-coding region, a splice-site model
should take into consideration the coding difference between the two regions.
Unlike the previous splice models, GeneSplicer models not only the splice-
site signal but also the coding content in the upstream and the downstream
sequence regions.

The GeneSplicer algorithm combines three different models for splice-site
prediction. The first one is a statistical model of the immediate neighborhood
of the site. Essentially, this is an MDD tree with the modification that a first
order Markov chain, instead of an WMM, is built for each leaf of the decision
tree. The next two models are second order Markov chains trained on coding
and non-coding sequences. The final prediction for a given sequence is given by
a combined score that adds the contribution of the three models. GeneSplicer
is an accurate splice-site predictor, and has successfully combined the signal
statistical models (WAM and MDD to capture the consensus signal) with
the content sensor methods (Markov chains to capture coding/non-coding
compositional differences).

In order to analyze a genomic sequence for the recognition of a target signal
such as the splice site, it is important to employ all the information that can
be extracted from the sequence. Specific candidate features can be generated
and evaluated according to their relevance. The problem of how to select the
relevant features has been the focus of intensive research. Recently, feature
selection techniques have been receiving more attention for applications to
biological data. The following is a non-comprehensive list. Liu and Wong [12]
give a good introduction for filtering methods in the prediction of translation
initiation sites. Degroves et al. [4] describe a wrapper approach that uses
both SVMs and näıve Bayes to select the relevant features for splice sites.
Yeo et al. [18] use a model based on maximum entropy, in which only a small
neighborhood around the splice site is considered. Zhang et al. [24] propose
a recursive feature elimination approach using SVM.

Splice-site prediction has been the focus of other works, such as [1, 5, 20],
that report promising results when compared with GeneSplicer. But, for a
biologist, it is very difficult to interpret the features employed in these mod-
els. Especially, it is very difficult to relate them to actual biological signals.
SpliceMachine [5] is similar to the approach we describe in this chapter be-
cause both methods employ sequence-based features. The SpliceMachine ap-
plication performs a series of feature subset selection steps to find the best
combination for an accurate splice-site prediction model. It details an ex-

© 2008 by Taylor & Francis Group, LLC

Feature Generation for Biological Sequence Classification 359

tensive search for the best set of features, which is different from the guided
feature generation algorithm that we discuss here.

18.2.3 Our Approach

In this chapter we describe a new approach to the biological sequence clas-
sification problem in general and a new solution to the splice-site prediction
problem in particular. The feature generation algorithm uses the sequence
properties to automatically construct useful features. These features are com-
posed of two different components: the sequence alphabet and the relative
position. The feature construction procedures produce complex features, in-
cluding features containing elements that are not directly adjacent, and fea-
tures that may be associated with a range of relative positions in the sequence.
When the new features are constructed, feature selection techniques are em-
ployed to assess the constructed features and identify those that are most
promising. Then, in an iterative fashion, feature construction procedures are
called again. When building the features, this algorithm follows the GeneS-
plicer lead to consider a long subsequence window for splice-site prediction.
The larger neighborhood provides information for other less-prominent but
nevertheless important signals that are not usually considered in the gene-
finding models. Then, a classification algorithm uses the identified features
to predict splice sites.

Features constructed using the sequence domain knowledge are very impor-
tant for knowledge discovery. Given a set of search and browsing procedures,
a molecular biologist can explore the collection of these computationally iden-
tified signals. Such an exploration enables the researchers to discover new
motifs and may guide them for experimental testing and validation.

We discuss the feature generation algorithm in the next section. We follow
with an experimental evaluation of the algorithm for the splice-site prediction
problem. Finally, we conclude with a discussion and offer some possible future
directions.

18.3 Feature Generation Algorithm

In this section we describe the feature generation algorithm [7, 8]. This
method generates features for splice-site prediction combining domain-specific
feature construction methods and off-the-shelf feature selection methods. We
start by defining general sequence feature types and the corresponding auto-
matic construction methods. Generally, sequence feature construction meth-
ods use a sequence alphabet to construct words and sequence position infor-
mation to construct position-specific words. Logical Boolean operators may

© 2008 by Taylor & Francis Group, LLC

360 Computational Methods of Feature Selection

be used to construct more complex features. These features have a generic
definition and may be suitable for any sequence data. Once we have de-
scribed feature construction, we discuss feature selection methods, including
the different approaches and their characteristics, and explain how they can
be adapted to the feature generation algorithm for different feature types.
Then, we present the complete algorithm.

18.3.1 Feature Type Analysis

Sequence data has compositional and positional properties. Here we de-
fine a set of feature types that capture these properties and for each feature
type we describe an incremental feature construction procedure. The feature
construction starts with an initial set of features and produces an expanded
set of features. Incrementally, it produces richer, more complex features in
each iteration. We give examples for each feature type using DNA sequence
data from the biological domain, but these rules and definitions apply to any
sequence data defined over some fixed alphabet.

Compositional features A general k-mer is a string of k-characters.
Given the alphabet for DNA sequences, {a, c, g, t}, the number of distinct
k-mers is 4k for each value of k. We consider the general k-mer composition
of sequences for k ranging from 2 to 6. For each general k-mer, we count
the number of times that the feature is present in the neighborhood of the
splice site. There are a total of 5, 456 features for the values of k we consider.
This feature type is useful for capturing information like coding potential and
composition in the sequence.
Construction Method. Given an initial set of k-mer features, this construc-
tion method expands them to a set of (k + 1)-mers by appending the letters
of the alphabet to each k-mer feature. As an example, suppose we begin
with an initial set of 2-mers Finitial = {ac, cg}. From this set, we construct
the extended set of 3-mers Fconstructed = {aca, acc, acg, act, cga, cgc, cgg, cgt}.
Incrementally, in this manner we construct level k + 1 from level k.

Region-specific compositional features Splice-site sequences charac-
teristically have a coding region and a non-coding region, as shown in Figure
18.1. For donor splice-site sequences, the region of the sequence on the left
of the splice-site position (upstream) is the coding region, and the region of
the sequence on the right of the splice-site position (downstream) is the non-
coding region. The opposite is true for acceptor splice sites. The upstream
region is part of the intron and the downstream region is part of the exon.
These regions may exhibit distinct compositional properties. In order to cap-
ture these differences, we introduce region-specific k-mers. A region-specific
k-mer is a string of k-characters found in the specified region. In this work
we have considered the upstream and the downstream regions. Other regions
and interval specifications are also possible. Similar to general k-mers, we con-
sider k values from 2 to 6 for these features. For each upstream (downstream)
k-mer we count the number of times that feature is present in the upstream

© 2008 by Taylor & Francis Group, LLC

Feature Generation for Biological Sequence Classification 361

(downstream) neighborhood of the splice site. This results in a total of 10, 912
potential features.
Construction Method. The construction procedure of upstream and down-
stream k-mer features is the same as the general k-mer method, with the
addition of a region indicator.

Positional features Position-specific k-mers are the most common fea-
tures used for finding signals in the DNA stream data [21]. These features
capture the correlations between different nucleotides and their relative po-
sitions. The nucleotides bordering the splice site are of primary importance
as they may capture binding information. The simplest features of this type
are position-specific 1-mers, which describe the occurrence of a specific nu-
cleotide in a particular location in the sequence. These features also define
the consensus sequence. We consider sequences of length 160, so there are
4 × 160 or 640 possible position-specific 1-mers. We use this basic feature
set to construct position-specific k-mer features. Position-specific k-mers cap-
ture the correlations between k-adjacent nucleotides. At each position i in
the sequence, these features represent the substrings appearing at positions
i, i + 1, .., i + k − 1. This feature type is useful for discovering species-specific
functional signals, as well as evolutionary conserved functional signals. For
each position-specific k-mer we record the presence or absence of that feature
in the neighborhood of the splice site. This results in a set of (n− k + 1)×4k

potential features for each value of k and sequence of length n.
Construction Method. This construction method starts with an initial set of
position-specific k-mer features and extends them to a set of position-specific
(k+1)-mers by appending the letters of the alphabet to each position-specific
k-mer feature. As an example, suppose an initial set of 2-mers Finitial =
{ac2, cg5}, where the subscript denotes the starting position. Fconstructed =
{aca2, acc2, acg2, act2, cga5, cgc5, cgg5, cgt5} is the extended set of position-
specific 3-mers. Incrementally, in this manner, we can construct level k + 1
from level k.

Conjunctive positional features To capture the correlations between
different nucleotides in non-consecutive positions in the sequence, we describe
conjunctive position-specific features. We construct these complex features
from conjunctions of basic position-specific features. This feature type is
useful for discovering interacting functional signals in the sequence. The di-
mensionality of this kind of feature is inherently high. For each conjunctive
positional feature, we record the presence or absence of that feature in the
neighborhood of the splice site. For each iteration, if the number of conjuncts
is k, we have a total of

(
n
k

)
× 4k such features for a sequence of length n.

Construction Method. We construct conjunctions of basic features by start-
ing with an initial conjunction of basic features and adding another conjunct
basic feature in an unconstrained position. Let our basic set be Fbasic =
{a1, c1, . . . , gn, tn}, where a1 denotes nucleotide a at the first sequence po-
sition, and so on. If our initial set is Finitial = {a1, g2}, we can extend
it to the level 2 set of position-specific base combinations Fconstructed =

© 2008 by Taylor & Francis Group, LLC

362 Computational Methods of Feature Selection

{a1∧a2, a1∧c2, . . . , g2∧ tn}. A duplication check ensures that each feature in
the Fconstructed set is unique. Incrementally, in this manner, we can construct
higher levels. Given an initial set of k-conjuncts, this construction method
selects from the set of basic position-specific features to add another conjunct
in an unconstrained position, thereby constructing the set of (k+1)-conjuncts.

Other positional features The conjunctive positional features, as defined
above, are constructed using position-specific nucleotides that can be adjacent
to any position in the sequence of length n. Other variations are also possible,
such as conjunctive positional features, which are region-specific or interval-
specific. The difference between these other feature types and conjunctive po-
sitional features is the basic position-specific features set. The region-specific
conjunctive features are constructed using position-specific nucleotides defined
in the upstream or downstream sequence region as their basic feature set. This
definition can be extended to other sequence regions or “user-defined inter-
vals.” In this case, each additive conjunct is selected from the basic feature
set of position-specific nucleotides in a previously specified interval, i.e., the
branch site interval.

The positional features that we have discussed so far define patterns of
nucleotides in sequence positions that belong to a specific sequence interval
or region. However, a biologist may also be interested to discover patterns
of nucleotides in relative sequence positions. Motivated by this, we define
another feature type, which we call the floating conjunctive features set. These
features consist of basic conjuncts that belong to a short sequence window of
length n1, and the start of the first conjunct may be anywhere in the given
sequence of length n, where n1 ≤ n. For each floating conjunctive feature
we record the number of times that feature is present in the neighborhood of
the splice site. As an example, consider the feature a ∗ ∗c, or ai ∧ ci+3, and
the sequence aaccaggc. This feature is constructed from two conjuncts in the
window of length four, and occurs two times in the given sequence of length
eight. The floating conjunctive feature set may have up to n1 conjuncts. If all
the conjuncts are used, then this feature set becomes a subset of the general
n1-mers.

18.3.2 Feature Selection

Feature selection methods prune the constructed feature set by reducing its
size, keeping only the useful features for the task at hand. The problem of
selecting useful features has been the focus of extensive research and many
approaches have been proposed [2, 9, 10, 11, 17, 19].

Generally these approaches are divided into three major categories [2]. Fil-
ter approaches use the intrinsic properties of the dataset such as feature-
class entropy to compute a feature relevance score. The low-scoring features
are thus removed independent of the classifier algorithm. These approaches
are usually very fast and are primarily used for high-dimensional datasets.
Wrapper approaches are a second class of feature selection methods. These

© 2008 by Taylor & Francis Group, LLC

Feature Generation for Biological Sequence Classification 363

approaches perform a heuristic search through all the subsets using the clas-
sification algorithm as a guide to find promising subsets of features. These
approaches have the disadvantage of being computationally intensive. This
limits the wrapper approaches to datasets of low dimensionality. In the third
group, embedded approaches, the feature selection method makes direct use
of the parameters of the induction model to include or reject features.

In the experiments in the next section, we consider different feature selection
methods to reduce the size of our constructed feature sets. We use several filter
approaches including Information Gain (IG), χ2 (CHI), Mutual Information
(MI) and KL-distance (KL) for initial pruning of feature type sets during the
generation stage. Here we give the definitions of these values as provided by
Yang and Pedersen in [17]. IG is frequently employed as a feature-goodness
criterion in the field of machine learning. It measures the number of bits
of information obtained for category prediction by knowing the presence or
absence of a feature. If the number of categories in the given dataset is m, the
categories are c1, . . . , cm, and Pr denotes probability, the information gain of
feature f is defined to be

IG(f) = −
m∑

i=1

Pr(ci)logPr(ci) + Pr(f)
m∑

i=1

Pr(ci|f)logPr(ci|f)

+Pr(f)
m∑

i=1

Pr(ci|f)logPr(ci|f)

MI is a criterion commonly used in statistical language modeling of word
associations. The MI between a feature f and the class ci is defined to be

MI(f, ci) = log
Pr(f, ci)

Pr(f)× Pr(ci)

We combine the category-specific scores to find the average mutual informa-
tion value as MIavg(f) =

∑m
i=1 Pr(ci)MI(f, ci).

The χ statistic measures the lack of independence between feature f and
the category ci. The contingency table of a feature f and class ci produces
the following numbers: Nfci, the number of data points containing feature f
and belonging to class ci; Nfn, the number of times f occurs without ci; Nnci ,
the number of times ci occurs without f ; and Nnn, and the number of times
neither f nor ci occurs. Assuming the size of dataset is N , the χ measure is
defined as

CHI(f, ci) =
N × (NfciNnn −NnciNfn)2

(Nfci + Nnci)× (Nfn + Nnn)× (Nfci + Nfn)× (Nnci + Nnn)

The KL criterion measures the divergence between the distribution of fea-
tures present in a training sequence and the categories that sequence may

© 2008 by Taylor & Francis Group, LLC

364 Computational Methods of Feature Selection

belong to [14]. KL is defined as follows:

KL(f) =
m∑

i=1

Pr(ci|f)log
Pr(ci|f)
Pr(ci)

In the experiments we discuss in the next section, we found that MI per-
formed best for selecting compositional features, CHI for positional features,
and IG for conjunctive features.

Once we have performed feature generation for each feature type individ-
ually, we collect all the selected features into a mixed set. Starting with the
mixed set, we use recursive feature elimination [24] to obtain the final set of
features. A max-margin classifier similar to linear support vector machines
(SVM) produces a decision boundary to discriminate between two different
categories. The weights wi of this decision boundary can be used as feature
weights, assigned to each feature fi, to derive feature ranking. We use the
C-modified least squares (CMLS) classifier [23] to learn the decision bound-
ary and the individual feature weights. We recursively train the classifier and
remove low scoring features.

18.3.3 Feature Generation Algorithm (FGA)

The traditional feature selection approaches consider a single brute force
selection over a large set of all features of all different types. By categorizing
the features into different feature types it is possible to apply appropriate
construction and selection methods suitable to the different types. Thus we
can extract relevant features from each feature type set more efficiently than
if a single selection method had been applied to the whole set.

The type-oriented feature selection approach allows the use of different fea-
ture selection models for each type set; i.e., for a feature set whose dimension-
ality is not too high one may use a wrapper approach in the selection step,
while for a large feature type set one may use filter approaches. Also, this
allows features of different types to be generated in a parallel fashion.

In order to employ the information embedded in the selected features for
sequence prediction, we use the following algorithm:

• Feature Generation. The first stage generates feature sets for each fea-
ture type. For each defined feature type, we tightly couple the corre-
sponding feature construction step with a specified feature selection step.
We iterate through these steps to generate richer and more complex fea-
tures. During each iteration, we eliminate features that are assigned a
low selection score by the feature selection method.

• Feature Collection and Selection. We collect the features of different
types and apply another selection step. The selection method we apply
is recursive feature elimination. We recursively train the CMLS clas-
sifier and remove the low scoring features. We produce a final set of

© 2008 by Taylor & Francis Group, LLC

Feature Generation for Biological Sequence Classification 365

(a) (b)

FIGURE 18.2: Feature generation component operating in (a) uncoupled and (b)
coupled modes. When the feature generation operates in the coupled mode, the
features scoring below the decided threshold, after the feature selection step, are
not allowed to expand in the next iteration.

features originating from different feature types and different selection
procedures.

• Classification. The last stage of our algorithm builds a classifier over
the final set of features. The CMLS algorithm, described by Zhang
and Oles in [23], is a max-margin method similar to SVM. Relative to
SVM, CMLS has a smoother penalty function that allows calculation of
gradients that provide faster convergence.

While feature generation remains a computationally intensive process, the
organization of the generation process according to the different types allows
us to search a much larger space efficiently. In addition, this feature generation
approach has other advantages such as the flexibility to adapt with respect
to the feature type and the possibility to incorporate the module in a generic
learning algorithm. To deal with the large number of features, we use CMLS,
which is very efficient.

The feature generation stage is also very generic and offers the flexibility to
accomodate several different scenarios. This component may operate in the
coupled or uncoupled mode, as shown in Figure 18.2.

When this component is in the uncoupled mode (see Figure 18.2(a)), the
feature construction and selection steps are independent of each other. All
the features constructed in iteration step i, regardless of the scores they are
assigned by the feature selection method, are used in the next feature con-
struction step. This mode allows even the low scoring features to expand in
the next iteration. In the experiments described in the following section, we
allow this component to operate in the uncoupled mode during compositional
features generation.

© 2008 by Taylor & Francis Group, LLC

366 Computational Methods of Feature Selection

When this component is in the coupled mode (see Figure 18.2(b)), the
quality of the features produced by the feature construction method in the
next iteration depends on the ability of the feature selection method to detect
the useful features in the current iteration. The features scoring below the
decided threshold are not allowed to expand in the next iteration. This mode
of operation is useful when the dimensionality of the feature set is very high,
as is the case in our experiments with conjunctive positional features.

18.4 Experiments and Discussion

We conducted a wide range of experiments and here we present a summary
of them. We discuss our results based on these performance evaluation cri-
teria: 11-point average precision, false positive rate, and Receiver Operating
Characteristic analysis. For any recall ratio, one can calculate the precision
at the threshold, which achieves that recall ratio. The average precision of 11
recall points (11ptAvg Precision) [16] is calculated as follows. The 11ptAvg
Precision is the average of precisions estimated at recall values 0%, 10%,
20%, ..., 100%. The ability of our algorithm to discriminate true splice-site
sequences from normal sequences is also evaluated using Receiver Operating
Characteristic (ROC) curve analysis. Another performance measure com-
monly used for biological data is the false positive rate (FPr) , defined as
FPr =

(
FP

FP+TN

)
, where FP and TN are the number of false positives and

true negatives, respectively. FPr can be computed for all recall values by
varying the decision threshold of the classifier. We also present results us-
ing this measure. In all our experiments, the results reported use three-fold
cross-validation.

18.4.1 Data Description

The dataset used for feature generation is a collection of 4, 000 human Ref-
Seq pre-mRNA sequences. All the splice sites in these pre-mRNA sequences
contain the consensus di-nucleotides AG for acceptors and GT for donors.
Following the GeneSplicer format, we marked the splice sites and formed
subsequences consisting of 80 nucleotides upstream and 80 nucleotides down-
stream from the sites. We constructed negative examples for the acceptor or
donor datasets by choosing random AG-pair or GT-pair locations that were
not annotated splice sites and selecting subsequences as we did for the true
sites. The acceptor site data contains 20,996 positive instances and 200,000
negative instances. The donor site data contains 20,761 true positive instances
and 200,000 negative instances. For further evaluation we tested the classifi-
cation model of the final set of features on the B2hum dataset, provided by the

© 2008 by Taylor & Francis Group, LLC

Feature Generation for Biological Sequence Classification 367

GeneSplicer team. This dataset contains 1,115 human pre-mRNA sequences.
There is no overlap between the set of these sequences and the set the FGA
algorithm is trained on.

Next, we discuss the prediction of acceptor and donor splice sites using the
feature generation algorithm. Acceptor splice-site prediction is considered to
be a harder problem than donor, which is characterized by a better conserved
sequence.

18.4.2 Feature Generation

We begin with a brief evaluation of the effectiveness of the different feature
types used in isolation.

Compositional features and region-specific compositional features
K-mer composition plays an important role in distinguishing sites and func-
tional regions. In this analysis we aim to identify those k-mer features that
can help recognize the splice sites. We examine each k-mer feature set inde-
pendently for each value of k from 2 to 6. Figure 18.3 shows the process of
feature generation for general and region-specific feature sets for the donor
and acceptor dataset. We show the accuracy results for each general k-mer
and region-specific k-mer feature sets after each iteration. In these experi-
ments, after ranking the features according to each feature selection score, we
selected the top 50% for each value of k. The MI selection method worked the
best for compositional features. The results show that k-mer features carry
more information when they are associated with a specific region (upstream
or downstream), and this is shown by the significant increase in their 11ptAvg
precisions.

(a) (b)

FIGURE 18.3: Feature generation comparison for performances of different fea-
ture type sets, general k-mers, upstream k-mers, and downstream k-mers, shown for
different values of k for (a) acceptor splice-site prediction and (b) donor splice-site
prediction

© 2008 by Taylor & Francis Group, LLC

368 Computational Methods of Feature Selection

Positional features Next, we examine each position-specific k-mer fea-
ture set. K-mer compositional features adjacent to a particular site position
may be used to discriminate such a site. In this analysis we explore k-values
from 1 to 6. The prediction results for this feature type are shown in Table
18.1(a) for the acceptor splice-site prediction, and in Table 18.1(b) for the
donor site. After each generation step we observe a gradual increase in per-
formance until level 3, followed by a gradual decrease. This can be explained
with the exponential increase in the number of features after each level; i.e.,
the feature set of position-specific 6-mers contains more than 600, 000 fea-
tures. The statistics generated from the donor and acceptor datasets are not
enough, so we experience this form of overfitting. In Table 18.1 we also list
11ptAvg precision results for the position-specific k-mer feature sets on accep-
tor and donor data when we use the IG, MI, CHI, and KL feature selection
methods to select the best 1, 000 scoring features. The IG and CHI feature
selection methods have a similar behavior. Our paired t-tests for statistical
significance on the difference between their results reveal that the differences
in these values are not statistically significant. The results on the position-
specific 6-mer features on both datasets and position-specific 4-mer features
for the acceptor data were statistically significant. The KL distance shows a
good performance initially, but does not work well for more aggressive feature
selections. This is most relevant for the set of position-specific 6-mers, where
we have the largest reduction in feature set size. The MI method seems to be
unreliable for the set of position-specific 3-mers for the donor data, but works
well for the other cases. We choose CHI to work with this feature type, but
IG would also be a good choice.

Conjunctive positional features Finally, we examine conjunctive posi-
tional features. Small groups of nucleotides adjacent to particular site posi-
tions, not necessarily adjacent to each other, may show a tendency to co-occur,
therefore they may be used to discriminate the site. These feature sets are
extremely large; for example, even for just three conjuncts there are 40 mil-
lion unique combinations. We explored sets of 2 to 6 conjuncts denoted as
P2, P3, P4, P5, P6. At each level, we used the IG selection method to select
the top scoring 1, 000 features. We repeated the generation using this selected
set to produce the next level of features.

Figure 18.4 depicts the performances of the conjunctive feature sets for
acceptor and donor data. For comparison, we introduce a baseline method,
which is the average of 10 trials of randomly picking 1, 000 conjunctive features
from each level. We can see from the graphs in Figure 18.4 that the feature
generation algorithm is picking up informative features that help distinguish
the true splice-site locations. The 11ptAvg precision of these feature sets
gradually drops as we generate more complex features. This happens because
the feature set that is explored grows exponentially with each addition of
another conjunct. The difference in precision values, however, between FGA
and the baseline method is highly significant on every value of k (alpha =

© 2008 by Taylor & Francis Group, LLC

Feature Generation for Biological Sequence Classification 369

TABLE 18.1: Feature generation comparison for position-specific k-mer
features for k from 1 to 6 for (a) acceptor and (b) donor splice-site
predictions. We give the 11ptAvg precision for each set when all the features
are used and for each selected set with different selection methods.

(a)
Pspec-Kmer 11ptAvg (Acc) IG-1,000 MI-1,000 CHI-1,000 KL-1,000

1 79.85 - - - -
2 85.96 84.91 76.49 84.68 84.84
3 86.54 82.43 74.36 82.46 79.54
4 84.92 73.94 72.59 75.96 70.09
5 80.60 72.59 71.94 72.65 60.94
6 68.64 58.84 58.58 59.31 30.27

(b)
Pspec-Kmer 11ptAvg (Don) IG-1,000 MI-1,000 CHI-1,000 KL-1,000

1 82.11 - - - -
2 86.47 85.61 82.75 85.02 85.20
3 87.46 84.58 65.42 84.45 84.06
4 87.31 80.80 79.15 80.77 77.18
5 86.31 80.34 80.93 80.48 77.77
6 84.93 68.94 70.16 70.35 47.21

0.005). Moreover, the generated features of this type can capture important
functional biological signals.

18.4.3 Prediction Results for Individual Feature Types

Next, we compared collections of different levels of the feature sets of dif-
ferent types. The results are summarized in Figure 18.5.

Compositional features and region-specific compositional fea-
tures The first three bars in Figure 18.5(a) show the results for the best
k-mer features for k ranging from 2 to 6 on acceptor data. The general k-mer
feature set contains 700 features and the 11ptAvg precision is 39.84%. The up-
stream and downstream k-mer feature sets sizes are 1, 500 features and 1, 800
features, and their results are respectively 58.77% and 52.01%. Similarly in
Figure 18.5(b), the first three bars summarize the results for the general and
region-specific k-mer features on donor data. The general k-mer feature set
contains 1, 000 features and its 11ptAvg precision is 47.82%. The upstream
and downstream k-mer feature sets sizes are 1, 200 features each, and their
results are respectively 62.52% and 60.65%.

Position-specific k-mers The fourth bar shows the results for position
specific 1-mers. The respective precision results are 80.27% for acceptor data
and 82.11% for donor data. The next bar in Figure 18.5(a) shows 5, 000

© 2008 by Taylor & Francis Group, LLC

370 Computational Methods of Feature Selection

(a) (b)

FIGURE 18.4: 11ptAvg results for the position-specific feature sets generated
with the FGA algorithm vs. randomly generated features for (a) acceptor splice site
data and (b) donor splice-site data

position-specific k-mer features selected using the CHI selection method. The
11ptAvg precision of this set is 85.94%. The result for 5, 000 position-specific
k-mer features on donor data is 86.67%, represented by the fifth bar in Figure
18.5(b).

Conjunctive positional features The sixth bars on both graphs in Fig-
ure 18.5 show the results for conjunctive positional features. For acceptor
data we have a collection of 3, 000 conjunctive positional features for k rang-
ing from 2 to 6 selected using IG. The 11ptAvg precision that this collection
set gives is 82.67%. The collection of conjunctive positional features for donor
data results in an 11ptAvg precision of 83.95%. These results clearly show
that using complex position-specific features is beneficial. Interestingly, these
features typically are not considered by existing splice-site prediction algo-
rithms.

Figure 18.5 also shows the performance of GeneSplicer on the same datasets
as the last bar in the graph. We see that even in isolation, our positional fea-
tures and our conjunctive positional features perform better than GeneSplicer.
These results are also statistically significant.

18.4.4 Splice-Site Prediction with FGA Features

Once we collect all the features that we presented in Figure 18.5, general
k-mers, upstream/downstream k-mers, position-specific k-mers, and conjunc-
tive position-specific features, we run the CMLS classification algorithm for
both acceptor and donor. We achieve 11ptAvg precision performances of
92.08% and 89.70%, respectively, in the acceptor and donor datasets that we
built from the initial 4, 000 RefSeq pre-mRNA sequences. These improve-
ments are highly statistically significant (α = 0.005 for both acceptor and

© 2008 by Taylor & Francis Group, LLC

Feature Generation for Biological Sequence Classification 371

(a) (b)

FIGURE 18.5: Performance results of the FGA method for different feature types
as well as the GeneSplicer program in (a) acceptor splice data and (b) donor splice
data. The depicted feature sets are as follows: Gen - selected general k-mers; Up -
selected upstream k-mers; Down - selected downstream k-mers; P1 - position-specific
nucleotides; P-Kmer - selected position-specific k-mers, comprising features from all
considered values of k; P-All - conjunctive positional features comprising selected
features for P2, P3, P4, P5, and P6.

donor) over one of the leading programs in splice-site prediction, GeneSplicer,
which yields 11ptAvg precisions of 81.89% and 80.10% on the same datasets.
The precision results of FGA-generated features at all individual recall points,
shown in Figure 18.6, are consistently higher than those of GeneSplicer for
both acceptor and donor site prediction. The break-even points for acceptor
splice-site prediction for FGA and GeneSplicer are 67.8% and 54.9%, respec-
tively. Donor splice-site prediction produced break-even values of 66.7% and
58.7%, respectively, for FGA and GeneSplicer.

In Figures 18.7(a) and 18.7(b) we explore more aggressive feature selection
options using the more expensive recursive feature elimination method in order
to select a smaller working feature set. The recursive feature elimination
shows that the generated features using this algorithm are very robust. For
donor splice-site prediction, even the feature set of size 500 yields an 11ptAvg
precision of 89.66%. This is an improvement of 9.56% over GeneSplicer on
the same dataset. For acceptor splice-site prediction, even the feature set of
size 1, 000 yields an 11ptAvg precision of 91.01%. This is an improvement of
9.12% over GeneSplicer on the same dataset.

Next, for further evaluation, we test both algorithms on the B2hum dataset
provided by the GeneSplicer team, which contains 1, 115 human pre-mRNA
sequences. The FGA final feature sets for acceptor and donor splice-site pre-
diction contain 3, 000 and 1, 500 features, respectively. In Figures 18.8(a)
and (b) we present the false positive rates for a range of recall values from
5% to 95%. Figures 18.8(a) and (b) are actually ROC curves with the false

© 2008 by Taylor & Francis Group, LLC

372 Computational Methods of Feature Selection

(a) (b)

FIGURE 18.6: Precision results for each recall value for FGA with the complete
set of features compared to GeneSplicer for (a) acceptor and (b) donor data.

positive rate shown on the y-axis. If we compare the AUC values for FGA
and GeneSplicer, we get the following results. In the task of acceptor splice-
site prediction, the FGA algorithm and GeneSplicer respectively score 99.37%
and 98.71%. In the task of donor splice-site prediction, the AUC scores are
99.25% and 98.58% for FGA and GeneSplicer, respectively. The feature gen-
eration algorithm, with its rich set of features, consistently performs better
than GeneSplicer in the B2hum dataset as well, which is the dataset the latter
algorithm is trained on. FGA false positive rates, as depicted in Figure 18.8,
are favorably lower at all recall values. At a 95% sensitivity rate, the FPr
decreased from 6.2% to 2.5% for acceptor and from 6.7% to 3.3% for donor
splice-site predictions. This significant reduction in false positive predictions
can have a great impact when splice-site prediction is incorporated into a
gene-finding program.

It should also be noted that there is no significant difference in the running
time of FGA compared to GeneSplicer. Once the final set of features is de-
termined, FGA performs a linear search (in terms of sequence length) along
the given sequence in search of high scoring sites.

18.5 Conclusions

We have presented a general feature generation framework that integrates
feature construction and feature selection in a flexible manner. We showed
how this method can be used to build accurate sequence classifiers. We pre-
sented experimental results for the problem of splice-site prediction. Using the
feature generation approach, we were able to search over an extremely large

© 2008 by Taylor & Francis Group, LLC

Feature Generation for Biological Sequence Classification 373

(a) (b)

FIGURE 18.7: 11ptAvg precision results for FGA compared to GeneSplicer for
(a) acceptor and (b) donor data. We start with the complete set of features and
recursively train the algorithm, eliminating 1,000 features at a time.

(a) (b)

FIGURE 18.8: The false positive rate results for FGA with the final feature set
compared to GeneSplicer, varying the recall threshold for (a) acceptor and (b) donor
data.

space of feature sets effectively, and we were able to identify the most useful set
of features of each type. By using this mix of feature types, and searching over
their combinations, we were able to build classifiers that achieved accuracy
improvements of 10.6% and 9.5% over an existing state-of-the-art splice-site
prediction algorithm. The specificity values are consistently higher for all sen-
sitivity thresholds and the false positive rate has favorably decreased. These
features have also shown a propensity to describe biologically significant func-
tional elements. They are freely available to all interested researchers, and can
be viewed at http://www.cs.umd.edu/projects/SplicePort/. This algorithm,
with its systematic feature generation basis, can be applied to more complex
feature types and other sequence prediction tasks, such as translation start-

© 2008 by Taylor & Francis Group, LLC

http://www.cs.umd.edu

374 Computational Methods of Feature Selection

site prediction, protein sequence classification problems, etc. Moreover, it can
easily be extended to genomic data of other organisms.

References

[1] A. K. M. A. Baten, B. C. H. Chang, S. K. Halgamuge, and J. Li. Splice
site identification using probabilistic parameters and svm classification.
BMC Bioinformatics, 7(S5), 2006.

[2] A. Blum and P. Langley. Selection of relevant features and examples in
machine learning. Artificial Intelligence, 97(1-2):245–271, 1997.

[3] C. Burge and S. Karlin. Prediction of complete gene structures in human
genomic dna. Journal of Molecular Biology, 268(1):78–94, 1997.

[4] S. Degroeve, B. D. Baets, Y. V. de Peer, and P. Rouze. Feature sub-
set selection for splice site prediction. In Proceedings of the European
Conference on Computational Biology (ECCB 2002), pages 75–83, 2002.

[5] S. Degroeve, Y. Saeys, B. D. Baets, P. Rouze, and Y. V. D. Peer.
Splicemachine: predicting splice sites from high-dimensional local con-
text representations. Bioinformatics, 21(8):1332–1338, 2005.

[6] R. Guigo, P. Filcek, J. Abril, A. Reymond, J. Lagarde, F. Denoeud,
S. Antonarakis, M. Ashburner, V. Bajic, E. Birney, R. Castelo, E. Eyras,
C. Ucla, T. Gingeras, J. Harrow, T. Hubbard, S. Lewis, and M. Reese.
Egasp: the human encode genome annotation assessment project.
Genome Biology, 7(S2), 2006.

[7] R. Islamaj, L. Getoor, and W. J. Wilbur. Feature generation algorithm:
Application to splice-site prediction. In International Workshop on Fea-
ture Selection for Data Mining: Interfacing Machine Learning and Statis-
tics, 2006.

[8] R. Islamaj, L. Getoor, and W. J. Wilbur. A feature generation algorithm
for sequences with application to splice-site prediction. In Proceedings of
the 10th European Conference on Principles and Practice of Knowledge
Discovery in Databases, 2006.

[9] R. Kohavi and G. H. John. Wrappers for feature subset selection. Arti-
ficial Intelligence, 97(1-2):273–324, 1997.

[10] D. Koller and M. Sahami. Toward optimal feature selection. In Interna-
tional Conference on Machine Learning, pages 284–292, 1996.

[11] H. Liu and H. Motoda. Feature Extraction, Construction and Selection:

© 2008 by Taylor & Francis Group, LLC

Feature Generation for Biological Sequence Classification 375

A Data Mining Perspective. Kluwer Academic Publishers, Norwell, MA,
1998.

[12] H. Liu and L. Wong. Data mining tools for biological sequences. Journal
of Bioinformatics and Computational Biology, 1:139–168, 2003.

[13] M. Pertea, X. Lin, and S. L. Salzberg. Genesplicer: a new computational
method for splice site prediction. Nucleic Acids Research, 29(5):1185–
1190, 2001.

[14] K.-M. Schneider. A new feature selection score for multinomial naive
bayes text classification based on kl-divergence. In Meeting of the Asso-
ciation of Computational Linguistics (ACL), pages 186–189, 2004.

[15] R. Staden. Computer methods to locate signals in nucleic acid sequences.
Nucleic Acids Research, 12(1):505–519, 1984.

[16] I. H. Witten, A. Moffat, and T. C. Bell. Managing gigabytes (2nd ed.):
compressing and indexing documents and images. Morgan Kaufmann
Publishers Inc., San Francisco, CA, 1999.

[17] Y. Yang and J. O. Pedersen. A comparative study on feature selection in
text categorization. In Proceedings of the 14th International Conference
on Machine Learning, pages 412–420, 1997.

[18] G. Yeo and C. Burge. Maximum entropy modeling of short sequence mo-
tifs with applications to rna splicing signals. In RECOMB ’03: Proceed-
ings of the 17th Annual International Conference on Research in Com-
putational Molecular Biology, pages 322–331, 2003.

[19] L. Yu and H. Liu. Feature selection for high-dimensional data: A fast
correlation-based filter solution. In Machine Learning, Proceedings of the
20th International Conference, pages 856–863, 2003.

[20] L. Zhang and L. Luo. Splice site prediction with quadratic discriminant
analysis using diversity measure. Nucleic Acids Research, 31(21):6214–
6220, 2003.

[21] M. Q. Zhang. Statistical features of human exons and their flanking
regions. Human Molecular Genetics, 7(5):919–932, 1998.

[22] M. Q. Zhang and T. G. Marr. A weight array method for splicing signal
analysis. Computational Applications in Biological Sciences, 9(5):499–
509, 1993.

[23] T. Zhang and F. J. Oles. Text categorization based on regularized linear
classification methods. Information Retrieval, 4(1):5–31, 2001.

[24] X. H.-F. Zhang, K. A. Heller, I. Hefter, C. S. Leslie, , and L. A. Chasin.
Sequence information for the splicing of human pre-mrna identified by
support vector machine classification. Genome Research, 13(12):2637–

© 2008 by Taylor & Francis Group, LLC

376 Computational Methods of Feature Selection

2650, 2003.

© 2008 by Taylor & Francis Group, LLC

Chapter 19

An Ensemble Method for Identifying
Robust Features for Biomarker
Discovery

Diana Chan

Mississippi State University

Susan M. Bridges

Mississippi State University

Shane C. Burgess

Mississippi State University

19.1 Introduction . 377
19.2 Biomarker Discovery from Proteome Profiles . 378
19.3 Challenges of Biomarker Identification . 380
19.4 Ensemble Method for Feature Selection . 381
19.5 Feature Selection Ensemble . 383
19.6 Results and Discussion . 384
19.7 Conclusion . 389

References . 390

19.1 Introduction

Biomarker discovery has become an important area of research with the
advent of modern high throughput technologies in biology. A biomarker is a
molecule or set of molecules that is found in the blood, other body fluids, or
tissues that exhibits a distinct pattern of expression under certain conditions
and can be used be used for a diagnostic or prognostic test [14]. Although
biomarkers can be proteins, mRNA, or metabolites, we restrict ourselves to
protein biomarkers.

Multi-step data mining pipelines, based on a wide range of statistical and
machine learning techniques, have been developed for biomarker discovery
from both mRNA and protein expression data. Both mRNA and protein
expression data are characterized by large numbers of noisy features and lim-
ited sample sizes. Such data, where the number of potential features greatly
outnumbers the number of samples, is “wide data.” Our research, as well

377

© 2008 by Taylor & Francis Group, LLC

378 Computational Methods of Feature Selection

as that of others, has shown that it is possible, using different data mining
approaches, to identify many distinct sets of features from a single dataset
that can provide near perfect classification. However, a major challenge for
biomarker research is to locate features that are robust in the sense that they
yield highly accurate results in the classification of new datasets. This prob-
lem is being addressed from two different aspects. One is to improve the
accuracy and reproducibility of the data acquisition technologies. The other,
and the one that is the focus of our work, is to improve the data mining
process. We have developed a unique ensemble-based approach for feature
selection for biomarker discovery that is based on the intuition that features
that are selected often and yield accurate classifiers, regardless of the method
used, will produce the most robust classifiers. We demonstrate that the fea-
tures selected by our ensemble method yield accurate classifiers and can be
used to build accurate classifiers with new data using two publicly available
ovarian cancer datasets [5].

19.2 Biomarker Discovery from Proteome Profiles

A biomarker is one or more proteins whose presence in a sample, at a given
level, indicates disease status. A few proteins and metabolites are already
used diagnostically in clinical pathology. However, manual identification of
one or a few biomarkers often has poor specificity and sensitivity. For exam-
ple, prostate specific antigen (PSA), the recent biomarker for prostate cancer,
mispredicts newplasia 70% of the time. Ideal biomarkers are the optimal
subset of features that can be extracted from wide datasets to consistently
discriminate between the treatment and control samples (i.e., with high speci-
ficity and sensitivity). Specific and sensitive biomarkers discriminate between
conditions and therefore can lead to improved medical screening and diagno-
sis. New high throughput technologies such as cDNA microarrays and mass
spectrometry that can rapidly measure large numbers of mRNAs, proteins, or
metabolites expressed by a tissue have prompted the use of machine learning
methods for biomarker discovery. Petricoin et al. [5, 11] were the first to
use machine learning feature selection methods to identify biomarkers when
classifying ovarian cancer patients based on patterns of protein in their serum
using mass spectrometry. Furthermore, this approach was unique because it
focused on identifying a set of peaks in the mass spectrometry profiles that
reliably distinguish normal from disease rather than definitive identification of
the differentially expressed proteins. Petricoin et al. used genetic algorithms
and self-organizing maps to discriminate samples of women with ovarian can-
cer from women without cancer. Their method was able to perfectly classify
all of the cancer samples and classify 95% of healthy samples. Their experi-
ment was based on a single test without cross-validation.

© 2008 by Taylor & Francis Group, LLC

Ensemble-Based Feature Selection for Biomarker Discovery 379

During the past few years, many other groups have used a variety of ma-
chine learning and statistical methods for biomarker discovery from proteome
profiles using the same publicly available Ovarian Cancer dataset [5]. Lilien
et al. [9] used statistical feature selection with principal component analysis
(PCA) for dimensionality reduction and linear discriminate analysis (LDA)
for classification. Their method achieved perfect classification for all of the
samples if the number items in the training sets was greater than 75% of the
total sample size. Wu et al. [18] used t-statistics and random forests (RF) as
their feature selection method for the same dataset. The t-statistic was used
first to rank the features according to the relevance of each single feature to the
dataset. Feature subsets were then selected to classify the data using different
classification algorithms including support vector machines (SVM), random
forests (RF), linear discriminant analysis (LDA), quadratic discriminant anal-
ysis (QDA), k-nearest neighbors (KNN), and bagged/boosted decision trees.
Wu et al. concluded their experiments by stating the best performance was
achieved by using RF as both feature selection and classification algorithms.

Surface-enhanced laser desorption/ionization (SELDI) and matrix-assisted
laser desorption/ionization (MALDI) and time-of-flight (TOF) mass spec-
trometry have been used most commonly for biomarker identification. Only
a brief review of each will be given here. SELDI-TOF and MALDI-TOF are
similar in that they use mass spectrometers to record patterns of proteins ion-
ized from the surface of a plate; have a relatively high tolerance for salt (into
the millimolar range); may be sensitive to the fmole range required of biolog-
ical samples; can be used to measure carbohydrates, oligonucleotides, small
polar molecules, as well as peptides, proteins, and their post-translationally-
modified forms such as glyco- and phosphor-proteins; and are versatile, con-
venient, and can rapidly produce lists of many protein or peptide “peaks”
that may be altered in their concentration in a biological sample as a result
of a disease state. Both SELDI- and MALDI-TOF record patterns of masses
divided by the charge that they carry (m/z; generally +1 or +2), with m/z
ranging from less than 1000 Da (small peptides) to a maximum of 300 kDa.
These mass spectral patterns can be used to differentiate classes of samples
without actual identification of the proteins. There are main two differences
between SELDI and MALDI. First, in SELDI, the ionization requires a thin
metal “chip”(Ciphergen Biosystems, Fremont, CA), which has an affinity for
either all proteins in a particular sample or proteins with particular biophys-
ical characteristics (e.g., acidic, basic, hydrophobic, or specific antigenicity)
depending on the nature of the chip surface. After sample application and
washing, ionization occurs directly from the plate (i.e., “surface enhanced”).
In contrast, MALDI plates are not selective and chromatography is done “off-
line.” The second difference is that, in MALDI, before the samples are applied
to the metal MALDI plate, they are mixed with energy-absorbing compounds
called a chemical “matrix,” which contain small chromophores that absorb
light at a given wavelength. Commonly used matrix chemicals are -cyano-4-
hydroxycinnamic acid (CHCA), 3,5-dimethoxy-4-hydroxycinnamic (sinapinic)

© 2008 by Taylor & Francis Group, LLC

380 Computational Methods of Feature Selection

acid, and 2,5-dihydroxybenzoic (gentisic) acid. After spotting to the metal
plate, evaporation of water and solvents from the mixture results in sample
proteins embedded in a crystalline lattice made up of matrix molecules.

0

20

40

60

80

100

120

1 2001 4001 6001 8001 10001 12001 14001

Cancer Sample

m/z

in
te

ns
it

y

0

20

40

60

80

100

120

1 2001 4001 6001 8001 10001 12001 14001

Non-Cancer Sample

in
te

ns
it

y

FIGURE 19.1: Spectra of cancer sample and non-cancer sample from Ovarian
Cancer Dataset 8-7-02.

The datasets generated by SELDI-TOF and MALDI-TOF consist of tens of
thousands of m/z measurements or “features.” Because of expense and lim-
ited availability of samples, the total number of available instances is generally
limited to tens to hundreds of samples. Figure 19.1 shows example spectra
from a normal and a cancer sample from Ovarian Cancer Dataset 8-7-02 from
the work of Petrocoin et al. [11]. The data was downloaded from the Clinical
Proteomics Program Databank Website [5]. The m/z values located on the
x-axis are the features that data-mining methods must choose from to find fea-
tures that consistently distinguish between treatment and control samples. In
this dataset, there are 15,154 distinct m/z values or 15,154 potential features.
The dataset consists of 91 normal and 162 cancer samples.

19.3 Challenges of Biomarker Identification

Subsequent research by Petricoin’s group and others has demonstrated the
challenges of reproducibility of feature selection for biomarker discovery. A
recent commentary by Ransohoff [12] and articles by Petricoin [10] and Bag-
gerly [3] provide a nice overview of the issues involved. Researchers have

m/z

© 2008 by Taylor & Francis Group, LLC

Ensemble-Based Feature Selection for Biomarker Discovery 381

found that it is not possible to identify a single m/z value that will accurately
distinguish between treatment and control samples for the entire serum profile
[6]. Therefore, feature selection algorithms have been widely used to select a
subset of features as biomarkers to distinguish between treatment and control
samples.

A number of different machine learning and data mining techniques have
been shown to be effective in locating biomarkers for analysis of mass spec-
trometry profiles from wide datasets. Although these methods are able to
classify a single dataset with high accuracy, it has proven to be very dif-
ficult to reproduce the results across new independent datasets. Problems
with reproducibility result from 1) “the lack of a common standard operating
procedure between different labs, reproducibility between different machines,
and the variation of the research instruments” [7], and 2) selection of feature
subsets that are not effective with new data [3]. This chapter describes an
ensemble-based feature selection technique that selects a set of robust features
that are able to provide reproducibly high accuracy with new datasets. The
ensemble method is used to maximize the robustness of the features by using
several different methods for each step of the pre-processing, feature selec-
tion, and classification steps and then selecting those features that appear
often in accurate classifiers. We use Petricoin’s ovarian cancer dataset [5] to
demonstrate that the features selected by our ensemble method yield accurate
classifiers and can be used to build an accurate classifier with new data.

19.4 Ensemble Method for Feature Selection

Data mining procedures for analyzing mass spectrometry profiles generally
involve a number of steps including data preprocessing, feature selection, and
classification model building. The choices used for different aspects of the
data mining procedure have a significant impact on the features selected and
the performance of the resulting classifier. We propose a framework for fea-
ture selection for wide data that is based on the intuition that features that
are selected often under varying preprocessing steps, feature selection meth-
ods, and classification algorithms are more likely to be robust. The ensemble
method rewards features that are selected frequently and that result in accu-
rate classification. The major steps in the process of the ensemble method for
feature selection are

1. Establish a general data mining process.

2. Use a voting procedure for features that rewards features that occur in
many accurate classifiers.

3. Build and test a classifier with the features accruing the most votes.

© 2008 by Taylor & Francis Group, LLC

382 Computational Methods of Feature Selection

 Normalization

Statistical Feature Selection

Binning

Secondary Feature Selection

Classification

FIGURE 19.2: Data mining process for biomarker selection.

TABLE 19.1: Options for each step in the data mining process.

Data Mining Step Options

Normalization None
NV
Z-score

Statistical feature pre-Selection Wilcoxon test
Binning Minimum p-value

Maximum average intensity
Secondary feature selection None

CFS with greedy search
CFS with BFS search
CFS with genetic search
Wrapper with greedy search
Wrapper with BFS search
Wrapper with genetic search
Principal component analysis

Classifier Back propagation neural networks
Naive Bayes
Decision tree
Support vector machines

A number of different data mining procedures for biomarker identification
have been described in the literature (e.g., [8, 9, 11, 16, 18, 19]). The overall
data mining process that we have used for this study is similar to that used by
Sorace and Zhan [13] (see Figure 19.2), but our ensemble-based approach can
easily be applied with any data mining procedure where a number of options
are available for each step. Table 19.1 summarizes the different options that
we have considered for steps in the data mining process that we have used.

We briefly discuss the options used for each step in the data mining process
shown in Table 19.1. Two normalization procedures were used for this study:
z-score and normalized value (NV) [4]. Intensity values without normalization

© 2008 by Taylor & Francis Group, LLC

Ensemble-Based Feature Selection for Biomarker Discovery 383

are used as a third alternative for this step. In situations where the number
of features is huge compared to the number of samples, statistical tests can be
used to select fewer features by eliminating redundant or irrelevant features
to distinguish cancer from non-cancer samples. The two-sided Wilcoxon test
was used for the first level of feature selection to compare the intensity at each
of the m/z values for all samples and to identify the m/z values that are most
discriminative between cancer and control samples. The 100 m/z values with
the lowest p-values were selected as the initial feature subset for later feature
selection. Many of the m/z values that pass the Wilcoxon filter represent the
same peak. A binning procedure similar to that used by Sorace and Zhan [13]
was used to combine these values into bins if their values were separated by
less than 1 m/z. Two different methods were used to choose a representative
m/z value for each bin. For the first method, the m/z value with the lowest
p-value in each bin was selected. This m/z value indicates that it is the most
discriminating value between the cancer and control samples for the bin. The
second method selects the m/z value with the highest average intensity value
across all samples as the representative m/z value.

The first three pre-processing steps provide six different combinations of
features in terms of normalization and binning. A second round of selection
was used to further reduce the number of features used to train the classifier.
Feature selection at this stage is a search through the space of possible combi-
nations of features and is driven by two procedures: attribute evaluation and
the search procedure. The attribute evaluator is used to determine the quality
of the individual feature for classification. The search procedure determines
how the search space of possible features is explored. Different combinations
of attribute evaluation and search procedures were used to generate different
feature subsets for the ensemble method. Three different search procedures
(greedy, best first, and genetic) were used with the CFS and wrapper attribute
selection methods yielding a total of six options. Principal components analy-
sis with ranking selection and no secondary feature selection (none) were used
as two additional options, giving a total of eight methods for secondary feature
selection. Four different options were used to construct ensemble classifiers
for feature selection: backpropagation neural networks, naive Bayes, decision
trees, and support vector machines.

19.5 Feature Selection Ensemble

Ensemble approaches are typically used to build robust classifiers where
a number of different classifiers vote to provide the class for a new sample.
However, in our case, the ensemble of classifiers is used to vote for features
rather than class labels.

Ensembles are based on the idea of combining multiple classifiers by taking a
linear combination of the learners via voting. Ensemble methods require both
a method for generating members of the ensemble and a voting procedure.

© 2008 by Taylor & Francis Group, LLC

384 Computational Methods of Feature Selection

We have generated the members of the ensemble by using all combinations
of options for the data mining procedure that are shown in Table 19.1. The
product of the number of options at each step gives the total number of clas-
sifiers generated (192). The 10-fold cross validation accuracy of each classifier
and the set of features used by each classifier were recorded. A total of 47
unique features were selected by at least one classifier and were evaluated by
the voting procedure.

The voting procedure for our ensemble methods works as follows. For each
feature (m/z value) that was selected for use by at least one classifier, both
a feature score and a weighted feature score were computed. Note that m/z
values within 1 were considered to be the same. Features with higher weighted
feature scores will be selected over other features. The feature score for a
feature fj is the sum of the accuracy values for all classifiers that included
the feature. This score rewards features that are selected often by accurate
classifiers. The weighted score is a modification of the feature score where the
accuracy for each classifier is divided by the number of features selected. This
scoring method favors frequently selected features that are members of small
feature sets that yield accurate classifiers.

More formally, the feature score, s(fj), and weighted feature score, ws(fj),
for feature fj are defined as follows:

s(fj) =
N∑

i−1

eijai (19.1)

ws(fj) =
N∑

i−1

(
1
Fi

)eijai (19.2)

where N is the number of classifiers, eij = 1 if fj is a feature selected for
classifier i, ai is the accuracy of classifier i, and Fi is the number of features
for classifier i. After all features were scored, a classifier was constructed using
the highest scoring features.

19.6 Results and Discussion

We have used the publicly available Ovarian Cancer Dataset to test the
ensemble-based feature selection approach. Two datasets, the SELDI 8-7-02
and 4-3-02 Ovarian Datasets, were downloaded from the Clinical Proteomics
Program Databank Website [5]. We first tested the capabilities of the features
identified using the ensemble method for the first dataset, 8-7-02. It is also
important to determine if the features selected by the ensemble method can
perform better in classifying another dataset, which was collected at another

© 2008 by Taylor & Francis Group, LLC

Ensemble-Based Feature Selection for Biomarker Discovery 385

time. The second dataset, Ovarian Cancer dataset 4-3-02, was used to test
the robustness of the features selected using the ensemble approach from the
first dataset.

The 8-7-02 dataset includes serum profiles of 91 non-cancer controls and
162 cancer subjects. Each spectrum consists of 15,154 distinct m/z values
(potential features). The 4-3-02 dataset consists of samples from 50 unaffected
women and another 50 patients with ovarian cancer [5] and has the same
number of m/z values for each sample. This dataset was used as a validation
step to test the accuracy of the features selected using the 8-7-02 dataset to
build a classifier for the 4-3-02 dataset.

In order to test the ensemble approach for feature selection, we generated
the ensemble for each dataset as previously discussed. We then used the
voting procedure to find a robust set of features and then constructed a single
classifier to test the ensemble-based feature set. We have chosen not to use an
ensemble method such as AdaBoost for the final classifier in order to simplify
the analysis.

The ensemble feature selection method provides both a feature score s and
a weighted feature score ws for each feature selected by any classifier in the
ensemble. Preliminary experimental results indicated that ws scoring outper-
forms s scoring. The results reported are based on ws scoring. When building
the final classifier, the m/z with the highest ws was first added to the fea-
ture subset for classification. Features were added in decreased order of ws
until both classification accuracy and relative absolute error (RAE) did not
improve. When used with the 8-7-02 dataset, the six features with the highest
ws are (in decreasing order of ws): m/z = 245.24466, 261.88643, 435.07512,
2.8548732, 433.90794, and 222.41828. These features were used to build four
different classifiers using neural net, naive Bayes, decision tree, and support
vector machine models. The accuracy and relative absolute error (RAE) for
all classifiers are shown in Figures 19.3 and 19.4. The graphs plot the classi-
fication accuracy and RAE as each additional feature was added to the final
feature subset. RAE is the relative absolute error computed by comparing the
absolute error with the one obtained if the prediction had been the mean of
the class values [17]. Ten-fold cross validation was used to compute classifier
accuracy for all experiments.

Perfect classification accuracy was achieved for the first four features with
the neural net, decision tree, and SVM classifiers. The SVM had a perfect
RAE of zero with these four features. The neural net and decision tree models
required the addition of two more features to reach a minimum RAE and never
had an RAE as low as the SVM. The naive Bayes model had a higher RAE
and lower accuracy than the other three models.

As an additional validation step, the set of six features selected using the 8-
7-02 dataset was subsequently used to build a classifier for a different dataset,
the 4-3-02 Ovarian Dataset [5]. Ten-fold cross validation with the 4-3-02
dataset using the six features selected with the 8-7-02 dataset resulted in a
neural net classifier with a classification accuracy of 88%. However, these

© 2008 by Taylor & Francis Group, LLC

386 Computational Methods of Feature Selection

Features (m/z values) in order added

P
er

ce
n

t
ac

cu
ra

cy

95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

245.2446 261.8864 435.0751 2.8548 433.9079 222.4183

neural net
svm
decision tree
naive Bayes

FIGURE 19.3: Classification accuracy (10-fold cross validation) with features
added sequentially in decreasing order of weight for four types of classifiers

six features did not yield accurate classifiers for the naive Bayes, decision
trees, or support vector machine models. If the top 13 features selected using
the 8-7-02 dataset are used, classification accuracy increases for all classifiers.
Table 19.2 summarizes the results of using the feature subsets selected by the
ensemble method for dataset 8-7-02 and used to build classifiers for the 4-3-
02 dataset. Results are based on 10-fold cross validation. Classifiers based
on neural nets and decision trees have better classification performance than
näıve Bayes and support vector machines for dataset 4-3-02.

Baggerly et al. [2] were not able to reproduce results from these two datasets
using features selected by genetic algorithms partly due to calibration prob-

© 2008 by Taylor & Francis Group, LLC

Ensemble-Based Feature Selection for Biomarker Discovery 387

lems. Table 19.3 shows the features selected by other researchers for the 8-7-02
dataset. Two m/z values are considered the same if the difference between
the two values is less than 1 Th. Some of the features we selected overlap
with features selected by others. To measure the robustness of the features
selected by other researchers, the seven features selected by Sorace and Zhan
[13] based on the 8-07-02 dataset were used to classify dataset 4-3-02. These
features are listed in Table 19.3. The last column of Table 19.2 gives the accu-
racy rates of different types of classifiers that were constructed with the seven
features selected by Sorace and Zhan. The accuracy rates of these classifiers
are substantially less than those of the classifiers based on our features. In

Features (m/z values) in order selected

R
el

at
iv

e
ab

so
lu

te
 e

rr
o

r

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

245.2447 261.8864 435.0751 2.8549 433.9079 222.4182

neural net
svm
decision tree
naive Bayes

FIGURE 19.4: Relative absolute error (RAE) (10-fold cross validation) with fea-
tures added sequentially in decreasing order of weight for four types of classifier

© 2008 by Taylor & Francis Group, LLC

388 Computational Methods of Feature Selection

TABLE 19.2: Classification accuracies with different 8-7-02 feature
subsets for dataset 4-3-02.

Ensemble fea-
ture subset: 6
features

Ensemble fea-
ture subset: 13
features

Sorace and Zhan
[13] features: 7
features

Neural nets 88% 90% 73%
Näıve Bayes 82% 83% 70%
Decision trees 79% 92% 73%
Support vector
machines

79% 82% 72%

TABLE 19.3: Comparison of the features selected by other
researchers and those selected by our method. Features (m/z
values) shown in bold were selected by our ensemble method.

Alex at al. [1] 245.8296, 261.88643, 336.6502,
418.8773, 435.46452, 437.0239,
465.97198, 687.38131, 4004.826

Sorace and Zhan [13] 2.7921, 245.53704, 261.8864, 418.1136,
435.0751, 464.3617, 4003.645 (these fea-
tures were selected by stepwise discrimi-
nant analysis according to Rule 1)

Vannucci at al. [15] 245.3, 433.2, 434.6, 243.9, 430.6, 241.3,
437.2, 605.2, 431.9

Our work 2.8549, 222.4183, 245.2447,
2661.8864, 433.9079, 435.0751

addition, the ensemble method ranks all of the features and offers the flexi-
bility of allowing the researcher to include additional features in the feature
subset to classify another dataset in order to improve performance.

We have also conducted an experiment comparing the performance of neural
net classifiers based on a single path through the data mining procedure (one
option at each step) and the performance of a neural net classifier based on the
features selected using our ensemble method for dataset 4-3-02. The options
used to build the “single option” classifiers and the ensemble methods are
shown in Table 19.4.

Figure 19.5 shows that, although the feature sets generated from these single
option feature selection methods are able to classify the first dataset 8-7-02
with almost 100% accuracy, the performance degrades substantially if these
features are used to classify another dataset, 4-3-02. The feature set selected
by the ensemble method achieves much higher accuracy with the new dataset.

Our experiments do not offer evidence to show which normalization method,
binning method, feature selection method, and search method can improve
classification with a new dataset. Feature sets B, C, and D are able to achieve

© 2008 by Taylor & Francis Group, LLC

Ensemble-Based Feature Selection for Biomarker Discovery 389

TABLE 19.4: Data mining options used to select features using a
single option for feature selection (A–F) and the ensemble method.

Feature

Set

Normaliza-

tion

Binning Feature

Selection

Method

Feature

Selection

Search

Method

Number

of

Features

A None MaxAvgInt CFS Greedy 2
B NV MaxAvgInt CFS BFS 7
C None MinP None None 24
D None MaxAvgInt None None 24
E NV MaxAvgInt PC Ranker 6
F Zscore MinP Wrapper Greedy 2
Ensemble All All All All 10

perfect classification for dataset 8-7-02, but the accuracy drops by more than
10% when the feature sets are used to classify dataset 4-3-02. In addition,
there is no evidence to show the number of features has an impact on improv-
ing the classification performance of another dataset. Feature set A, consisting
of only two features, classifies the first dataset, 8-7-02, with a high accuracy of
96.84%. However, performance drops to 73% when the feature sets are used
to classify dataset 4-3-02. The feature sets consisting of many features do not
show good performance on dataset 4-3-02. There is a perfect classification
when feature set C is used to classify dataset 8-7-03, but the accuracy drops
to 76% when all 24 features are used to classify dataset 4-3-02.

19.7 Conclusion

Many different feature selection approaches can be effectively used to lo-
cate disease biomarkers. Each approach has advantages and disadvantages.
However, what is very consistent is the inconsistency of replicating biomarker
selection using different feature selection methods, and this is due to the multi-
factorial nature of the features [2]. It is also difficult to use features selected
from one dataset for classification of another dataset due to the size and nosi-
ness of the data, the variation from one biological sample to another, and the
variation due to differences in experimental procedures, between machines and
between laboratories. Here we present an ensemble framework for feature se-
lection for building classifiers with wide data. Features that are selected often,
that result in accurate classifiers, and that are part of small feature sets are
considered more robust and are favored by the weighted voting function. Us-
ing widely-studied ovarian cancer datasets, we show that the features selected

© 2008 by Taylor & Francis Group, LLC

390 Computational Methods of Feature Selection

Feature Set Selection

A
cc

u
ra

cy

0

20

40

60

80

100

A B C D E F Ensemble

96.84

100 100 100 99.6 98.81
100

78

86

76

88

80

72

91

Ovarian dataset 8-7-02
Ovarian dataset 4-3-02

FIGURE 19.5: Comparison of performance of classifiers from single option feature
selection and ensemble feature selection methods. Accuracy results are given for the
dataset used for feature selection (8-7-02) and a second dataset (4-3-02).

by our method give very high classification rates and reproducible results with
new data. A general data mining process with different options has been used
for each step to demonstrate the effectiveness of the ensemble approach. This
general approach can be easily adapted for use with different options for each
data mining step or with a different data mining process. Although our work
is proteomics-based, our ensemble method is generally applicable to any wide
dataset including mRNA expression data.

References

[1] G. Alexe, S. Alexe, L. Liotta, E. Petricoin, M. Reiss, and P. Hammer.
Ovarian cancer detection by logical analysis of proteomic data. Pro-
teomics, 4:766–783, 2004.

© 2008 by Taylor & Francis Group, LLC

Ensemble-Based Feature Selection for Biomarker Discovery 391

[2] K. Baggerly, J. Morris, and K. Coombes. Reproducibility of seldi-tof pro-
tein patterns in serum: Comparing datasets from different experiments.
Bioinformatics, 20:777–785, 2004.

[3] K. Baggerly, J. Morris, S. Edmonson, and K. Coombes. Signal in noise:
Evaluating reported reproducibility of serum proteomics tests for ovarian
cancer. Journal of the National Cancer Institute, 97:307–309, 2005.

[4] K. Baggerly, J. Morris, J. Wang, D. Gold, L. Xiao, and K. Coombes.
A comprehensive approach to the analysis of matrix-assisted laser
desorption/ionization-time of flight proteomics spectra from serum sam-
ples. Proteomics, 3:1667–1672, 2003.

[5] Clinical proteomics program database detailed explanation
of proteome quest for data analysis. Web site, Aug 2005.
http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp.

[6] T. Conrads, M. Zhou, E. Petricoin, L. Liotta, and T. Veenstra. Cancer
diagnosis using proteomic patterns. Expert Reviews in Molecular Diag-
nostic, 3:411–420, 2003.

[7] A. Constans. Rethinking clinical proteomics. Scientist, 19, 2005.

[8] J. Li, Z. Zhang, J. Rosenweig, Y. Wang, and D. Chan. Proteomics and
bioinformatics approaches for identification of serum biomarkers to detect
breast cancer. Clinical Chemistry, 48:1296–1304, 2002.

[9] R. Lilien, H. Farid, and B. Donald. Probabilistic disease classification of
expression-dependent proteomic data from mass spectrometry of human
serum. Journal of Computational Biology, 10:925–946, 2003.

[10] L. Liotta, M. Lowenthal, T. Conrads, T. Veenstra, D. Fishman, and
E. Petricoin. Misinformation generated by lack of communication be-
tween producers and consumers of publicly available experimental data.
Journal of the National Cancer Institute, 97:310–314, 2005.

[11] E. Petricoin, A. Ardekani, B. Hitt, P. Levine, V. Fusaro, S. Steinberg,
G. Mills, C. Simone, D. Fishman, and E. Kohn. Use of proteomic patterns
in serum to identify ovarian cancer. Lancet, 359:572–577, 2002.

[12] D. Ransohof. Lessons from controversy: ovarian cancer screening and
serum proteomics. Journal of the National Cancer Institute, 97:315–319,
2005.

[13] J. Sorace and M. Zhan. A data review and re-assessment of ovarian
cancer serum proteomic profiling. BMC Bioinformatics, 4, 2003.

[14] Medical terminology and drug database. Web site, December 2005.
http://www.stjude.org/glossary.

[15] M. Vannucci, N. Sha, and P. Brown. Nir and mass spectra classification:

© 2008 by Taylor & Francis Group, LLC

http://www.stjude.org

392 Computational Methods of Feature Selection

Bayesian methods for wavelet-based feature selection. Chemometrics and
Intelligent Laboratory Systems, 77:139–148, 2005.

[16] M. Wagner, D. Naik, and A. Pothen. Protocols for disease classification
from mass spectrometry data. Proteomics, 3:1692–1698, 2003.

[17] I. H. Witten and F. Eibe. Data Mining: Practical Machine Learning Tools
and Techniques (Second Edition). Morgan Kaufmann, San Francisco, CA,
2005.

[18] B. Wu, T. Abbott, D. Fishman, W. McMurray, G. Mor, K. Stone,
D. Ward, K. Williams, and H. Zhao. Comparison of statistical meth-
ods for classification of ovarian cancer using mass spectrometry data.
BioInformatics, 19, 2003.

[19] H. Zhu, C. Yu, and H. Zhang. Tree-based disease classification using
protein data. Proteomics, 3:1673–1677, 2003.

© 2008 by Taylor & Francis Group, LLC

Chapter 20

Model Building and Feature
Selection with Genomic Data

Hui Zou

University of Minnesota

Trevor Hastie

Stanford University

20.1 Introduction . 393
20.2 Ridge Regression, Lasso, and Bridge . 394
20.3 Drawbacks of the Lasso . 396
20.4 The Elastic Net . 397
20.5 The Elastic-Net Penalized SVM . 402
20.6 Sparse Eigen-Genes . 407
20.7 Summary . 409

References . 410

20.1 Introduction

Feature selection is fundamental in statistical modeling. When the number
of predictors is large, it is crucial to identify a few important variables that can
well explain the response. A sparse model is much more interpretable than
the full model using all predictors, and feature selection can often improve
the prediction accuracy of the model. Traditional model selection methods
combine best-subset selection with some model selection criteria such as AIC
and BIC. This approach has two fundamental drawbacks. First, the best-
subset selection is not computationally feasible for high-dimensional data.
The number of subset models increases exponentially. Second, the best-subset
selection is very unstable in the sense that a small perturbation on the data
yields a very different model [2]. Modern methods in high-throughput biology
such as gene expression arrays produce massive high-dimensional data that
traditional variable selection approaches are not capable of handling.

Recently, penalization-based variable selection methods have attracted a
lot of attention. Regularization is crucial in order to build a predictive model
with high accuracy, especially when there are a huge number of predictors.
A non-regularized model is guaranteed to overfit the data. The L2 penalty
has been widely used in various learning problems such as smoothing splines,

393

© 2008 by Taylor & Francis Group, LLC

394 Computational Methods of Feature Selection

the support vector machine, and neural networks, as summarized in [13].
The L2 penalty is good at controlling the model complexity by shrinking all
coefficients toward zero, but they all stay in the model. On the other hand,
the best-subset selection is able to reduce the model size, but it results in an
unconstrained fit using the chosen variables. The lasso [20] was proposed as a
compromise between the L2 regularization and the best-subset selection. By
imposing an L1 constraint on the parameters, the lasso does both shrinkage
and variable selection simultaneously. The L1 penalization opens a new door
to variable selection. However, the lasso may produce unsatisfactory results
in some scenarios: (1) The number of predictors (greatly) exceeds the number
of observations; and (2) the predictors are highly correlated and form groups.
These two issues are very common with genomic data. A typical example
is the gene selection problem in microarray analysis. When the number of
predictors greatly exceeds the number of observations, the grouped variables
situation is a particularly important concern, which has been addressed a
number of times in the literature. Tree harvesting [11] uses supervised learning
methods to select groups of predictive genes found by hierarchical clustering.
Using an algorithmic approach, the authors of [3] performed the clustering
and supervised learning together. A careful study in [18] strongly motivates
the use of a regularized regression procedure to find the grouped genes. With
gene expression and similar data, a desirable method should have the following
properties:

1. Variable selection is performed via continuous shrinkage and is built into
the procedure so that the irrelevant variables are automatically removed
from the model.

2. Variable selection is not limited by the fact that the number of predictors
is much larger than the sample size.

3. It should be able to select groups of significant variables.

The first property implies the method does variable selection in a fashion
similar to the lasso, while the last two properties fix the drawbacks of the
lasso for high-dimensional data.

In this chapter we introduce a new regularization technique called the elastic
net for simultaneous modeling and feature selection. The elastic net addresses
many of the problems encountered in model building and feature selection with
high-dimensional data. This chapter describes how the elastic net can be used
for regression, classification, and sparse eigen-gene analysis.

20.2 Ridge Regression, Lasso, and Bridge

We first review the ridge regression, lasso, and bridge regression. Analysis
of the strengths and weaknesses of these methods motivates the development

© 2008 by Taylor & Francis Group, LLC

Model Building and Feature Selection with Genomic Data 395

of a new variable selection method that addresses their drawbacks with high-
dimensional data.

Consider the linear model. Given N predictors x1, · · · ,xN , the response Y
is predicted by

Ŷ = β̂0 + x1β̂1 + · · ·+ xN β̂N (20.1)

Suppose the dataset has M observations with N predictors. Let Y = (y1, . . . , yM)T

be the response and X = [x1| · · · |xN] be the model matrix, where xj =
(x1j , . . . , xMj)T , j = 1, . . . , N are the predictors. After a location and scale
transformation, we can assume the response is centered and the predictors
are standardized,

M∑

i=1

yi = 0,

M∑

i=1

xij = 0, and
M∑

i=1

x2
ij = 1, for j = 1, 2, . . . , N (20.2)

It is well known that the ordinary least squares (OLS) estimator often does
poorly in both prediction and interpretation. Ridge regression [14] is often
used to improve the prediction of least squares. The ridge regression model
is defined as

β̂(ridge) = arg min
β
‖Y −Xβ‖2 + λ‖β‖2 (20.3)

where

‖β‖2 =
N∑

j=1

β2
j

As a continuous shrinkage method, ridge regression achieves its better predic-
tion performance through a bias-variance trade-off. However, ridge regression
cannot produce a parsimonious model, for it always keeps all the predictors
in the model.

A promising technique called the lasso was proposed in [20]. The lasso is
a penalized least squares method imposing an L1 penalty on the regression
coefficients:

β̂(lasso) = argmin
β
‖Y −Xβ‖2 + λ‖β‖1 (20.4)

where

‖β‖1 =
N∑

j=1

|βj |

The L1 penalty (‖β‖1) is not differentiable at zero. Due to this property,
the L1 penalty continuously shrinks the OLS estimates toward zero and some
components will be exactly zero if λ is large enough. Thus the lasso does both
continuous shrinkage and automatic variable selection simultaneously.

A class of penalized least squares methods called bridge regression using

© 2008 by Taylor & Francis Group, LLC

396 Computational Methods of Feature Selection

the Lq penalty was considered in [6]:

β̂(bridge) = argmin
β
‖Y −Xβ‖2 + λ‖β‖q (20.5)

where

‖β‖q =
N∑

j=1

|βj |q

Ridge regression is bridge with q = 2 while the lasso amounts to using q = 1 in
bridge. For q > 1, the bridge solution contains all predictors. However, bridge
estimates with q ≤ 1 enjoy a sparse representation. But there is another very
subtle point. If q < 1, the bridge solution is not continuous, because the
penalty function is concave. Therefore, the lasso is very unique in the bridge
family, for it is the only Lq estimator that simultaneously enjoys sparsity and
continuity.

20.3 Drawbacks of the Lasso

Note that like OLS, the lasso solution is not uniquely defined when M > N .
This is the first obvious drawback of the lasso. In contrast, ridge regression
can easily handle the M > n case. In terms of prediction, it has been observed
that if predictors are highly correlated, the prediction performance of the lasso
is dominated by ridge regression [20]. With high-dimensional data it is often
true that many predictors are highly correlated. Thus the lasso is not the
best prediction method for high-dimensional data.

The biggest advantage of the lasso over ridge regression is its ability to do
automatic variable selection. However, with high-dimensional data, the lasso
selection is not satisfactory either. When N > M , the lasso can select at most
M variables before it saturates, due to the nature of the L1 optimization. This
seems to be a limiting feature for a variable selection method. Consider the
problem of identifying genes that affect the survival time of cancer patients
based on the measurements of the gene expression level of 5000 genes. If 20
patients are enrolled in the study, the lasso can only select 20 or fewer genes.
The biological truth might be that 100 genes are related to the survival time.

The other drawback of the lasso selection is that the lasso tends to under-
select when there is a group of variables among which the pairwise correlations
are very high, because the lasso tends to select only one variable from the
group and does not care which one is selected [5].

These drawbacks of the lasso make it an inappropriate variable selection
method in modeling high-dimensional data. We illustrate our points by con-
sidering the gene selection problem in microarray data analysis. A typical

© 2008 by Taylor & Francis Group, LLC

Model Building and Feature Selection with Genomic Data 397

microarray dataset has many thousands of predictors (genes) and often less
than a hundred samples. For those genes sharing the same biological path-
way, the correlations among them can be high [18]. We think of those genes
as forming a group. The ideal gene selection method should be able to do two
things: eliminate the trivial genes, and automatically include whole groups
into the model once one gene among them is selected (grouped selection).
The lasso cannot perform grouped selection. The number of selected genes is
artificially bounded by the sample size.

20.4 The Elastic Net

With the advantages and drawbacks of the lasso in mind, we want to invent
a new method that works as well as the lasso whenever the lasso does the
best, and can fix its fundamental drawbacks. To be specific, the new method
should be able to select more than M variables in the N �M problems, if it
is necessary to select more variables than the samples. In addition, the new
method should select groups of correlated variables via continuous shrinkage.

20.4.1 Definition

For that purpose, the authors of [24] proposed the elastic net method. For
any fixed non-negative λ1 and λ2, we define the naive elastic net criterion

L (λ1, λ2, β) = ‖Y −Xβ‖2 + λ2‖β‖2 + λ1‖β‖1 (20.6)

where

‖β‖2 =
N∑

j=1

β2
j and ‖β‖1 =

N∑

j=1

|βj |

The naive elastic net estimator β̂ is the minimizer of (20.6):

β̂(naive elastic net) = arg min
β

L (λ1, λ2, β) (20.7)

The penalty function λ2‖β‖2 + λ1‖β‖1 is named the elastic net penalty [24].
It is a linear combination of the ridge and lasso penalties. When λ2 = 0, the
elastic net penalty reduces to the lasso penalty. However, we consider using
λ2 > 0. A positive λ2 leads to fundamental differences between the elastic net
and the lasso.

First of all, the elastic net penalty function is strictly convex with λ2 > 0,
whereas the lasso penalty is convex but not strictly convex. Thus, when using
a positive λ2, the elastic net is well defined even when N � M . The elastic

© 2008 by Taylor & Francis Group, LLC

398 Computational Methods of Feature Selection

net fixes the first drawback of the lasso.
Meanwhile, the L1 component of the elastic net penalty makes the penalty

singular at zero, which allows the elastic net to do automatic variable selection.
To easily understand the thresholding property, let us consider an orthogonal
design with orthogonal predictors. It is easy to show that with parameters
(λ1, λ2), the naive elastic net solution is

β̂i(naive elastic net) =

(∣∣
∣β̂i(ols)

∣
∣
∣− λ1

2

)

+

1 + λ2
sgn

(
β̂i(ols)

)
(20.8)

where β̂(ols) = XTY and z+ denotes the positive part, which is z if z >
0, else 0. The solution of ridge regression with parameter λ2 is given by
β̂(ridge) = β̂(ols)/(1 + λ2), and the lasso solution with parameter λ1 is
β̂i(lasso) =

(∣∣
∣β̂i(ols)

∣∣
∣− λ1

2

)

+
sgn

(
β̂i(ols)

)
.

Including the L2 penalty in the lasso introduces a double amount of shrink-
age. Both L1 and L2 components shrink OLS estimates. Double shrinkage
does not help to reduce the variances much and introduces unnecessary extra
bias. The double shrinkage is evident in the orthogonal design. The authors
of [24] suggested using the corrected elastic net estimates that are defined as
follows:

β̂(elastic net) = (1 + λ2)β̂(naive elastic net) (20.9)

Hence the elastic net estimator is a rescaled naive elastic net estimator. Such
a scaling transformation preserves the variable-selection property of the naive
elastic net and is the simplest way to undo shrinkage. Why use (1 + λ2) as
the scaling factor? Consider the exact solution of the naive elastic net when
the predictors are orthogonal. The lasso is known to be minimax optimal [4]
in this case, which implies the naive elastic net is not optimal. After scaling
by 1 + λ2, the elastic net automatically achieves minimax optimality.

From now on, let β̂ stand for β̂ (elastic net) for convenience. We can view
the elastic net as a regularized lasso. Reference [24] showed the following fact.
The elastic net estimates β̂ are equivalently defined as

β̂ = argmin
β

βT

(
XTX + λ2I

1 + λ2

)
β − 2YTXβ + λ1‖β‖1 (20.10)

It is easy to see that

β̂(lasso) = arg min
β

βT (XT X)β − 2YT Xβ + λ1‖β‖1 (20.11)

Hence we can interpret the elastic net as a stabilized version of the lasso.
Note that Σ̂ = XTX is a sample version of the correlation matrix (Σ) and
XT X+λ2I

1+λ2
= (1−γ)Σ̂+γI with γ = λ2

1+λ2
shrinks Σ̂ toward the identity matrix.

Together (20.10) and (20.11) say that rescaling after the elastic net penaliza-

© 2008 by Taylor & Francis Group, LLC

Model Building and Feature Selection with Genomic Data 399

tion is mathematically equivalent to replacing Σ̂ with its shrunk version in
the lasso. In linear discriminant analysis, prediction accuracy can often be
improved by replacing Σ̂ by a shrunken estimate [7, 13]. Likewise, we improve
the lasso by regularizing Σ̂ in (20.11).

Finally, we show here that the elastic net encourages a grouping effect in
the sense that correlated variables tend to enter or leave the model together.
Consider an extreme scenario where some predictors are exactly identical.
The authors of [24] showed that strict convexity of the elastic net or the ridge
penalty guarantees a unique solution that assigns identical coefficients to the
identical variables. In contrast, the lasso does not even have a unique solution.
In general, the elastic net coefficients of highly correlated variables are shrunk
toward each other. In [24], it was proved that for any pair of variables (xi,xj),

1
‖Y‖2

∣
∣
∣β̂i − β̂j

∣
∣
∣ ≤

1 + λ2

λ2

√
2 (1− ρ) (20.12)

and
1
‖Y‖2

∣
∣
∣β̂i + β̂j

∣
∣
∣ ≤

1 + λ2

λ2

√
2 (1 + ρ) (20.13)

where ρ is the sample correlation between xi and xj . Thus, if ρ
.= 1, β̂i ≈ β̂j ,

and if ρ
.= −1, β̂i ≈ −β̂j. These two inequalities provide a quantitative

description for the grouping effect of the elastic net.
The lasso does not possess the grouping effect. For a simple illustration, let

us consider the linear model with p = 2. The authors of [20] gave the explicit
expression for (β̂1, β̂2), from which we easily get |β̂1 − β̂2| = |cos(θ)|, where
θ is the angle between Y and x1 − x2. It is easy to construct examples such
that ρ = cor(x1,x2)→ 1 but cos(θ) does not vanish.

20.4.2 A Stylized Example

We now present an idealized example showing the important differences
between the elastic net and the lasso. Let Z1 and Z2 be two independent
Unif(0, 20) variables. The response Y is generated as N(Z1 + 0.1 · Z2, 1).
The predictors are generated as follows:

x1 = Z1 + ε1, x2 = −Z1 + ε2, x3 = Z1 + ε3

x4 = Z2 + ε4, x5 = −Z2 + ε5, x6 = Z2 + ε6

where εi are i.i.d. N(0, 1
16). One hundred observations were generated from

this model. The variables x1,x2,x3 form a group whose underlying factor is
Z1, and x4,x5,x6 form a second group whose underlying factor is Z2. The
within-group correlations are almost 1 and the between-group correlations are
almost 0. An oracle would identify the Z1 group as the important variables.
This simulation model tries to mimic the biological pathways. We can think

© 2008 by Taylor & Francis Group, LLC

400 Computational Methods of Feature Selection

of Z1 and Z2 as pathways. x1,x2,x3 are the genes that function through the
pathway Z1, and x4,x5,x6 are the genes that function through the pathway
Z2. The response is mainly affected by pathway Z1.

Figure 20.1 compares the solution paths of the lasso and the elastic net on
two simulated datasets from the above simple model. We can see that the
lasso solution paths can be very different with a different dataset generated
from the same model. Thus the lasso paths are unstable. Furthermore, the
lasso plots do not reveal any correlation information by itself. In contrast, the
elastic net has much smoother and more stable solution paths while clearly
showing the grouped selection: x1,x2,x3 are in one significant group and
x4,x5,x6 are in the other trivial group.

20.4.3 Computation and Tuning

The elastic net is a computationally efficient method. First, we can see
that, by its definition, both the lasso and the elastic net can be recast as
a quadratic programming problem. Thus, standard quadratic programming
software can be directly used to solve the lasso/elastic net. The authors of
[5] invented the LARS algorithm for computing the entire lasso solution path.
The authors of [24] showed that the elastic net solution paths are also piecewise
linear functions of λ1 for each fixed λ2. This fact implies that the elastic net
can be solved by a path algorithm similar to the LARS. The authors of [24]
proposed the LARS-EN algorithm for efficiently computing the entire elastic
net solution paths. Starting from zero, the LARS-EN algorithm sequentially
updates the elastic net fits. In the N �M case, such as with microarray data,
it is not necessary to run the LARS-EN algorithm to the end (early stopping).
The optimal results are achieved at an early stage of the LARS-EN algorithm
[24]. If we stop the algorithm after m steps, then it requires O(m3 + Nm2)
operations.

We now discuss how to choose the type and value of the tuning parameter
in the elastic net. In the lasso, the conventional tuning parameter is the L1

norm of the coefficients (t) or the fraction of the L1 norm (s). The advantage
of using (λ2, s) is that s is always valued within [0, 1]. In the N �M problem
it is better to use (λ2, k) as the tuning parameters where k is the number of
the LARS-EN steps. There are well-established methods for choosing such
tuning parameters [13, Chapter 7]. If only training data are available, 10-fold
cross validation is a popular method for estimating the prediction error and
comparing different models, and we use it here. Note that there are two tuning
parameters in the elastic net, so we need to cross validate on a two-dimensional
surface. Typically we first pick a (relatively small) grid of values for λ2, say
(0, 0.01, 0.1, 1, 10, 100) . Then, for each λ2, the other tuning parameter (s or
k) is selected by 10-fold CV. The chosen λ2 is the one giving the smallest
CV error. It is worth mentioning that for each λ2, the computational cost of
a 10-fold CV is the same as ten OLS fits. Thus, the two-dimensional CV is
computationally thrifty in the usual M > N setting. In the N �M case, the

© 2008 by Taylor & Francis Group, LLC

Model Building and Feature Selection with Genomic Data 401

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
10

20
30

40

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

0.0 0.2 0.4 0.6 0.8 1.0

−
20

−
10

0
10

20

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

0.0 0.2 0.4 0.6 0.8 1.0

−
20

0
20

40

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

0.0 0.2 0.4 0.6 0.8 1.0

−
20

−
10

0
10

20

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

s = ‖β̂‖1/max‖β̂‖1s = ‖β̂‖1/max‖β̂‖1

s = ‖β̂‖1/max‖β̂‖1s = ‖β̂‖1/max‖β̂‖1

Lasso

Lasso

Elastic Net

Elastic Net

St
an

da
rd

iz
ed

C
oe

ffi
ci

en
ts

St
an

da
rd

iz
ed

C
oe

ffi
ci

en
ts

St
an

da
rd

iz
ed

C
oe

ffi
ci

en
ts

St
an

da
rd

iz
ed

C
oe

ffi
ci

en
ts

FIGURE 20.1: The left and right panels show the lasso and the elastic net (λ2 =
0.5) solution paths respectively. We fitted the lasso and the elastic net using two
independent datasets simulated from the same model.

© 2008 by Taylor & Francis Group, LLC

402 Computational Methods of Feature Selection

cost grows linearly with N , and is still manageable. Practically, early stopping
is used to ease the computational burden. For example, if M = 30, N = 5, 000,
and we do not want to use more than 200 variables in the final model, we may
stop the LARS-EN algorithm after 500 steps.

We use the prostate cancer data to illustrate the computations with the
elastic net. The data in this example come from a study of prostate cancer
[19]. The predictors are eight clinical measures: log cancer volume (lcavol),
log prostate weight (lweight), age, log of the amount of benign prostatic hy-
perplasia (lbph), seminal vesicle invasion (svi), log capsular penetration (lcp),
Gleason score (gleason), and percentage Gleason score 4 or 5 (pgg45). The
response is the log of prostate specific antigen (lpsa). The prostate cancer
data were divided into two parts: a training set with 67 observations, and a
test set with 30 observations. Model fitting and tuning parameter selection
by 10-fold cross validation were carried out on the training data. Figure 20.2
displays the lasso and the elastic net solution paths, in which the vertical lines
indicate the selected model. The lasso includes lcavol, lweight lbph, svi, and
pgg45 in the final model, while the elastic net selects lcavol, lweight, svi, lcp,
and pgg45. The prediction error of the elastic net is about 24% lower than
that of the lasso.

20.4.4 Analyzing the Cardiomypathy Data

We apply the elastic net to analyze the cardiomypathy data. The data have
30 observations and 6319 predictors. The response variable in this study is
a G protein-coupled receptor, designated Ro1. When the receptor is over-
expressed in the heart of adult mice, the mice develop a lethal dilated car-
diomyopathy that has many hallmarks of human disease. The mice recover
when the expression of the receptor is turned off [18]. The goal of the study is
to investigate the association between the changes in gene expression and the
expression of Ro1. Thirty-two mice were tested in the study [17]. To deter-
mine which changes in gene expression were due to the expression of the Ro1
transgene, the authors of [18] suggested identifying the genes that correlate
with the Ro1 expression profile. Genes that explain this expression profile
are potential candidates to provide additional therapeutic targets and clues
to the mechanism of disease.

The lasso model selects 21 genes. We fit the elastic net model by the
LARS-EN algorithm with early stopping after 100 steps. The optimal tuning
parameters for the elastic net are λ = 0.1, k = 47, where k is the number
of steps in the LARS-EN algorithm. In the elastic net model, 44 genes are
selected. Note that the size of the training set is 30, so the lasso can at most
select 30 genes. In contrast, the number of genes selected by the elastic net is
44, greater than the sample size. Figure 20.3 displays the elastic net solution
paths as a function of k.

© 2008 by Taylor & Francis Group, LLC

Model Building and Feature Selection with Genomic Data 403

0.0 0.2 0.4 0.6 0.8 1.0

−
2

0
2

4
6

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

s = ‖β̂‖1/max‖β̂‖1

Lasso

St
an

da
rd

iz
ed

C
oe

ffi
ci

en
ts

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

s = ‖β̂‖1/max‖β̂‖1

Elastic Net

St
an

da
rd

iz
ed

C
oe

ffi
ci

en
ts

FIGURE 20.2: Prostate cancer data. The top panel shows the lasso estimates as
a function of s, and the bottom panel shows the elastic net estimates as a function
of s. Both of them are piecewise linear, which is a key property of our efficient
algorithm. In both plots the vertical dotted line indicates the selected final model.

© 2008 by Taylor & Francis Group, LLC

404 Computational Methods of Feature Selection

0 20 40 60 80 100

0
20

0
40

0
60

0
80

0

C
oe

ffi
ci

en
ts

Number of steps

FIGURE 20.3: Cardiomypathy data: the elastic net coefficients paths.

20.5 The Elastic-Net Penalized SVM

We have discussed the elastic net method in the linear regression model.
The elastic net penalty can be used in classification problems, too. The re-
sulting classifier should also retain the nice properties of the elastic net in
regression. The support vector machine (SVM) [21] is now a very popular
classification tool with numerous applications. We focus on the use of the
elastic net in SVMs.

20.5.1 Support Vector Machines

In a standard two-class classification problem, the response y is coded as
∈ {1,−1}. The goal is to find a classification rule from the training data,
so that when given a new input x, we can assign a class label to it. The
SVM has been a popular tool for the two-class classification problem in the
machine learning field. Recently, it has also gained increasing attention from
the statistics community. Readers are referred to [13] for a complete statistical
approach to the SVM.

It turns out that the SVM is also equivalent to a regularized function fitting

© 2008 by Taylor & Francis Group, LLC

Model Building and Feature Selection with Genomic Data 405

problem. With f(x) = β0 + xT β, consider the optimization problem:

min
β0,β

n∑

i=1

[1− yif(xi)]+ + λ‖β‖22, (20.14)

where the subscript “+” indicates the positive part and λ is a tuning pa-
rameter. Note that (20.14) has the form loss + penalty, which is a familiar
paradigm to statisticians in function estimation. The loss function (1−yf)+ is
called the hinge loss. The penalty is the L2-norm of the coefficient vector, the
same as that used in the ridge regression. The role of the ridge penalty in the
SVM is the same as in linear regression. The ridge penalty shrinks the fitted
coefficients towards zero to control the variance of fitted coefficients, hence
possibly achieving a better bias-variance trade-off, especially when there are
many highly correlated variables. Although the SVM enjoys a sparse rep-
resentation due to the support vectors, it cannot select significant variables.
Often people combine the SVM with some external feature selection method
such as the recursive feature elimination (RFE) [9].

The 1-norm SVM was used in [23] to perform automatic feature selection
in the SVM. With f(x) = β0 + xT β, the 1-norm SVM solves

min
β0,β

n∑

i=1

[1− yif(xi)]+ + λ‖β‖1 (20.15)

The 1-norm SVM shares many of the nice properties of the lasso. The L1

(lasso) penalty encourages some of the coefficients to be shrunken to exact
zero if λ is appropriately chosen. Hence the 1-norm SVM performs feature
selection through regularization. The 1-norm SVM has significant advantages
over the 2-norm SVM when there are many noise variables.

20.5.2 A New SVM Classifier

We have seen that in regression problems the lasso penalty has some fun-
damental drawbacks and the elastic net penalty fixes these limitations. The
authors of [22] applied the elastic net penalty to the SVM. Consider the fol-
lowing doubly regularized SVM, which is referred to as the DrSVM:

min
β0,β

n∑

i=1

[
1− yi(β0 + xT

i β)
]
+

+ λ2‖β‖22 + λ1‖β‖1 (20.16)

where both λ1 and λ2 are tuning parameters. The role of the L1 penalty is to
allow automatic variable selection, and the role of the L2 penalty is to help
groups of correlated variables get selected together.

The grouping effect also shows in the DrSVM. The following inequalities

© 2008 by Taylor & Francis Group, LLC

406 Computational Methods of Feature Selection

were proven in [22]:

|βi − βj | ≤
√

n

λ2

√
2(1− ρ) (20.17)

and

|βi + βj | ≤
√

n

λ2

√
2(1 + ρ) (20.18)

where ρ is the sample correlation between xi and xj . Thus, if ρ
.= 1, β̂i ≈ β̂j ,

and if ρ
.= −1, β̂i ≈ −β̂j. The 1-norm SVM does not possess the grouping

effect.
The DrSVM is computationally efficient. It is interesting to note that for

each fixed λ1, the DrSVM solution is a piecewise linear function of 1
λ2

. This
is similar to a result in [10] which showed that the 2-norm SVM solution is a
piecewise linear function of 1

λ2
. The authors of [10] developed a path-following

algorithm for computing the entire 2-norm SVM paths. The authors of [22]
developed a similar path algorithm for computing the DrSVM solution for all
λ2 with a fixed λ1. On the other hand, the DrSVM solution is a piecewise
linear function of λ1 for each fixed λ2. This is similar to a result in [23]
which showed that the 1-norm SVM solution is a piecewise linear function of
λ. The authors of [23] developed a path-following algorithm for computing
the entire 1-norm SVM paths. The authors of [22] developed a similar path
algorithm for computing the DrSVM solution for all λ1 with a fixed λ2. Hence
we have two path-following algorithms to compute the DrSVM. The readers
are referred to [22] for the technical details of the two path algorithms.

To illustrate the piecewise linearity property of the DrSVM, we compute its
solution paths using a small simulated dataset. We generate 8 training data in
each of two classes. Each input xi is a p = 5 dimensional vector. For the “+1”
class, xi has a normal distribution with mean μ+ = (1, 0, 0, 0, 0)T and the
diagonal elements of the covariance matrix are 1, and the off-diagonal elements
are all equal to ρ = 0.8. The “−1” class has a similar distribution, except
that the mean is μ− = (−1, 0, 0, 0, 0)T . The solution paths are displayed in
Figure 20.4, where any segment between two adjacent vertical lines is linear.

We demonstrate the use of the elastic-net penalized SVM in microarrays
classification and gene selection on the leukemia data consisting of 7129 genes
and 72 samples [8]. In the training dataset, there are 38 samples, among
which 27 are type 1 leukemia (ALL) and 11 are type 2 leukemia (AML). The
goal is to construct a diagnostic rule based on the expression level of those
7219 genes to predict the type of leukemia. The remaining 34 samples are
used to test the prediction accuracy of the diagnostic rule. We compared
the three types of SVMs: the SVM, the 1-norm SVM, and the DrSVM. The
tuning parameters are chosen according to 10-fold cross validation, then the
final model is fitted on all the training data and evaluated on the test data.
The results are summarized in Table 20.1. The SVM uses recursive feature
elimination to select genes. As we can see, the DrSVM seems to have the best
prediction performance. However, notice this is a very small dataset, so the

© 2008 by Taylor & Francis Group, LLC

Model Building and Feature Selection with Genomic Data 407

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

1/λ2

β

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

λ1

β

FIGURE 20.4: The solid line corresponds to β1, the dashed lines correspond to
β2, . . . , β5. The right panel is for ˛(λ1) (with λ2 = 30), and the left panel is for
˛(λ2) (with λ1 = 6).

TABLE 20.1: Summary of leukemia classification results

Method 10-fold CV error Test error No. of genes
SVM + RFE 2/38 1/34 31
1-norm SVM 2/38 1/34 22

DrSVM 0/38 0/34 78

difference may not be significant. It is also worth noting that the 22 genes
selected by the L1-norm SVM are a subset of the 78 genes selected by the
DrSVM.

20.6 Sparse Eigen-Genes

We have seen that the elastic net is very useful in supervised learning prob-
lems (regression and classification). It turns out that the elastic net can also
be used to performance variable selection in un-supervised learning problems.
The authors of [25] considered using the elastic net to obtain principal compo-
nents with sparse loadings. This property has very useful applications in gene
expression data analyses. Principal components of gene expression arrays are
called eigen-genes. If the sparse eigen-genes can explain a large part of the
total variance of gene expression levels, then the subset of genes representing
the sparse eigen-genes is considered important.

© 2008 by Taylor & Francis Group, LLC

408 Computational Methods of Feature Selection

20.6.1 PCA and Eigen-Genes

Principal component analysis (PCA) [15] is a popular un-supervised learn-
ing and dimension reduction technique. Recently PCA has been used in gene
expression data analysis [1]. The authors of [12] proposed the so-called gene
shaving techniques using PCA to cluster highly variable and coherent genes
in microarray datasets. PCA seeks the linear combinations of the original
variables such that the derived variables capture maximal variance. PCA can
be computed via the singular value decomposition (SVD) of the data matrix.
In detail, let the data X be an M ×N matrix, where n and p are the number
of observations and the number of variables, respectively. Without loss of
generality, assume the column means of X are all 0. Let the SVD of X be

X = UDVT (20.19)

Z = UD are the principal components (PCs), and the columns of V are the
corresponding loadings of the principal components. The sample variance of
the i-th PC is D2

ii/n. In gene expression data the standardized PCs U are
called the eigen-arrays and V are the eigen-genes [1]. Usually the first q (q 	
min(n, p)) PCs are chosen to represent the data, thus a great dimensionality
reduction is achieved. An obvious drawback of PCA is that each PC is a
linear combination of all p variables and the loadings are typically nonzero.
This often makes it difficult to interpret the derived PCs. It is desirable not
only to achieve the dimensionality reduction but also to reduce the number of
explicitly used variables. An ad hoc way to sparsity in PCA is to artificially
set the loadings with absolute values smaller than a threshold to zero. We
prefer a principled approach to deriving a sparse PCA.

20.6.2 Sparse Principal Component Analysis

The theory and algorithm of sparse principal component analysis (SPCA)
were developed in [25]. To focus on the main idea, we introduce SPCA for
the leading principal component.

SPCA starts with an equivalent formulation of PCA. Note that for any
λ > 0, we let

min
α,β

M∑

i=1

‖xi −αβT xi‖2 + λ‖β‖2

subject to ‖α‖2 = 1 (20.20)

Then the solution β is proportional to the first principal component. Hence
PCA is identical to a regression-type problem. This fact suggests that one
could borrow the sparse modeling techniques from regression to produce sparse
principal components. It is important to note that the positive λ is necessary
when N �M [25].

© 2008 by Taylor & Francis Group, LLC

Model Building and Feature Selection with Genomic Data 409

The following SPCA method was proposed in [25]:

min
α,β

M∑

i=1

‖xi −αβTxi‖2 + λ‖β‖2 + λ1‖β‖1

subject to ‖α‖2 = 1 (20.21)

We see that λ‖β‖2 + λ1‖β‖1 is the elastic net penalty. Its L1 part will shrink
some components of β to exact zero, just like the lasso shrinkage in regression
and the SVM. The zero components in β correspond to zero loadings in the
principal component. The empirical results in [25] suggest that the solution
is not sensitive to the choice of λ as long as λ > 0. Hence the L2 part of the
elastic net penalty is primarily used to ensure the sparse principal component
is identical to the ordinary principal component when we do not need the
sparsity (using λ1 = 0).

The optimization problem in SPCA is nonconvex. The authors of [25]
proposed an alternating algorithm for solving SPCA. Note that one can easily
solve β for a given α. It is an elastic net regression problem. On the other
hand, if we fix β, solving α can be found by reduced rank Procrustes rotation
[25]. We can start with the ordinary PCA and iterate between these two steps
until convergence.

We illustrate the sparse PC selection method on Ramaswamy’s data [16],
which has 16063 (p = 16063) genes and 144 (n = 144) samples. Its first
principal component (eigen-gene) explains 46% of the total variance. Note
that all 16063 genes are used in the first eigen-gene. To derive a sparse eigen-
gene, we applied SPCA to find the leading sparse PC. We found that as few
as 2.5% of these 16063 genes can sufficiently construct the leading principal
component with an affordable loss of explained variance (from 46% to 40%).

20.7 Summary

The elastic net is a novel shrinkage and selection method for producing a
sparse model with good prediction accuracy. The elastic net encourages the
grouping effect and elegantly handles the high-dimensionality. The elastic
net also enjoys great computational efficiency with the help of efficient path
algorithms. In many ways the elastic net is a more appropriate tool for vari-
able selection with high-dimensional data than the lasso. We have seen the
applications of the elastic net in regression and classification problems. The
elastic net penalty can also be used in principal components, leading to a
sparse version of PCA that automatically omits unimportant variables from
the PCA directions. This method can be used to find sparse eigen-genes.
There are other statistical models that are used in modeling genomic data.

© 2008 by Taylor & Francis Group, LLC

410 Computational Methods of Feature Selection

For instance, the Cox proportional hazard model is the standard model for
modeling censored survival data. The elastic net can be directly used in those
models.

References

[1] O. Alter, P. Brown, and D. Botstein. Singular value decomposition for
genome-wide expression data processing and modeling. Proceedings of
the National Academy of Sciences, 97:10101–10106, 2000.

[2] L. Breiman. Heuristics of instability and stabilization in model selection.
The Annals of Statistics, 24:2350–2383, 1996.

[3] M. Dettling and P. Bühlmann. Finding predictive gene groups from
microarray data. Journal of Multivariate Analysis, 90:106–131, 2004.

[4] D. Donoho, I. Johnstone, G. Kerkyacharian, and D. Picard. Wavelet
shrinkage: asymptopia? (with discussion). Journla of the Royal Statis-
tistical Society: Series B, 57:301–337, 1995.

[5] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regres-
sion. The Annals of Statistics, 32(2):407–499, 2004.

[6] I. Frank and J. Friedman. A statistical view of some chemometrics re-
gression tools. Technometrics, 35:109–148, 1993.

[7] J. Friedman. Regularized discriminant analysis. Journal of the American
Statistical Association, 84:249–266, 1989.

[8] T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov,
H. Coller, M. Loh, J. Downing, and M. Caligiuri. Molecular classifica-
tion of cancer: class discovery and class prediction by gene expression
monitoring. Science, 286:513–536, 1999.

[9] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for
cancer classification using support vector machines. Machine Learning,
46:389–422, 2002.

[10] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regulariza-
tion path of the support vector machine. Journal of Machine Learning
Research, pages 1391–1415, 2004.

[11] T. Hastie, R. Tibshirani, D. Botstein, and P. Brown. Supervised harvest-
ing of expression trees. Genome Biology, 2:0003.1–0003.12, 2003.

[12] T. Hastie, R. Tibshirani, M. Eisen, P. Brown, D. Ross, U. Scherf, J. We-
instein, A. Alizadeh, L. Staudt, and D. Botstein. “Gene Shaving” as

© 2008 by Taylor & Francis Group, LLC

Model Building and Feature Selection with Genomic Data 411

a method for identifying distinct sets of genes with similar expression
patterns. Genome Biology, 1:1–21, 2000.

[13] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning; Data mining, Inference and Prediction. Springer-Verlag, New
York, 2001.

[14] A. Hoerl and R. Kennard. Ridge regression. In Encyclopedia of Statistical
Sciences, volume 8, pages 129–136. Wiley, New York, 1988.

[15] I. Jolliffe. Principal component analysis. Springer Verlag, New York,
1986.

[16] S. Ramaswamy, P. Tamayo, R. Rifkin, S. Mukheriee, C. Yeang, M. An-
gelo, C. Ladd, M. Reich, E. Latulippe, J. Mesirov, T. Poggio, W. Gerald,
M. Loda, E. Lander, and T. Golub. Multiclass cancer diagnosis using
tumor gene expression signature. Proceedings of the National Academy
of Sciences, 98:15149–15154, 2001.

[17] C. Redfern, M. Degtyarev, A. Kwa, N. Salomonis, N. Cotte, T. Nanevicz,
N. Fidelman, K. Desai, K. Vranizan, E. Lee, P. Coward, N. Shah, J. War-
rington, G. Fishman, D. Bernstein, A. Baker, and B. Conklin. Condi-
tional expression of a gi-coupled receptor causes ventricular conduction
delay and a lethal cardiomyopathy. PNAS, 97:4826–4831, 2000.

[18] M. Segal, K. Dahlquist, and B. Conklin. Regression approach for mi-
croarray data analysis. Journal of Computational Biology, 10:961–980,
2003.

[19] T. Stamey, J. Kabalin, J. Mcneal, F. F. Johnstone, I., E. Redwine, and
N. Yang. Prostate specific antigen in the diagnosis and treatment of ade-
nocarcinoma of the prostate, ii: Radical prostatectomy treated patients.
Journal of Urology., 16:1076–1083, 1989.

[20] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society, B, 58:267–288, 1996.

[21] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag,
New York, 1995.

[22] L. Wang, J. Zhu, and H. Zou. The doubly regularized support vector
machine. Statistica Sinica, 16:589–616, 2006.

[23] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm svms. Advances
in Neural Information Processing Systems 16, 2003.

[24] H. Zou and T. Hastie. Regression and variable election via the elastic
net. Journal of the Royal Statistical Society, Series B, 67:301–320, 2005.

[25] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analy-
sis. Journal of Computational and Graphical Statistics, 15:265–286, 2006.

© 2008 by Taylor & Francis Group, LLC

	Computational Methods of Feature Selection
	Preface
	Acknowledgments
	Contributors
	Contents

	Part I: Introduction and Background
	Chapter 1: Less Is More
	1.1 Background and Basics
	1.2 Supervised, Unsupervised, and Semi-Supervised Feature Selection
	1.3 Key Contributions and Organization of the Book
	1.3.1 Part I - Introduction and Background
	1.3.2 Part II - Extending Feature Selection
	1.3.3 Part III - Weighting and Local Methods
	1.3.4 Part IV - Text Classification and Clustering
	1.3.5 Part V - Feature Selection in Bioinformatics

	1.4 Looking Ahead
	References

	Chapter 2: Unsupervised Feature Selection
	2.1 Introduction
	2.2 Clustering
	2.2.1 The K-Means Algorithm
	2.2.2 Finite Mixture Clustering

	2.3 Feature Selection
	2.3.1 Feature Search
	2.3.2 Feature Evaluation

	2.4 Feature Selection for Unlabeled Data
	2.4.1 Filter Methods
	2.4.2 Wrapper Methods

	2.5 Local Approaches
	2.5.1 Subspace Clustering
	2.5.2 Co-Clustering/Bi-Clustering

	2.6 Summary
	Acknowledgment
	Notes
	References

	Chapter 3: Randomized Feature Selection
	3.1 Introduction
	3.2 Types of Randomizations
	3.3 Randomized Complexity Classes
	3.4 Applying Randomization to Feature Selection
	3.5 The Role of Heuristics
	3.6 Examples of Randomized Selection Algorithms
	3.6.1 A Simple Las Vegas Approach
	3.6.2 Two Simple Monte Carlo Approaches
	3.6.3 Random Mutation Hill Climbing
	3.6.4 Simulated Annealing
	3.6.5 Genetic Algorithms
	3.6.6 Randomized Variable Elimination

	3.7 Issues in Randomization
	3.7.1 Pseudorandom Number Generators
	3.7.2 Sampling from Specialized Data Structures

	3.8 Summary
	References

	Chapter 4: Causal Feature Selection
	4.1 Introduction
	4.2 Classical “Non-Causal” Feature Selection
	4.3 The Concept of Causality
	4.3.1 Probabilistic Causality
	4.3.2 Causal Bayesian Networks

	4.4 Feature Relevance in Bayesian Networks
	4.4.1 Markov Blanket
	4.4.2 Characterizing Features Selected via Classical Methods

	4.5 Causal Discovery Algorithms
	4.5.1 A Prototypical Causal Discovery Algorithm
	4.5.2 Markov Blanket Induction Algorithms

	4.6 Examples of Applications
	4.7 Summary, Conclusions, and Open Problems
	Acknowledgments
	References

	Part II: Extending Feature Selection
	Chapter 5: Active Learning of Feature Relevance
	5.1 Introduction
	5.2 Active Sampling for Feature Relevance Estimation
	5.3 Derivation of the Sampling Benefit Function
	5.4 Implementation of the Active Sampling Algorithm
	5.4.1 Data Generation Model: Class-Conditional Mixture of Product Distributions
	5.4.2 Calculation of Feature Relevances
	5.4.3 Calculation of Conditional Probabilities
	5.4.4 Parameter Estimation

	5.5 Experiments
	5.5.1 Synthetic Data
	5.5.2 UCI Datasets
	5.5.3 Computational Complexity Issues

	5.6 Conclusions and Future Work
	Notes
	References

	Chapter 6: A Study of Feature Extraction Techniques Based on Decision Border Estimate
	6.1 Introduction
	6.1.1 Background on Statistical Pattern Classification

	6.2 Feature Extraction Based on Decision Boundary
	6.2.1 MLP-Based Decision Boundary Feature Extraction
	6.2.2 SVM Decision Boundary Analysis

	6.3 Generalities About Labeled Vector Quantizers
	6.4 Feature Extraction Based on Vector Quantizers
	6.4.1 Weighting of Normal Vectors

	6.5 Experiments
	6.5.1 Experiment with Synthetic Data
	6.5.2 Experiment with Real Data

	6.6 Conclusions
	References

	Chapter 7: Ensemble-Based Variable Selection Using Independent Probes
	7.1 Introduction
	7.2 Tree Ensemble Methods in Feature Ranking
	7.3 The Algorithm: Ensemble-Based Ranking Against Independent Probes
	A) Split weight re-estimation
	B) Selecting important features
	C) Removing effects of identified important variables

	7.4 Experiments
	7.4.1 Benchmark Methods
	7.4.1.1 CFS
	7.4.1.2 RFE
	7.4.1.3 Breiman’s RF Error Sensitivity Method

	7.4.2 Data and Experiments
	7.4.2.1 Synthetic Complex Nonlinear Data - Friedman’s Generator
	7.4.2.2 Linear Models Challenging for Trees
	7.4.2.3 Real Data from Semiconductor Manufacturing with Large Number of Multilevel Categorical Predictors

	7.5 Discussion
	References

	Chapter 8: Efficient Incremental-Ranked Feature Selection in Massive Data
	8.1 Introduction
	8.2 Related Work
	8.3 Preliminary Concepts
	8.3.1 Relevance
	8.3.2 Redundancy

	8.4 Incremental Performance over Ranking
	8.4.1 Incremental Ranked Usefulness
	8.4.2 Algorithm

	8.5 Experimental Results
	8.6 Conclusions
	Acknowledgment
	References

	Part III: Weighting and Local Methods
	Chapter 9: Non-Myopic Feature Quality Evaluation with (R)ReliefF
	9.1 Introduction
	9.2 From Impurity to Relief
	9.2.1 Impurity Measures in Classification
	9.2.2 Relief for Classification

	9.3 ReliefF for Classification and RReliefF for Regression
	9.4 Extensions
	9.4.1 ReliefF for Inductive Logic Programming
	9.4.2 Cost-Sensitive ReliefF
	9.4.3 Evaluation of Ordered Features at Value Level

	9.5 Interpretation
	9.5.1 Difference of Probabilities
	9.5.2 Portion of the Explained Concept

	9.6 Implementation Issues
	9.6.1 Time Complexity
	9.6.2 Active Sampling
	9.6.3 Parallelization

	9.7 Applications
	9.7.1 Feature Subset Selection
	9.7.2 Feature Ranking
	9.7.3 Feature Weighing
	9.7.4 Building Tree-Based Models
	9.7.5 Feature Discretization
	9.7.6 Association Rules and Genetic Algorithms
	9.7.7 Constructive Induction

	9.8 Conclusion
	References

	Chapter 10: Weighting Method for Feature Selection in K-Means
	10.1 Introduction
	10.2 Feature Weighting in k-Means
	10.3 W-k-Means Clustering Algorithm
	10.4 Feature Selection
	10.5 Subspace Clustering with k-Means
	10.6 Text Clustering
	10.6.1 Text Data and Subspace Clustering
	10.6.2 Selection of Key Words

	10.7 Related Work
	10.8 Discussions
	Acknowledgment
	Notes
	References

	Chapter 11: Local Feature Selection for Classification
	11.1 Introduction
	11.2 The Curse of Dimensionality
	11.3 Adaptive Metric Techniques
	11.3.1 Flexible Metric Nearest Neighbor Classification
	11.3.2 Discriminant Adaptive Nearest Neighbor Classification
	11.3.3 Adaptive Metric Nearest Neighbor Algorithm
	11.3.3.1 Chi-Squared Distance
	11.3.3.2 Local Feature Relevance
	11.3.3.3 The ADAMENN Algorithm

	11.4 Large Margin Nearest Neighbor Classifiers
	11.4.1 Support Vector Machines
	11.4.2 Feature Weighting
	11.4.3 Large Margin Nearest Neighbor Classification
	11.4.4 Weighting Features Increases the Margin

	11.5 Experimental Comparisons
	11.6 Conclusions
	References

	Chapter 12: Feature Weighting through Local Learning
	12.1 Introduction
	12.2 Mathematical Interpretation of Relief
	12.3 Iterative Relief Algorithm
	12.3.1 Algorithm
	12.3.2 Convergence Analysis

	12.4 Extension to Multiclass Problems
	12.5 Online Learning
	12.6 Computational Complexity
	12.7 Experiments
	12.7.1 Experimental Setup
	12.7.2 Experiments on UCI Datasets
	12.7.3 Choice of Kernel Width
	12.7.4 Online Learning
	12.7.5 Experiments on Microarray Data

	12.8 Conclusion
	Notes
	References

	Part IV: Text Classification and Clustering
	Chapter 13: Feature Selection for Text Classification
	13.1 Introduction
	13.1.1 Feature Selection Phyla
	13.1.2 Characteristic Difficulties of Text Classification Tasks

	13.2 Text Feature Generators
	13.2.1 Word Merging
	13.2.2 Word Phrases
	13.2.3 Character N-grams
	13.2.4 Multi-Field Records
	13.2.5 Other Properties
	13.2.6 Feature Values

	13.3 Feature Filtering for Classification
	13.3.1 Binary Classification
	13.3.2 Multi-Class Classification
	13.3.3 Hierarchical Classification

	13.4 Practical and Scalable Computation
	13.5 A Case Study
	13.6 Conclusion and Future Work
	References

	Chapter 14: A Bayesian Feature Selection Score Based on Naïve Bayes Models
	14.1 Introduction
	14.2 Feature Selection Scores
	14.2.1 Posterior Inclusion Probability (PIP)
	14.2.2 Posterior Inclusion Probability (PIP) under a Bernoulli distribution
	14.2.3 Posterior Inclusion Probability (PIPp) under Poisson distributions
	14.2.4 Information Gain (IG)
	14.2.5 Bi-Normal Separation (BNS)
	14.2.6 Chi-Square
	14.2.7 Odds Ratio
	14.2.8 Word Frequency

	14.3 Classification Algorithms
	14.4 Experimental Settings and Results
	14.4.1 Datasets
	14.4.2 Experimental Results

	14.5 Conclusion
	References

	Chapter 15: Pairwise Constraints-Guided Dimensionality Reduction
	15.1 Introduction
	15.2 Pairwise Constraints-Guided Feature Projection
	15.2.1 Feature Projection
	15.2.2 Projection-Based Semi-supervised Clustering

	15.3 Pairwise Constraints-Guided Co-clustering
	15.4 Experimental Studies
	15.4.1 Experimental Study – I
	15.4.2 Experimental Study – II
	15.4.3 Experimental Study – III

	15.5 Conclusion and Future Work
	References

	Chapter 16: Aggressive Feature Selection by Feature Ranking
	16.1 Introduction
	16.2 Feature Selection by Feature Ranking
	16.2.1 Multivariate Characteristic of Text Classifiers
	16.2.2 Term Redundancy

	16.3 Proposed Approach to Reducing Term Redundancy
	16.3.1 Stemming, Stopwords, and Low-DF Terms Elimination
	16.3.2 Feature Ranking
	16.3.3 Redundancy Reduction
	16.3.3.1 Mutual Information
	16.3.3.2 Inclusion Index

	16.3.4 Redundancy Removal Algorithm
	16.3.5 Term Redundancy Tree

	16.4 Experimental Results
	16.5 Summary
	References

	Part V: Feature Selection in Bioinformatics
	Chapter 17: Feature Selection for Genomic Data Analysis
	17.1 Introduction
	17.1.1 Microarray Data and Challenges
	17.1.2 Feature Selection for Microarray Data

	17.2 Redundancy-Based Feature Selection
	17.2.1 Feature Relevance and Redundancy
	17.2.2 An Efficient Framework for Redundancy Analysis
	17.2.3 RBF Algorithm

	17.3 Empirical Study
	17.3.1 Datasets
	17.3.2 Experimental Settings
	17.3.3 Results and Discussion

	17.4 Summary
	References

	Chapter 18: A Feature Generation Algorithm with Applications to Biological Sequence Classification
	18.1 Introduction
	18.2 Splice-Site Prediction
	18.2.1 The Splice-Site Prediction Problem
	18.2.2 Current Approaches
	18.2.3 Our Approach

	18.3 Feature Generation Algorithm
	18.3.1 Feature Type Analysis
	18.3.2 Feature Selection
	18.3.3 Feature Generation Algorithm (FGA)

	18.4 Experiments and Discussion
	18.4.1 Data Description
	18.4.2 Feature Generation
	18.4.3 Prediction Results for Individual Feature Types
	18.4.4 Splice-Site Prediction with FGA Features

	18.5 Conclusions
	References

	Chapter 19: An Ensemble Method for Identifying Robust Features for Biomarker Discovery
	19.1 Introduction
	19.2 Biomarker Discovery from Proteome Profiles
	19.3 Challenges of Biomarker Identification
	19.4 Ensemble Method for Feature Selection
	19.5 Feature Selection Ensemble
	19.6 Results and Discussion
	19.7 Conclusion
	References

	Chapter 20: Model Building and Feature Selection with Genomic Data
	20.1 Introduction
	20.2 Ridge Regression, Lasso, and Bridge
	20.3 Drawbacks of the Lasso
	20.4 The Elastic Net
	20.4.1 Definition
	20.4.2 A Stylized Example
	20.4.3 Computation and Tuning
	20.4.4 Analyzing the Cardiomypathy Data

	20.5 The Elastic-Net Penalized SVM
	20.5.1 Support Vector Machines
	20.5.2 A New SVM Classifier

	20.6 Sparse Eigen-Genes
	20.6.1 PCA and Eigen-Genes
	20.6.2 Sparse Principal Component Analysis

	20.7 Summary
	References

