
Entity Resolution in Familial Networks

Pigi Kouki
UC Santa Cruz

pkouki@soe.ucsc.edu

Christopher Marcum
National Institutes of Health
chris.marcum@nih.gov

Laura Koehly
National Institutes of Health
koehlyl@mail.nih.gov

Lise Getoor
UC Santa Cruz

getoor@soe.ucsc.edu

ABSTRACT
Entity resolution is an important graph mining problem.
Entity resolution is particularly interesting and challenging
when there is rich relational structure. In this paper, we
study the problem of performing entity resolution in famil-
ial networks. In our setting, we are given partial views of a
familial network as described from the point of view of differ-
ent people in the network and our goal is to reconstruct the
underlying familial network from these perspective partial
views. The data and relations provided may be inaccurate,
missing or incomplete. In our approach, we start by aug-
menting the known set of familial relations with additional
ones that are either inversed or derived from the original set
of relations by linkage heuristics. Additionally, we propose a
set of measures that capture the similarity of persons in the
familial network based on both personal and relational infor-
mation. We present a supervised learning approach where
we view entity resolution in familial networks as a classifi-
cation problem. Our experiments on real-world data from
multiple-informant pedigrees show that our approach works
well and that we can improve performance by considering
separate similarity scores for each relation type.

1. INTRODUCTION
Many database applications, ranging from online shop-

ping to health records, are faced with the challenge of de-
termining whether two or more data instances refer to the
same real-world entity. For example, in a hospital database
“Jon Smith” and “Jonathan Smith” may refer to the same
person and thus a doctor would like to have a unified view
of their health record. The problem of identifying, match-
ing, and merging references that correspond to the same
entities is called entity resolution, which is also called
de-duplication, reference reconciliation, record linkage, and
data matching in the literature.

Entity resolution presents several challenges. In some
cases, the data may contain polysemy: two references that
appear to be identical, prima facie, are actually two sepa-

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

rate entities. In other cases, the challenge is synonyms: two
references that look different, but actually refer to the same
underlying entity. Finally, the data itself may be inaccurate,
missing, or incomplete, which sui generis poise complications
to reconciling a set of entities.

Typical approaches to performing entity resolution use the
set of attributes characterizing the references (e.g. name,
occupation, age) to compute different notions of similarity
(e.g. approximate string matching for names) among the
references [11]. These similarities are then used in a vari-
ety of ways to determine whether two references refer to the
same entity. In some cases, we may have additional infor-
mation available for the references that may be useful while
performing entity resolution. One such example is relational
information that describes how references are related to each
other. To this end, approaches that incorporate relational
similarities [2, 4, 7, 10] have been shown to generally per-
form better than approaches that use only attribute-based
similarities. Most of the previous works consider approaches
that deal with accurate data and they typically consider one
type of relation. However, in several real-life applications we
need to operate with information that may be inaccurate or
missing and also with several types of relations.

Our work is motivated by the problem of entity resolu-
tion in familial networks. Familial networks consist of the
members of a family together with their relations. Such
networks are prevalent in family health history applications
(e.g., the medical history of the ancestors of a person), ge-
nealogy applications (e.g., ancestry.com), and also in areal
administrative records (i.e., civic residential registrations).
In such applications, several different people provide a por-
tion of the familial network as seen from their point of view
and our goal is to infer the whole familial network. For ex-
ample, in a service such as ancestry.com users provide their
immediate family tree and the application will attempt to
determine the users’ family trees as far back as possible. To
do this, we need to determine which persons from the dif-
ferent trees are the same, i.e. we need to perform entity
resolution within and between family trees.

In addition to the typical challenges of entity resolution
described above (i.e. polysemy and synonymy) the nature
of the data in such networks presents additional challenges.
First, because the users provide their data from memory, the
data may be inaccurate, missing or incomplete. For exam-
ple, a given person providing data may remember his aunt
being 45 years old while another person may recall her as
being 47. Additionally, people may not provide accurate
information for relatives that are further in the tree (e.g.

1

may misspell the name of a cousin or may forget to include
one altogether). Finally, not all relations are provided be-
forehand. For example, a son may provide his mother’s and
father’s information and indicate the parent relation but not
the spouse relation between his parents. Similarly, when the
mother provides the data, she may describe a child relation
and a spouse relation. The fact that there are several ways
of describing the same relations within a familial network is
an additional challenge.

In our work, we start by proposing an algorithm for in-
ferring the missing relationships in order to create a richer
representation that will help with our entity resolution task.
Then, we view the entity resolution problem as a supervised
classification problem and we explore the performance of
Näıve Bayes and logistic regression. More specifically, for all
potential pairs of references we want to determine whether
they refer to the same physical entity. For our approach,
we propose both features that capture attribute similarities,
and also propose features that capture relational similar-
ity. We investigate different notions of relational similarity,
depending on type of relations. Finally, because of the pos-
sibility that our classification scheme may indicate that a
given reference matches more than one other references, we
also solve the so-called one-to-one matching problem; we im-
plement a matching restrictions algorithm that ensures that
one person will be matched to at most one entity. Our exper-
imental evaluation shows that relational features do improve
the performance of the entity resolution task in familial net-
works.

Our contributions are: 1) an algorithm that infers miss-
ing familial relationships based on existing familial relation-
ships; 2) an exploration of different types of similarity mea-
sures including name similarities, numeric attribute similar-
ities, and familial relationship similarities; 3) a greedy algo-
rithm that satisfies the one-to-one matching restriction; and
4) an extensive evaluation study on a real dataset of familial
networks coming from the medical domain.

The rest of our paper is organized as follows. We start
by formally defining the problem in Section 2. In Section 3
we present our approach, which we experimentally evaluate
in Section 4. We discuss related work in Section 5 and we
conclude and present our future work in Section 6.

2. PROBLEM DEFINITION
In our entity resolution setting, we are given a set of ego-

centric views of a family tree. The family tree is not di-
rectly provided to us. Each of the ego-centric views is from
the perspective of a participant who has provided familial
relationships between the participant and mentions of other
family members as well as personal information (e.g. name,
age, gender) for the participant and the rest of the mentions.
Relationship types are divided into two categories: first and
second degree. First degree relations include: mother, fa-
ther, spouse, brother, sister, son, daughter, while second
degree relations include: grandmother, grandfather, aunt,
uncle, grandson, granddaughter, niece, and nephew. Our
task is to align all the ego-centric views in order to construct
the family tree, which maps the participant, and each of the
mentions, to a member of the family tree. This allows us to
reconstruct the family tree from the collection of ego-centric
views. We refer to this task as entity resolution in familial
networks. We formally define the problem as follows:

Problem Definition. We assume there is an underlying

family F which contains an unobserved set of actors (per-
sons), i.e. F = {A1, A2, . . . , Am}. We are given a set of k
ego-centric views of the family tree T = {T1(·),T2(·), . . . ,Tk(·)}
which we call participant ego-centric trees. Each such ego-
centric tree is defined as Ti(pi) = {rtx(pi,mi

1), . . . , rty (pi,mi
li)},

where Mi = {pi,mi
1, . . . ,m

i
li} is the set of mentions in the

tree that correspond to the actors, pi is the mention that pro-
vided its ego-centric tree and is called a participant , tj ∈ τ
denotes the type of relation (e.g. son, daughter, father, aunt)
and mi

j denotes the mention with whom the participant pi

shares the relation type tj . A participant pi can have an
arbitrary number of relations of the same type (e.g. two
daughters, three brothers, zero sisters). The participant pi

also specifies a set of attributes for himself and all his related
mentions. The attributes are first name, maiden name, last
name, title, gender, age, and living status. For the related
mentions some attribute values may be missing or incorrect.
Our goal is to examine all the mentions (participants and
non-participants) across all the ego-centric trees and match
them to create sets of mentions that correspond to the same
actor. The ultimate task is to construct the unified family
F from the collection of matches.

3. OUR APPROACH
We view this problem as a supervised classification prob-

lem and use machine learning to solve it. More specifically,
we consider all pairs of mentions where each part of the pair
is coming from a different ego-centric tree in the family. If
the pair of mentions represents the same entity we consider
the pair belonging to the class MATCH, otherwise to the
class NO MATCH. As we will show later, we will train the
classifier on a collection of matched family trees, and then
use the classier to make predictions for a new, unresolved
family.

In such an approach, we need to make a few important
decisions. First, we can take advantage of the relation infor-
mation in order to perform effective entity resolution. As we
discussed, the relationship information is only available for
the participants and not for all the mentions in the family.
So, we can use the observed relationships for the partici-
pants in order to infer the unobserved relationships for the
rest of the mentions. Having a richer representation will
help us match the mentions more effectively. Second, we
need to design the features that we will use when learning
our model. These features are meant to capture various as-
pects of similarity between the mention pairs. In traditional
entity resolution tasks, features based on personal informa-
tion are typically used. In our work we additionally consider
features based on familial relationships. After defining the
features, we need to determine which classification method
performs well for our task.

Finally, because we are classifying pairs of mentions, we
may generate solutions that are inconsistent. For example,
the classifier may output that mention m1

1 ∈ T1 is the same
with both mentions m2

1 ∈ T2 and m2
2 ∈ T2. In this case,

we need to fix the output so that it is consistent with the
requirement that each mention from a tree can be matched
to at most one other mention in any other tree.

In what follows, we present our approach to populating re-
lationships, generating features for comparing two mentions,
and discussing the matching restriction problem.

3.1 Relationship Population

2

(a)

(b)

Figure 1: (a)For a family F, participant ego-centric tree T1(Anabel Perez) and (b) the derived mention ego-centric trees
T1
dev(Mateo Garcia) and T1

dev(Lucia Martinez). Bold black borders indicate the center of the tree (participant or mention).

(a)

(b)

Figure 2: Two participant ego-centric trees for family F: T1(Anabel Perez) and T2(JosePerez). Mentions in same colors
represent same actors. White means that the mentions were not matched across the trees.

(a)

(b)

Figure 3: (a) Participant ego-centric tree T1(Anabel Perez) and (b) Mention ego-centric tree T2
dev(Anabel Maria Perez) for

family F.

Figure 4: Aggregated family tree for family F.

3

To infer the missing relationships, for each mention mi
x ∈⋃k

j=1M
j we generate its ego-centric tree Ti

dev(mi
x) based

on the information given in Ti(pi). We call the derived
trees mention ego-centric. More specifically, to construct
the relation set Ti

dev(mi
x) for mention mi

x we perform two
kinds of operations:

1. Relationship Inversion. Given the relationship rt1(pi,mi
x)

in Ti(pi) we introduce the inverted relationship rt′1(mi
x, p

i)

in Ti
dev(mi

x). For example, if we are given the rela-
tionship rfather(p

i,mi
x) in Ti(pi), then we create the

inverse relation rson(mi
p, p

i) in Ti
dev(mi

x) (or daughter

depending on the gender of pi).

2. Relationship Derivation. We add relationships in
Ti
dev(mi

x) that we derive based on the existence of
other relationships in Ti(pi) that do not involve mi

x.
For example, given the relations
{rfather(pi,mi

x), rmother(p
i,mi

y)} in Ti(pi), then we

derive the relations rspouse(m
i
x,m

i
y) in Ti

dev(mi
x) and

rspouse(m
i
y,m

i
x) in Ti

dev(mi
y).

As an example, let us assume that for a family F a par-
ticipant describes her ego-centric tree, i.e. in Figure 1(a)
participant Anabel Perez describes In this case:

T1(Anabel Perez) = {rfather(Anabel Perez, Mateo Garcia),
rmother(Anabel Perez, Lucia Martinez)}

In Figure 1(b) we follow the above process and derive the
mention ego-centric trees

T1
dev(Mateo Garcia) = {rdaughter(Mateo Garcia, Anabel Perez),

rspouse(Mateo Garcia, Lucia Martinez)}

and

T1
dev(Lucia Martinez) = {rdaughter(Anabel Perez),

rspouse(Mateo Garcia)}

for mentions Mateo Garcia and Lucia Martinez respectively.
Once we create all the ego-centric trees, we compare all

pairs of ego-centric trees that do not contain the same partic-
ipant. More specifically, for each mention mi

x, we compare
its ego-centric tree Ti(mi

x) with all other ego-centric trees

Tv(mv
y) where mv

y ∈
⋃k
j=1,j 6=iM

j , in order to determine
whether the two mentions represent the same actor. For
each pair of mentions we decide if it represents the same
entity or not. For example, in Figure 2, given two ego-
centric trees T1(Anabel Perez) and T2(Jose Perez) we pair-
wise compare all the mentions from T1(Anabel Perez) with
all the mentions from T2(Jose Perez). The goal is to identify
that mentions in colored (i.e. non-white) boxes in Figure 2
are the same actor and construct the aggregated family tree
as shown in Figure 4.

3.2 Feature Generation and Classification
In order to train a classification model we need to gen-

erate features that the classifier will use to decide between
the MATCH and NO MATCH class for a given pair of men-
tions. To this end, we generate several features that capture
different notions of similarity between the mentions. Our

intuition is that two mentions that refer to the same entity
will have high similarity values in these features.

Given a set of participant ego-centric trees similar to those
of Figure 2, we employ a set of similarity metrics in order to
compare pairs of mentions, presented below. When compar-
ing two mentions, we use their ego-centric trees (participant
or mention). For example, if we want to compare Anabel
Perez from tree (a) with Anabel Maria Perez from tree (b)
then we use the trees that are ego-centric towards Anabel
Perez and Anabel Maria Perez as depicted in Figure 3. In
the following, when using the term “tree” we refer to a par-
ticipant or mention ego-centric tree.

3.2.1 Name Similarity
Obviously, the most important property of the mentions

is their names. In order to match names, there are a variety
of string metrics that can be used, all capturing different
aspects of the kinds of mistakes that can be made. In our
evaluation, we use two popular metrics, namely the Leven-
shtein [8] and Jaro-Winkler [6, 12]. The former is known to
work well for common typographical errors, while the latter
is specifically designed to work well with names. For exam-
ple, in Figure 2 Sophia Perez and Sofia Perez from the two
trees will have high name similarity under these two metrics,
while Sophia Perez and Jorge Perez will have lower similar-
ity. There are several ways we can use these metrics. In our
work, given two mentions that each has a first, maiden, and
last name we compute three different features: one feature
for the first name similarity, one for the maiden name sim-
ilarity, and one for the last name similarity. We compute
the values of these features for both similarity metrics (we
present all features used in Table 2). We also experimented
with using one similarity score that uses a single combined
string of the first, maiden, and last name, but we found that
this approach did not work as well.

3.2.2 Personal Information Similarity
In addition to names, we also have available other personal

information for the mentions that we can use towards our
entity resolution task. For example, age is an important
feature for entity resolution in family trees, since often times
there will be the same names, but in different generations,
and our goal is to distinguish between them. For personal
information such as gender and living status, we use a simple
binary match feature which is 1 if the values match and 0
otherwise. For personal information that is numeric such
as age, we compute the ratio of the smallest value over the
largest value. For example, for two mentions m1

1 ∈ T1 and
m2

1 ∈ T2 for the feature age we compute:

sage(m
1
1,m

2
1) =

min{m1
1.age,m

2
1.age}

max{m1
1.age,m

2
1.age}

Again, there are several options to compare numeric at-
tributes. We also experimented with the difference in ages
and the ratio of the absolute difference of two ages over the
maximum value of age in the dataset, however these did not
work as well.

3.2.3 Relationship Similarity
Using name and personal information similarities is the

first step towards entity resolution. However, oftentimes
these two pieces of information are not enough. For exam-
ple, often times people in the same tree can have the same

4

name (sometimes jr./sr. are used to disambiguate, but often
these are not available). In our example, Jose Perez from
tree (a) has the same name as two mentions from tree (b).
Additionally, the same actors may have different last names
across different participant ego-centric trees. This is often
the case for married women where in one tree the married
last name is provided while in another the family last name is
provided. Finally, in some cases personal information might
be missing or incorrect.

In order to deal with these challenges, we also use the pro-
vided relational information. There are many ways that we
can combine and use such information. In our case we define
a feature that takes into account 1) the number of matching
relationships between two mentions (e.g. two mentions have
both two sisters and three sons) and 2) how close the names
of the persons within the same relationships are (e.g. two
mentions have a mother that in both cases has name Anabel
Maria Perez). We introduce several versions of this feature
by varying the type of relations we are using (e.g. use of all
relations, use only relations of first degree).

More specifically, we begin with the intuition that if two
mentions in two different trees represent the same actor then
they should have a similar set of relations. For example, in
Figure 2 Anabel Perez from tree (a) is the same person as
Anabel Maria Perez from tree (b). One way to measure the
similarity of these two mentions in terms of relationships
is by capturing how many relationships of the same type
they share. However, just counting the number of match-
ing relationships is not sufficient. This is because there are
cases where two mentions from different trees have a high
number of matching relations, but the persons in these same
relationships are completely different. Since our goal is to
match entities, we also consider information for the men-
tions that participate in the relationships. More specifically,
given two mentions, we consider as a feature the sum of the
name similarities of their matching relations. When there
are multiple relationships of the same type, we consider the
match with the highest name similarity. For example, when
comparing Jose Perez from tree (a) to the sons of Anabel
Perez from tree (b), we will consider that, for the son rela-
tion, he is a better match to Jose Perez from tree (b) than
Manuel Perez because of the name similarity.

We formally define this similarity for two mentions m1
1 ∈

T1 and m2
1 ∈ T2 as follows:

sτρ,w(m1
1,m

2
1) =

∑
t∈τρ

relt(m
1
1)6=∅

relt(m
2
1)6=∅

max simw(m1
i .name,m

2
j .name)

∀m1
i∈relt(m

1
1)

∀m2
j∈relt(m

2
1)

N
(1)

where:

• the denominator N is for normalization and counts the
number of common relationships.

• relt(m1
1) is the set of m1

1’s relations of type t. For
example, in tree (b) of Figure 2 for the participant
p2 = Anabel Maria Perez we have that relson(p2) =
{Jose Perez,Manuel Perez}. We assume that |relt(m1

1)| ≤
|relt(m2

1)|, where |relt(·)| is the cardinality of the set,
e.g. |relson(p2)| = 2.

• τρ indicates which relationships we consider when com-
puting the sτρ,w (τρ ⊆ τ). For each different value of

τρ value Description
τρ = τ Use all relations
τρ = {t ∈ τ : t is 1st degree} Use only first degree relations.

τρ = {t ∈ τ : t is 2nd degree} Use only second degree relations.
τρ ⊂ τ Consider a proper subset of τ .

We consider the following: par-
ents, grandparents, siblings, grand-
children, uncles and aunts, nieces
and nephews.

τρ = {t ∈ τ : |t| = 1} Use a single relation from the
set. Single relations are: spouse,
mother, father, grandmother,
grandfather, son, daughter, grand-
son, granddaughter, sister, brother,
uncle, aunt, nephew, niece.

Table 1: Sets of relations considered when using Equation 1.

τρ we compute a feature sτρ . In our work we experi-
mented with different sets of relationships during the
computation of Equation 1. More specifically, we con-
sidered the relation sets shown in Table 1.

For each value of the τρ we give to the feature sτρ,w
a different name, e.g. when τρ = {mother, father}
we refer to the feature as sparents. We present our
experimental results when using different values of τρ
in the evaluation section.

• simw(m1
i .name,m

2
j .name) is the name similarity be-

tween m1
i and m2

j . Again, we use the two variants
for name similarity, i.e. both the Levenshtein (sl) and
Jaro-Winkler (sjw) similarities and we can consider
different ways of using or combining them. In our ap-
proach, for each of the similarities, given the attributes
first name, maiden name, and last name, we define the
siml or simjw as their summation. For example, for
siml: siml(m

1
i .name,m

2
j .name) =

siml(m
1
i .firstName,m

2
j .firstName) +

siml(m
1
i .maidenName,m

2
j .maidenName) +

siml(m
1
i .lastName,m

2
j .lastName)

Finally, we compute both sτρ,sl and sτρ,sjw and we
take the maximum of the two. The final relationship
similarity is computed as:

sτρ(m1
1,m

2
1) = max{sτρ,sl(m

1
1,m

2
1), sτρ,sjw (m1

1,m
2
1)}

We present the full set of features in Table 2.

3.2.4 Classification
For each pair of mentions that we compare, we generate

a vector of feature values based on the similarities that we
described above. We normalize the values of the features to
be in the range between 0 and 1.

Once we have computed the feature vectors of all pairs
of mentions in our training dataset, we can use the data to
learn a classification model. Once we train our classifier on
the training data, we can then use this classifier to predict
arbitrary and unseen pairs of mentions. In our work we
experimented with different classifiers. We report the results
on two of them in our experimental section.

3.3 Matching Restrictions

5

Type Feature Description
N

a
m

e

S
im

il
a
r
it
y

lf , lm, ll Levenshtein similarity for first, maiden,
and last name

wf , wm, wl Jaro-Winkler similarity for first, maiden,
and last name

P
e
r
s
o
n
a
l

S
im

il
a
r
it
y

sage Ratio of the ages of the two mentions
btitle Whether the two mentions agree on their

titles (e.g. the both have Sr. as a title)
balive Whether the two mentions are both alive
bgender Whether the two mentions agree on their

gender

R
e
la

t
io

n
s
h
ip

S
im

il
a
r
it
y

sτρ The maximum of the sum of Levenshtein
and Jaro-Winkler distances of the men-
tions’ relationship names.

Table 2: Features used by our classification model.

input : A set of mention pairs classified as MATCH
together with the likelihood of the MATCH

output: A set of mention pairs satisfying the one-to-one
matching restrictions

1 repeat
2 pick unmarked pair {ai, aj} with highest MATCH

likelihood;
3 output pair {ai, aj} as MATCH;
4 mark pair {ai, aj};
5 output all other pairs containing either ai or aj as NO

MATCH;
6 mark all other pairs containing either ai or aj ;
7 until all pairs are marked ;

Algorithm 1: Enforcing the one-to-one matching re-
strictions.

In order to satisfy the one-to-one matching restriction,
we implement the approach presented in Algorithm 1. The
specific algorithm is a greedy approach that enforces one-
to-one matching restrictions. The main idea is to sort the
pairs that are considered to belong in the MATCH class by
their likelihood of belonging to that class according to our
classifier. Then, we keep the pairs that have the maximum
likelihood of belonging to the MATCH class and we discard
all other pairs. We use the specific algorithm because it is
simple to implement, efficient, and has good performance in
practice.

4. EVALUATION

4.1 Dataset and Evaluation Metrics
For our experimental evaluation we use a dataset provided

by the National Institues of Health (NIH). Our dataset con-
sists of 162 families. For each family we are given 3 or 4
family trees. In total, we have to compare around 300 thou-
sand potential pairs of mentions and decide whether they
belong to the same actor. The dataset has been annotated
by hand. The annotation was performed by at least two
coders, with reconciliation of differences.

Out of all the pairs that we have to compare, 1.6% repre-
sent the same actors and thus belong to the class MATCH
and 98.4% belong to the class NO MATCH. Thus, we are
dealing with a classification problem with imbalanced classes.

In the following, we report the results after performing 5-fold
cross validation. For each fold, we partition our dataset in
a training part that will be used to learn our model, and a
testing part that will be used to validate our model. The
training set consists of mentions that belong to 130 families
for which the true class (MATCH or NO MATCH) is known
and the test set consists of mentions that belong to the re-
maining 32 families for which the true class is unknown. We
repeat this process 5 different times to get an estimation
of our performance with lower variance and to ensure the
generality of our approach to new datasets.

For our evaluation metrics, we use the precision, recall,
and f-measure per class. At a high level, precision is the
fraction of correct classifications that we performed. For
example, for the class MATCH, if our classifier output 100
pairs belonging to that class but only 90 of them were ac-
tually a MATCH according to our labeled data, then our
precision is 0.9. On the other hand, recall is the fraction of
correct classifications that we were able to retrieve from the
data. For example, for the class MATCH, if there are 100
pairs belonging to that class in our labeled data but we only
identified 10 of these pairs then our recall is 0.1. Apparently,
we want our classifier to have both high precision (i.e. not
introduce mistakes in the predictions) and high recall (i.e.
identify as many MATCH pairs as possible). Finally, the
f-measure combines precision and recall in one metric.

In the following, we present the evaluation results of our
approach. First, we show the performance of simple name
similarity features and then we add personal information
and relationship similarities. After that, we explore different
ways of using relationship similarity.

4.2 Evaluation of Classification
In our approach we experimented with several classifiers,

but due to space constraints we report results only on Näıve
Bayes and logistic regression that performed well. The out-
put of these classifiers is also helpful with enforcing the one-
to-one restrictions because they output the probability that
a given pair belongs to a specific class. As we discussed in
Section 3.3, such information is essential for dealing with the
matching restrictions problem. For all the classifiers we use
Weka’s implementation.1 We ran all classifiers with Weka’s
default settings.

Table 3 presents the results of our method for the class
MATCH only. We denote with bold the model that outper-
forms all the others for the same setting. The results for
the class NO MATCH are very similar without much varia-
tion when changing the feature set or the classifier used, so
we omit them due to space constraints. In general, for the
class NO MATCH, precision varies from 98.5% to 99.9%, re-
call varies from 98.4% to 99.9%, and f-measure varies from
99.1% to 99.7%. The performance for the class NO MATCH
are better than the results for the class MATCH. This is ex-
pected since the NO MATCH class is the majority class so
the prediction task is much easier for this class.

To evaluate our approach, we started by using only name
similarity and then we added personal information similar-
ity. Finally, as we discussed in Section 3.2.3 in addition to
the name and personal information similarity, we also ex-
plore relational features. More specifically we explored how
weighting the different relationship types can influence our
predictions. To this end, we ran the following experiments:

1http://www.cs.waikato.ac.nz/ml/weka/

6

Experiment 1: We use only name similarities as described
in section 3.2.1 and call this experiment as N.
Experiment 2: We use name and personal information
similarities as explained in Sections 3.2.1 and 3.2.2. We call
this experiment as NP.
Experiment 3: We use one feature for relational similarity
where all relationships have the same weight, i.e. τρ = τ
and we compute one feature sall. We call this experiment
NPR.
Experiment 4: We use one feature for relational similarity
where we consider only first degree relations all having same
weight, i.e. τρ = {t ∈ τ : t is 1st degree} and we compute
one feature sfirstDegree. We call this experiment NPR 1st

degree.
Experiment 5: We use one feature for the relations of first
degree and one feature for the relations of second degree,
i.e. τρ = {t ∈ τ : t is 2nd degree} and we compute two fea-
tures sfirstDegree and ssecondDegree. We call this experiment
NPR 1st and 2nd degree.
Experiment 6: We use eight features, one for each of the
grouped relations: parents, grandparents, children, grand-
children, uncles and aunts, nephews and nieces, siblings,
spouse, i.e. τρ ⊂ τ and we compute sparents, sgrandparents,
schildren, sgrandchildren, sauntsUncles, snephewsNieces, ssiblings,
sspouse. We call this experiment NPR group.
Experiment 7: We use 15 features, one for each of the
relations: father, mother, grandfathers, grandmothers, sons,
daughters, grandsons, granddaughters, uncles, aunts, nephews,
nieces, brothers, sisters, spouse, i.e. τρ = {t ∈ τ : |t| =
1} and we compute sspouse, smother, sfather, sgrandmother,
sgrandfather, sdaughter, sson, sgranddaughter, sgrandson, ssister,
sbrother, saunt, suncle, snephew, sniece. We call this experi-
ment NPR individual.
Experiment 8: We use all of the 36 features in experiments
3 to 6 above. We call this experiment NPR all.

We present the results in Table 3. Our first observation
is that the models using personal information together with
the names outperform the models that use only name sim-
ilarities. Second, the models that use relationship informa-
tion outperform the models that don’t. This confirms our
intuition that using both personal and relationship infor-
mation together with name similarities would improve the
performance in our entity resolution task. In general, the
improvement seems to increase as we introduce more spe-
cific relational features. This is true for logistic regression
where the best model is the one using all types of features
(i.e. name, personal and all kinds of relationship similarity).
For Näıve Bayes, the performance is best for the cases of us-
ing the grouped and individual relation features in terms
of f-measure. Including all the relational features does not
seem to help this classifier. This can be easily explained:
Näıve Bayes makes the assumption that all the features are
independent with each other given the class. However, the
experiment NPR all includes features that are correlated
with each other. After performing correlation analysis we
determined that the individual features from NPR indi-
vidual are correlated with the grouped ones from NPR
group, e.g. smother is correlated with sparents, sbrother is
correlated with ssibling. On the other hand, logistic regres-
sion can better handle correlated features and it outperforms
Näıve Bayes.

Finally, we note that for both the Näıve Bayes and the
logistic regression classifiers the performance in terms of

f-measure of the best models using relational information
(NPR group and NPR all accordingly) is statistically sig-
nificantly better than the models that do not take into ac-
count relational information at α = 0.05 when using paired
t-test.

4.3 Matching Restrictions
We finally turn to study the performance of our approach

when applying the 1-1 matching restrictions that we dis-
cussed in Section 3.3. To this end, we picked the best results
from each of the classifiers and applied our greedy matching
restriction algorithm.

More specifically, we applied our algorithm to the NPR
group model from Näıve Bayes and the NPR all model
from logistic regression. We call these NPR group +
Matching Restrictions and NPR all + Matching Re-
strictions respectively in Table 3.

Overall, we observe that compared to their non-restricted
models the restricted ones overall increased precision and
reduced recall. This is expected since, by removing pairs, we
essentially become stricter in providing a prediction. In this
way, we provide fewer predictions for the MATCH class but
our predictions are more accurate. In both cases, the overall
f-measure increases when we apply our matching restriction
algorithm.

5. RELATED WORK
There is a large body of related work in the general area

of entity resolution [3]. In our work we target the entity res-
olution problem when relational data are available. Bhat-
tacharya and Getoor [2] propose a collective classification
method based on a greedy clustering technique over the
relationship graph. Similarity values are computed as the
weighted sum between the attribute value similarity and re-
lational similarity, but for a single relation (co-authorship).
In our work, we follow a supervised approch (vs. the unsu-
pervised of Bhattacharya and Getoor [2]) and we consider
several relationship types (e.g. father, mother, siblings).

Dong et al. [4] also propose a collective classification ap-
proach. The main idea is the use of contextual information
(e.g. email lists) together with similarity metrics across at-
tributes (e.g. similarity between email address and name) in
order to enrich the references. In our approach, we also per-
form reference enrichment and, in addition, we also enrich
the relations by performing inversion and derivation.

Kalashnikov and Mehrotra [7] propose an approach for the
reference disambiguation problem, i.e. for the case when the
set of entities is known and the task is to match incoming
references to one of the entities. The main idea of their ap-
proach is to build a semantic weighted relationship graph
among different types of entities and different relations and
classify the entities as matching or non-matching in an it-
erative fashion by using the graph. In our case, the entities
are not known beforehand.

Singla and Domingos [10] also study the entity resolution
problem and propose a generalization of the Fellegi-Sunter
model [5] which combines first-order logic and Markov ran-
dom fields to perform collective classification. In the pro-
posed Markov logic networks the predicates take boolean
values (i.e. true or false), while in our case we allow for
more fine-grained notions of similarity. The aforementioned
works propose collective solutions to the entity resolution
task, i.e. resolutions are not made independently, but in-

7

Classifier Experiment Precision (SD) Recall (SD) F-Measure (SD)

N
ä
ıv

e
B

a
y
e
s

N 0.472 (0.045) 0.919 (0.013) 0.622 (0.040)
NP 0.505 (0.043) 0.926 (0.014) 0.652 (0.037)
NPR 0.506 (0.042) 0.926 (0.014) 0.653 (0.036)
NPR 1st degree 0.514 (0.042) 0.926 (0.013) 0.660 (0.035)
NPR 1st and 2nd degree 0.518 (0.041) 0.927 (0.013) 0.664 (0.034)
NPR group 0.533 (0.041) 0.925 (0.012) 0.676 (0.033)
NPR individual 0.533 (0.035) 0.918 (0.010) 0.674 (0.027)
NPR all 0.521 (0.037) 0.902 (0.009) 0.660 (0.030)
NPR group + Matching Restrictions 0.551 (0.044) 0.924 (0.013) 0.689 (0.035)

L
o
g
is

ti
c

N 0.748 (0.031) 0.777 (0.042) 0.762 (0.028)

R
e
g
r
e
ss

io
n

NP 0.819 (0.027) 0.809 (0.038) 0.813 (0.026)
NPR 0.809 (0.026) 0.810 (0.037) 0.809 (0.024)
NPR 1st degree 0.854 (0.018) 0.794 (0.042) 0.822 (0.024)
NPR 1st and 2nd degree 0.852 (0.016) 0.794 (0.037) 0.822 (0.022)
NPR group 0.865 (0.014) 0.788 (0.030) 0.824 (0.018)
NPR individual 0.865 (0.012) 0.788 (0.029) 0.824 (0.017)
NPR all 0.878 (0.015) 0.800 (0.028) 0.836 (0.018)
NPR all + Matching Restrictions 0.909 (0.014) 0.789 (0.027) 0.844 (0.016)

Table 3: Performance of two classifiers for the class MATCH with varying types of features. Numbers in parenthesis indicate
standard deviations. Bold shows the best performance in each metric for each classifier

stead one resolution decision affects other resolutions [2].
Collective methods have been shown to perform well in cer-
tain cases compared to non-collective methods, so we plan
to extend our work to include a collective approach in the
future.

6. CONCLUSIONS AND FUTURE WORK
In this paper we studied the problem of the entity resolu-

tion in familial networks. Our approach starts by augment-
ing the given set of familial relations with additional ones
that are either inversed or derived from the original set of
relations. We propose a set of similarity measures that cap-
ture the similarity of persons in the family based on both
personal and relational information. We presented a super-
vised learning approach where we view the entity resolution
in familial networks as a classification problem. Our exper-
iments on real-world data show that our approach works
well and that we can improve performance by considering
separate similarity scores for each relation type.

For our future work, we plan to explore the use of struc-
tured output learning techniques [9]. These techniques can
directly consider the matching constraints during the learn-
ing of the classifier instead of post processing the classifi-
cation results. We plan to focus on a statistical relational
learning approach and more specifically Probabilistic Soft
Logic (PSL) [1]. PSL is an open source machine learning
framework2 that provides a logic-based declarative language
that allows for collective probabilistic inference. Another
direction is to consider temporal relations e.g. ex-wife, ex-
husband.

Acknowledgements
We would like to thank Jay Pujara for insightful discussions.
This work was supported by the National Science Founda-
tion grant IIS1218488 and by the National Human Genome
Research Institute Division of Intramural Research at the
National Institutes of Health (Z01HG200335 to LMK). Any

2http://psl.umiacs.umd.edu

opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foun-
dation or the National Institutes of Health.

7. REFERENCES
[1] S.H. Bach, M. Broecheler, B. Huang, and L. Getoor.

Hinge-loss markov random fields and probabilistic soft
logic. ArXiv:1505.04406 [cs.LG], 2015.

[2] I. Bhattacharya and L. Getoor. Collective entity
resolution in relational data. In TKDD, 2007.

[3] P. Christen. Data Matching: Concepts and Techniques
for Record Linkage, Entity Resolution, and Duplicate
Detection. Springer Publishing Company,
Incorporated, 2012.

[4] X. Dong, A. Halevy, and J. Madhavan. Reference
reconciliation in complex information spaces. In
SIGMOD, 2005.

[5] P. Fellegi and B. Sunter. A theory for record linkage.
Journal of the American Statistical Association, 1969.

[6] M. Jaro. Advances in record-linkage methodology as
applied to matching the 1985 census of Tampa.
Journal of the American Statistical Association, 1989.

[7] D. Kalashnikov and S. Mehrotra. Domain-independent
data cleaning via analysis of entity-relationship graph.
TODS, 2006.

[8] Gonzalo Navarro. A guided tour to approximate string
matching. ACM Computer Survey, 2001.

[9] S. Nowozin, P. Gehler, J. Jancsary, and C. Lampert.
Advanced Structured Prediction. The MIT Press, 2014.

[10] P. Singla and P. Domingos. Entity resolution with
markov logic. In ICMD, 2006.

[11] Winkler W. The state of record linkage and current
research problems. In Tech. rep., Statistical Research
Division, U.S. Census Bureau, 1999.

[12] W. Winkler. String comparator metrics and enhanced
decision rules in the fellegi-sunter model of record
linkage. In Section on Survey Research, 1990.

8

