Introduction and Motivation

Animal Re-Identification (Re-ID), matching new
observations against a catalog of known individuals,
Is essential for wildlife conservation, however
manual re-identification is time-consuming and
error-prone.

We introduce an automated white shark Re-ID
framework designed to accelerate and improve this
process.

Our system leverages visual features of dorsal fins
[1] while keeping humans in the loop for validation,
enabling efficiency and reliability.
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Methods

e Image encoder maps images to embedding space

o Google/vit-large-patch16-384 feature extraction
backbone [2]

o Multilayer perceptron (MLP) projection head

o Trained for:
m Sensitivity to biomarkers on the dorsal fin

(notches and pigmentation patterns)

m Invariance on confounding factors

¢ Retrieval algorithm searches embeddings space
o Well-trained model organizes embeddings into
distinct clusters for each shark
o Matching sharks are retrieved by searching the
embedding space for nearest neighbors to a
query image
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Image Encoder Training

e Training Approach:
o Triplet loss function [3]:

L(A,P,N) =max(d(A,P) —d(A,N) + «,0)

o Fine-tuning with low rank adaptation [4]
m Parameter efficient method allows
convergence in 72 hours on single GPU

¢ Training Enhancements:
o Class-aware triplet sampling
m Sparse dataset: many training batches lack
anchor-positive samples
m Explicitly sample two positive samples for
each anchor image
o Training image augmentation
m Augmentations to perspective, rotation, scale,
and color during training
m Increase invariance to confounding traits in
Images
m Reduce overfitting

Retrieval Techniques

Nearest Neighbor (NN)
e Rank all identities by their closest image
embedding to the query
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Nearest Prototype (NP)
e Prototype embedding for each ID [5]
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e Rank by the closest prototype to the query
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e Hits@K scores

o Proportion of queries where correct individual is
among first k retrieved

o K=50 represents a practical upper limit for
human review

e Test set of 1randomly selected image from each

Individual with > 1 image
o 497 train, 2,586 test images

Nearest Neighbor Retrieval Prototype Retrieval

Model Hits@! Hits@5 Hits@10 | Hits@! Hits@5 Hits@10

ViT 0.03 0.09 0.13 0.05 0.13 0.18
ViT+LoRA 0.09 0.23 0.29 0.11 0.23 0.30
ViT+LoRA+CAS. 0.31 0.55 0.64 0.33 0.56 0.64
ViT+LoRA+CAS.+Aug. 0.48 0.68 0.76 0.51 0.68 0.75
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Ablation of augmentation techniques:

Nearest Neighbor Retrieval
Hits@1 Hits@5 Hits@25 Hits@50

Augmentations

None 0.31 0.55 0.74 0.83
Geometric 0.45 0.65 0.83 0.89
Geo. + Color 0.48 0.67 0.85 0.90
Geo. + Color + Erase 0.35 0.57 0.74 0.83

Shark Matcher Human-in-the-Loop Ul

Collaborating with marine biologists, we developed a
Ul taylored to streamline their [abeling workflow. Our
model’s match results can be browsed, filtered,
reviewed, and approved, committing them to a shark
database.

Conclusion and Future Work

We develop a framework for white shark Re-ID,
presenting optimizations to model training and
retrieval technique, showing their benefits to
retrieval accuracy. Paired with our Ul, this work has
become a valuable tool for dataset de-duplication
and matching newly captured shark images for our
marine biologist collaborators.

As future work, we aim to:
Evaluate over different animal species to better
understand generalization potential
Improve model adaptation with online learning of
newly added data
Develop techniques for training accurate models
on noisy and mislabeled real-world data
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