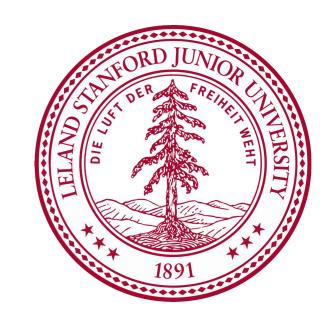


Optimizing Vision Transformers for White Shark Re-Identification

Fabrice Kurmann¹, Connor Pryor¹, Charles Dickens¹, Alexandra E. DiGiacomo², Samantha Andrzejaczek², Eriq Augustine¹, Barbara A. Block², Lise Getoor¹ University of California Santa Cruz¹, Stanford University²



Introduction and Motivation

Animal Re-Identification (Re-ID), matching new observations against a catalog of known individuals, is essential for wildlife conservation, however manual re-identification is time-consuming and error-prone.

We introduce an automated white shark Re-ID framework designed to accelerate and improve this process.

Our system leverages visual features of dorsal fins [1] while keeping humans in the loop for validation, enabling efficiency and reliability.

Dataset

• Images include

factors

numerous confounding

Fin orientation,

Background

rotation, angle

color/lighting

reflection, splash

Water surface,

Shark: "Wing"

- Their rarity, vast habitat, and difficulty to photograph creates a sparsely populated database of many sharks, each represented by few images
 - o 3083 dorsal fin images
 - 1031 unique white sharks
 - 20+ year timespan

Shark: "Chainsaw"

Shark Re-Identification Framework

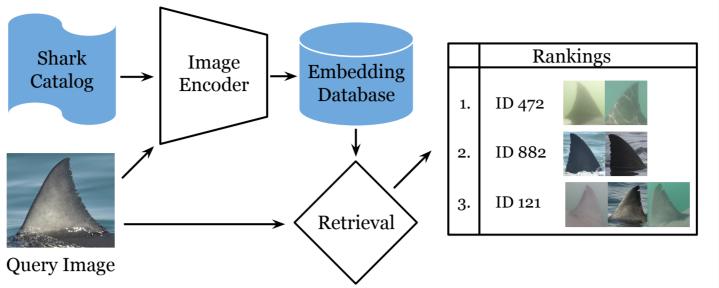


Image Encoder Training

• Training Approach:

Triplet loss function [3]:

$$\mathcal{L}(A, P, N) = \max(d(A, P) - d(A, N) + \alpha, 0)$$

- Fine-tuning with low rank adaptation [4]
- Parameter efficient method allows convergence in 72 hours on single GPU

• Training Enhancements:

- Class-aware triplet sampling
 - Sparse dataset: many training batches lack anchor-positive samples
 - Explicitly sample two positive samples for each anchor image
- Training image augmentation
 - Augmentations to perspective, rotation, scale, and color during training
 - Increase invariance to confounding traits in images
 - Reduce overfitting

Retrieval Techniques

Nearest Neighbor (NN)

Rank all identities by their closest image embedding to the query

$$\hat{\mathcal{Y}}_{ ext{NN}} = ext{rank}\left(y \in \mathcal{Y} \left| \begin{array}{c} \min \limits_{z \in Z_y} d(z_q, z) \end{array}
ight)$$

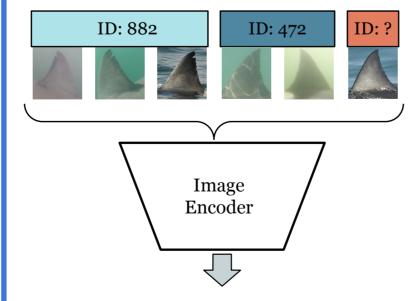
Nearest Prototype (NP)

Prototype embedding for each ID [5]

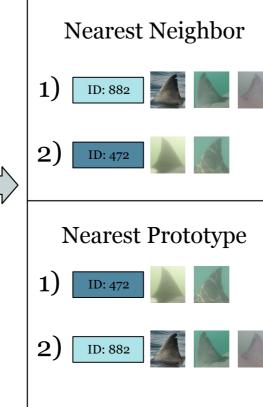
$$\mu_y = rac{1}{|Z_y|} \sum_{z \in Z_y} z_z$$

Rank by the closest prototype to the query

$$\hat{\mathcal{Y}}_{ extsf{NP}} = ext{rank}\left(y \in \mathcal{Y} \;\middle|\; d(z_q, \mu_y)
ight)$$



Nearest Neighbor Nearest Prototype



Ranking

Results

- Hits@K scores
 - Proportion of queries where correct individual is among first k retrieved
 - K=50 represents a practical upper limit for human review
- Test set of 1 randomly selected image from each individual with > 1 image
 - 497 train, 2,586 test images

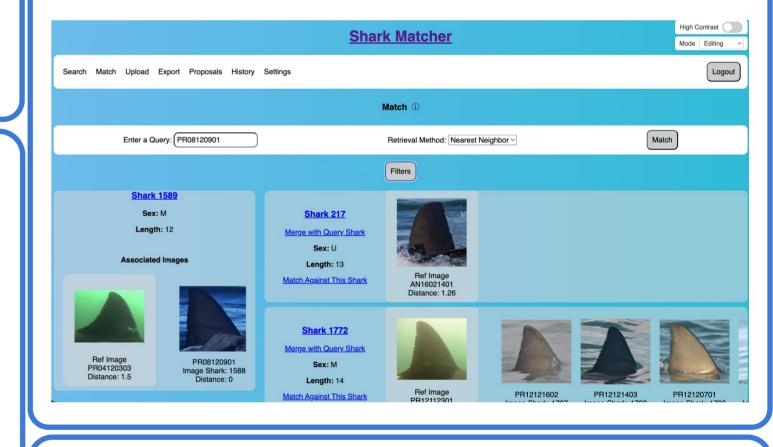
Model	Nearest Neighbor Retrieval			Prototype Retrieval		
Model	Hits@1	Hits@5	Hits@10	Hits@1	Hits@5	Hits@10
ViT	0.03	0.09	0.13	0.05	0.13	0.18
ViT+LoRA	0.09	0.23	0.29	0.11	0.23	0.30
ViT+LoRA+CAS.	0.31	0.55	0.64	0.33	0.56	0.64
ViT+LoRA+CAS.+Aug.	0.48	0.68	0.76	0.51	0.68	0.75

Ablation of augmentation techniques:

Anamontations	Nearest Neighbor Retrieval					
Augmentations	Hits@1	Hits@5	Hits@25	Hits@50		
None	0.31	0.55	0.74	0.83		
Geometric	0.45	0.65	0.83	0.89		
Geo. + Color	0.48	0.67	0.85	0.90		
Geo. + Color + Erase	0.35	0.57	0.74	0.83		

Shark Matcher Human-in-the-Loop UI

Collaborating with marine biologists, we developed a UI taylored to streamline their labeling workflow. Our model's match results can be browsed, filtered, reviewed, and approved, committing them to a shark database.



Conclusion and Future Work

We develop a framework for white shark Re-ID, presenting optimizations to model training and retrieval technique, showing their benefits to retrieval accuracy. Paired with our UI, this work has become a valuable tool for dataset de-duplication and matching newly captured shark images for our marine biologist collaborators.

As future work, we aim to:

- Evaluate over different animal species to better understand generalization potential
- Improve model adaptation with online learning of newly added data
- Develop techniques for training accurate models on noisy and mislabeled real-world data

Acknowledgements

This work was partially supported by the NSF grant CCF-2023495.

References

[1] Nowacek, Christiansen, Beider, Goldbogen, Friedlaender, Studying cetacean behaviour: new technological approaches and conservation apps. (2016). [2] Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, and Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv (2021) [3] Schroff, Kalenichenko, and Philbin. Facenet: A unified embedding for face recognition and clustering. CVPR (2015). [4] Hu, Shen, Wallis, Zhu, Li, Wang, Wang, and Chen. Lora: Low-rank adaptation of large language models. arXiv (2021)

[5] Rocchio. Relevance feedback in information retrieval. (1971).

embedding space for nearest neighbors to a

• Retrieval algorithm searches embeddings space Well-trained model organizes embeddings into distinct clusters for each shark

Methods

• Image encoder maps images to embedding space

Multilayer perceptron (MLP) projection head

(notches and pigmentation patterns)

■ Invariance on confounding factors

■ Sensitivity to biomarkers on the dorsal fin

backbone [2]

Trained for:

Google/vit-large-patch16-384 feature extraction

Matching sharks are retrieved by searching the query image