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Conclusion and Future Work

Image Encoder Training

Shark Re-Identification FrameworkIntroduction and Motivation
Animal Re-Identification (Re-ID), matching new 
observations against a catalog of known individuals, 
is essential for wildlife conservation, however 
manual re-identification is time-consuming and 
error-prone.
We introduce an automated white shark Re-ID 
framework designed to accelerate and improve this 
process.
Our system leverages visual features of dorsal fins 
[1] while keeping humans in the loop for validation, 
enabling efficiency and reliability.

We develop a framework for white shark Re-ID, 
presenting optimizations to model training and 
retrieval technique, showing their benefits to 
retrieval accuracy. Paired with our UI, this work has 
become a valuable tool for dataset de-duplication 
and matching newly captured shark images for our 
marine biologist collaborators.
As future work, we aim to:
● Evaluate over different animal species to better 

understand generalization potential
● Improve model adaptation with online learning of 

newly added data
● Develop techniques for training accurate models 

on noisy and mislabeled real-world data
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● Image encoder maps images to embedding space
○ Google/vit-large-patch16-384 feature extraction 

backbone [2]
○ Multilayer perceptron (MLP) projection head 
○ Trained for:
■ Sensitivity to biomarkers on the dorsal fin 

(notches and pigmentation patterns)
■ Invariance on confounding factors

● Retrieval algorithm searches embeddings space
○ Well-trained model organizes embeddings into 

distinct clusters for each shark
○ Matching sharks are retrieved by searching the 

embedding space for nearest neighbors to a 
query image

Dataset
● Their rarity, vast 

habitat, and difficulty 
to photograph creates 
a sparsely populated 
database of many 
sharks, each 
represented by few 
images
○ 3083 dorsal fin 

images
○ 1031 unique white 

sharks
○ 20+ year timespan

Results

Extra Stuff

Retrieval Techniques

Shark Matcher Human-in-the-Loop UI

● Training Approach:
○ Triplet loss function [3]:

○ Fine-tuning with low rank adaptation [4]
■ Parameter efficient method allows 

convergence in 72 hours on single GPU
● Training Enhancements:
○ Class-aware triplet sampling

■ Sparse dataset: many training batches lack 
anchor-positive samples

■ Explicitly sample two positive samples for 
each anchor image

○ Training image augmentation
■ Augmentations to perspective, rotation, scale, 

and color during training
■ Increase invariance to confounding traits in 

images
■ Reduce overfitting

Collaborating with marine biologists, we developed a 
UI taylored to streamline their labeling workflow. Our 
model’s match results can be browsed, filtered, 
reviewed, and approved, committing them to a shark 
database.

● Hits@K scores
○ Proportion of queries where correct individual is 

among first k retrieved
○ K=50 represents a practical upper limit for 

human review
● Test set of 1 randomly selected image from each 

individual with > 1 image
○ 497 train, 2,586 test images

Nearest Neighbor (NN)
● Rank all identities by their closest image 

embedding to the query

Nearest Prototype (NP)
● Prototype embedding for each ID [5]

● Rank by the closest prototype to the query

Ablation of augmentation techniques:

● Images include 
numerous confounding 
factors
○ Fin orientation, 

rotation, angle
○ Background 

color/lighting
○ Water surface, 

reflection, splash
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