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Conclusion and Future Work

Image Encoder Training

Shark  Re-Identification FrameworkIntroduction and Motivation
Animal Re-Identification (Re-ID), matching new observations against a catalog 
of known individuals, is essential for wildlife conservation, however manual 
re-identification is time-consuming and error-prone.
We introduce an automated white shark Re-ID framework designed to 
accelerate and improve this process.
Our system leverages visual features of dorsal fins [1] while keeping humans in 
the loop for validation, enabling efficiency and reliability.

We develop a framework for white shark Re-ID, presenting optimizations to 
model training and retrieval technique, showing their benefits to retrieval 
accuracy. Paired with our UI, this work has become a valuable tool for dataset 
de-duplication and matching newly captured shark images for our marine 
biologist collaborators.
As future work, we aim to:
● Evaluate over different animal species to better understand generalization 
● Improve model adaptation with online learning of newly added data
● Develop techniques for training accurate models on noisy and mislabeled 

real-world data
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● Image encoder maps images to embedding space
○ Google/vit-large-patch16-384 feature extraction backbone [2]
○ Multilayer perceptron (MLP) projection head 
○ Trained for:
■ Sensitivity to biomarkers on the dorsal fin (notches and pigmentation)
■ Invariance on confounding variables (pose, lighting, image quality)

● Retrieval algorithm searches embeddings space
○ Well-trained model organizes embeddings into distinct clusters for each 

shark
○ Matching sharks are retrieved by searching the embedding space for 

nearest neighbors to a query image

Extra Stuff

Retrieval Techniques

Shark Matcher Human-in-the-Loop UI

● Training Approach:
○ Triplet loss function [3]:

○ Fine-tuning with low rank adaptation [4]
■ Parameter efficient method allows convergence in 72 hours on single 

GPU
● Training Enhancements:
○ Class-aware triplet sampling

■ Sparse dataset: many training batches lack anchor-positive samples
■ Explicitly sample two positive samples for each anchor image

○ Training image augmentation
■ Augmentations to perspective, rotation, scale, and color during 

training
■ Increase invariance to confounding traits in images
■ Reduce overfitting

Collaborating with marine biologists, we developed a UI taylored for their 
labeling workflow. Our model’s match results can be browsed, filtered, 
reviewed, and approved, committing them to a shark database.

● Hits@K scores
○ Proportion of queries where 

correct individual is among 
first k retrieved

○ K=50 represents a practical 
upper limit for human review

● Test set of 1 randomly selected 
image from each individual with 
> 1 image
○ 497 train, 2,586 test images

Nearest Neighbor (NN)
● Rank all identities by their closest 

image embedding to the query

Nearest Prototype (NP)
● Prototype embedding 

for each ID [5]
● Rank by the closest 

prototype to the 
query

● Ablation shows breakdown of 
augmentation technique.
○ All techniques aside from random 

erasing improve results
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Dataset
● Their rarity, vast habitat, and 

difficulty to photograph 
creates a sparsely populated 
database of many sharks, each 
represented by few images
○ 3083 dorsal fin images
○ 1031 unique white sharks
○ 20+ year timespan

● Images include numerous 
confounding factors
○ Fin orientation, rotation, 

angle
○ Background color/lighting
○ Water surface, reflection, 

splash
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