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Abstract

Animal re-identification, the problem of mapping a new im-
age to an existing curated set of individuals, is crucial for
wildlife conservation and population monitoring. Tradi-
tionally, domain experts have performed this task manually,
but identifying individuals from images is both challenging
and labor-intensive. To address this challenge in monitor-
ing white shark populations, we present an automated re-
identification approach that assists in matching individuals
while supporting human-in-the-loop validation. By training
and evaluating on a dataset of dorsal fin images character-
ized by limited training data and a long-tailed distribution,
we develop a system robust to the real-world challenges of
image-based wildlife tracking. We leverage a pretrained Vi-
sion Transformer (ViT) backbone [8], which we efficiently
adapt to produce discriminative shark fin embeddings that
are robust to variations in pose, lighting, and image qual-
ity. We compare embedding retrieval strategies to optimize
retrieval of the most relevant individuals. Our combined ap-
proach is situated in a user interface that allows researchers
to update and grow their image catalogs, leveraging our re-
identification system to deliver high-likelihood match rec-
ommendations they can evaluate and, upon approval, ac-
cept.

1. Introduction
Identifying individual animals from images and videos is
essential for understanding population dynamics, tracking
migration patterns, and informing conservation efforts. Au-
tomated re-identification offers a scalable alternative to la-
bor intensive, highly specialized matching of animal images
based on pictured individuals. As a result, the task of ani-
mal re-identification using computer vision has received im-
mense attention [5–7, 12, 14–17, 19, 20, 23, 24, 26, 29].
Previous works have developed numerous methods, includ-

Figure 1. For white shark re-identification an image encoder
trained on the contents of a shark catalog generates embeddings
for all catalog and new query images. A retrieval algorithm is
then used to produce ranked shark suggestions from the embed-
ding database.

ing applying various neural network architectures and train-
ing techniques to recognize and identify individuals based
on specific biomarkers for a multitude of species.

In this paper, we specifically examine the problem of
white shark identification from dorsal fin images extracted
from video [1]. Visual matching in this context presents
substantial challenges: due to the vastness of their habitat,
limited visibility, and rarity of re-encountering the same in-
dividual, white shark sightings are rare and photographic



conditions are often poor due to water quality and light-
ing [18]. As a result, researchers can typically collect only
a small number of quality photographs per individual to
identify sharks across sightings. This leads to a sparsely
populated database of many individuals, each represented
by only a handful of images. As such a dataset grows, it
becomes increasingly difficult to match new observations
against past records. The matching process quickly be-
comes time-consuming and error-prone, limiting the scal-
ability of long-term monitoring efforts.

We address these challenges and develop a framework
for identifying individual white sharks from dorsal fin pho-
tographs leveraging a state-of-the-art vision transformer
(ViT) architecture [8]. Figure 1 provides a high-level
overview of our matching system, in which a trained image
encoder generates embeddings for all catalog and query im-
ages and a retrieval algorithm then ranks candidate matches
based on proximity to the query of individuals in the em-
bedding database. Our model and retrieval system stream-
lines re-identification by presenting marine biologists with
a ranked list of likely matching individuals for each query
image, reducing the labeling workload while maintaining
accuracy through targeted human review.

Our key contributions are: (1) training an image model
optimized for our task by introducing class-aware triplet
sampling and augmented images to improve performance
with limited, sparsely distributed data; (2) evaluating two
retrieval strategies, nearest-neighbor and prototype-based,
for identifying individuals; and (3) demonstrating strong
performance on an extensive dataset of dorsal fin images,
achieving up to 51% Hits@1 and 91% Hits@50. Addition-
ally, we introduce a shark matching platform which pro-
vides an interface to our framework where marine biolo-
gists can view and maintain their catalog of labeled shark
images and efficiently process and match newly captured
photographs. Our results and feedback from users high-
light the promise of deep learning coupled with a human-
in-the-loop interface to streamline animal re-identification
in unique real-world marine monitoring efforts.

2. Related Work
The re-identification of individual animals is a corner-
stone of wildlife conservation and ecological efforts, en-
abling population assessments, tracking movements, and
understanding behaviors [1, 3, 10, 27]. Traditional photo-
identification relies on manual comparison of distinctive
natural markings, such as nicks, notches, scars, and pigmen-
tation patterns [28], a process which is exceptionally time-
consuming and prone to human error, especially as image
databases grow. Consequently, computer-assisted and au-
tomated methods have emerged to accelerate and improve
accuracy in individual animal re-identification.

For many large marine species, the dorsal fin or fluke

serves as the primary feature for photographic identifica-
tion. Early computational approaches focused on geomet-
ric representations of the fin’s trailing edge. Finscan, for
example, framed fin comparison as a string-matching prob-
lem based on edge curvature [12], while others later intro-
duced an integral curvature representation to improve ro-
bustness to viewpoint changes [26]. Hughes and Burghardt
introduced the first fully automated contour-based visual
identification system for great white sharks from dorsal fin
imagery, focusing specifically on matching unconstrained,
natural images to animal identity without requiring manual
intervention for fin detection and extraction [14]. More re-
cent methods like finFindR have shifted towards deep learn-
ing, using Convolutional Neural Networks (CNNs) to ex-
tract features from sub-images along the fin [23], making
the process more robust and less sensitive to image noise.
Similarly, Moskvyak et al. presented a system for robust
re-identification of manta rays and humpback whale flukes
using pose-invariant embeddings learned via a deep CNN
and triplet loss [16]. Finally, in the realm of end-to-end
automated systems leveraging deep learning, FIN-PRINT
stands out [5]. This framework for killer whale recogni-
tion incorporates dedicated stages for dorsal fin and saddle
patch detection, extraction, data enhancement to filter in-
valid images, and multi-class individual classification. Our
work departs from these contour and CNN-based methods
by leveraging a Vision Transformer (ViT) architecture and
moving beyond a primary reliance on exclusively the fin’s
edge or any one specific biomarker. We show that the ViT’s
self-attention mechanism is better suited to capture the sub-
tle, holistic patterns of notches and pigmentation crucial for
white shark re-identification, moving beyond a primary re-
liance on the fin’s edge alone.

Beyond recognizing fin morphology, re-identification
tasks for other species have broadened algorithm develop-
ment. HotSpotter is a widely used algorithm based on ex-
tracting and matching keypoints or ”hotspots” [7]. This ap-
proach emphasizes distinctive regions on an animal’s pat-
tern and has been successfully applied to zebras, giraffes,
and jaguars, among others. For sharks with unique spotting
patterns, van Tienhoven et al. introduced the Interactive In-
dividual Identification System [24]. This computer-aided
program compares natural pigment marks, relying on hu-
man input to highlight key pigmentation regions and then
confirm matches from a ranked list. Finally, Zheng et al.
proposed a transformer network structure for wild terres-
trial animal re-identification based on fur, stripes, and facial
features, addressing limitations of traditional CNNs in cap-
turing long-distance feature relationships [29]. These suc-
cessive works highlight a growing trend towards more ad-
vanced, less feature-specific deep learning architectures for
both marine and general animal recognition.

A growing trend is the development of species-agnostic



models and comprehensive platforms. Some research fo-
cuses on modular pipelines that can be adapted to new
species with minimal re-training [17], while others have
trained single, large-scale networks on diverse, multi-
species datasets [19]. By generalizing to multiple species,
these frameworks address the challenge of limited labeled
training data for many species and make promising steps in
improving the reach of automated re-identification. While
we train and evaluate our current model on white sharks ex-
clusively, a promising future area of research involves ex-
ploring how our contributions are compatible to the study
of multi-species frameworks.

The increasing complexity and volume of photographic
data have also driven the development of comprehensive
re-identification frameworks and platforms. Wildbook pi-
oneered an open-source web platform that enables citi-
zen scientists to participate in crowdsourcing conservation
through its aggregation of species detection models paired
with a robust database and web-based user interface [4].
Flukebook, a species specific Wildbook, [6] offers an to
support the identification for 15 cetacean species using a
human-in-the-loop approach pairing re-identification algo-
rithms and expert judgment to confirm or reject potential
matches. Building in parallel with these efforts, we in-
troduce a shark matching platform that provides an inter-
face to our framework, allowing marine biologists to view
and maintain their catalog of labeled shark images and ef-
ficiently process and match newly captured photographs.
Collectively, these systems illustrate the growing integra-
tion of automated identification technologies, balancing au-
tomation and expert oversight to meet the diverse needs of
conservation biology.

3. Methods
Our goal is to construct a neural model that can produce
discriminative image embeddings that are highly sensitive
to biomarkers on the dorsal fin, such as unique notches and
pigmentation patterns, while remaining invariant to con-
founding variables such as pose, lighting, and image quality.
We then apply a retrieval technique to determine the indi-
viduals with the greatest likelihood of matching the subject
of a query image.

Formally, let X denote the space of input images, and
let Y = {y1, y2, . . . , yN} represent a dynamic catalog of
known individual identities, each associated with a small
gallery Gy ⊂ X of associated images. Given a query im-
age xq ∈ X , the objective is to identify the correct individ-
ual y∗ ∈ Y such that xq and the images in Gy∗ depict the
same individual. Crucially, this is formulated as a retrieval
problem, rather than a classification problem. In many real-
world ecological monitoring scenarios, including shark re-
identification, the set of known identities Y is dynamic:
new individuals are frequently discovered and added to the

gallery over time. As a result, directly training a model to
predict P(y | xq) on a closed set of labels is infeasible and
does not generalize to unseen individuals encountered after
training. This task is therefore decomposed into two com-
ponents: (1) learning an embedding function fθ : X → Rd

that maps images to a representation space where those de-
picting the same individual lie close under a distance metric
d : Rd×Rd → R≥0; and (2) retrieving the identities y∗ that
best match the query in this space.

Various forms of neural architecture have been leveraged
to produce image embeddings, with recent research having
shifted towards transformer-based models, which have al-
ready shown great success in domains such as natural lan-
guage processing (NLP). We begin by introducing foun-
dational information about our neural model architecture
(Section 3.1), then the following two subsections will de-
scribe our optimizations in model training (Section 3.2) and
embedding retrieval (Section 3.3).

3.1. Model Architecture

Vision Transformer (ViT) models represent a paradigm shift
in computer vision by directly applying the Transformer ar-
chitecture, previously dominant in NLP, to image recogni-
tion tasks [8]. Unlike previous neural network-based com-
puter vision approaches that typically rely on Convolutional
Neural Networks (CNNs) that integrate attention mecha-
nisms within convolutional structures [9], ViT models in-
troduce a transformer exclusive architecture that eliminates
the inherent reliance on convolution. Although ViT mod-
els lack intrinsic understanding of the locality achieved in
CNNs through their convolutional structure, this apparent
limitation is overcome through the ViT self-attention mech-
anism. When trained on very large-scale datasets, this
self-attention mechanism is able to learn to distinguish and
weight significant across any region within the image. The
additional ability of ViT’s self-attention layers to integrate
information globally across the entire image, over all net-
work layers, provides a key benefit over CNNs, whose re-
ceptive fields are heavily localized, especially in early net-
work layers.

The core ViT innovation involves treating images as se-
quences of flattened 2D patches, analogous to how NLP
Transformers process sequences of words or tokens. Specif-
ically, an input image is reshaped into numerous equally
sized patches, which are then linearly embedded to a lower
dimension, forming “patch embeddings”. These patch em-
beddings are combined with learnable position embeddings,
which encode spatial information. This resulting sequence
of embedding vectors is then fed into a standard transformer
encoder, a modular stack of alternating perceptron and self-
attention and blocks [25], which correspondingly function
to understand patch features and the relationship between
different patches. This modular setup enables ViTs to lever-



age the same scalable architecture and benefit from the effi-
cient implementations developed for NLP Transformers.

A key aspect of ViT’s exceptional performance and
adaptability lies in their training paradigm, which involves
extensive pretraining on vast, diverse datasets, optionally
followed by fine-tuning for highly specific downstream
tasks. When pretrained on sufficiently large datasets, ViT
models achieve state-of-the-art results that match or surpass
comparable CNNs. We selected ResNet34 [11] and ViT
Large Patch16-384 [8] models, two CNN and ViT back-
bones, both of which were pretrained on large, ImageNet
datasets, and compared their performance on our data set.
Our evaluation showed a significantly higher accuracy with
a ViT backbone; therefore, we focused our efforts on opti-
mizing the performance of this model. To adapt our foun-
dation model for our shark re-identification task, we append
a multilayer perceptron (MLP) projection head, which is
trained to produce the final embeddings from the ViT’s out-
put representations.

3.2. Model Training
Fully training a projection head without adapting our
ViT foundation model limits performance on our domain-
specific task. We therefore explored fine-tuning our ViT
backbone. For computational efficiency, we used low-rank
adaptation (LoRA) [13], and introduced 3.5M trainable pa-
rameters into the foundation model. These trainable param-
eters are then updated during fine-tuning while the founda-
tion parameters remain frozen. By training only the LoRA
trainable parameters, instead of the foundation model’s full
307M, this parameter efficient approach enabled model
convergence within 72 hours on a single NVIDIA Quadro
RTX 6000 GPU. The combination of training the MLP pro-
jection head and fine-tuning the backbone via LoRA re-
sulted in a marked improvement in the model’s ability to
generate discriminative embeddings, evidenced by signifi-
cant gains in retrieval performance.

3.2.1. Triplet Loss
Our model aims to produce an embedding space where im-
ages of the same individual are grouped together and dis-
similar images are pushed apart. We train using a triplet
loss function [22] which operates on triplets of images: an
“anchor” (A), a “positive” (P ) (an image of the same indi-
vidual as the anchor), and a “negative” (N ) (an image of a
different individual). The triplet loss is then formally de-
fined as:

L(A,P,N) = max(d(A,P )− d(A,N) + α, 0)

Here d represents the distance between any two images
in the embedding space and α is a margin hyperparame-
ter. The function’s goal is to minimize anchor-positive dis-
tance while ensuring the anchor-negative distance is larger

by at least the margin α. Model updates with triplet
loss are greatest when training on “hard” triplets where
the anchor–negative distance is initially smaller than the
anchor–positive distance in the embedding space. Such
hard triplets produce informative gradients for updating the
model’s weights.

3.2.2. Training Enhancements
While our model architecture training with triplet loss
achieved strong performance, we identified two key en-
hancements that significantly improved results: class-aware
triplet sampling and data augmentation.

Class-Aware Triplet Sampling Given the sparse nature
of our dataset, where most individuals have only a few im-
ages, random batch sampling rarely yields triplets with the
necessary positive pairs. This limitation reduces the effec-
tiveness of triplet loss, as many batches fail to form valid
anchor–positive–negative relationships. To address this, we
implemented a class-aware triplet sampler that explicitly
constructs batches containing at least two positive samples
for each anchor image. This approach ensures a higher pro-
portion of valid triplets, enabling the model to learn more
effectively from each training batch.

Data Augmentation Following fine-tuning with class-
aware triplet sampling, we observed increased adaptation to
our domain but also signs of overfitting. Qualitative analy-
sis of the embedding space revealed the model sometimes
relied on spurious correlations, grouping images by irrel-
evant attributes such as background color or camera angle
rather than individual-specific biomarkers. To mitigate this,
we applied augmentations that altered perspective, rotation,
scale, and color during training. Generating two randomly
augmented views per original image increased dataset di-
versity, improved robustness to nuisance factors, and re-
duced reliance on background cues. This augmentation
strategy ultimately decreased overfitting and improved gen-
eralization to unseen data.

3.3. Retrieval Techniques
Once the embedding function fθ has been trained, all cat-
alog images are mapped to a shared representation space.
Given a query image, retrieval is performed by ranking can-
didate identities according to their similarity to the query in
this space. A well-trained embedding model should orga-
nize images into distinct, well-separated clusters, each cor-
responding to a unique individual.

We evaluate two retrieval strategies: (1), nearest neigh-
bor (NN) retrieval compares the query embedding directly
to all catalog image embeddings and ranks identities based
on the closest matches; (2) nearest prototype (NP) retrieval
first computes a representative prototype embedding for



Figure 2. A visual comparison between ranking of shark suggestions using NN vs. NP retrieval. Each image maps to a point in embedding
space and two distinct shark clusters emerge. Retrieval of the nearest neighbors or nearest prototypes, indicated by the yellow flags, can
impact the resulting ranking.

each individual by averaging all of their image embed-
dings, then compares the query to these prototypes [21].
Prototype-based retrieval reduces the search space from the
total number of images to the number of unique identities
and is more robust to intra-individual variation, an example
of which can be seen in Figure 2.

Formally, let the embedding of a query image xq be
zq = fθ(xq), and let the embedding set for identity y be
Zy = {fθ(x) | x ∈ Gy}. Retrieval ranks candidates using a
distance metric d : Rd × Rd → R≥0:

Nearest Neighbor (NN) Retrieval. Rank all identities by
their closest image embedding:

ŶNN = rank
(
y ∈ Y

∣∣∣∣ min
z∈Zy

d(zq, z)

)
.

Nearest Prototype (NP) Retrieval. First compute the
prototype for each identity:

µy =
1

|Zy|
∑
z∈Zy

z,

then rank identities by their prototype distance:

ŶNP = rank
(
y ∈ Y

∣∣∣∣ d(zq, µy)

)
.

By averaging over all available images for an individual, NP
retrieval smooths over nuisance variation and background
noise, often improving accuracy in dynamic catalog set-
tings.

4. Experiments
Experiments are conducted on a dataset of 3,083 dorsal fin
images of 1,031 unique white sharks, curated by the Block

Lab at Stanford University [2]. This dataset contains im-
ages captured between 1994 and 2025, with many individ-
uals re-sighted and photographed years apart. In particular,
the data set has been curated to contain only a single im-
age of any individual shark encounter. As a result, there are
no duplicate images or images with trivial variation which
would artificially increase average retrieval scores. To cre-
ate a held-out test set, we randomly isolated one image from
each of the 497 individuals that have two or more photos,
resulting in a training set of 2,586 images and a test set of
497 images. Performance is benchmarked using hits@K,
which measures the proportion of queries for which the cor-
rect individual is present within the top K retrieved matches.
We report scores up to K=50, representing a practical upper
limit of match results for human review. All reported met-
rics are averaged over two independent, randomly generated
data splits to ensure the robustness of our results.

In addition to evaluating embedding representations of
CNN and ViT backbones and our successive training aug-
mentations, we also compare our two distinct retrieval
strategies, nearest neighbor (NN) and nearest prototype
(NP) retrieval. The results of our experiments are sum-
marized in Table 1. At a high level, our findings demon-
strate the superior capabilities of the ViT backbone, a pro-
gressive improvement in retrieval accuracy with each subse-
quent training enhancement, and the consistent superiority
of NP retrieval.

Looking more closely at the results in 1, each applied
training optimization yields a measurable performance gain
over the entire range of k values evaluated. Improvements
in hits@1 values are particularly meaningful in this setting,
as they indicate the frequency with which a correct match-
ing individual is presented as the first result for an image
queried. Similarly, achieving hits@50 scores above 90%



Model Nearest Neighbor Retrieval Prototype Retrieval
Hits@1 Hits@5 Hits@25 Hits@50 Hits@1 Hits@5 Hits@25 Hits@50

CNN 0.02 0.05 0.14 0.20 0.02 0.07 0.15 0.22
ViT 0.03 0.09 0.23 0.33 0.05 0.13 0.30 0.38
ViT + LoRA 0.09 0.23 0.40 0.53 0.11 0.23 0.43 0.53
ViT + LoRA + CAS 0.31 0.55 0.74 0.83 0.33 0.56 0.75 0.82
ViT + LoRA + CAS + Aug 0.48 0.67 0.85 0.90 0.51 0.68 0.84 0.91

Table 1. Hits@K results for successive model optimizations (LoRA, class-aware triplet sampling (CAS), and data augmentation) comparing
nearest neighbor and prototype retrieval.

indicates that for 90% of the queried images, we present the
correct matching individual within an easily reviewable 50
results. In such cases, we are able to reduce the human-in-
the-loop effort by more than 95%, where otherwise the full
catalog of 1031 sharks would need to be reviewed.

Comparison between NN and NP techniques shows that
the latter consistently outperforms the standard nearest
neighbor approach, regardless of the underlying embedding
model. By aggregating feature representations into a sin-
gle prototype for each shark, we achieved more stable and
accurate shark representations, resulting in a higher accu-
racy ranking in retrieval. During our evaluation, where test
images were held out of the calculation of prototype embed-
dings, we found that sub-optimally trained embedding mod-
els, such as our initial, minimally adapted ViT model, see
particularly meaningful improvements with improvements
in hits across all K values; as the embedding models im-
prove, NP retrieval continues to boost accuracy, especially
improving the ranking of the highest likelihood matches,
represented by hits@1. These results highlight that, for
fine-grained retrieval tasks, how the embedding space is
searched can be as critical as how it is constructed.

Further analysis shows a strong correlation between re-
trieval performance and the number of images available of
a specific individual. When evaluating sharks with at least
four total images, nearest prototype hits@1 and 25 results
are 73% and 97%, representing 21 and 13 percentage point
increases, respectively. This result is particularly encour-
aging in the nearest prototype setting, where all individu-
als, regardless of image count, have only one prototype em-
bedding, suggesting that retrieval of the correct prototype
is more reliable with more individual data points per shark
and not a result of having a higher number of equally la-
beled embeddings in the search space.

Additionally, we performed an ablation over different
categories of image augmentations to assess their impact
on retrieval performance. We evaluated three categories:
(1) geometric augmentations, including rotation, perspec-
tive shift, and reflection; (2) geometric + color augmenta-
tions; and (3) geometric + color + erasing augmentations,
where random regions of the image were replaced with

blank space [30]. Results for these experiments are shown
in Table 2.

The findings reveal that while geometric and color aug-
mentations improve generalization, erasing augmentations
not only fail to provide benefits but also reset performance
gains achieved by other augmentations. This suggests that,
in the context of white shark identification, discriminative
cues are distributed throughout the dorsal fin image, often
in the form of small, localized notches or pigmentation pat-
terns. Removing even a portion of these features can make
individuals nearly indistinguishable, underscoring the im-
portance of preserving the complete visual context during
training.

Figure 3. An example of the same individual captured underwater
and above water. Matching across these two image capture styles
consistently shows lower accuracy.

Finally, analysis of low-performance examples, images
where the first hit is not in the top 500 results, reveals that
our model has the most difficulty matching across under-
water and above water images, an example of which can
be seen in 3. A significant majority of our dataset con-
sists of underwater images with an equal proportion of both
types being included in the training and test splits. Match-
ing within the same image capture type reveals that accu-
racy for underwater and above water images is comparable,
suggesting that model understanding of either image type
in isolation is not the cause for lower performance. Instead,



Augmentations Nearest Neighbor Retrieval
Hits@1 Hits@5 Hits@25 Hits@50

None 0.31 0.55 0.74 0.83
Geometric 0.45 0.65 0.83 0.89
Geo. + Color 0.48 0.67 0.85 0.90
Geo. + Color + Erase 0.35 0.57 0.74 0.83

Table 2. Hits@K results detailing efficacy of augmentation techniques.

we hypothesize that while invariance to position, rotation,
and coloration is aided with augmentations, the additional
edges, shapes, and contours produced by the water’s surface
in above water images compared with underwater images
falsely contributes towards the final fin embedding. Ad-
ditional modeling techniques and explicit encoding of this
categorical difference to improve performance are areas for
future exploration.

5. Shark Matching Platform

To bridge the gap between our deep learning model and
the practical needs of researchers, we developed Shark
Matcher, a purpose-built platform that streamlines the re-
identification workflow. The system replaces the labo-
rious and time-consuming manual process of searching
photographic catalogs for individual matches. For each
queried image, the interface returns the top-ranked can-
didate matches, allowing the crucial expert task of visual
inspection to begin immediately, and an example of this
is Figure 4. The resulting human-in-the-loop system pro-
vides an intuitive and efficient interface to verify suggested
matches, annotate new individuals, and manage catalog
metadata. The deployment of Shark Matcher with our col-
laborators at the Block Lab has substantially reduced their
manual effort required for data curation, enabling a more
rapid and scalable analysis of shark populations.

Figure 4. The “Match” tab in the Shark Matcher UI shows a
queried shark and a ranked list of matching shark suggestions.
Users can then match sharks, and update relevant metadata using
Shark Matcher.

6. Conclusion

In this work, we develop and refine a pipeline for re-
identification of individual white sharks, specifically ad-
dressing the challenge of data sparsity. We present opti-
mizations to model architecture, training, and retrieval tech-
nique and quantify their effects within the setting of auto-
mated re-identification. Our results confirm that each major
optimization presented results in a significant increase in re-
trieval accuracy. Our final results of 51% hits@1 and 91%
hits@50 cumulate in a powerful re-identification tool that
provides meaningful benefit to white-shark researchers by
significantly reducing the time they must invest in data pro-
cessing, no longer having to manually compare new images
against all sharks in their catalogs.

Beyond white sharks, our approach illustrates a flexible
methodology for adapting large vision models to specific,
real-world ecological monitoring tasks. As the global com-
munity continues to amass increasingly large and diverse
databases of individually identified animals, the need for re-
liable, principled, and scalable tools to manage and leverage
these resources becomes ever more critical. Our framework
represents a step toward meeting this need by combining
state-of-the-art deep learning with domain-specific consid-
erations to ensure both performance and usability at scale.
Future work will focus on refining embedding generation
and retrieval methods, as well as extending evaluation be-
yond a single dataset to include additional species and imag-
ing conditions. Such experiments will deepen understand-
ing of our framework’s generalization capabilities and guide
the development of more universal, species-agnostic identi-
fication tools that can support conservation efforts across
ecosystems.
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