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Gene expression microarrays are commonly used to detect the biological signature of a
disease or to gain a better understanding of the underlying mechanism of how a group
of drugs treat a specific disease. The outcome of such experiments, e.g. the signature, is
a list of differentially expressed genes. Reproducibility across independent experiments
remains a challenge. We are interested in creating a method that can detect the shared
signature of a group of expression profiles, e.g. a group of samples from individuals with
the same disease or a group of drugs that treat the same therapeutic indication. We
have developed a novel Weighted Influence — Rank of Ranks (WIMRR) method, and we
demonstrate its ability to produce both meaningful and reproducible group signatures.

Keywords: Gene expression analysis; drug discovery; bioinformatics; data mining.

1. Background

Microarray technology is often credited with leading the advancement in the field
of modern biological research and was coined as an Array of Hope shortly after
its introduction.! As microarrays have become commonplace in the laboratory, the
amount of gene expression data available in the public domain continues to grow at
a rapid pace. Microarray experiments, whether they set out to discover biomarkers
for a particular disease or to characterize a group of similar tissue samples, tend to
have the same outcome: a list of differentially expressed genes (DEGs). In recent
years, a growing debate has developed surrounding the scientific validity of microar-
rays in respect to their reliability.? * Low reproducibility of DEGs across inde-
pendent experiments testing the same hypothesis has become the norm.?% Novel
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methods to detect robust group signatures from gene expression experiments are
needed.
Gene expression profiling has traditionally been used to detect genetic dif-

ferences between various types of groups including detecting gender differences,”

89 segmenting and explaining diseases and their sub-

predicting cancer prognoses,
types, 011
pathways.'?!'3 Gene expression data are good sources for investigating and predict-
ing the potential therapeutic effects of a drug because they characterize the response
of the cell to external stimuli. A method that generates more reliable and repro-
ducible results (e.g. lists of DEGs) from gene expression data is well positioned to

become the core predictive model of a drug-discovery system.

and understanding the underlying mechanism of biological processes and

It is important to note, however, that many factors complicate the analysis
of gene expression experiments, including assumptions about the biological pro-
cessing of mRNA and confounding factors inherent in mRNA expression data.
First, biological mechanisms such as post-transcriptional modification (e.g. splic-
ing), degradation of the mRNA, changes in the translation rates from mRNA to
polypeptide chains, as well as post-translational modification (e.g. phosphoryla-
tion) may invalidate conclusions drawn from evaluating mRNA expression levels.
Second, the variety of experimental conditions under which these data are gener-
ated is likely to result in confounding effects on the gene expression profiles. These
data are generated by many laboratories across the world in experiments testing
multiple hypotheses, such as the effect of a drug (i.e. which pathways and genes
are affected by the drug) or the cause of a disease (i.e. which pathways and genes
are differentiated in affected individuals). Each of these factors can produce false
signals that mask the true signature for which scientists are searching.

Reproducibility has remained low among these types of experiments, calling into
doubt the validity of the detected signatures. For example, using an identical set of
RNA samples across several different commercial platforms, Tan et al.'* found only
four common DEGs. Both Ramalho-Santos!® and Ivanova'® independently found
only 6 DEGs in common among roughly 200 that had been identified in each study
(even though they had a similar study design using the same platform). In another
study by Miller et al.,'” who compared the effect of varying platforms on the same
samples, there were only 11 DEGs in common of 425 DEGs that were found by
CodeLink and 138 DEGs found by the Affymetrix platform. These are all examples
of studies that exhibit how current methods are producing irreproducible signatures.
This lack of reproducible findings indicates that false positives are being detected,
and that these methods may be overfitting the data. Furthermore, many methods
are complex and only explain a group in a piecewise fashion (e.g. a decision tree-
type model). We believe that the ideal method does not require such strict filtering
and instead dynamically weights the influence of each probe based on the relative
rank of that probe within each member of the group.

We propose the creation of a group profile that will serve as the representative
profile for a given group of interest. A gene expression profile is the representation
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of the activity of thousands of genes at once for a given sample. In our motivat-
ing examples these profiles each correspond to one microarray experiment, but the
method is general and can extend to other input data types. A group profile rep-
resents the shared activity of these thousands of genes across all of the member
samples belonging to the group. For example, we can create a group profile consist-
ing of all available antipsychotic drugs; we refer to this as an antipsychotic profile.
Traditionally, researchers attempt to find probes or genes that form the signature
for a group by evaluating probes above a certain fold-change threshold. Fold-change
refers to the ratio of change between Treated, ¢, and Control, ¢, such that the fold-
change of treatment compared to control would be ¢/c. These methods will detect
the signature common to the group in the rare case that the shared effect is incred-
ibly strong (and there are no large experimental biases between the expression
profiles). However, most of the time, the true signal is missed because it is not
significantly up- or down-expressed in every one of the instances that make up a
group (we refer to this as the full group). These methods preferentially detect very
big changes within a subgroup of samples and then merge all of these differentially
expressed genes with a combination function. Unfortunately, this approach does not
find true signatures common to the full group and allows the method to overfit the
data. Our method differs from most other methods by focusing on detecting signa-
tures common to the full group, signatures that are normally overlooked by other
methods, e.g. decision trees and support vector machines,'® linear models,™ etc.,
which can explain a group as a combination of rules defining unknown subgroups.

The representation of a group profile is a ranked list of all probesets on the
microarray. A benefit of our approach is that this is the same representation as a
single profile. This representation allows any current and future methods for non-
parametric gene expression data to be used with our group profiles. We can focus
on the most up- and down-expressed probesets from the profile, which we refer
to as the signature of the group (separately they are the up and down signatures
respectively). For example, we can make use of methods developed by others [e.g.
Connectivity Map (CMAP)?°] to use this antipsychotic group profile to search a
database for drugs sharing the same signature. Alternatively, we can use still other
methods (e.g. the L2L Microarray Analysis Tool?!) to evaluate if any particular
biological process is overrepresented within this signature, an approach that would
provide additional insight into the common mechanism of antipsychotic therapies.

In this paper, we introduce and describe our rank of ranks method for group
profile creation. We evaluate the utility of this group analysis method using a pilot
study in which we focus on the antipsychotic group from the original CMAP build
01 dataset. Our evaluation consists of both understanding the group profiles bio-
logically and demonstrating the ability to use a signature from these profiles as a
predictive model of therapeutic use. We conclude with a full analysis of the newer
and larger CMAP build 02 dataset, including a sensitivity evaluation of each group
as well as the validation of the most robust profiles within an independent dataset.
In addition, another contribution of this work is the independent validation of the
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published expression signature of antipsychotic drugs. All the results are available
at GEPedia.org.

2. Problem Definition

Given a database D of treatments (i.e. drugs or other compounds), D = t1,...,1,,
we are interested in creating a set of group profiles. A group can be defined as
a set of instances (e.g. cells treated with a particular drug) that share something
of interest in common (e.g. the same therapeutic use, mechanism of action, side
effect, chemical structure). We are interested in understanding what is biologically
common for a given group profile as well as evaluating the ability to query the
database with the group profile to predict new members of the group. Our goal is
to discover other drugs or treatments, perhaps originally developed for a different
therapeutic purpose, which are likely to also share the same therapeutic properties
as the query group. These therapeutic agents are thus good candidates for which
new uses can then be evaluated.

For each treatment instance t in the database, there is both general information
about the experimental conditions of the sample as well as the actual experiment
data from the microarray itself. The gene expression profile is represented as a
ranked list (amplitude of the treatment as compared to the control). Amplitude a is
defined as follows: a = (t—c)/((t+c)/2).2% Information specific to the treatment [i.e.
the name of the drug, the therapeutic class (class) and subclass (subclass) as defined
by the chemicals Anatomical Therapeutic Chemical (ATC) code] is represented.
There is also information that describes the experimental conditions of the sample,
specifically the molar amount of substance (mol), the vehicle used for delivery of
the drug (e.g. water, EtOH, MeOH, DMSO), and the batch or round in which the
sample was run. A group, and therefore a group profile, can be created from any of
these meta-labels associated with the samples.

3. Group Profile Creation (Weighted Influence Model — Rank of
Ranks Method)

Previous methods have demonstrated that weighted distribution—based statistics
can be more robust in detecting similarity in the pairwise comparison of gene
expression data?’; therefore, we propose a method for determining what is com-
mon among a group by also using a weighted method. This dynamic weighting of
probes allows us to strictly avoid filtering any probes as is done with a fold-change
threshold approach. We calculate the average rank of each probe across the mem-
bers of the group and then re-rank the probes based on this average rank. We refer
to this as the Weighted Influence Model, Rank of Ranks (WIMRR) method. The
rank of each probe within each treatment t is known: rank(p, probes(t)). Let us
assume we have a binary membership function, member(t, g), that returns 1 if
treatment instance t is a member of group g and returns 0 otherwise. The size of
the group is equal to the number of treatment instances that are members of the
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group. The average rank for each probe is then calculated. Given this set of aver-
age ranks across the members of a particular group, the probes are now re-ranked
according to how consistently they are up- or down-expressed across the group. We
define Profile(g) as the probes in probes(g) sorted by their average rank across all
members of the group.

4. Group Profile Evaluation — A Pilot Study

We make use of the original CMAP dataset (build 01) from the Broad Institute to
evaluate our group profile method as part of a pilot study. We refer to this as the
CMAP 1.0 dataset. We use this smaller, simpler dataset to characterize our method.
Later, we analyze the newer CMAP build 02 dataset (CMAP 2.0), which contains
many more treatments. For each treatment instance in the CMAP dataset, probe
sets are first ranked based on their level of expression relative to the vehicle control
in a fashion similar to the method described by Lamb et al.?® A group profile is
then created for each therapeutic use according to the ChemBank annotation for
the instances using our novel WIMRR method. The signature of each group profile
is created by selecting the top and bottom k probes. For this evaluation, we set
k = 50.

4.1. Antipsychotics from pilot study

We focus on the antipsychotic profile from the CMAP 1.0 dataset as an example by
which the WIMRR group profile creation method is analyzed. The antipsychotic
group is selected as the example because it includes a large number of unique drugs.
The instances from the CMAP 1.0 dataset that are labeled as antipsychotic agents
according to ChemBank are used to create this group. The antipsychotics profiled
in this dataset include chlorpromazine, clozapine, haloperidol, thioridazine, and
trifluoperazine. There are 19 profiles total for this group, consisting of replicates
across different concentrations. The group profile is created and the top and bottom
50 probes are selected to serve as the signature for this group (shown in Table 1).

The top and bottom probes can both provide valuable insight. We focus on the
top 50 probes, but the same analysis can be performed with the bottom 50 probes
in an analogous way. The amplitude value for the top 50 probes across all antipsy-
chotics is shown in Fig. 1. The amplitude value for the top probe (Affymetrix probe
id 201170 s at) is shown in Fig. 2(a). This probe, which corresponds to the basic
helix-loop-helix domain containing, class B, 2 (BHLHB2) gene, is almost exclu-
sively up-expressed in all of the antipsychotic instances. We evaluate the specificity
of this probe by determining how this probe behaves across the whole database
(Fig. 3). All but one of the antipsychotic instances (pink dots in first column)
show a clear increase in expression levels. The next set of groups all contain drugs
that are known to also act as antipsychotics; this is expected if this probe is pre-
dictive of antipsychotic activity. The second group is the tranquilizers (includes
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Table 1. The top 50 probes of the up- and down-expressed signature from group profile created
from the antipsychotic instances in the CMAP 1.0 dataset.

Up- Down_

Rank Probe Gene Avg_Rank Rank Probe Gene Avg_Rank
1 201170_s.at ~ BHLHB2 2192.3684 1 218918_.at  MANI1C1 19454.9474
2 212276_at LPIN1 2431.2105 2 204039_at CEBPA  18929.1579
3 201627 _s_at INSIG1 2681 3 202613_at CTPS  18600.4737
4 221577 _x_at GDF15 2710.3684 4 203699_s_at DIO2 18516.0526
5 202672_s_at ATF3 2833.3158 5 200768_s_.at  MAT2A 18492.2105
6 202769_at CCNG2 2844.9474 6 219800_s-at — 18461.3158
7 208962_s_at FADS1 3100.9474 7 220771_at  LOC51152 18347.7895
8 209146_at SC4MOL 3405.4211 8 208502_s_at PITX1 18346.7895
9 208647_at FDFT1 3427.7895 9 214266_s_.at PDLIMT7 18293.9474

10 214326_x_at JUND 3495 10 201667_at GJA1 18242.5263

11 208933_s_at — 3504.7895 11 204553 x_at  INPP4A  18220.6842

12 210512_s_at VEGFA 3556.7895 12 218944 _at PYCRL 18143.7895

13 33304_at 1SG20 3594.3158 13 90265_at CENTA1 18125.8947

14 201626_at INSIG1 3609.1053 14 217759_at  TRIM44 18059.8947

15 208786_s_.at MAPILC3B 3751.5789 15 203122_at TTC15 17967

16 209218_at SQLE 3795.4211 16 208080-at AURKA 17862.4211

17 207156_at HIST1IH2AG 3804.6842 17 205613_at SYT17  17858.2105

18 202842 _s_at DNAJB9 3849.2105 18 204307_at  KIAA0329 17840

19 204014 _at DUSP4 3896.2632 19 219200_at FASTKD3 17798.6316

20 200779-at ATF4 3970.2105 20 212797_at SORT1 17795

21 203751 _x_at JUND 4034.4737 21 222028_at ZNF45  17711.5789

22 216038_x_at DAXX 4034.7895 22 201565_s_at 1D2 17695.0526

23 212286_at  ANKRD12  4061.3158 23 221552_at ABHD6 17648.7895

24 201625_s_at INSIG1 4081.8421 24 205136_s_.at NUFIP1 17615.3158

25 211559_s_at CCNG2 4088.3158 25 218653_at  SLC25A15 17614.1053

26 202540_s_at HMGCR 4104.4211 26 221440_s_at RBBP9 17561.8947

27 201631 _s_at IER3 4128 27 205966_at TAF13  17544.5789

28 201465_s_at JUN 4231.1579 28 208885_at LCP1 17536

29 211162_x_at SCD 4292.3684 29 206832_s_.at SEMAS3F 17512.8421

30 211979_at GPR107 4308.3158 30 215629_s_.at DLEU2L 17499.7368

31 213877_x_at TCEB2 4366.0526 31 204544 _at HPS5 17472.5789

32 221750_at HMGCS1 4420.6842 32 204284_at PPP1R3C 17458.5789

33 200831 _s_at SCD 4496.8947 33 209515_s_.at  RAB27A  17443.5263

34 217996_at PHLDA1 4505 34 203078_at CUL2  17418.6316

35 203752_s_at JUND 4525.9474 35 218544 _s_at RCL1  17400.5263

36 218041_x_at ~ SLC38A2 4548.8421 36 218489_s_at ALAD 17367.1053

37 202419_at FVT1 4575.5263 37 205652_s_.at  TTLL1 17365.1579

38 206648_at ZNF571 4587.5789 38 207458_at C8orf51  17354.8421

39 202820_at AHR 4610 39 205034 _at CCNE2 17353.4211

40 202558_s_at STCH 4610.2105 40 202818_s.at TCEB3 17327.5789

41 203665_at HMOX1 4635.5789 41 209187_at DR1 17305.5789

42 203726_s_at LAMA3 4637.1053 42 201436_at EIF4E  17284.4211

43 218412_s_.at GTF2IRD1  4658.7368 43 214113_s.at RBMSA 17263.8947

44 208961 _s_at KLF6 4673.8947 44 219031_s_at NIP7 17259.8421

45 205047 _s_at ASNS 4698.8947 45 210007_s_at GPD2  17250.2105

46 217310_s_at FOXJ3 4708.1579 46 212753_at PCGF3 17241.3684

47 207601 _at SULT1B1 4708.5263 47 205185 at SPINK5 17224.3158

48 219527_at MOSC2 4753.2632 48 218707_at ZNF444 17217.6316

49 220219s.at LRRC37A 4753.5263 49 213132_s_at MCAT  17192.7895

50 212274 _at LPIN1 4773.6842 50 210932_s_at RNF6  17191.8421
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Fig. 1. Amplitude values for top 50 probes of antipsychotic profile within each of the antipsychotic
instances within the broad dataset. Replicates are designated by different colors.
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Fig. 2. The amplitude values for (a) the top probe found by the group profile method is from
the BHLHB2 gene and (b) the top probe by the fold-change method that is greater than 2. The
lines correspond to a fold-change of 2 and 3, respectively. Colors represent compounds such that
the first four pink dots correspond to the four chlorpromazine replicates, the next two are the
clozapine replicates, etc. See Fig. 1 for order of compounds.

prochlorperazine, fluphenazine, and trifluoperazine), the third group is antiemetics
(includes prochlorpromazine and trifluoperazine), and the fourth group is the anti-
neoplastics (includes prochlorpromazine). There is a clear pattern of antipsychotic
activity related to the up-expression of this probe across the database.
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Fig. 3. Specificity of top probe, BHLHB2, from the group profile method. Each vertical set of points
corresponds to a different group in the database. Here we only describe the most similar, and point
out that they share some drugs in common: from left to right, the first group is the antipsychotics,
the second is the tranquilizers (includes prochlorperazine, fluphenazine, and trifluoperazine), the
third group is antiemetics (includes prochlorpromazine and trifluoperazine), and the fourth group
is the antineoplastics (includes prochlorpromazine). This probe is specific to the antipsychotic
and similar groups, i.e. high amplitude on in antipsychotic and groups sharing properties with
antipsychotic agents, and low amplitude in other groups.

We now compare what we have seen with the top probe from our method with a
probe selected using more conventional methods. A potential alternative method for
selecting probes (and genes) of interest that has been used extensively in the field
has been to select probes that are commonly up- or down-expressed above a partic-
ular threshold. The most common thresholds used in the literature are fold-changes
greater than or equal to either 2 or 3, which correspond to amplitude values of 0.67
and 1.0, respectively. We select the best probe from this alternative method, deter-
mining the probe that exhibits a fold-change greater than 2 in the most antipsy-
chotic instances. The best probe found by this method was for the SEMA3B gene.
The amplitude values across all of the antipsychotics for this probe are shown in
Fig. 2(b). Note that even though some of the individual instances have a very high
amplitude value, roughly one-third of the instances have the opposite effect. Again,
we determine the specificity of this probe to the antipsychotics by evaluating how it
behaves across the rest of the database (Fig. 4). Visually, we can see that this probe
is not specific to the antipsychotics at all, i.e. its up/down regulation is randomly
distributed among all groups and not just those related to the antipsychotics.

As validation of our group profile method, we examine Brain-Derived Neu-
rotrophic Factor (BDNF), which has long been a candidate gene for both schizophre-
nia and bipolar disorder.?? 24 Jiang et al. demonstrate that BHLHB2 regulates the
BDNF transcription.?> BHLHB2 has also recently been associated with bipolar
disorder susceptibility.?% These publications demonstrate how this method can give
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Fig. 4. The top probe from the fold-change greater than 2 method is not specific to antipsychotics.
There is nothing in common among the first couple of groups (sorted by the average score of
the group). The first group is the antipsychotics, the second is anti-inflammatory, the third is
antineoplastics and the fourth is analgesics. The amplitude values are scattered and show no
consistent pattern.

insight into the etiology of the disease that these drugs treat. While in this case
the research community has already discovered and published this biological con-
nection, there also will be other novel connections/signatures that will be found.
It also demonstrates how the method extends beyond solely learning about the
mechanism of action of drugs. More specifically, we have used the gene expression
profile of antipsychotic drugs to learn of a mechanism that they share in common
(regulating BHLHB2), which in turn has already been shown to play a role in the
underlying disease that these drugs are used to treat. Turning back to the best
result from the alternative (fold-change threshold) method, there is no known link
between SEMA3B and antipsychotics, schizophrenia, bipolar disorder, or other top-
ics expected to be related to antipsychotic agents and so we would treat this as a
false positive without further evidence.

5. Understanding Group Signatures

As mentioned earlier, one of the major benefits of our group profile method is that
we can easily plug our group profile results into many algorithms and tools devel-
oped to analyze (individual) gene expression data. The probe sets in the group pro-
file signatures can be evaluated for significant overrepresentation of gene ontology
(GO) terms, e.g. GO Biological Processes, using the L2L analysis tool.2! Given a list
of probe sets, e.g. DEGS, and a list to match them to, e.g. GO:BiolProc, L2L cal-
culates the expected number of matches given the probes found on the microarray.
From the actual and expected matches, an enrichment score and the corresponding
P value for each GO term is then calculated.?” Additional lists of published probe
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Table 2. The most significantly overrepresented GO Biological Process terms from the up-
expressed antipsychotic signature.

GO Term GO ID Probes Expected Actual Enrichment p Value

Sterol biosynthetic G0O:0016126 41 0.11 5 44.73 1.04E-07*
process

Steroid biosynthetic G0O:0006694 88 0.24 5 20.84 4.89E-06*
process

Alcohol metabolic process GO:0006066 371 1.01 8 7.91 1.056E-05%*

Sterol metabolic process  GO:0016125 104 0.28 5 17.63 1.11E-05*

Steroid metabolic process GO:0008202 211 0.58 6 10.43 2.91E-05

Cholesterol biosynthetic G0O:0006695 31 0.08 3 35.50 8.60E-05
process

Lipid biosynthetic GO:0008610 281 0.77 6 7.83 1.40E-04
process

sets are also evaluated, including GO Cellular Component, GO Molecular Function,
reactome protein-protein interactions,?® predicted human MicroRNA targets,? and
cancer gene expression modules.?°

We use the L2L method to evaluate the example group profile of the antipsy-
chotics. The top 50 probes are evaluated for significant overrepresentation of GO
Biological Process terms. The most significant terms are all related to lipid home-
ostasis (Table 2). There are five genes involved in the sterol biosynthetic process
(GO:0016126) within the top 50 probes. Out of over 22,000 probes, only 41 are
annotated as belonging to this GO term, so 0.11 probes for this term are expected
by chance. This GO term, along with the next three in Table 2, pass Bonferroni
correction for multiple testing (p < 1.11E—05 after correction for all four GO
terms). The amplitude values for the five genes that are involved in this pathway
are shown in Fig. 5. There is an obvious trend that the expression of these probes
is increased in almost every antipsychotic instance in our database. However, even
though they are always up-expressed, the amplitude value is normally below the
common threshold used by other researchers (fold-change of 2 or 3). This is a good
example of how the group profile method is able to detect consistent, and therefore
more robust, signals in gene expression data; signals that are normally overlooked
by current methods.

Support for these GO Biological Process findings comes from the work of other
researchers aimed at understanding the molecular origin of the known metabolic
side effects of antipsychotics that include increased weight gain and propensity
to adiposity and insulin resistance.?! Our observation is consistent with literature
reports of an antipsychotic drug effect on the same or overlapping sets of genes
involved in lipid homeostasis. Interestingly, a genome-wide screen of Saccharomyces
cerevisiae heterozygotes had previously revealed that the antipsychotics haloperidol,
chlorpromazine, and trifluoperazine had a strong effect on genes involved in yeast
fatty acid biosynthesis (OLEL, the ortholog of the human SCD), sterol biosynthesis,
or phospholipid transport.3?
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Fig. 5. The amplitude values for the probes in the most significantly up-expressed GO term for
the antipsychotic group: sterol biosynthetic process. The probes correspond to the (a) HMGCR,
(b) HMGCSL1, (c) FDFT1, (d) SCAMOL, and (e) SQLE genes. Replicates are designated by the
same color.

6. Querying with Group Signatures

The WIMRR method is able to create a specific representative profile for a group
of gene expression profiles. We have demonstrated the ability to gain insight into
the mechanism of action of a drug class (as well as the disease that it is used to
treat) using WIMRR, group profiles. Now we utilize the strength of a group profile
to detect and predict the therapeutic use of a drug based on an individual gene
expression profile.

We use the truncated KS statistics described previously for pairwise (instance-
to-instance) similarity calculations?® to detect instances that are similar to a group
profile of interest (instance-to-group). Using the same antipsychotic group pro-
file, we query the database of instances using k& = 50 (i.e. the signature shown in
Table 1). The instances most similar to this group profile are shown in Table 3,
along with their KS score. The last column in Table 3 represents membership in
the group of interest, i.e. if a given treatment is a member of the antipsychotic
group used in creating the profile. Scanning the list, we see that prochlorperazine
(Instance ID = 995) is the most similar non-antipsychotic drug. It turns out that
prochlorperazine is in fact a phenothiazine antipsychotic; however, it is more com-
monly used for the treatment of nausea and vertigo. Prochlorperazine is a highly
potent neuroleptic, which is considered a typical antipsychotic. The next non-
antipsychotic is fluphenazine, for which two replicates show up as extremely similar
to the antipsychotic profile. Fluphenazine is a typical antipsychotic drug used for
the treatment of psychosis, e.g. schizophrenia and bipolar disorder. Fluphenazine
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Table 3. The database was queried with the antipsychotic signature (up and down
together) and the most similar.

Rank Instance ID Name KS score  Antipsychotic member
1 1010 Thioridazine[INN] 1.58 X
2 1068 Thioridazine[INN] 1.483 X
3 1004 Trifluoperazine[INN] 1.469 X
4 995 Prochlorperazine[INN] 1.435
5 910 Trifluoperazine[INN] 1.408 X
6 417 Thioridazine[INN] 1.387 X
7 983 Haloperidol[INN] 1.352 X
8 1024 Haloperidol[INN] 1.346 X
9 1017 Fluphenazine[INN] 1.317

10 1075 Fluphenazine[INN] 1.293

11 421 Trifluoperazine[INN] 1.256 X
12 906 Calmidazolium 1.223

13 870 Pyrvinium 1.209

14 1053 Prochlorperazine[INN] 1.201

15 418 Haloperidol[INN] 1.167 X
16 1009 Clozapine[INN] 1.162 X
17 419 Chlorpromazine[INN] 1.138 X
18 1003 Nordihydroguaiareticacid 1.1

19 416 Clozapine[INN] 1.09 X
20 1105 Monensin[INN] 1.077

21 978 Pyrvinium 1.065

22 893 Pararosaniline 1.051

23 882 Tonomycin 1.027

24 941 Rottlerin 1.023

25 1012 Troglitazone[INN] 1.018

26 1082 Haloperidol[INN] 1.009 X
27 1055 Chlorpromazine[INN] 0.997 X
28 1041 Haloperidol[INN] 0.992 X
29 997 Chlorpromazine[INN] 0.99 X

is also an extremely potent phenothiazine. The next novel compound is calmida-
zolium, which is a calmodulin inhibitor. Though it is not used as an antipsychotic,
it is validated because many of the antipsychotic drugs are potent inhibitors of
calmodulin.??

In fact, it turns out that many of the most significant results are already used
as an antipsychotic agent even though they are not labeled in ChemBank as such.
These examples are a validation of our method and increase the confidence in
the other results that are not already supported by the literature, as these are
potentially the important and still unknown alternative uses for these therapeutic
agents.

7. Analysis of CMAP V2.0

We have introduced our method for creating group profiles from gene expression
data. For this, we have used the original version of the CMAP dataset as our moti-
vating example. We have seen how we can gain biological insight from these profiles
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as well as how to predict new members by querying the group signature. Here we
present our analysis of the newly released CMAP 2.0 dataset with our method and
describe the results. Groups are defined according to the compounds ATC code. We
have analyzed all the groups at ATC levels 3 and 4. ATC level 3 defines the thera-
peutic/pharmacological subgroup, e.g. NO5A = Antipsychotics. ATC level 4 further
defines a subgroup based on chemical properties, e.g. NOSAE = Indole Derivative
Antipsychotics. We focus on groups with three or more compounds, resulting in
117 ATC level 3 groups and 148 level 4 groups.

7.1. GEPedia.org

We have compiled all of the results from our analysis of CMAP 2.0 and have made
them available online at GEPedia.org. In this manuscript, we focus on evaluating
our group profile method and only highlight a few interesting results from this
analysis. We assume that there are many undiscovered biological insights within
this dataset. We are releasing all of the data allowing researchers to examine the
results for further discoveries and to compare with their own datasets.

Currently, the organization of GEPedia.org is based around the analysis pre-
sented in this paper. We include the output of the complete analysis of all groups.
For every group, i.e. for all ATC groups, we have made available (a) the profile
itself, including the up- and down-expressed signatures, (b) the analysis of the pro-
file according to the L2L tool, (c¢) the sensitivity analysis of the profile, and (d) the
results of searching across the database with the signature. In the future, we plan
to modify the website to allow more interactive analysis of the data in addition to
allowing scientists to upload, analyze, and share their own gene expression data.

7.2. Sensitivity analysis and independent validation

A sensitivity analysis is performed in order to prioritize the evaluation of the most
promising group profiles. This sensitivity analysis also serves to demonstrate the
robustness of the model to off target effects, i.e. changes in the gene expression
profile due to factors that are not the focus of study, e.g. vehicle and batch effects,
toxicology signatures, etc. Additionally, we can perform a similar sensitivity analysis
using alternative methods and compare the results to obtain a better understanding
of the robustness of our method across these off target effects compared to other
methods that are currently used.

To perform the sensitivity analysis, we randomly divide the group into two equal-
sized subgroups: a training group that contains half of the treatment instances from
the group and a test group composed of the remainder of the group. A group profile
is created for both subgroups, and the top (up-tags) and bottom (down-tags) 100
probes are selected. The number of probes in common between the two subgroups
is calculated for both the up- and down-tags, respectively. The treatment instances
are re-randomized and this process is repeated for a total of 10 iterations. The
average number of probes in common across the 10 iterations is calculated for the
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Table 4. The most robust group profiles across the whole database are presented here.

Group Drugs Up p up* Down  p down* Label

NO5A 28 70.6  3.09E-139 49.4 9.59E-86  Antipsychotics

RO6A 27 23.7 1.07E-31 12 5.70E-12  Antihistamines for systemic use
NO6A 25 29.6  5.70E-43 12.1 4.04E-12  Antidepressants

DO7A 19 49.8 1.11E-86 19.7 1.64E-24  Corticosteroids, plain

GO1A 18 12.1  4.04E-12 6.5 1.98E-04  Anti-infectives and antiseptics

DO1A 16 10.2  2.42E-09 11.7 1.59E-11  Antifungals for topical use

S01B 16 7.9 3.36E-06 8.9 1.56E-07  Anti-inflammatory agents

NO3A 11 13.1 1.22E-13 17.8 3.01E-21  Antiepileptics

HO2A 11 18.5  1.94E-22 5.2 6.72E-03  Corticosteroids for systemic use

R0O3B 10 15.6  1.35E-17 4.6 3.09E-02  Drugs for obstructive airway
diseases, inhalants

D10A 9 18.7  8.80E-23 6.5 1.98E-04  Anti-Acne preparations (Topical)

LO4A 8 39.9 2.46E-64 31.4 1.47E-46  Immunosuppressants

Do7X 8 25.3 1.12E-34 6.7 1.13E-04  Corticosteroids (Dermatologicals)

G03D 8 11.1  1.22E-10 4.7 2.41E-02  Progestogens

LO1X 7 19.9 7.31E-25 11.5 3.16E-11  Other antineoplastic agents

L02B 6 19.3 8.12E-24 13.5 2.93E-14 Hormone antagonists (and related)

RO3A 6 9.8  8.89E-09 5.3 5.17TE-03  Adrenergics, inhalents

CO08C 6 5.6  2.34E-03 4.5 3.95E-02  Selective calcium channel blockers

G03C 5 30.5  9.35E-45 10.1 3.36E-09  Estrogens

S01C 5 10.3 1.74E-09 5.3 5.17TE-03  Anti-inflammatory—infective
(Combo)

CO8E 4 11.7 1.59E-11 7.3 1.99E-05 Non-selective calcium channel
blockers

CO1A 3 61.1 2.94E-114 62.2 4.60E-117 Cardiac glycosides

L01D 3 6.4  2.62E-04 22.9 3.16E-30  Cytotoxic antibiotics (and related)

L01B 3 7.9 3.36E-06 19.8 1.09E-24  Antimetabolites

up- and down-tags. The higher the average number of probes in common (for the
up-tags, down-tags, or both up- and down-tags), the more robust we consider the
group profile. From this value, i.e. the average number of probes in common, we
estimate the probability assuming a binomial distribution.

The most robust ATC level 3 (therapeutic/pharmacological) group profiles are
shown in Table 4 for both the up and down signatures together (full results in
Supplemental Tables 1 and 2 for the up and down signatures, respectively). The
full results for the level 4 ATC (chemical/therapeutic/pharmacological) group pro-
files for the up and down signatures are shown in Supplemental Tables 3 and 4,
respectively. The associated probability for each of these profiles is also listed. The
observed probabilities indicate that some of these profiles are not random. Correc-
tions for multiple testing are performed, and the Bonferroni-corrected p values are
also included in each of the tables.

At the onset of this paper, we mention that we are interested in creating
a gene expression profile for groups sharing a therapeutic use, and so we focus
our analysis on the ATC level 3 groups. There are 36 groups with significant
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(Bonferroni-corrected px < 0.05) up-expressed signatures and 28 for the down-
expressed signatures. Out of these groups, 25 groups are robust for both up- and
down-expressed signatures. While a robust up- or down-expressed signature can
independently give novel insight into the underlying shared biological function of a
group, we focus on groups that are significant for both because we also want to use
these profiles to help predict novel uses of the drugs in our database. The similarity
metric that we have adopted requires both the up and down signatures to be used
together. We now present a deeper analysis of the most robust profiles. The larger
the set of unique drugs that compose a group, the more evidence we have that the
therapeutic mechanism is what is being detected in the profile. For this reason,
we focus on the significant groups with the largest number of unique drugs. We
compare our results to those from an independent dataset using the same method
(Table 5).

7.3. Antipsychotic group (NO5A)

We start our analysis with the largest group that meets our significance threshold:
the antipsychotic group with 28 unique drugs. The ATC level 3 code for this group
is NO5A. The antipsychotic profile is the most robust result from the ATC level 3
groups when evaluating the up-expressed signature (Bonferroni-corrected p value:
px = 3.10E-139). This corresponds to an average of 70.6 probes that are shared
between the top 100 probes of two random subgroups. Interestingly, this same group
is the second most significant when evaluating the robustness of the down-expressed
signature (px = 9.59E-86; Average probes in common = 49.4). In an attempt to
discover what the underlying shared biological process is within these antipsychotic
agents, we turn to the L2L analysis. The most overrepresented GO Biological Pro-
cess term is Sterol Biosynthetic Process (GO:0016126; px = 6.45E-20). This is the
same term that was found over-expressed within the smaller pilot study and demon-
strates that our group profile method can detect the true signature with a small
set of samples.

We have the ability to compare this profile with the antipsychotic profile recently
published by Polymeropoulos et al.3* It is important to note that these two profiles
were created by two independent laboratories, with different cell lines and with a
different, but overlapping, set of antipsychotics. These two profiles are very similar,

Table 5. The most robust profiles were evaluated against an independent dataset (Polymeropou-
los et al.).

Group Polymeropoulos et al., PDR group Probes in common P

NO5A CNS:Antipsychotics 34 6.42E-54
RO6A Resipiratory Agent:Histamine Antagonist 4 1.13E-03
NO6A CNS:Antidepressants 15 1.07E-18

DO7A Dermatological:Corticosteroids 30 7.88E—46
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and they share 34 probes in common among their top 100 probes (p = 6.42E-54).
The most significant GO Biological Process term from the Polymeropoulos et al.
antipsychotic group profile is Lipid Biosynthesis. Given the significant overlap of
the profiles, it is not surprising that this term is actually a grandparent of Sterol
Biosynthetic Process (connected through the GO term Steroid Biosynthetic Pro-
cess). The GO term Lipid Biosynthesis is also highly significant within the CMAP
v2.0 antipsychotic group (px = 2.70E-13).

The down-expressed signatures also share several probes in common
(Probes = 6; p = 6.79E-06). The GO Biological Process analysis points to a signifi-
cant down-regulation of the DNA regulation process (GO:0006260; px = 3.61E-07).
Barochovsky et al. have demonstrated in vivo that compounds acting on the cen-
tral nervous system, specifically those that affect noradrenergic, dopaminergic, and
serotoninergic neurotransmitters, reduce brain cell replication.?® This observation
of compounds acting on the CNS was a dose-dependent effect and was seen for both
agonists and antagonists. This down-expressed signature, like the up-expressed sig-
nature, is well supported by the literature. The antipsychotic profile that we have
discovered is robust, both in and across datasets. Furthermore, we have demon-
strated the ability of our group profile method to give biological insights into the
potentially unknown shared biological process exhibited by a group of drugs.

In an attempt to put these results into perspective we also set out to analyze this
same data with one of the more common methods for detecting expressed genes.
The LIMMA package (Linear Models for Microarray Data), is an R package that
is part of Bioconductor.'® We followed the standard processing and linear model
fitting provided in the examples of the LIMMA documentation. To do this we were
forced to only analyze one array type at a time, so we selected the most common
array type (HT-HG-U133A) that was used in the CMAP dataset. We performed the
same sensitivity analysis in which we randomly sample the group into two subgroups
and determine the number of probes that overlap in the top 100 results. As before,
this process is repeated 10 times. The average number of probes in common is 53.6
(compared to 70.6 for our WIMRR method). A t-test shows that this difference
is statistically significant (p = 5.57E-7). Interestingly, the L2L analysis performed
on these top 100 probes points to the same Sterol Biosynthetic Process signature
that was demonstrated before as being the most representative, but at much lower
confidence (px = 0.0002 compared to px = 6.45E-20 for WIMRR).

7.4. Antihistamine group (RO6A)

The second-largest group that meets our significance criteria is the antihistamines
(full annotation: Antihistamines for Systemic Use; ATC Code: RO6A). This group
contains 27 unique drugs. The sensitivity analysis reveals 23.7 probes on aver-
age shared within the up-expressed signature and 12 for the down-expressed
(px = 1.0TE—31 and px = 5.70E — 12, respectively). The up-expressed signature
exhibits a common underlying theme related to negative regulation of I-kappaB
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kinase/NF-kappaB cascade (GO:0043124; p = 6.08E —05). This GO signature is
not as strong as some of the other profiles and is not significant when corrected
for multiple testing. However, it is interesting to note that this signature is consis-
tent with the known effect of antihistamines on NF-kappaB. Roumestan et al. have
shown that antihistamines inhibit NF-kappaB through both H1 receptor-dependent
and independent mechanisms.?® This profile does not replicate when compared to
the equivalent group (Respiratory Agent: Histamine Antagonist) from the dataset
presented by Polymeropoulos et al., though a similar trend is seen. The average
number of probes in common is four and one respectively, for the up- and down-
expressed signatures (p = 1.13E—03 and p = 3.60E—01).

7.5. Antidepressant group (NOGA)

Next, we discuss the third-largest group: the antidepressants (ATC Code: NOGA).
There are 25 unique drugs within this group. The sensitivity analysis results in
an average of 29.6 and 12.1 probes in common for the up- and down-expressed
signatures (px = 5.70E — 43 and px = 4.04E — 12, respectively). Evaluating the
up-expressed signature, the most overrepresented GO Biological Process term is
Sterol Biosynthetic Process (GO:0016126; px = 1.19E — 09). This is the same core
mechanism seen within the antipsychotic group, but this signature is seen on a
smaller scale. Polymeropoulos et al. demonstrated the same relationship between
the expression profile of antipsychotic and antidepressant drugs.®* When we com-
pare our antidepressant profile to the antidepressant profile from the dataset from
Polymeropoulos et al., we find 15 probes in common (p = 1.07E — 18). The down-
expressed signature does not reproduce within the Polymeropoulos et al. dataset,
sharing only one probe in common.

7.6. Corticosteroid group (DO7A)

The last group that we evaluate in depth is the corticosteroids (N = 19; ATC Code:
DOT7A). This profile is also robust according to the sensitivity analysis. The average
number of probes in common for the up-expressed signature is 49.8 (px = 1.11E —
86). The down-expressed signature has an average of 19.7 probes in common (p* =
1.64E — 24). Individually, the up- and down-expressed signatures do not exhibit
a significant result for any GO Biological Process, but evaluated together they
demonstrate an effect on the regulation of the interleukin-6 biosynthetic process
(px = 1.38E — 02). Corticosteroids are involved in a wide range of physiological
systems such as stress response, immune response and regulation of inflammation.
Interleukin-6 acts as both a pro-inflammatory and anti-inflammatory cytokine that
can be secreted to stimulate response to trauma.?” There is a significant overlap
between this profile and the corresponding profile (Dermatological: Corticosteroids)
from Polymeropoulos et al. The up-expressed signatures share 30 probes in common
while the down-expressed share nine probes, corresponding to probabilities of p =
7.88E—46 and 9.72E—10, respectively.
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8. Conclusions

We have introduced and evaluated our method for creating group profiles from gene
expression data. The ability to have reproducible sets of differentially expressed
genes from microarray experiments has been a big challenge, and we have demon-
strated how our method is able to overcome this obstacle. Furthermore, we have
illustrated how to gain biological insight from such group profiles as well as the
ability to use them as a signature to query a database. In our example domain of a
drug discovery system, this biological insight allows researchers to potentially learn
about the etiology of the disease that these compounds are being used to treat and
gives them a predictive tool to find novel uses for other drugs.

Though a major focus of this work has been to introduce our method and
validate it across independent datasets, we are also releasing all group profiles from
the full CMAP 2.0. This includes all corresponding meta-analysis that has been
performed: L2L analysis, similarity searching results, etc. We feel that this resource
contains a lot of hidden biological insight into many groups of drugs and their target
diseases, and we are releasing it for further in-depth research. Another contribution
of this work is the independent validation of the common effect of antipsychotics
on the biosynthesis and regulation of fatty acids and cholesterol, which supports a
key role of lipid homeostasis in schizophrenia.

There are many possible avenues of further improvements and research. Thus
far, we have assumed that explicit groups are given a priori. Our sensitivity anal-
ysis validates how coherent a group is; however, it does not dictate what to do
if the outcome is not positive. For example, a leave-one-out analysis can be done
to exclude members that do not fit well within a group. Lastly, it is important to
note that our method is focused on determining a reproducible genetic profile for a
group of samples; in this case, drugs of a particular class. We provide no guarantee
as to the uniqueness of such profiles and instead claim that these profiles can be
used to compare groups. We have kept the full ranked list as the profile, and so it
is straightforward for extensions to this method to be developed to further refine
and learn what genetic components make up a more unique signature if that was
the end goal. In keeping the full profile, i.e. the re-ranked list of probesets, we allow
further research methods, which are developed for individual expression profiles,
e.g. the L2L method, to also be applicable to our group profiles.
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