
Chapter 1

Collective Classification of Network Data

1.1 Introduction . 1
1.2 Collective Classification Problem Definition . 2

1.2.1 Inductive vs. Transductive Learning . 3
1.2.2 Active Collective Classification . 3

1.3 Iterative Methods . 4
1.3.1 Label Propagation . 4
1.3.2 Iterative Classification Algorithms . 5

1.4 Graph-based Regularization . 7
1.5 Probabilistic Graphical Models . 8

1.5.1 Directed Models . 9
1.5.2 Undirected Models . 10
1.5.3 Approximate Inference in Graphical Models . 11

1.5.3.1 Gibbs Sampling . 11
1.5.3.2 Loopy Belief Propagation (LBP) . 12

1.6 Feature Construction . 13
1.6.1 Data Graph . 14
1.6.2 Relational Features . 14

1.7 Applications of Collective Classification . 15
1.8 Conclusion . 16

1.1 Introduction

Network data has become ubiquitous. Communication networks, social networks and
the World Wide Web are becoming increasingly important to our day-to-day life. Moreover,
networks can be defined implicitly by certain structured data sources, such as images and
text. We are often interested in inferring hidden attributes (i.e., labels) about network
data, such as whether a Facebook user will adopt a product, or whether a pixel in an
image is part of the foreground, background or some specific object. Intuitively, the network
should help guide this process. For instance, observations and inference about someone’s
Facebook friends should play a role in determining their adoption probability. This type
of joint reasoning about label correlations in network data is often referred to as collective
classification.

Classic machine learning literature tends to study the supervised setting, in which a
classifier is learned from a fully-labeled training set ; classification performance is measured
by some form of statistical accuracy, which is typically estimated from a held-out test set.
It is commonly assumed that data points (i.e., feature-label pairs) are generated indepen-
dently and identically from an underlying distribution over the domain, as illustrated in
Figure 1.1(a). As a result, classification is performed independently on each object, without
taking into account any underlying network between the objects. Classification of network
data does not fit well into this setting. Domains such as webpages, citation networks and
social networks have naturally occurring relationships between objects. Because of these
connections (illustrated in Figure 1.1(b)), their features and labels are likely to be cor-

1

2 Data Classification: Algorithms and Applications

related. Neighboring points may be more likely to share the same label (a phenomenon
sometimes referred to as social influence or contagion), or links may be more likely between
instances of the same class (referred to as homophily or assortativity). Models that classify
each object independently are ignoring a wealth of information, and may not perform well.

Classifying real network data is further complicated by heterogenous networks, in which
nodes may not have uniform local features and degrees (as illustrated in Figure 1.1(c)).
Because of this, we cannot assume that nodes are identically distributed. Also, it is likely
that there is not a clean split between the training and test sets (as shown in Figure 1.1(d)),
which is common in relational datasets. Without independence between training and testing,
it may be difficult to isolate training accuracy from testing accuracy, so the statistical
properties of the estimated model are not straightforward.

In this article, we provide an overview of existing approaches to collective classification.
We begin by formally defining the problem. We then examine several approaches to col-
lective classification: iterative wrappers for local predictors, graph-based regularization and
probabilistic graphical models. To help ground these concepts in practice, we review some
common feature engineering techniques for real-world problems. Finally, we conclude with
some interesting applications of collective classification.

Training Data Test DataTraining Data Test Data

(a) i.i.d. data

Training Data Test DataTraining Data Test Data

(b) relational data

Training Data Test DataTraining Data Test Data

(c) fully non-i.i.d. data

Training Data Test DataTraining Data Test Data

(d) train-test dependence

FIGURE 1.1: (a) An illustration of the common i.i.d. supervised learning setting. Here each
instance is represented by a subgraph consisting of a label node (blue) and several local
feature nodes (purple). (b) The same problem, cast in the relational setting, with links
connecting instances in the training and testing sets, respectively. The instances are no
longer independent. (c) A relational learning problem in which each node has a varying
number of local features and relationships, implying that the nodes are neither independent
nor identically distributed. (d) The same problem, with relationships (links) between the
training and test set.

Collective Classification of Network Data 3

1.2 Collective Classification Problem Definition

Fix a graph G , (V, E) on n nodes V , {1, . . . , n}, with edges E ⊆ V × V. For the
purposes of this chapter, assume that the structure of the graph is given or implied by an
observed network topology. For each node i, we associate two random variables: a set of
local features Xi and a label Yi, whose (possibly heterogeneous) domains are Xi and Yi
respectively. Assume that the local features of the entire network, X , {X1, . . . , Xn}, are
observed. In some cases, a subset of the labels, Y , {Y1, . . . , Yn}, are observed as well;
we denote the labeled and unlabeled subsets by Y` ⊆ Y and Yu ⊆ Y respectively, where
Y` ∩Yu = ∅ and Y` ∪Yu = Y. Given X and Y`, the collective classification task is to
infer Yu.

In general, collective classification is a combinatorial optimization problem. The objec-
tive function varies, depending on the choice of model; generally, one minimizes an en-
ergy function that depends on parametric assumptions about the generating distribution.
Here we describe several common approaches: iterative classification, label propagation and
graphical models.

Throughout this document, we employ the following notation. Random variables will
be denoted by uppercase letters, e.g., X, while realizations of variables will be indicated
by lowercase, e.g., x. Sets or vectors of random variables (or realizations) will be denoted
by bold, e.g., X (or x). For a node i, let Ni denote the set of indices corresponding to its
(open) neighborhood; that is, the set of nodes adjacent to i (but not including it).

1.2.1 Inductive vs. Transductive Learning

Learning scenarios for collective classification broadly fall into two main categories:
inductive and transductive. In inductive learning, data is assumed to be drawn from a
distribution over the domain; that is, a sentence, image, social network or some other data
structure is generated according to a distribution over instances of said structure. Given a
number of labeled structures drawn from this distribution, the objective is to learn to predict
on new draws. In the transductive setting, the problem domain is fixed, meaning the data
simply exists. The distribution from which the data was drawn is therefore irrelevant, since
there is no randomness over what values could occur. Instead, randomness comes from
which nodes are labeled, which happens via some stochastic sampling process. Given a
labeled subset of the data, the goal is to learn to correctly predict the remaining instances.

In the inductive setting, one commonly assumes that draws of test examples are inde-
pendent of the training examples. However, this may not hold with relational data, since
the data-generating process may inject some dependence between draws from the distribu-
tion. There may be dependencies between nodes in the train and test data, as illustrated
in Figure 1.1. The same is true of the transductive setting, since the training data may just
be a labeled portion of one large network. The dependencies between training and testing
must be considered when computing certain metrics, such as train and test accuracy [21].

Since collective methods leverage the correlations between adjacent nodes, researchers
typically assume that a small subset of labels are given during prediction. In the transductive
setting, these node are simply the training set; in the inductive setting, this assumes that
draws from the distribution over network structures are partially labeled. However, inductive
collective classification is still possible even if no labels are given.

4 Data Classification: Algorithms and Applications

1.2.2 Active Collective Classification

An interesting subproblem in collective classification is how one acquires labels for train-
ing (or prediction). In supervised and semi-supervised learning, it is commonly assumed that
annotations are given a priori—either adversarially, as in the online model, or agnostically,
as in the probably approximately correct (PAC) model. In these settings, the learner has no
control over which or data points are labeled.

This motivates the study of active learning. In active learning, the learner is given
access to an oracle, which it can query for the labels of certain examples. In active collective
classification, the learning algorithm is allowed to ask for the labels of certain nodes, so
as to maximize its performance using the minimal number of labels. How it decides which
labels to query for is an open problem that is generally NP-hard; nonetheless, researchers
have proposed many heuristics that work well in practice [4, 21, 27]. These typically involve
some trade-off between propagation of information from an acquired label and coverage of
the network.

The label acquisition problem is also relevant during inference, since the predictor might
have access to a label oracle at test time. This form of active inference has been very
successful in collective classification [3, 35]. Queries can sometimes be very sophisticated: a
query might return not only a node’s label, but also the labels of its neighbors; if the data
graph is uncertain, a query might also return information about a node’s local relationships
(e.g., friends, citations, influencers, etc.). This has been referred to as active surveying
[30, 38].

Note that an optimal label acquisition strategy for active learning may not be optimal for
active inference, so separate strategies may be beneficial. However, the relative performance
improvements of active learning and inference are easily conflated, making it difficult to
optimize the acquisition strategies. Kuwadekar and Neville [21] propose a relational active
learning framework to combat this problem.

1.3 Iterative Methods

Collective classification can in some sense be seen as achieving agreement amongst a set
of interdependent, local predictions. Viewed as such, some approaches have sought ways to
iteratively combine and revise individual node predictions so as to reach an equilibrium.
The collective inference algorithm is essentially just a wrapper (or meta-algorithm) for a
local prediction subroutine. One of the benefits of this technique is that local predictions
can be made efficiently, so the compexity of collective inference is effectively the number of
iterations needed for convergence. Though neither convergence nor optimality is guaranteed,
in practice, this approach typically converges quickly to a good solution, depending on
the graph structure and problem complexity. The methods presented in this section are
representative of this iterative approach.

1.3.1 Label Propagation

A natural assumption in network classification is that adjacent nodes are likely to have
the same label, (i.e., contagion). If the graph is weighted, then the edge weights {wi,j}(i,j)∈E
can be interpreted as the strength of the associativity. Weights can sometimes be derived
from observed features X via a similarity function. For example, a radial basis function can

Collective Classification of Network Data 5

be computed between adjacent nodes (i, j) as

wi,j , exp

(
−
‖Xi −Xj‖22

σ2

)
, (1.1)

where σ is a parameter that determines the width of the Gaussian.
Suppose the labels are binary, with Yi ∈ {±1} for all i = 1, . . . , n. If node i is unlabeled,

we could predict a score for Yi = 1 (or Yi = −1) as the weighted average of its neighbors’
labels, i.e.,

Yi ←

(
1∑

j∈Ni wi,j

) ∑
j∈Ni

wi,jYj .

One could then clamp Yi to {±1} using its sign, sgn(Yi). While we probably will not know
all of the labels of Ni, if we already had predictions for them, we could use these, then iterate
until the predictions converge. This is precisely the idea behind a method known as label
propagation. Though the algorithm was originally proposed by Zhu and Ghahramani [48] for
general transductive learning, it can easily be applied to network data by constraining the
similarities according to a graph. An example of this is the modified adsorption algorithm
[39].

Algorithm 1 provides pseudocode for a simple implementation of label propagation. The
algorithm assumes that all labels are k-valued, meaning |Yi| = k for all i = 1, . . . , n. It
begins by constructing a n× k label matrix Y ∈ Rn×k, where entry i, j corresponds to the
probability that Yi = j. The label matrix is initialized as

Yi,j =


1 if Yi ∈ Y` and Yi = j,

0 if Yi ∈ Y` and Yi 6= j,

1/k if Yi ∈ Yu.

(1.2)

It also requires an n × n transition matrix T ∈ Rn×n; semantically, this captures the
probability that a label propagates from node i to node j, but it is effectively just the
normalized edge weight, defined as

Ti,j =

{
wi,j∑

j∈Ni
wi,j

if j ∈ Ni,

0 if j 6∈ Ni.
(1.3)

The algorithm iteratively multiplies Y by T, thereby propagating label probabilities via a
weighted average. After the multiply step, the unknown rows of Y, corresponding to the
unknown labels, must be normalized, and the known rows must be clamped to their known
values. This continues until the values of Y have stabilized (i.e., converged to within some
sufficiently small ε of change), or until a maximum number of iterations has been reached.

One interesting property of this formulation of label propagation is that it is guaranteed
to converge to a unique solution. In fact, there is a closed-form solution, which we will
describe in Section 1.4.

1.3.2 Iterative Classification Algorithms

While label propagation is surprisingly effective, its predictor is essentially just a
weighted average of neighboring labels, which may sometimes fail to capture complex rela-
tional dynamics. A more sophisticated approach would be to use a richer predictor. Suppose
we have a classifier h that has been trained to classify a node i, given its features Xi and
the features XNi and labels YNi of its neighbors. Iterative classification does just that,

6 Data Classification: Algorithms and Applications

Algorithm 1 Label propagation

1: Initialize Y per Eq. (1.2)
2: Initialize T per Eq. (1.3)
3: repeat
4: Y ← TY
5: Normalize unknown rows of Y
6: Clamp known rows of Y using known labels
7: until convergence or maximum iterations reached
8: Assign to Yi the jth label, where j is the highest value in row i of Y.

applying local classification to each node, conditioned on the current predictions (or ground
truth) on its neighbors, and iterating until the local predictions converge to a global solu-
tion. Iterative classification is an “algorithmic framework,” in that it is it is agnostic to the
choice of predictor; this makes it a very versatile tool for collective classification.

Chakrabarti et al. [6] introduced this approach and reported impressive gains in classi-
fication accuracy. Neville and Jensen [31] further developed the technique, naming it “it-
erative classification,” and studied the conditions under which it improved classification
performance [14]. Researchers [24, 25, 28] have since proposed various improvements and
extensions to the basic algorithm we present.

Algorithm 2 Iterative classification

1: for Yi ∈ Yu do {bootstrapping}
2: Yi ← h(Xi,XNi ,Y

`
Ni)

3: end for
4: repeat {update predicted labels}
5: π ← GenPerm(n) {generate permutation π over 1, . . . , n}
6: for i = 1, . . . , n do
7: if Yπ(i) ∈ Yu then
8: Yπ(i) ← h(Xπ(i),XNπ(i)

,YNπ(i)
)

9: end if
10: end for
11: until convergence or maximum iterations reached

Algorithm 2 depicts pseudo-code for a simple iterative classification algorithm. The al-
gorithm begins by initializing all unknown labels Yu using only the features (Xi,XNi) and
observed neighbor labels Y`

Ni ⊆ YNi . (This may require a specialized initialization classi-
fier.) This process is sometimes referred to as bootstrapping. It then iteratively updates these
values using the current predictions as well as the observed features and labels. This process
repeats until the predictions have stabilized, or until a maximum number of iterations has
been reached.

Clearly, the order in which nodes are updated affects the predictive accuracy and con-
vergence rate, though there is some evidence to suggest that iterative classification is fairly
robust to a number of simple ordering strategies—such as random ordering, ascending or-
der of neighborhood diversity and descending order of prediction confidences [11]. Another
practical issue is when to incorporate the predicted labels from the previous round into
the the current round of prediction. Some researchers [28, 31] have proposed a “cautious”
approach, in which only predicted labels are introduced gradually. More specifically, at each
iteration, only the top k most confident predicted labels are used, thus ignoring less con-
fident, potentially noisy predictions. At the start of the algorithm, k is initialized to some

Collective Classification of Network Data 7

small number; then, in subsequent iterations, the value of k is increased, so that in the last
iteration all predicted labels are used.

One benefit of iterative classification is that it can be used with any local classifier, mak-
ing it extremely flexible. Nonetheless, there are some practical challenges to incorporating
certain classifiers. For instance, many classifiers are defined on a predetermined number of
features, making it difficult to accommodate arbitrarily-sized neighborhoods. A common
workaround is to aggregate the neighboring features and labels, such as using the propor-
tion of neighbors with a given label, or the most frequently occurring label. For classifiers
that return a vector of scores (or conditional probabilities) instead of a label, one typically
uses the label that corresponds to the maximum score. Some of the classifiers used included:
näıve Bayes [6, 31], logistic regression [24], decision trees [14] and weighted-majority [25].

Iterative classification prescribes a method of inference, but it does not instruct how
to train the local classifiers. Typically, this is performed using traditional, non-collective
training.

1.4 Graph-based Regularization

When viewed as a transductive learning problem, the goal of collective classification is
to complete the labeling of a partially-labeled graph. Since the problem domain is fixed
(that is, the data to be classified is known), there is no need to learn an inductive model1;
simply the predictions for the unknown labels will suffice. A broad category of learning
algorithms, known as graph-based regularization techniques, are designed for this type of
model-free prediction. In this section, we review these methods.

For the remainder of this section, we will employ the following notation. Let y ∈ Rn de-
note a vector of labels corresponding to the nodes of the graph. For the methods considered
in this section, we assume that the labels are binary; thus, if the ith label is known, then
yi ∈ {±1}, and otherwise, yi = 0. The learning objective is to produce a vector h ∈ Rn
of predictions that minimizes the L2 distance to y for the known labels. We can formulate
this as a weighted inner product using a diagonal matrix C ∈ Rn×n, where the (i, i) entry
is set to 1 if the ith label is observed and 0 otherwise.2 The error can thus be expressed as

(h− y)>C(h− y).

Unconstrained graph-based regularization methods can be generalized using the follow-
ing abstraction (due to Cortes et al. [8]). Let Q ∈ Rn×n denote a symmetric matrix, whose
entries are determined based on the structure of the graph G, the local attributes X (if
available) and the observed labels Y`. We will give several explicit definitions for Q shortly;
for the time being, it will suffice to think of Q as a regularizer on h. Formulated as an
unconstrained optimization, the learning objective is

arg min
h

h>Qh + (h− y)>C(h− y).

One can interpret the first term as penalizing certain label assignments, based on observed

1This is not to say that inductive models are not useful in the transductive setting. Indeed, many
practitioners apply model-based approaches to transductive problems [37].

2One could also apply different weights to certain nodes; or, if C were not diagonal, one could weight
errors on certain combinations of nodes differently.

8 Data Classification: Algorithms and Applications

information; the second term is simply the prediction error with respect to the training
labels. Using vector calculus, we obtain a closed-form solution to this optimization as

h? = (C−1Q + I)−1y = (Q + C)−1Cy, (1.4)

where I is the n × n identity matrix. This is fairly efficient to compute for moderate-sized
networks; the time complexity is dominated by O(n3) operations for the matrix inversion
and multiplication. For prediction, the “soft” values of h can be clamped to {±1} using the
sign operator.

The effectiveness of this generic approach comes down to how one defines the regularizer,
Q. One of the first instances is due to Zhu et al. [49]. In this formulation, Q is a graph
Laplacian, constructed as follows: for each edge (i, j) ∈ E , define a weight matrix W ∈ Rn×n,
where each element wi,j is defined using the radial basis function in (1.1); define a diagonal
matrix D ∈ Rn×n as

di,i ,
n∑
j=1

wi,j ;

one then computes the regularizer as

Q , D−W.

One could alternately define the regularizer as a normalized Laplacian,

Q , I−D−
1
2 WD−

1
2 ,

per Zhou et al. [47]. Ji et al. [15] extended this method for heterogeneous networks—that is,
graphs with multiple types of nodes and edges. Another variant, due to Wu and Schölkopf
[43], sets

Q , (I−A)>(I−A),

where A ∈ Rn×n is a row-normalized matrix capturing the local pairwise similarities. All
of these formulations impose a smoothness constraint on the predictions, that “similar”
nodes—where similarity can be defined by the Gaussian in (1.1) or some other kernel—
should be assigned the same label.

There is an interesting connection between graph-based regularization and label prop-
agation. Under the various parameterizations of Q, one can show that (1.4) provides a
closed-form solution to the label propagation algorithm in Section 1.3.1 [48]. This means
that one can compute certain formulations of label propagation without directly computing
the iterative algorithm. Heavily optimized linear algebra solvers can be used to compute
(1.4) quickly. Another appealing aspect of these methods is their strong theoretical guar-
antees [8].

1.5 Probabilistic Graphical Models

Graphical models are powerful tools for joint, probabilistic inference, making them ideal
for collective classification. They are characterized by a graphical representation of a prob-
ability distribution P , in which random variables are nodes in a graph G. Graphical models
can be broadly categorized by whether the underlying graph is directed (e.g., Bayesian net-
works or collections of local classifiers) or undirected (e.g., Markov random fields). In this
section, we discuss both kinds.

Collective Classification of Network Data 9

Collective classification in graphical models involves finding the assignment yu that
maximized the conditional likelihood of Yu, given evidence (X = x,Y` = y`); i.e.,

arg max
y

P (Yu = yu |X = x,Y` = y`), (1.5)

where y = (y`,yu). This type of inference—known alternately as maximum a posteriori
(MAP) or most likely explanation (MPE)—is known to be NP-hard in general graphical
models, though there certain exceptions in which it can be computed efficiently, and many
approximation algorithms that perform well in most settings. We will review selected infer-
ence algorithms where applicable.

1.5.1 Directed Models

The fundamental directed graphical model is a Bayesian network (also called Bayes net,
or BN).

Definition [Bayesian Network]. A Bayesian network consists of a set of random vari-
ables Z , {Z1, . . . , Zn} a directed, acyclic graph (DAG) G , (V, E), and a set of conditional
probability distributions (CPDs), {P (Zi |ZPi)}ni=1, where Pi denotes the indices correspond-
ing to the causal parents of Zi. When multiplied, the CPDs describe the joint distribution
of Z; i.e., P (Z) =

∏
i P (Zi |ZPi).

BNs model causal relationships, which are captured by the directionalities of the edges; an
edge (i, j) ∈ E indicates that Zi influences Zj . For a more thorough review of BNs, see [18]
or Chapter X of this book.

Though BNs are very popular in machine learning and data mining, they can only be
used for models with fixed structure, making them inadequate for problems with arbitrary
relational structure. Since collective classification is often applied to arbitrary data graphs—
such as those found in social and citation networks—some notion of templating is required.
In short, templating defines subgraph patterns that are instantiated (or, grounded) by the
data graph; model parameters (CPDs) are thus tied across different instantiations. This
allows directed graphical models to be used on complex relational structures.

One example of a templated model is probabilistic relational models (PRMs) [9, 12].
A PRM is a directed graphical model defined by a relational database schema. Given an
input database, the schema is instantiated by the database records, thus creating a BN.
This has been shown to work for some collective classification problems [12, 13], and has
the advantage that a full joint distribution is defined.

To satisfy the requirement of acyclicity when the underlying data graph is undirected,
one constructs a (templated) BN or PRM as follows. For each potential edge {i, j} in data
graph, define a binary random variable Ei,j . Assume that a node’s features are determined
by its label. If we further assume that its label is determined by its neighbors’ labels (i.e.,
contagion), then we draw a directed edge from each Ei,j to the corresponding Yi and Yj , as
illustrated in Figure 1.2a. On the other hand, if we believe that a node’s label determines
who it connects to (i.e., homophily), then we draw an edge from each Yi to all Ei,·, as shown
in Figure 1.2b. The direction of causality is a modeling decision, which depends on one’s
prior belief about the problem. Note that, in both cases, the resulting graphical model is
acyclic.

Another class of templated, directed graphical models is relational dependency networks
(RDNs) [32]. RDNs have the advantage of supporting graph cycles, though this comes at
the cost of consistency ; that is, the product of an RDN’s CPDs does not necessarily define
a valid probability distribution. RDN inference is therefore only approximate, but can be

10 Data Classification: Algorithms and Applications

Yi Yj Yk

EjkEij

Xi Xj Xk

... ...

(a) links determine labels

Yi Yj Yk

EjkEij

Xi Xj Xk

... ...

(b) labels determine links

FIGURE 1.2: Example BN for collective classification. Label nodes (green) determine fea-
tures (purple), which are represented by a single vector-valued variable. An edge variable
(yellow) is defined for all potential edges in the data graph. In (a), labels are determined
by link structure, representing contagion. In (b), links are functions of labels, representing
homophily. Both structures are acyclic.

very fast. Learning RDNs is also fast, because it reduces to independently learning a set of
CPDs.

1.5.2 Undirected Models

While directed graphical models are useful for their representation of causality, some-
times we do not need (or want) to explicitly define causality; sometimes we only know
the interactions between random variables. This is where undirected graphical models are
useful. Moreover, undirected models are strictly more general than directed models; any
directed model can be represented by an undirected model, but there are distributions
induced by undirected models that cannot be reproduced in directed models. Specifically,
graph structures involving cycles are representable in undirected models, but not in directed
models.

Most undirected graphical models fall under the umbrella of Markov random fields
(MRFs), sometimes called Markov networks [40].

Definition [Markov random field]. A Markov random field (MRF) is defined by a set
of random variables Z , {Z1, . . . , Zn}, a graph G , (V, E) and a set of clique potentials
{φc : dom(c) → R}c∈C , where C is a set of predefined cliques and dom(c) is the domain of
clique c. (To simplify notation, assume that potential φc only operates on the set of variables
contained in clique c.) The potentials are often defined as a log-linear combination of fea-
tures fc and weights wc, such that φc(z) , exp (wc · fc(z)). An MRF defines a probability
distribution P that factorizes as

P (Z = z) =
1

Φ

∏
c∈C

φc(z) =
1

Φ
exp

(∑
c∈C

wc · fc(z)

)
,

where Φ ,
∑

z′
∏
c∈C φc(z

′) is a normalizing constant. This model is said to be Marko-
vian because any variable Zi is independent of any non-adjacent variables, conditioned its
neighborhood ZNi (sometimes referred to as its Markov blanket).

For collective classification, one can define a conditional MRF (sometimes called a CRF),

Collective Classification of Network Data 11

whose conditional distribution is

P (Yu = yu |X = x,Y` = y`) =
1

Φ

∏
c∈C

φc(x,y) =
1

Φ
exp

(∑
c∈C

wc · fc(x,y)

)
.

For relational tasks, such as collective classification, one typically defines the cliques via
templating. Similar to a PRM (see Section 1.5.1), a clique template is just a subgraph
pattern—although in this case it is a fully-connected, undirected subgraph. The types of
templates used directly affects model complexity, in that smaller templates correspond to a
simpler model, which usually generalizes better to unseen data. Thus, MRFs are commonly
defined using low-order templates, such as singletons, pairs and sometimes triangles. Ex-
amples of templated MRFs include relational MRFs [40], Markov logic networks [36] and
hinge-loss Markov random fields [2].

To make this concrete, we consider the class of pairwise MRFs. A pairwise MRF has
features and weights for all singleton and pairwise cliques in the graph; thus, its distribution
factorizes as

P (Z = z) =
1

Φ

(∏
i∈V

φi(z)

) ∏
{i,j}∈E

φi,j(z)


=

1

Φ
exp

(∑
i∈V

wi · fi(z)

)
+

 ∑
{i,j}∈E

wi,j · fi,j(z)

 .
(Since it is straightforward to derive the posterior distribution for collective classification,
we omit it here.) If we assume that the domains of the variables are discrete, then it is
common to define the features as basis vectors indicating the state of the assignment. For
example, if |Zi| = k for all i, then fi(z) is a length-k binary vector, whose jth entry is equal
to one if zi is in the jth state and zero otherwise; similarly, fi,j(z) has length k2 and the
only nonzero entry corresponds to the joint state of (zi, zj). To make this MRF templated,
we simply replace all wi with a single wsingle, and all wi,j with a single wpair.

It is important to note that the data graph does not necessarily correspond to the graph
of the MRF; there is some freedom in how one defines the relational features {fi,j}{i,j}∈E .
However, when using a pairwise MRF for collective classification, it is natural to define a
relational feature for each edge in the data graph. Defining fi,j as a function of (Yi, Yj) mod-
els the dependence between labels. One may alternately model (Xi, Yi, Xj , Yj) to capture
the pairwise interactions of both features and labels.

1.5.3 Approximate Inference in Graphical Models

Exact inference in general graphical models is intractable, depending primarily on the
structure of the underlying graph. Specifically, inference is exponential in the graph’s
treewidth. For structures with low treewidth—such as chains and trees—exact inference can
be relatively fast. Unfortunately, these tractable settings are rare in collective classification,
so inference is usually computed approximately. In this section, we review some commonly
used approximate inference algorithms for directed and undirected graphical models.

1.5.3.1 Gibbs Sampling

Gibbs sampling is a general framework for approximating a distribution, when the dis-
tribution is presumed to come from a specified family, such as Gaussian, Poisson, etc. It
is a Markov chain Monte Carlo (MCMC) algorithm, in that it iteratively samples from

12 Data Classification: Algorithms and Applications

the current estimate of the distribution, constructing a Markov chain that converges to
the target (stationary) distribution. Gibbs sampling is efficient because it samples from the
conditional distributions of the individual variables, instead of the joint distribution over all
variables. To make this more concrete, we examine Gibbs sampling for inference in directed
graphical models, in the context of collective classification.

Pseudocode for a Gibbs sampling algorithm (based on [10, 25]) is given in Algorithm 3.
At a high level, the algorithm works by iteratively sampling from the posterior distribution
of each Yi, i.e., random draws from P (Yi |X,YNi). Like iterative classification, it initializes
the posteriors using some function of the local and neighboring features, as well as any
observed neighboring labels; this could be the (normalized) output of a local predictor. It
then iteratively samples from each of the current posteriors and uses the sampled values to
update the probabilities. This process is repeated until the posteriors converge, or until a
maximum number of iterations is reached. Upon terminating, the samples for each node are
averaged to obtain the approximate marginal label probabilities, P (Yi = y) (which can be
used for prediction by choosing the label with the highest marginal probability). In practice,
one typically sets aside a specified number of initial iterations as “burn-in” and averages
over the remaining samples. In the limit of infinite data, the estimates should asymptotically
converge to the true distribution.

Algorithm 3 Gibbs Sampling

1: for i = 1, . . . , n do {bootstrapping}
2: Initialize P (Yi |X,YNi) using local features Xi and the features XNi and observed

labels Y`
Ni ⊆ YNi of its neighbors

3: end for
4: for i = 1, . . . , n do {initialize samples}
5: Si ← ∅
6: end for
7: repeat {sampling}
8: π ← GenPerm(n) {generate permutation π over 1, . . . , n}
9: for i = 1, . . . , n do

10: Sample s ∼ P (Yi |X,YNi)
11: Si ← Si ∪ s
12: Update P (Yi |X,YNi) using Si
13: end for
14: until convergence or maximum iterations reached
15: for i = 1, . . . , n do {compute marginals}
16: Remove first T samples (i.e., burn-in) from Si
17: for y ∈ Yi do
18: P (Yi = y)← 1

|Si|
∑
s∈Si 1[y = s]

19: end for
20: end for

Gibbs sampling is a popular method of approximate (marginal) inference in directed
graphical models, such as BNs and PRMs. While each iteration of Gibbs sampling is rel-
atively efficient, many iterations are required to obtain an accurate estimate of the distri-
bution, which may be impractical. Thus, there is a trade-off between the running time and
the accuracy of the approximate marginals.

Collective Classification of Network Data 13

1.5.3.2 Loopy Belief Propagation (LBP)

For certain undirected graphical models, exact inference can be computed efficiently via
message passing, or belief propagation (BP), algorithms. These algorithms follow a simple it-
erative pattern: each variable passes its “beliefs” about its neighbors’ marginal distributions,
then uses the incoming messages about its own value to updates its beliefs. Convergence to
the true marginals is guaranteed for tree-structured MRFs, but is not guaranteed for MRFs
with cycles. That said, BP can still be used for approximate inference in general, so-called
“loopy” graphs, with a minor modification: messages are discounted by a constant factor
(sometimes referred to as damping). This algorithm is known as loopy belief propagation
(LBP).

Algorithm 4 Loopy Belief Propagation

1: for {i, j} ∈ E do {initialize messages}
2: for y ∈ Yj do
3: mi→j(y)← 1
4: end for
5: end for
6: repeat {message passing}
7: for {i, j} ∈ E do
8: for y ∈ Yj do
9: mi→j(y)← α

∑
y′ φi,j(y

′, y)φi(y
′)
∏
k∈Ni\jmk→i(y

′)
10: end for
11: end for
12: until convergence or maximum iterations reached
13: for i = 1, . . . , n do {compute marginals}
14: for y ∈ Yi do
15: P (Yi = y)← αφi(y)

∏
j∈Ni mj→i(y)

16: end for
17: end for

The LBP algorithm shown in Algorithm 4 [45, 46] assumes that the model is a pairwise
MRF with singleton potentials defined on each (Xi, Yi) and pairwise potentials on each
adjacent (Yi, Yj). We denote by mi→j(y) the message sent by Yi to Yj regarding the belief
that Yj = y; φi(y) denotes the ith local potential function evaluated for Yi = y, and similarly
for the pairwise potentials; α ∈ (0, 1] denotes a constant discount factor. The algorithm
begins by initializing all messages to one. It then iterates over the message passing pattern,
wherein Yi passes its beliefs mi→j(y) to all j ∈ Ni, using the incoming messages mk→i(y),
for all k ∈ Ni \ j, from the previous iteration. Similar to Gibbs sampling, the algorithm
iterates until the messages stabilize, or until a maximum number of iterations is reached,
after which we compute the approximate marginal probabilities.

1.6 Feature Construction

Thus far, we have used rather abstract problem representations, using an arbitrary data
graph G , (V, E), feature variables X and label variables Y. In practice, how one maps a
real-world problem to these representations can have a greater impact than the choice of
model or inference algorithm. This process, sometimes referred to as feature construction

14 Data Classification: Algorithms and Applications

(or feature engineering), is perhaps the most challenging aspect of data mining. In this
section, we explore various techniques, motivated by concrete examples.

1.6.1 Data Graph

Network structure is explicit in certain collective classification problems, such as cate-
gorizing users in a social network or pages in a website. However, there are other problems
that exhibit implicit network structure.

An example of this is image segmentation, a common computer vision problem. Given
an observed image—i.e., an m × n matrix of pixel intensities—the goal is to label each
pixel as being part of a certain object, from a predetermined set of objects. The structure
of the image naturally suggests a grid graph, in which each pixel (i, j) is a node, adjacent
to (up to) four neighboring pixels. However, one could also define the neighborhood using
the diagonally adjacent pixels, or use wider concentric rings. This decision reflects on one’s
prior belief of how many pixels directly interact with (i, j); that is, its Markov blanket.

A related setting is part-of-speech (POS) tagging in natural language processing. This
task involves tagging each word in a sentence with a POS label. The linear structure of a
sentence is naturally represented by a path graph; i.e., a tree in which each vertex has either
one or two neighbors. Though, one could also draw edges between words separated by two
hops, or, more generally, n hops, depending on one’s belief about sentence construction.

The data graph can also be inferred from distances. Suppose the task is to predict
which individuals in a given population will contract the flu. Infection is obviously related
to proximity, so it is natural to construct a network based on geographic location. Distances
can be thresholded to create unweighted edges (e.g., “close” or “not close”), or they can be
incorporated as weights (if the model supports it).

Structure can sometimes be inferred from other structure. An example of this is found in
document classification in citation networks. In a citation network, there are explicit links
from papers citing other papers. There are also implicit links between two papers that cite
the same paper. These “co-citation” edges complete a triangle between three connected
nodes.

Links can also be discovered as part of the inference problem [5, 26]. Indeed, collective
classification and link prediction are complimentary tasks, and it has been shown that
coupling these predictions can improve overall accuracy [29].

It is important to note that not all data graphs are unimodal—that is, they may involve
multiple types of nodes and edges. In citation networks, authors write papers; authors are
affiliated with institutions; papers cite other papers; and so on.

1.6.2 Relational Features

Methods based on local classifiers, such as ICA, present a unique challenge to relational
feature engineering: while most local classifiers require fixed-length feature vectors, neigh-
borhood sizes are rarely uniform in real relational data. For example, a paper can have any
number of authors. If the number of neighbors is bounded by a reasonably small constant (a
condition often referred to as bounded degree), then it is possible to represent neighborhood
information using a fixed-length vector. However, in naturally occurring graphs, such as
social networks, this condition is unlikely.

One solution is to aggregate neighborhood information into a fixed number of statistics.
For instance, one could count the number of neighbors exhibiting a certain attribute; for a
set of attributes, this amounts to a histogram. For numerical or ordinal attributes, one could
also use the mean, mode, minimum or maximum. Another useful statistic is the number
of triangles, which reflects the connectivity of the neighborhood. More complex, domain-

Collective Classification of Network Data 15

specific aggregates are also possible. Within the inductive logic programming community,
aggregation has been studied as a means for propositionalizing a relational classification
problem [17, 19, 20]. In the machine learning community, Perlich and Provost [33, 34] have
studied aggregation extensively.

Aggregation is also useful for defining relational features in graphical models. Suppose
one uses a pairwise MRF for social network classification. For each pair of nodes, one could
obviously consider the similarities of their local features; yet one could also consider the
similarities of their neighborhood structures. A simple metric is the number of common
neighbors. To compensate for varying neighborhood sizes, one could normalize the intersec-
tion by the union, which is known as Jaccard similarity,

J(Ni,Nj) ,
Ni ∩Nj
Ni ∪Nj

.

This can be generalized to the number (or proportion) of common neighbors who exhibit a
certain attribute.

1.7 Applications of Collective Classification

Collective classification is a generic problem formulation that has been successfully ap-
plied to many application domains. Over the course of this chapter, we have already dis-
cussed a few popular applications, such as document classification [41, 44], image segmen-
tation [1] and POS tagging [22]. In this section, we briefly review some other uses.

One such problem, which is related to POS tagging, is optical character recognition
(OCR). The goal of OCR is to automatically convert a digitized stream of handwritten
characters into a text file. In this context, each node represents a scanned character; its
observed features Xi are a vectorized pixel grid, and the label Yi is chosen from the set of
ASCII (or ISO) characters. While this can be predicted fairly well using a local classifier, it
has been shown that considering intra-character relationships can be beneficial [42], since
certain characters are more (or less) likely to occur before (or after) other characters.

Another interesting application is activity detection in video data. Given a recorded
video sequence (say, from a security camera) containing multiple actors, the goal is to label
each actor as performing a certain action (from a predefined set of actions). Assuming that
bounding boxes and tracking (i.e., identity maintenance) are given, one can bolster local
reasoning with spatiotemporal relational reasoning. For instance, it is often the case that
certain actions associate with others: if an actor is crossing the street, then other actors in
the proximity are likely crossing the street; similarly, if one actor is believed to be talking,
then other actors in the proximity are likely either talking or listening. One could also reason
about action transitions: if an actor is walking at time t, then it is very likely that they
will be walking at time t+ 1; however, there is a small probability that they may transition
to a related action, such as crossing the street or waiting. Incorporating this high-level
relational reasoning can be considered a form of collective classification. This approach has
been used in a number of publications [7, 16] to achieve current state-of-the-art performance
on benchmark datasets.

Collective classification is also used in computational biology. For example, researchers
studying protein-protein interaction networks often need to annotate proteins with their
biological function. Discovering protein function experimentally is expensive. Yet, protein
function is sometimes correlated with interacting proteins; so, given a set of labeled proteins,
one can reason about the remaining labels using collective methods [23].

16 Data Classification: Algorithms and Applications

The final application we consider is viral marketing, which is interesting for its relation-
ship to active collective classification. Suppose a company is introducing a new product to a
population. Given the social network and the individuals’ (i.e., local) demographic features,
the goal is to determine which customers will be interested in the product. The mapping
to collective classification is straightforward. The interesting subproblem is in how one ac-
quires labeled training data. Customer surveys can be expensive to conduct, so companies
want to acquire the smallest set of user opinions that will enable them to accurately predict
the remaining user opinions. This can be viewed as an active learning problem for collective
classification [3].

1.8 Conclusion

Given the recent explosion of relational and network data, collective classification is
quickly becoming a mainstay of machine learning and data mining. Collective techniques
leverage the idea that connected (related) data objects are in some way correlated, perform-
ing joint reasoning over a high-dimensional, structured output space. Models and inference
algorithms range from simple iterative frameworks to probabilistic graphical models. In this
chapter, we have only discussed a few; for greater detail on these methods, and others we
did not cover, we refer the reader to Macskassy and Provost [25] and Sen et al. [37]. Many
of the algorithms discussed herein have been implemented in NetKit-SRL3, an open-source
toolkit for mining relational data.

Acknowledgements

This material is based on work supported by the National Science Foundation under Grant
No. 0746930 and Grant No. IIS1218488.

3http://netkit-srl.sourceforge.net

Bibliography

[1] Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G., Ng, A.:
Discriminative learning of markov random fields for segmentation of 3d scan data. In:
International Conference on Computer Vision and Pattern Recognition (2005)

[2] Bach, S.H., Huang, B., London, B., Getoor, L.: Hinge-loss markov random fields: Con-
vex inference for structured prediction. In: Uncertainty in Artificial Intelligence (2013)

[3] Bilgic, M., Getoor, L.: Effective label acquisition for collective classification. In: ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 43–
51 (2008), winner of the KDD’08 Best Student Paper Award.

[4] Bilgic, M., Mihalkova, L., Getoor, L.: Active learning for networked data. In: Proceed-
ings of the 27th International Conference on Machine Learning (ICML-10) (2010)

[5] Bilgic, M., Namata, G.M., Getoor, L.: Combining collective classification and link pre-
diction. In: Workshop on Mining Graphs and Complex Structures in Int. Conf. of Data
Mining (2007)

[6] Chakrabarti, S., Dom, B., Indyk, P.: Enhanced hypertext categorization using hyper-
links. In: International Conference on Management of Data. pp. 307 – 318 (1998)

[7] Choi, W., Shahid, K., Savarese, S.: What are they doing?: Collective activity classifi-
cation using spatio-temporal relationship among people. In: VS (2009)

[8] Cortes, C., Mohri, M., Pechyony, D., Rastogi, A.: Stability analysis and learning bounds
for transductive regression algorithms. CoRR abs/0904.0814 (2009)

[9] Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational mod-
els. In: International Joint Conference on Artificial Intelligence. (1999)

[10] Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(1990)

[11] Getoor, L.: Advanced Methods for Knowledge Discovery from Complex Data, chap.
Link-based classification. Springer (2005)

[12] Getoor, L., Friedman, N., Koller, D., Taskar, B.: Learning probabilistic models of link
structure. Journal of Machine Learning Research. (2002)

[13] Getoor, L., Segal, E., Taskar, B., Koller, D.: Probabilistic models of text and link
structure for hypertext classification. In: IJCAI Workshop on Text Learning: Beyond
Supervision (2001)

[14] Jensen, D., Neville, J., Gallagher, B.: Why collective inference improves relational
classification. In: Proceedings of the 10th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (2004)

17

18 Data Classification: Algorithms and Applications

[15] Ji, M., Sun, Y., Danilevsky, M., Han, J., Gao, J.: Graph regularized transductive classi-
fication on heterogeneous information networks. In: Proceedings of the 2010 European
conference on Machine learning and knowledge discovery in databases: Part I. pp.
570–586. ECML PKDD’10, Springer-Verlag, Berlin, Heidelberg (2010)

[16] Khamis, S., Morariu, V.I., Davis, L.S.: Combining per-frame and per-track cues for
multi-person action recognition. In: European Conference on Computer Vision (2012)

[17] Knobbe, A., deHaas, M., Siebes, A.: Propositionalisation and aggregates. In: Proceed-
ings of the Fifth European Conference on Principles of Data Mining and Knowledge
Discovery (2001)

[18] Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques.
MIT Press (2009)

[19] Kramer, S., Lavrac, N., Flach, P.: Propositionalization approaches to relational data
mining. In: Dzeroski, S., Lavrac, N. (eds.) Relational Data Mining. Springer-Verlag,
New York (2001)

[20] Krogel, M., Rawles, S., Zeezny, F., Flach, P., Lavrac, N., Wrobel, S.: Comparative eval-
uation of approaches to propositionalization. In: International Conference on Inductive
Logic Programming. (2003)

[21] Kuwadekar, A., Neville, J.: Relational active learning for joint collective classification
models. In: Proceedings of the 28th International Conference on Machine Learning
(2011)

[22] Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: Proceedings of the International
Conference on Machine Learning. pp. 282 – 289 (2001)

[23] Letovsky, S., Kasif, S.: Predicting protein function from protein/protein interaction
data: a probabilistic approach. Bioinformatics 19, 197–204 (2003)

[24] Lu, Q., Getoor, L.: Link based classification. In: Proceedings of the International
Conference on Machine Learning. (2003)

[25] Macskassy, S., Provost, F.: Classification in networked data: A toolkit and a univariate
case study. Journal of Machine Learning Research. (2007)

[26] Macskassy, S.A.: Improving learning in networked data by combining explicit and mined
links. In: Proceedings of the Twenty-Second Conference on Artificial Intelligence (2007)

[27] Macskassy, S.A.: Using graph-based metrics with empirical risk minimization to speed
up active learning on networked data. In: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (2009)

[28] Mcdowell, L.K., Gupta, K.M., Aha, D.W.: Cautious inference in collective classification.
In: Proceedings of AAAI. (2007)

[29] Namata, G.M., Kok, S., Getoor, L.: Collective graph identification. In: ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (2011)

[30] Namata, G.M., London, B., Getoor, L., Huang, B.: Query-driven active surveying for
collective classification. In: Workshop on Mining and Learning with Graphs (2012)

Collective Classification of Network Data 19

[31] Neville, J., Jensen, D.: Iterative classification in relational data. In: Workshop on
Statistical Relational Learning, AAAI (2000)

[32] Neville, J., Jensen, D.: Relational dependency networks. Journal of Machine Learning
Research. 8, 653–692 (2007)

[33] Perlich, C., Provost, F.: Aggregation-based feature invention and relational concept
classes. In: ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. (2003)

[34] Perlich, C., Provost, F.: Distribution-based aggregation for relational learning with
identifier attributes. Machine Learning Journal 62(1-2), 65–105 (2006)

[35] Rattigan, M.J., Maier, M., Wu, D.J.B., Pei, X., Tan, J., Wang, Y.: Exploiting network
structure for active inference in collective classification. In: Proceedings of the Seventh
IEEE International Conference on Data Mining Workshops. pp. 429–434. ICDMW ’07,
IEEE Computer Society (2007)

[36] Richardson, M., Domingos, P.: Markov logic networks. Machine Learning (2006)

[37] Sen, P., Namata, G.M., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective
classification in network data. AI Magazine 29(3), 93–106 (2008)

[38] Sharara, H., Getoor, L., Norton, M.: Active surveying: A probabilistic approach for
identifying key opinion leaders. In: The 22nd International Joint Conference on Arti-
ficial Intelligence (IJCAI ’11) (2011)

[39] Talukdar, P.P., Crammer, K.: New regularized algorithms for transductive learning.
In: ECML/PKDD (2). pp. 442–457 (2009)

[40] Taskar, B., Abbeel, P., Koller, D.: Discriminative probabilistic models for relational
data. In: Proceedings of the Annual Conference on Uncertainty in Artificial Intelligence.
(2002)

[41] Taskar, B., Chatalbashev, V., Koller, D.: Learning associative markov networks. In:
Proceedings of the International Conference on Machine Learning. (2004)

[42] Taskar, B., Guestrin, C., Koller, D.: Max-margin markov networks. In: Neural Infor-
mation Processing Systems. (2003)

[43] Wu, M., Schölkopf, B.: Transductive classification via local learning regularization.
Journal of Machine Learning Research - Proceedings Track 2, 628–635 (2007)

[44] Yang, Y., Slattery, S., Ghani, R.: A study of approaches to hypertext categorization.
Journal of Intelligent Information Systems 18 (2002)

[45] Yedidia, J., Freeman, W., Weiss, Y.: Constructing free-energy approximations and gen-
eralized belief propagation algorithms. In: IEEE Transactions on Information Theory.
pp. 2282–2312 (2005)

[46] Yedidia, J., W.T.Freeman, Weiss, Y.: Generalized belief propagation. In: Neural Infor-
mation Processing Systems. vol. 13, pp. 689–695 (2000)

[47] Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and
global consistency. In: NIPS (2003)

20 Data Classification: Algorithms and Applications

[48] Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label propa-
gation. Tech. rep., Carnegie Melon University (2002)

[49] Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields
and harmonic functions. In: Proceedings of the 20th International Conference on Ma-
chine Learning (ICML-03) (2003)

