
Multi-relational Weighted Tensor Decomposition

Ben London, Theodoros Rekatsinas, Bert Huang, and Lise Getoor
Department of Computer Science

University of Maryland, College Park
College Park, MD 20742

{blondon,thodrek,bert,getoor}@cs.umd.edu

1 Introduction

There has recently been a growing interest in tensor methods within the machine learning com-
munity [1, 2, 3, 4, 5, 6, 7, 9], partially due to their natural representation of multi-relational data.
Multi-relational data appears in applications such as social network analysis, where links between
individuals may be personal, familial, or professional. In this paper, we examine a multi-relational
learning scenario in which the learner is given a small training set, sampled from the set of all poten-
tial pairwise relationships, and aims to perform transductive inference on the remaining, unknown
relationships. The target relations we consider may be binary-, discrete ordinal- or real-valued func-
tions of the object pairs. To model this data, we propose a tensor decomposition method that is nat-
ural for multi-relational data, and produces more accurate predictions using minimal training data.

Our proposed method, multi-relational weighted tensor decomposition (MrWTD), assumes that the
relationships are determined by a linear combination of latent factors associated with each object.
Learning these factors, and their interactions in each relation, thus becomes analogous to a tensor
decomposition (see Figure 1). Though our factorization is similar to that of Nickel et al. [7], unlike
theirs and other approaches, we do not decompose the input tensor directly; instead, we explicitly
model a mapping from the low-rank representation to the observed tensor, which is often better
suited to prediction. For example, a binary relationship can be modeled as the sign of a latent
representation; this gives the latent representation more freedom to increase the prediction margin,
rather than reproduce {±1} exactly.

We formulate the decomposition as a nonlinear optimization problem, using a combination of task-
specific, weighted loss functions to enable simultaneous learning of multiple relations. By weighting
the loss function, we are able to leverage limited observed (training) relationships without fitting the
unobserved (testing) ones. Further, due to our decomposition, we are able to transfer information
across the various types of relations during learning, thus better exploiting the structure of multi-
relational data. We demonstrate the efficacy of this approach using two synthetic data experiments.1
The results show significant improvements in accuracy over competing factorization models.

2 Multi-relational Weighted Tensor Decomposition

Fix a set of objects {o1, . . . , om} and a set of relations {R1, . . . ,Rn}.2 We are given a partially
observed tensor Y ∈ Rm×m×n, in which each observed entry is a (possibly noisy) measurement
of a relationship yi,j,k ≈ Rk(oi, oj) and each unobserved entry is set to a null value. We are
additionally given a nonnegative weighting tensor W ∈ R+m×m×n, where each entrywi,j,k ∈ [0, 1]
corresponds to a user-defined confidence, or certainty, in the value of yi,j,k; if yi,j,k is unobserved,

1While we also have promising results using real-world data, we omit them here due to space restrictions.
2Here, we use the term relation loosely to include not only strict relations, for which relationships are

either present or not, but also real-valued functions. To simplify our analysis, we assume that all relations are
symmetric, though one can obtain an analogous derivation for asymmetric relations with slightly more work.

1

⇡
Latent factors

Interactions

r

r

Rk

m

r

A m

rA>
Bias

+ bk

m

m

Yk ((Input data

�k

Figure 1: Each slice Yk of the input tensor is approximated by a function Φk of a low-rank decom-
position ARkA

> + bk. The latent factors A are common to all slices. Each Rk determines the
interactions of A in the kth relation, while bk accounts for distributional bias.

then wi,j,k is necessarily zero. The goal of multi-relational transduction in this tensor formulation is
to infer the unobserved entries in Y.

Our fundamental assumption is that each relationshipRk(oi, oj) is equal to a mapping Φk applied to
an element xi,j,k in an underlying low-rank tensor X ∈ Rm×m×n. Each Φk depends on the nature
of the relation Rk, and may differ across relations. For example, for binary relations in {±1},
Φk is the sign function. We further assume that each frontal slice Xk can be factored as a rank-r
decomposition:

Xk = ARkA
> + bk, (1)

where A ∈ Rm×r, Rk ∈ Rr×r and bk ∈ R (see Figure 1). Note that we place no constraints
on A or Rk; the columns of A need not be linearly independent, and Rk need not be positive-
semidefinite. To infer the values of the missing (or uncertain) entries, we predict each yi,j,k by
computing xi,j,k = a>i Rkaj + bk and applying the appropriate mapping.

The columns of A can be interpreted as the global latent factors of the objects, where the ith row ai
corresponds to the latent factors of object oi. Each Rk determines the interactions of A in the kth

relation. Thus, each predicted relationship comes from a linear combination of the objects’ latent
factors. Because the latent factors are global, information propagates between relations during the
decomposition, thus enabling collective learning. The addition of bk accounts for distributional bias
within each relation.

The key distinction between our approach and previous tensor decompositions [1, 5, 7], for multi-
relational learning is that, instead of directly decomposing the input tensor, we model the mapping
from X to Y. Moreover, we explicitly model the potential sparsity and uncertainty in the obser-
vations, producing more accurate predictions even when observed (training) data is limited (see
Section 3).

To compute the decomposition in Equation 1, we minimize the following regularized objective:

f(A,R,b) ,
λ

2
||A||2F +

n∑
k=1

λ

2
||Rk||2F + tr

(
Wk(`k(Yk,Xk))>

)
, (2)

where λ ≥ 0 is a regularization parameter, Xk is computed by Equation 1, and `k is a loss function
that is applied element-wise to the kth slice. This ability to combine multiple loss functions is central
to our approach, as the appropriate penalty depends on the mapping for each Xk to Yk. Though
most matrix and tensor decompositions focus on minimizing the quadratic loss, this criterion may
not be optimal for certain prediction tasks, such as binary prediction; by explicitly making the loss
function for each slice task-specific, our framework offers more flexibility than related techniques.

To minimize Equation 2, we use quasi-Newton optimization; in particular, we implement our frame-
work using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. This re-
quires the gradients of f(A,R,b) w.r.t. A, Rk and bk. Leveraging the symmetry of Rk, we derive
these as

∇Af(A,R,b) = λA +

n∑
k=1

2 (Wk �∇Xk
`k(Yk,Xk))AR>k (3)

∇Rk
f(A,R,b) = λRk + A> (Wk �∇Xk

`k(Yk,Xk))A, (4)

∇bkf(A,R,b) = tr
(
Wk(∇Xk

`k(Yk,Xk))>
)
, (5)

2

where� denotes the Hadamard (i.e., element-wise) product, and∇Xk
`k(Yk,Xk) is the gradient of

`k w.r.t. Xk. Though this accommodates any differentiable loss function, we now present two that
are applicable to many relational problems, and derive their corresponding gradients.

Quadratic Loss: The most common loss function used in matrix and tensor factorization is the
quadratic loss, which we define as `q(y, x) , 1

2 (y−x)2. Minimizing the quadratic loss corresponds
to the setting in which each relationship is directly approximated by a linear combination of latent
factors, i.e., Φk is the identity and Yk ≈ Xk. For this loss function, the loss gradient is simply
∇Xk

`k(Yk,Xk) , (Xk −Yk).

Smooth Hinge Loss: While the quadratic loss may be appropriate for learning real-valued func-
tions, it is sometimes ill-suited for learning binary relations. For binary classification, the goal is
to complete a partially observed slice Yk ∈ {±1}m×m. Recall that the mapping Φk is the sign
function, and so yi,j,k ≈ sgn(xi,j,k). Approximating {±1} with a quadratic penalty may yield
a “small-margin” solution, since high-confidence predictions will push low-confidence predictions
closer to the decision boundary. To get a “large-margin” solution, we use the smooth hinge loss [8],

`h(y, x) , h(yx), where h(z) ,

1/2− z if z ≤ 0,

(1− z)2/2 if 0 < z < 1,

0 if z ≥ 1.

Unlike the standard hinge loss, the smooth hinge is differentiable everywhere. To obtain closed-form
gradients, we define tensors P,Q ∈ Rm×m×n, where

pi,j,k ,

{
1 if 0 < yi,j,kxi,j,k < 1,

0 otherwise,
and qi,j,k ,

{
1 if yi,j,kxi,j,k < 1,

0 otherwise.

We can therefore express the smooth hinge as

h(yi,j,kxi,j,k) = (pi,j,kx
2
i,j,k − 2qi,j,kyi,j,kxi,j,k + qi,j,k)/2,

which we can differentiate w.r.t. Xk to obtain∇Xk
`k(Yk,Xk) , (Pk �Xk −Qk �Yk).

3 Experiments

In this section, we compare MrWTD with related tensor and matrix decompositions [7, 8] in two ex-
periments using synthetic data. (We omit our real-world data experiments due to space limitations.)

The first method we compare against MrWTD is the RESCAL model [7]. In RESCAL, unobserved
relationships are treated as negative examples. To distinguish between (un)observed relationships
and negative examples, we modified the representation of binary relationships from {0, 1} to {±1}
for observed data and zeros elsewhere.3 The second technique is maximum-margin matrix factoriza-
tion (MMMF) [8], a model for matrix reconstruction. As such, it is not designed for multi-relational
data; however, we can use it to reconstruct each slice of the tensor individually. Since the de-
composition of MMMF differs significantly from MrWTD, to ensure a fair comparison, we run a
variant of MrWTD that decomposes each slice separately instead of jointly, using a separate Ak

for k = 1, . . . , n. This is meant to equalize the discrepancy in decompositions, while isolating the
deficiencies of non-collective learning. We refer to this model as MMMF+.

To generate the synthetic data, we start by computing a low-rank tensor X̂ ∈ Rm×m×n as X̂k ←
ÂR̂kÂ

> + Ek, for k = 1, . . . , n, where Â ∈ Rm×r and R̂k ∈ Rr×r are sampled from a normal
distribution, and Ek ∈ Rm×m is low-level, normally-distributed noise. For the first experiment, we
construct n = 3 binary relations (i.e., slices), over m = 500 objects, using rank r = 10. We refer
to this dataset as BinarySynthetic. To generate a binary Y ∈ {±1}m×m×n, we round the values of
X̂k using the 90th percentile of X̂ as a threshold. This produces a heavy skew towards the negative
class, as is typical in real multi-relational data. For the second experiment, we construct one binary
relation and one real-valued relation, again over 500 objects, with rank 10. We refer to this dataset
as MixedSynthetic.

3We find that this modification improves RESCAL’s performance over the original method.

3

5 10 15 20 25

0.2

0.4

0.6

0.8

1

% train

A
U

C
−

P
R

 (
a
v
g
 1

0
 r

u
n
s
)

MrWTD
MMMF+

RESCAL
MMMF

(a) BinarySynthetic

5 10 15 20 25

0.2

0.4

0.6

0.8

1

% train

A
U

C
−

P
R

 (
a
v
g
 1

0
 r

u
n
s
)

(b) MixedSynthetic (AUC-PR)

5 10 15 20 25

10
−2

10
−1

10
0

% train

M
S

E
 (

a
v
g
 1

0
 r

u
n
s
)

(c) MixedSynthetic (MSE)

Figure 2: Results of the synthetic experiments, with standard deviations. We plot the AUC-PR for
BinarySynthetic (a) and MixedSynthetic (b) datasets. We also plot the MSE for MixedSynthetic (c);
note that the MSE is an error measure, and thus lower numbers are better.

We evaluate over training sizes t ∈ {3, 5, 10, 15, 20, 25} percent, using the remaining entries for
testing. From each training set, we withold a random 25% of entries as a validation set for finding a
good regularization parameter λ∗. Once identified, we then retrain on the full training set using λ∗
and evaluate on the test set. The results we report are averaged over 10 runs per training size.

On BinarySynthetic, MrWTD achieves a statistically significant4 lift over the competing methods
for training sizes 5% and up. We attribute these results to two primary advantages: the weighted
objective function, with its mixture of task-specific loss functions, and the global latent factors. The
weighted objective allows exploiting small amounts of observed data, without fitting the unobserved
entries. Since RESCAL treats all entries as observed, it tends to fit the unobserved entries in sparsely
populated tensors. Furthermore, we observed improved performance over MMMF, since the latent
factors are specific to each slice, while in MrWTD, information from one slice is propagated to the
others via the global latent factors.

On MixedSynthetic, MrWTD’s improvement over RESCAL and MMMF, in both AUC-PR and
MSE, is statistically significantly for all training sizes. Compared to MMMF+, MrWTD’s reduction
in MSE is significant for sizes 10% and above. Yet, though MMMF+ is competitive with MrWTD
in MSE for sizes 3-5%, since MMMF+ is unable to transfer information between slices, it still lags
significantly behind MrWTD in AUC-PR for all training sizes.

We considered examining the benefit of large-margin learning in isolation (without weighting); how-
ever, this is not especially meaningful for transduction, as the hinge loss does not work with unob-
served entries. In experiments not shown, we found that weighting alone (i.e., with quadratic loss)
showed improvement over RESCAL in BinarySynthetic, but not as much as with the (large-margin)
smooth hinge loss.

We also experimented with varying the rank of the decomposition from 5 to 40, but because the
methods we test use L2 regularization on the latent factors, the results are nearly identical across
ranks. Even with rank cross-validation per method, MrWTD still dominated the other methods. We
believe this is because the L2 regularizer is the primary complexity control, so varying the rank has
little effect on the predictions.

Finally, the running time for MrWTD is somewhat slower than that of RESCAL, in part because of
the more complex objective function; yet it remains efficient because the sparsity of the observed
tensor. On BinarySynthetic, using the optimal λ∗ on 25% training data, learning executes in ap-
proximately ten seconds using our MATLAB implementation. This running time is comparable to
RESCAL, which takes approximately five seconds. We are currently working on an algorithm to
replace L-BFGS that will drastically improve efficiency.

References

[1] B. Bader, R. Harshman, and T. Kolda. Temporal analysis of semantic graphs using ASALSAN.
In Proc. of the 7th IEEE International Conf. on Data Mining (ICDM), 2007.

4We measure statistical significance in all experiments using a 2-sample t-test with rejection threshold 0.05.

4

[2] D. Dunlavy, T. Kolda, and W. Kegelmeyer. Multilinear algebra for analyzing data with multiple
linkages. Technical Report, 2006.

[3] D. Dunlavy, T. Kolda, and E. Acar. Temporal link prediction using matrix and tensor factoriza-
tions. ACM Trans. on Knowledge Discovery from Data, 5(2), 2011.

[4] S. Gao, L. Denoyer, and P. Gallinari. Link pattern prediction with tensor decomposition in
multi-relational networks. In IEEE Symposium on Comp. Intell. and Data Mining, 2011.

[5] R. Harshman. Models for analysis of asymmetrical relationships. In First Joint Meeting of the
Psychometric Society and the Society for Mathematical Psychology, 1978.

[6] H. Kashima, T. Kato, Y. Yamanishi, M. Sugiyama, and K. Tsuda. Link propagation: A fast
semi-supervised learning algorithm for link prediction. In SIAM International Conference on
Data Mining (SDM), 2009.

[7] M. Nickel, V. Tresp, and H. Kriegel. A three-way model for collective learning on multi-
relational data. In Proc. of the 28th International Conf. on Machine Learning (ICML), 2011.

[8] J. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative prediction.
In In Proc. of the 22nd International Conf. on Machine Learning (ICML), 2005.

[9] L. Xiong, X. Chen, T. Huang, J. Schneider, and J. Carbonell. Temporal collaborative filtering
with Bayesian probabilistic tensor factorization. In SIAM International Conference on Data
Mining (SDM), 2010.

5

