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Abstract

There has been a surge of interest in learning us-
ing a mix of labeled and unlabeled data. General
approaches include semi-supervised learning and
tranductive inference. In this paper we look at
some of the unique ways in which unlabeled data
can improve performance when doing link-based
classification, the classification of objects mak-
ing use of both object descriptions and the links
between objects.

1. Introduction

The problem of mining richly structured datasets, where
the objects are linked in some way, is a new challenge for
machine learning. In many cases this data can be described
by a graph; links or edges among the objects may demon-
strate certain patterns, which may be helpful for many ma-
chine learning tasks and are usually hard to capture using
traditional statistical models. Objects may be labeled or un-
labeled, and classification should exploit the unlabeled data
and the link structure between both labeled and unlabeled
objects.

Link mining is a newly emerging research area that is at the
intersection of the work in link analysis (Jensen & Gold-
berg, 1998; Feldman, 2002), hypertext and web mining
(Chakrabarti, 2002), relational learning and inductive logic
programming (Dzeroski & Lavrac, 2001) and graph min-
ing (Cook & Holder, 2000). Link mining is potentially
useful in a wide range of application areas including bio-
informatics, bibliographic citations, financial analysis, na-
tional security, and the Internet.

Recently there has been a great increase of interest in this
area, fueled largely by interest in web and hypertext min-
ing, but also by interest in mining social networks, bibli-
ographic citation data, epidemiological data and other do-
mains best described using a linked or graph structure. In

this setting, unlabeled data provides information not only
about the distribution of the objects, but also about the dis-
tribution of links.

Here we describe a framework for modeling link distri-
butions, a link-based model introduced in Lu and Getoor
(2003) that supports discriminatively trained models de-
scribing both links and the attributes of linked objects. In
order to capture the joint distributions of the links, we use
a logistic regression model for both the content and the
links. A key challenge is structuring the model appropri-
ately; simply throwing both links and content attributes into
a ’flat’ logistic regression model does not perform well.

In this paper, we examine the different ways in which un-
labeled data can be used to improve classification perfor-
mance in relational domains:

� Just as in the case of classical machine learning frame-
work, in which there are no links among the data, un-
labeled data can help us learn the distribution over ob-
ject descriptions.

� Links among the unlabeled data (or test set) can pro-
vide information that can help with classification.

� Links between the labeled training data and unlabeled
(test) data induce dependencies that should not be ig-
nored.

The idea that each of these aspects are important is not new,
nor is the idea that the use of an appropriate expectation-
maximization algorithm can provide a unified framework
for combining all these pieces of information. Our contri-
bution is an empirical study of the effect of each of these
sources of information in a novel probabilistic model, a lo-
gistic regression model based on both object features and
properties of the link neighborhoods.
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2. Related Work

For supervised learning, it is expensive and labor-intensive
to construct a large, labeled set of examples. However in
many domains it is relatively inexpensive to collect unla-
beled examples. Recently several algorithms have been de-
veloped to learn a model from both labeled and unlabeled
examples (Nigam et al., 2000; Zhang & Oles, 2000; Blum
& Chawla, 2001). Successful applications in a number of
areas, especially text classification, have been reported. In-
terestingly, a number of results show that while careful use
of unlabeled data is helpful, it is not always the case that
more unlabeled data improves performance (Nigam, 2001).

Blum and Mitchell (1998) proposes a co-training algorithm
to make use of unlabeled data to boost the performance of
a learning algorithm. They assume that the data can be
described by two separate feature sets which are not com-
pletely correlated, and each of which is predictive enough
for a weak predictor respectively. The co-training proce-
dure works to augment the labeled sample with data from
unlabeled data using these two weak predictors. Their ex-
periments show positive results on the use of unlabeled ex-
amples to improve the performance of the learned model.
In (Mitchell, 1999), the author states that many natural
learning problems fit the problem class where the features
describing the examples are redundantly sufficient for clas-
sifying the examples. In this case, the unlabeled data can
significantly improve learning accuracy. There are many
problems falling into this category: web page classifica-
tion; semantic classification of noun phrases, learning to se-
lect word sense and object recognition in multimedia data.

Nigam et al. (2000) introduce an EM algorithm for learning
a Naive Bayes classifier from labeled and unlabeled exam-
ples. The algorithm first trains a classifier based on labeled
documents and then probabilistically classifies the unla-
beled documents. Then both labeled and unlabeled doc-
uments participate in the learning procedure. This process
repeats until it converges. The ideas of using co-training
and EM algorithms for learning from labeled and unlabeled
data are fully investigated in (Ghani, 2001)

Joachims (1999) proposes a transductive support vector
machine (TSVM) for text classification. A TSVM takes
into account a particular test set and tries to optimize the
classification accuracy for that particular test set. This also
is an important means of using labeled and unlabeled ex-
amples for learning.

In other recent work on link mining (Neville & Jensen,
2000; Getoor et al., 2002; Taskar et al., 2002), models are
learned from fully labeled training examples and evaluated
on a disjoint test set. In some cases, the separation oc-
curs naturally, for example in the WebKB dataset (Craven
et al., 1998). This dataset describes the web pages at four

different universities, and one can naturally split the data
into a collection of training schools and a test school, and
there are no links from the test school web pages to the
training school pages. But in other cases, the datasets are
either manipulated to extract disconnected components, or
the links between the training and test sets are simply ig-
nored. One major disadvantage of this approach is that it
discards links between labeled and unlabeled data which
may be very helpful for making predictions or may artifi-
cially create a skewed training and test set.

Chakrabarti et al. (1998) propose an iterative relaxation la-
beling algorithm to classify a patent database and a small
web collection. They examine using text, neighboring text
and neighbor class labels for classification in a rather realis-
tic setting wherein some portion of the neighbor class labels
are known. In the start of their iteration, a bootstrap mech-
anism is introduced to classify unlabeled documents. Af-
ter that, classes from labeled and unlabeled documents par-
ticipate in the relaxation labeling iteration. They showed
that naively incorporating words from neighboring pages
reduces performance, while incorporating category infor-
mation, such has hierarchical category prefixes, improves
performance.

Oh et al. (2000) also suggest an incremental categoriza-
tion method, where the classified documents can take part
in the categorization of other documents in the neighbor-
hood. In contrast to the approach used in Chakrabarti et al.
(1998), they do not introduce a bootstrap stage to classify
all unlabeled documents. Instead they incrementally clas-
sify documents and take into account the classes of unla-
beled documents as they become available in the catego-
rization process. They report similar results on a collection
of encyclopedia articles: merely incorporating words from
neighboring documents was not helpful, while making use
of the predicted class of neighboring documents was help-
ful.

Popescul et al. (2002) study the use of inductive logic pro-
gramming(ILP) to combine text and link features for clas-
sification. In contrast to Chakrabarti et al. (1998) and Oh
et al. (2000) where class labels are used as features, they
incorporate the unique document IDs of neighborhood as
features. Their results also demonstrate that the combina-
tion of text and link features often improves performance.

These results indicate that simply assuming that link doc-
uments are on the same topic, and incorporating the fea-
tures of linked neighbors is not generally effective. One
approach is to identify certain types of hypertext regular-
ities such as encyclopedic regularity (linked objects typi-
cally have the same class) and co-citation regularity (linked
objects do not share the same class, but objects that are
cited by the same object tend to have the same class). Yang
et al. (2002) gives an in-depth investigation of the valid-



ity of these regularities across several datasets and using a
range of classifiers. They found that the usefulness of the
regularities varied, depending on both the dataset and the
classifier being use.

Here, we propose a probabilistic method that can learn a va-
riety of different regularities among the categories of linked
objects using labeled and unlabeled examples. Our method
differs from the previous work in several ways. First, in-
stead of assuming a Naive Bayes model (Chakrabarti et al.,
1998) for the class labels in the neighborhood, we adopt a
logistic regression model to capture the conditional proba-
bility of the class labels given the object attributes and link
descriptions. In this way our method is able to learn a va-
riety of different regularities and is not limited to a self-
reinforcing encyclopedic regularity. We propose an algo-
rithm to make predictions using both labeled and unlabeled
data. Our approach makes use of the description of unla-
beled data and all of the links between unlabeled and label
data in an iterative algorithm for finding the collective la-
beling which maximizes the posterior probability for the
class labels of all of the unlabeled data given the observed
labeled data and links.

3. Link-based models

In this section, we review the link-based models described
in Lu and Getoor (2003). We define a general notion of a
link-based model that can be used for object classification
based on the distribution of links and based on attributes of
linked objects.

3.1. Definitions

The generic link-based data we consider is essentially a di-
rected graph, in which the nodes are objects and edges are
links between objects.
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Our model will support classification of objects based both
on features of the object and on properties of its links.
The object classifications are a finite set of categories�
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3.2. Object features

The attributes of an object provide a basic description of
the object. Traditional classification algorithms are based
on object attributes. We use the notation

69?��(�)!
for the

attributes of object
�

. As an example, in the scientific liter-
ature domain, the object features might consist of a variety
of text information such as title, abstract, authorship and
content. In the domains we examined, the objects are text
documents the object features we use are word occurrences.

3.3. Link features

To capture the link patterns, we introduce the notion of link
features as a way of capturing the salient characteristics of
the objects’ links. We examine a variety of simple mecha-
nisms for doing this. All are based on statistics computed
from the linked objects rather than the identity of the linked
objects. Describing only the limited collection of statistics
computed from the links can be significantly more compact
than storing the link incidence matrix. In addition, these
models can accommodate the introduction of new objects,
and thus are applicable in a wider range of situations.

We examine several ways of constructing link features. All
are constructed from the collection of the categories of the
linked objects. We use �A@ �(�)!

to denote the link descrip-
tion.

The simplest statistic to compute is a single feature, the
mode, from each set of linked objects from the in-links,
out-links and co-citation links. We call this the mode-link
model.

We can use the frequency of the categories of the linked
objects; we refer to this as the count-link model. In this
case, while we have lost the information about the individ-
ual entity to which the object is connected, we maintain the
frequencies of the different categories.

A middle ground between these two is a simple binary fea-
ture vector; for each category, if a link to an object of that
category occurs at least once, the corresponding feature isB

; the feature is C if there are no links to this category. In
this case, we use the term binary-link model. Figure 1
shows examples of the three types of link features com-
puted for an object for each category of links (in-links, out-
links and co-citation links).
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In-l i nk s :
•m od e : A
•binary: (1,1,1)
•count: (3 ,1,1)

C o -l i nk s :
•m od e : A
•binary: (1,0,0)
•count: (2,0,0)

O u t -l i nk s :
•m od e : B
•binary: (1,1,0)
•count: (1,2,0)

Figure 1. Assuming there are three possible categories for objects, � , � and � , the figure shows examples of the mode, binary and count
link features constructed for the object labeled with � .

4. Predictive model for object classification

Clearly we may make use of the object and link features
in a variety of models such as Naive Bayes classifiers,
SVMs and logistic regression models. For the domains that
we have examined, logistic regression models have outper-
formed Naive Bayes models, so these are the models we
have focused on.

For our predictive model, we used a regularized logistic
regression model. Given a training set of labeled data��� � 	$" � !

, where � � B 	�� 	
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for the discriminative function, which is equiva-
lent to the following regularized logistic regression formu-
lation (Zhang & Oles, 2001):
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where we use a zero-mean independent Gaussian prior for
the parameter

�
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The simplest model is a flat model, which uses a single lo-
gistic regression model over both the object attributes and
link features. We found that this model did not perform
well, and instead we found that a structured logistic regres-
sion model, which uses separate logistic regression mod-
els (with different regularization parameters) for the object
features and the link features outperformed the flat model.
Now the MAP estimation for categorization becomes
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where OA(X) are the object features and LD(X) are the
link features and we make the (probably incorrect) as-
sumption that they are independent. � �," / 69?.�+�)!�!

and

� �,"�/ �A@ �+�)!�!
are defined as

� �,"�/'69?.�+�)!�!A� B
��� � �.�!� "/ 69?.�(�<! "
!0
 B

� �,"�/ �A@ �+�)!�! � B
��� � �.�!� "1 �A@ �+�)! "
!�
 B

where
� / and

� 1 are the parameters for the regularized
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respectively.

5. Link-based classification using Labeled
and Unlabeled Data

Given data @ consisting of labeled data @ 1
and unlabeled

data @32 , we define a posterior probability over @42 as
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We use an EM-like iterative algorithm to make use of both
labeled data @ 1 ���>��� � 	$"'��� � !!5 � � B 	
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and unlabeled
data @ 2 � �>���=<� 	$"'���=<� !!5?>�� B 	
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to learn our model.
Initally a structured logistic regression model is built using
labeled data @ 1

. First, we categorize data in @A2
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. Next this categorized @A2 and labeled
data @ 1

are used to build a new model.

Step 1: (Initialization) Build an initial structured logis-
tic regression classifier using content and link features
using only the labeled training data.



Step 2: (Iteration) Loop while the posterior probability
over the unlabeled test data increases:

1. Classify unlabeled data using the current model.

2. Recompute the link features of each object. Re-
estimate the parameters of the logistic regression
models.

In our above iterative algorithm, after we categorize the un-
labeled data, the link descriptions for all labeled and un-
labeled data will change due to the links among labeled
and unlabeled data. The first step is to recompute the link
descriptions for all data based on the results from the cur-
rent estimates and the link graph over labeled and unlabeled
data.

6. Results

We evaluated our link-based classification algorithm on the
Cora dataset (McCallum et al., 2000) and a dataset that we
constructed from CiteSeer entries (Giles et al., 1998). In
both domains, document frequency (DF) is used to prune
the word dictionary. Words with DF values less than 10 are
discarded.

The Cora dataset contains 4187 machine learning papers,
each categorized into one of seven possible topics. We
consider only the 3181 papers that are cited or cite other
papers. There are 6185 citations in the dataset. After stem-
ming and removing stop words and rare words, the dictio-
nary contains 1400 words.

The CiteSeer dataset has approximately 3600 papers from
six categories: Agents, Artificial Intelligence, Database,
Human Computer Interaction, Machine Learning and In-
formation Retrieval. There are 7522 citations in the dataset.
After stemming and removing stop words and rare words,
the dictionary for CiteSeer contains 3000 words.

6.1. Prediction with links between training and test sets

We began by investigating the issue of exploiting the links
between test and training data for predictions.

In other work Neville and Jensen (2000), Getoor et al.
(2002) and Taskar et al. (2002) using link distributions
for categorization, the experimental data set are split into
training set and test set, and any links across training and
test sets are ignored.

In reality, in domains such as web and scientific literature,
document collections are changing dynamically. There are
new papers published, and new web sites created. New
objects and edges are being added to the existing graph. A
more realistic evaluation, such as that done in Chakrabarti
et al. (1998), exploits the links between test and training.

In an effort to understand this phenomena more fully, we
examined the effect of ignoring links between training and
test sets. Here we compared a method which discards all
link information across training set and test set, which is
denoted as ”Test Links Only”, with a more realistic method
which keeps all the links between test and training sets.
which is denoted as ”Complete Links”. With ”Test Links
Only”, in our iterative classification process, the link de-
scriptions of test data are constructed based only on the link
graph over test data, while with ”Complete Links” link de-
scriptions of test data are formulated over the link graph
using both training and test data. For each experiment on
Cora and CiteSeer, each domain is split into three data sets
with equal size and a three-fold cross validation is done.
We take one split as a test set, and the remaining two splits
are used to train our model: one for training and the other
is used as a validation set for setting the regularization pa-
rameter for the logistic regression models.

In our experiments, we compared a baseline model
(Content-Only) with our link-based models (Mode-Link,
Binary-Link, Count-Link). We compared the models:

� Content-Only: Uses only object attributes.

� Mode-Link: Combines a logistic regression model
over the object attributes with a separate logistic re-
gression model over the mode of the in-links, out-links
and co-citations.

� Binary-Link: Combines a logistic regression model
over the object attributes with a separate logistic re-
gression model over the binary link statistics for the
in-links, out-links and co-citations.

� Count-Link: Combines a logistic regression model
over the object attributes with a separate logistic re-
gression model over the counts link statistics for the
in-links, out-links and co-citations.

Table 1 and Table 2 show the summary of our experimental
results on both Cora and CiteSeer domains. These results
demonstrate that the complete link structure is informative
and can be used to improve overall performance. We did a
paired t-test on F1 measure. For Binary-Link and Count-
Link models, using ”Complete links” performs better than
using ”Test Links Only” with significance level above 95%
in both Cora and CiteSeer. Our models (Binary-Link and
Count-Link) outperform both the base model (Content-
Only) and the simplest link-based model (Mode-Link). For
more details on our link-based model, we refer the reader
to Lu and Getoor (2003).



Test Links Only Complete Links
Content-Only Mode-Link Binary-Link Count-Link Mode-Link Binary-Link Count-Link

Accuracy 0.678 0.708 0.707 0.709 0.717 0.756 0.758
Precision 0.649 0.673 0.673 0.675 0.717 0.761 0.759
Recall 0.631 0.688 0.687 0.69 0.679 0.721 0.725
F1 Measure 0.646 0.68 0.68 0.682 0.697 0.74 0.741

Table 1. Results using ”Test Links Only” and ”Complete Links” on Cora.

Test Links Only Complete Links
Content-Only Mode-Link Binary-Link Count-Link Mode-Link Binary-Link Count-Link

Accuracy 0.612 0.636 0.635 0.639 0.661 0.666 0.678
Precision 0.554 0.572 0.569 0.573 0.594 0.603 0.601
Recall 0.558 0.579 0.576 0.581 0.595 0.603 0.609
F1 Measure 0.558 0.575 0.573 0.577 0.594 0.603 0.605

Table 2. Results using ”Test Links Only” and ”Complete Links” on CiteSeer.

6.2. Link-based classification using labeled and
unlabeled data

In previous section we experimented with labeled and un-
labeled data for predictions. Next we explored the learning
with labeled and unlabeled data using the iterative algo-
rithm proposed in Section 5. To better understand the ef-
fects of unlabeled data, we compared the performance of
our algorithm with varying amounts of labeled and unla-
beled data.

For each domain (Cora or CiteSeer), we randomly choose
20% of the data as test data. We compared the performance
of the algorithms when different percentages (20%, 40%,
60%, 80%) of the remaining data is labeled. We compared
the accuracy when only the labeled data is used for train-
ing (labeled only) with the case where both labeled and the
remaining unlabeled data is used for training (labeled and
unlabeled). We compared the models:

� Content-Only: Uses only object attributes.
� Labeled-Only: the binary-link model is learned on

labeled data only. The only unlabeled data used is the
test set.

� Labeled and Unlabeled: the binary-link model is
learned on both labeled and all of the unlabeled data.

Figure 2 shows the results averaged over 5 different runs.
The algorithm which makes use of all of the unlabeled data
gives better performance than the model which uses only
the labeled data. Interestingly for the Cora dataset, more
unlabeled data is not always better. The average improve-
ment in F1 measure is 6% on Cora and 4.9% on CiteSeer.
We did a paired t-test. For both datasets, the algorithm
which uses both labeled and unlabeled data outperforms
the algorithm which uses labeled-only data; even with 80%

of the data labeled and only 20% of the data unlabeled, the
improvement in error on the test set using unlabeled data is
statistically significant at the 95% confidence level for both
Cora and Citeseer.

7. Conclusions

In link-based classification, unlabeled data provides use-
ful information in three important ways: first, it gives us
additional information about the distribution of object at-
tribute values; second, links among unlabeled data in the
test set provide useful information about classification and
third, links between labeled (training) data and unlabeled
(test) data also provide useful information that should not
be ignored. When the classification problem is properly
modeled, and we don’t distort the data by removing links
between the test and training and inference is used for col-
lective classification, we are able to make use of all of the
information that unlabeled data provides.
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