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ABSTRACT
Identifying biological entities such as genes and proteins from sci-

entific documents is crucial for further downstream tasks such as

question answering and information retrieval. This task is chal-

lenging because the same surface text can refer either to a gene

or a protein based on the context. Traditional approaches such as

Huang et al. [12] consider the words present in the surrounding text

to infer the context. However, they fail to consider the semantics

of these words which are better represented by contextual word

embeddings such as BERT [6]. Deep learning based approaches,

on the other hand, fail to make use of the relational structure of

scientific documents. We introduce a novel probabilistic approach

that jointly classifies all entity references using a class of undi-

rected graphical models called hinge-loss Markov random fields [1].

Our approach can combine relational information with embedding-

based word semantics. Further, our approach can be easily extended

to incorporate new sources of information. Our initial evaluation

on the JNLPBA shared task corpus [4] shows that our joint classi-

fication approach outperforms both traditional machine learning

approaches and semantic models based on word embeddings by up

to 7.5% on F1 score.
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1 INTRODUCTION
Bio-entity recognition systems which identify biological entities in

unstructured scientific literature are crucial for information extrac-

tion, question answering and summarization [4]. Genes and pro-

teins are two important entity classes recognised by these systems.
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Identifying genes and proteins in scientific literature is challenging

as both entity types can have the same surface text. For example,

consider the following two sentences:

By UV cross-linking and immunoprecipitation, we show that
SBP2 specifically binds selenoprotein mRNAs both in vitro and
in vivo.
The SBP2 clone used in this study generates a 3173 nt transcript.

The surface text SBP2 in the first sentence corresponds to a protein,

whereas in the second sentence it corresponds to a gene.

Several approaches have been proposed for the task of classi-

fying entity references as genes and proteins [3, 7, 8, 11, 12, 24].

Traditional techniques such as Chen and Al-Mubaid [3] and Huang

et al. [12] construct feature vectors using the words present in a

context window around the surface text and use models such as

support vector machines to classify these references. These tech-

niques typically use a bag-of-words-based model to represent the

context window and can capture the similarity and semantics of the

words in the context. More recently, several BERT-based contextual

embeddings trained on a large corpus of biological text have been

proposed to address this challenge [9, 15]. However, embedding-

based approaches such as Giorgi and Bader [8] treat sentences

independently and do not make use of relational structure present

in the data. For example, two references that have the same surface

text and are present in the same abstract are both likely to be genes

or proteins. Another drawback of the current approaches is the

difficulty in extending them to incorporate new sources of infor-

mation. There is a need for a robust, extensible framework that can

jointly reason over all the references and can incorporate semantic

information present in the word embeddings.

In this work, we propose a novel approach that leverages the

flexibility of probabilistic programming to combine relational infor-

mation with word semantics present in the contextual embeddings.

We represent each reference as a node in the graph. Along with

various sources of relational information such as references being

present in the same abstract, we also include the semantic infor-

mation found in embedding similarities as edges. We then make

use of hinge-loss Markov Random Field (HL-MRF) [1], a class of

undirected graphical models, to jointly reason over all references

in the graph.

The contributions of our approach include:
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• We propose a novel probabilistic approach that combines re-

lational datawithword semantics for the task of gene/protein

classification.

• Our approach uses a probabilistic programming language

and can be extended to include other sources of information.

• Initial experimental evaluation on the 2004 JNLPBA Shared

Task corpus [4] shows that our approach is able to outper-

form traditional word-basedmodels and semantic embedding-

based models by up to 7.5% on F1 score.

2 RELATEDWORK
We first give a overview of the various approaches proposed in lit-

erature for the task of gene/protein classification. We then describe

work on word sense disambiguation, a closely related task.

Collective entity disambiguation methods which use graphi-

cal models have been proposed [5, 25], but feature engineering

for traditional classifiers is the primary focus of research on gene

and protein name disambiguation [3, 12]. Chen and Al-Mubaid [3]

utilize the information gain of words in their training corpus to

construct features. In addition to information gain, Huang et al.

[12] also investigated the co-occurence relationships of words as

part of their feature engineering. While both of these approaches

ultimately utilize SVMs, more recent works such as Yoon et al. [24]

apply deep learning methods and embedding representations of

words for more general bio-entity recognition.

Word-sense disambiguation (WSD) is the task of identifying the

meaning of words from context. Knowledge, often in a human-

curated form such as a thesaurus or ontology, is a key part of many

WSD approaches. A survey on various approaches for the task of

WSD can be found in Navigli [18]. More recently, approaches that

use embeddings [13] and deep learning methods [21] have been

proposed. In our work, we propose a novel approach for the task of

gene/protein WSD that leverages both relational information and

embeddings to jointly reason over all references.

3 APPROACH
Our proposed approach combines relational information with se-

mantics by representing them as a graph. Fig. 1 shows an example

graph constructed for three references. The references are rep-

resented as nodes. Gene references are represented in blue and

protein references are represented in orange. Unlabeled references

are shown in white. There are two labeled references and one unla-

beled reference. Relational information such as the fact that two

references occur in the same abstract or happen to share a bigram

in their context windows are represented as edges. Semantic in-

formation such as cosine similarity computed on the contextual

embeddings of the references are also represented as edges.

Having constructed the graph, we combine these information

sources and reason jointly over all the references using a hinge-loss

Markov random field (HL-MRF). HL-MRFs are a class of conditional

probabilistic models over continuous random variables that sup-

port modelling of richly structured relational data. HL-MRFs use

hinge-loss feature functions and admit tractable and efficient infer-

ence. The continuous random variables in HL-MRFs allows us to

incorporate similarity measures and confidences of other sources.

Figure 1: Example graph containing three references repre-
sented as nodes. Relational and semantic information are
represented as edges. Gene references are represented in
blue and protein references are represented in orange. Un-
labeled references are shown in white.

We use a probabilistic programming language called probabilistic

soft logic (PSL) to generate a HL-MRF from the given graph. We

first provide a brief overview of PSL and then describe our proposed

approach. Formore details on PSL andHL-MRFs, we refer the reader

to Bach et al. [1].

3.1 Probabilistic Soft Logic
PSL is a probabilistic programming language used to define a HL-

MRF. PSL supports modeling of rich relational data using weighted

logical clauses that encode statistical dependencies and structural

constraints. For example, consider the rule:

𝑤 : ExplicitGene(A) → IsGene(A)

Here the predicate ExplicitGene is set to 1 if the surface text

contains the term“gene”. This PSL rule states that A is likely to be

a gene if the surface text contain the word gene (e.g “IL-2 gene” ).
The logical atoms in PSL are represented using continuous random

variables in the interval [0, 1], and the rule satisfaction is computed

using the Lukasiewicz relaxation [14] of Boolean logic. Each relation

type in the constructed graph has a corresponding predicate that is

used to specify rules.

Given a graph containing references and a set of rules, PSL

generates a HL-MRF by instantiating each rule in the model with

the references in the graph. This process is known as grounding.
The logical atoms in the ground rules correspond to the random

variables in the HL-MRF, and the ground rules correspond to hinge-

loss feature functions. Given a set of random variables, some of

which are observedX, a PSLmodel defines a probability distribution

over the unobserved variables Y given by:

𝑝 (Y|X) = 1

𝑍
𝑒
−∑𝑚

𝑗=1 𝑤𝑗𝜙 𝑗 (Y,X)

where 𝑍 is the normalization constant, 𝜙 𝑗 is a hinge-loss potential
and 𝑤 𝑗 is a positive weight associated with 𝜙 𝑗 . The hinge-loss
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potentials are defined as follows:

𝜙 𝑗 (Y,X) =𝑚𝑎𝑥{𝑙 𝑗 (Y,X), 0}𝑝

where 𝑝 ∈ {1, 2}, 𝑙 𝑗 is the Lukasiewicz relaxation of the Boolean

clause. Getting a maximum a posteriori (MAP) estimate for Y is a

convex optimization task which PSL can perform efficiently.

3.2 PSL Model
We now describe the various rules that incorporate several infor-

mation sources for the task of gene/protein classification.

Contextual Semantic Similarity: BERT-based contextual word
embeddings capture the semantics of the words and are a crucial

component of many state-of-the-art NLP approaches [16, 24]. Un-

like traditional word embeddings such as Glove[19] and fasttext[17]

that give each word string an embedding, contextual embeddings

such as BERT[6] and ELMO[20] generate different embeddings

for the same word based on the context. This allows us to han-

dle references such as SBP2, where based on the context they

could either refer to a gene or a protein. We use BioMed-RoBERTa

[10], a model based on the RoBERTa architecture [16], which has

been pretrained on 2.68 million scientific papers. Since these em-

beddings contain contextual information, a high level of similar-

ity between the embeddings of two references indicates they are

likely to be both genes or proteins. We introduce the predicate

EmbeddingSimilarity(A, B) that captures the cosine similarity of

reference A and reference B’s embeddings. Because all references

share significant semantic features, such as the fact that they are

all nouns, they are highly similar. To address this, we set

EmbeddingSimilarity(A, B) to be equal to 0 if it is below a fixed

threshold 𝜃 . In our experiments we set 𝜃 to 0.98.

We then propagate the node labels based on the contextual se-

mantic similarity using the the following rules:

EmbeddingSimilarity(A, B) ∧ IsGene(A) → IsGene(B)
EmbeddingSimilarity(A, B) ∧ ¬IsGene(A) → ¬IsGene(B)

Computing similarity for all possible pairs of references is intractable.

We use a strategy called blocking to identify potential pairs that are

likely to have high similarity. In order to reduce the number of pairs

for which we do a similarity computation, we only consider pairs

that share at least two words in their context. This blocking strategy
dramatically reduces computation time. In our experiments, we

define the context of a reference to be the ten words which come

before and after it.

Contextual Word Similarity: Two references with identical

surface text and also have several discriminative words or bigrams

in common are likely to belong to the same class. We define a

predicate HasWord(A, X) that is set to 1 if the word X is present

in the context of A. To make sure we only look at discriminative

words, we consider words that have high information gain (IG). IG

is defined as follows:

𝐼𝐺 (𝑤) = −
𝑚∑
𝑖=1

𝑃 (𝑐𝑖 )𝑙𝑜𝑔𝑃 (𝑐𝑖 )

+𝑃 (𝑤)
𝑚∑
𝑖=1

𝑃 (𝑐𝑖 | 𝑤)𝑙𝑜𝑔𝑃 (𝑐𝑖 | 𝑤)

+𝑃 (𝑤)
𝑚∑
𝑖=1

𝑃 (𝑐𝑖 | 𝑤)𝑙𝑜𝑔𝑃 (𝑐𝑖 | 𝑤)

where 𝑤 refers to a given word, 𝑤 refers to the absence of 𝑤 ,𝑚

refers to the total number of classes (2 in our case, for gene/protein),

and 𝑐𝑖 refers to the specific class. We calculate the IG values for all

words that occur frequently and chose the top-𝑘 words that have

the highest IG. We define the predicate HighIG(X) to be equal to 1

if a word X is frequent and occurs in this list of top-𝑘 words. We use

a frequency threshold of 300 and set 𝑘 = 200 in our experiments.

We introduce a predicate SameName(A, B) which is set to 1 when
A and B have the same surface text. We include the following rules

in the model:

SameName(A, B) ∧ HasWord(A, X) ∧ HasWord(B, X)
∧HighIG(X) ∧ IsGene(A) → IsGene(B)

SameName(A, B) ∧ HasWord(A, X) ∧ HasWord(B, X)
∧HighIG(X) ∧ ¬IsGene(A) → ¬IsGene(B)

We also include rules that propagate node labels between refer-

ences that have the same surface text and have one ormore common

bigrams in the context. We introduce the predicateHasBigram and

include the following rules in the model:

SameName(A, B) ∧ HasBigram(A, X) ∧ HasBigram(B, X)
∧IsGene(A) → IsGene(B)

SameName(A, B) ∧ HasBigram(A, X) ∧ HasBigram(B, X)
¬IsGene(A) → ¬IsGene(B)

We experimented with feature selection approaches for bigrams, but

found that bigrams are unique enough and do not require further

filtering.

Continuity Within Abstracts: References in the same ab-

stract that have the same surface text are likely to belong to the

same class. To capture this, we include two rules:

SameAbstract(A, B) ∧ SameName(A, B)
∧IsGene(A) → IsGene(B)

SameAbstract(A, B) ∧ SameName(A, B)
∧¬IsGene(A) → ¬IsGene(B)

Frequent Co-occurrence: We define two references to be ad-
jacent if they occur in the same abstract and no other reference

occurs between them. We introduce the predicate Adjacent(A, B)
to be equal to 1 if references A and B are adjacent. If two pairs of

adjacent references are correspondingly identical in their surface

text, and three out of four of these are gene references, then the

fourth is likely also a gene reference. We represent this with PSL
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rules of the form:

Adjacent(A, B) ∧ Adjacent(C, D)
∧SameName(A, C) ∧ SameName(B, D)

∧IsGene(A) ∧ IsGene(B)
∧IsGene(C) → IsGene(D)

Surface Text Observations: The presence of discriminative

terms in a reference’s surface text are a strong signal that it be-

longs to a particular class. For example, if a reference’s surface text

contains the word "gene", as in "IL-2 gene", it is quite likely that

it refers to a gene. We define the predicates ExplicitGene(A) and
ExplicitProtein(A) that are equal to 1 if the surface text of the

reference 𝐴 contains the terms “gene” and “protein” respectively.

We then include the following rules:

ExplicitGene(A) → IsGene(A)
ExplicitProtein(A) → ¬IsGene(A)

We incorporate similar rules about words which are less explicit

by first computing the mutual information (MI) of the word with

respect to both the gene and protein class. MI is defined as:

𝑀𝐼𝑖 (𝑤) = 𝑁 × 𝑎

(𝑎 + 𝑏) × (𝑎 + 𝑐)
Where 𝑁 is the number of documents, 𝑎 is the number of times

𝑤 occurs in a document of class 𝑖 , 𝑏 is the number of times 𝑤

occurs in a document which doesn’t belong to class 𝑖 , and 𝑐 is

the number of documents in class 𝑖 which do not contain 𝑤 . We

then define the predicate StrongGene(X) to be equal to 1 if a

word X occurs frequently and has a gene class MI value above a

specified threshold. StrongProtein is defined similarly. We define

the predicate SurfaceTextHasWord(A, X) to be equal to 1 when

the surface text of reference A contains the word X.
Mutual information is strongly influenced by the marginal prob-

ability of the class with respect to which it is calculated [23]. As our

dataset is imbalanced, we use different MI thresholds for each class.

We set the gene-class MI threshold to 1.5 and the protein-class MI

threshold to 1. We use a frequency threshold of 200 for both classes.

We then define the following rules:

StrongGene(X) ∧ SurfaceTextHasWord(A, X)
→ IsGene(A)

StrongProtein(X) ∧ SurfaceTextHasWord(A, X)
→ ¬IsGene(A)

Other Classifiers: One of PSL’s unique strengths is its ability

to incorporate information from multiple sources. We incorporate

predictions from four other local classifiers, all of which use either

a SVM or logistic regression model, which we use as baselines in

our experimental evaluation. The details of these classifiers will

be discussed in Section 4. As an example, we define the predicate

LR(A) to be equal to 1 when a logistic regression-based classifier

predicts reference A to be a gene and 0 otherwise. We include rules

of the form:

LR(A) → IsGene(A)
¬LR(A) → ¬IsGene(A)

We add four rules of this form that correspond to the outputs of

SVMs and logistic regression trained on the bag-of-words represen-

tation and the embeddings of the surface text.

4 EXPERIMENTAL EVALUATION
4.1 Experimental Results
We evaluate the effectiveness of our approach on the JNLPBA 2004

shared task [4]. The corpus contains 2,000 abstracts containing bio-

entity references that are annotated as genes and proteins. There

are 30,269 protein and 9,533 gene references.

We evaluate our approach in two different settings which we will

refer to as the completely-unlabeled (CU) setting and the partially-
labeled (PL) setting. In CU, we generate equally-sized folds by

randomly assigning each abstract to a fold. In the CU setting, all

references in an abstract are either unlabeled or completely labeled.

In PL, we randomly assign each reference to one of the folds. In this

setting, the abstracts are partially labeled. Some references within

an abstract are labeled while others are unlabeled. For both CU and

PL we create 10 folds and evaluate our model by performing 10-

fold CV. We performed paired t-tests and all results in bold are

statistically significant at the 𝑝 = 0.05 level.

4.2 Baselines
We compare the performance of our approach against two embedding-

based semantic models and two context-based models. For the

embedding-based semantic models, we generate the embeddings of

the references using BioMed-RoBERTa and train a logistic regres-

sion and support vector machine using the embedding dimensions

as features. We refer to these models as the Embeddings SVM/LR
models or embeddings-based SVM/LR models. Similarly, for the

context-based models we train a SVM and logistic regression us-

ing the bag-of-words representation consisting of unigrams and

bigrams counts present in each reference’s context. We refer to

these models as the BoW SVM/LR models or the bag-of-words-based
models. For the embeddings SVM, we set the regularization param-

eter 𝐶 = 0.05. For all other baselines we use the default settings

associated with the model in SKLearn. For each reference we define

the context as five words preceding it, the reference’s surface text,

and the five words after it. Both these approaches classify each

reference independently and fails to make use of relational data.

To analyze the effect of relational rules, we also perform an

ablation study by comparing our proposed model to a PSL model

that combines the four baselines. We refer to this as Non-relational
model in Table 1 and Table 2.

For our PSL-based approach, we use all the rules mentioned in

Section 3. We use BOWL[22] on the validation set to learn weights

of the model. BOWL uses Gaussian process regression in a Bayesian

optimization setting to search the space of model weights that

maximize a user-defined metric. In our experiments, we use F1 as

the metric. Since PSL outputs truth values in the range [0, 1] for
each reference, we binarize the labels by considering all references

with ISGENE value ≥ 0.5 to be genes.

The precision, recall, F1 score and accuracy for the Completely-

Unlabeled setting is shown in Table 1. Among the baselines we

observe that embedding-based approaches perform better than

bag-of-words based models. This is due the semantic information
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Model F1 Accuracy Precision Recall

BoW SVM 0.811 ± 0.015 0.914 ± 0.009 0.854 ± 0.020 0.773 ± 0.018

BoW LR 0.718 ± 0.021 0.884 ± 0.011 0.857 ± 0.019 0.618 ± 0.031

Embeddings SVM 0.862 ± 0.017 0.937 ± 0.008 0.894 ± 0.016 0.833 ± 0.025

Embeddings LR 0.856 ± 0.018 0.933 ± 0.008 0.886 ± 0.020 0.829 ± 0.026

Non-relational model 0.863 ± 0.013 0.933 ± 0.007 0.848 ± 0.018 0.879 ± 0.014

PSL 0.895 ± 0.014 0.951 ± 0.007 0.922 ± 0.020 0.870 ± 0.016

Table 1: Performance Metrics for Completely-Unlabeled Setting and Std. Deviations.
PSL significantly outperforms baselines on F1 and accuracy.

Model F1 Accuracy Precision Recall

BoW SVM 0.820 ± 0.011 0.916 ± 0.005 0.845 ± 0.013 0.797 ± 0.015

BoW LR 0.731 ± 0.012 0.888 ± 0.005 0.863 ± 0.011 0.634 ± 0.015

Embeddings SVM 0.872 ± 0.008 0.941 ± 0.003 0.902 ± 0.011 0.844 ± 0.012

Embeddings LR 0.863 ± 0.011 0.937 ± 0.005 0.892 ± 0.010 0.836 ± 0.014

Non-relational model 0.871 ± 0.008 0.937 ± 0.003 0.854 ± 0.009 0.889 ± 0.011

PSL 0.937 ± 0.007 0.970 ± 0.003 0.941 ± 0.006 0.934 ± 0.011

Table 2: Performance Metrics for Partially-Labelled Setting and Std. Deviations.
PSL significantly outperforms baselines on F1 and accuracy.

contained in the word embeddings. We also see that SVMs perform

better than logistic regression.

PSL outperforms all baselines on F1 and accuracy. While the

non-relational model has slightly higher recall, it has significantly

lower precision. PSL’s improvement can be attributed to the fact

that it combines semantic information with relational information

and jointly infers the class labels for all references. In CU, PSL
outperforms the strongest baseline, embedding-based SVMs, by

3.8% on F1 score. Moreover, PSL tends to have lower standard

deviations when compared to other baselines.

The precision, recall, F1 score and accuracy for PLsetting is

shown in Table 2. Similarly to the previous setting, we observe that

PSL outperforms all other baselines. PSL has an improvement of

7.5% on F1 score over the embeddings-based SVM. This improve-

ment comes from achieving a 4.3% increase in average precision

and a 10.6% increase in average recall. The average accuracy also

increases by 3% over the embeddings-based SVM.

All models perform better in the partially-labeled setting when

compared to completely-unlabeled setting. For PSL, this improve-

ment is due to the propagation of node labels between references

in the same abstract. We hypothesize the improvement in the base-

lines is due to the increased overlap of words and bigrams in the

references’ context windows as they are part of the same abstract.

5 CONCLUSION AND FUTUREWORK
In this paper, we proposed an probabilistic approach for the task of

bio-entity recognition that combines semantic information using

contextual embeddings with relational information. Further, our ap-

proach uses probabilistic programming and can easily incorporate

other sources of information. Our initial experiments shows that

the proposed approach is able to outperform purely semantic-based

approaches as well as traditional bag-of-words approach.

In our future work, we will extend our approach to both extract

and label bio-entities. We also intend to incorporate other sources

of domain knowledge to help disambiguate references. A promis-

ing source of such knowledge is the UMLS Metathesaurus [2], a

database that contains the relationships between and hierarchies

of terms and words as they appear in a biomedical context.
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