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1 Abstract

Microbial genome-wide association studies (mGWAS) are a new, quickly growing area of
research that aims to identify genetic variants that are associated with phenotypes of
interest in microbes. We introduce PSL-GWAS, a flexible mGWAS method that makes
use of the statistical relational learning framework Probabilistic Soft Logic (PSL.) Our
method can be readily adapted to incorporate domain knowledge or the output of other
mGWAS methods. We show that PSL-GWAS performs comparably to well-established
mGWAS methods on a dataset of 355 E. Coli samples and antibiotic resistance
phenotypes.

2 Introduction

Microbial genome-wide association studies (mGWAS) look at identifying what genetic
variants (differences from an organism’s typical DNA sequence) are associated with
some phenotype (observable trait), such as drug resistance. Many existing methods
construct a pan-genome (set of all genetic variants) from a mGWAS dataset and
identify which are likely to cause a phenotype. Microbial GWAS methods have
successfully identified genomic markers associated with microbial virulence and drug
resistance, and this is particularly important given the emergence of multi-drug
resistant bacteria. The understanding gained from mGWAS results and analysis can
inform drug design as well as treatment decisions for a particular disease.

Straightforward association tests are generally insufficient due to the
highly-structured nature of most mGWAS datasets. Strong selective pressure in
bacteria for traits like antibiotic resistance, the frequency of horizontal gene transfer
(the swapping of genetic material between bacteria), and the asexual reproduction of
bacteria often create strong structure within a mGWAS dataset. Within this structure,
a large number of non-causal (or ”hitchhiker”) variants in the pan-genome will appear
to be highly correlated with a phenotype. The factors that lead to population structure
also result in a large and diverse pan-genome which may add computational costs,
because having a larger pan-genome forces a mGWAS method to consider more variants.

A near-universal feature of mGWAS methods is that they take steps to account for
population structure. Some common ways that existing methods deal with population
structure are based on applying principal component analysis to the sample-sample
distance matrix (like in the mGWAS package SEER (1)) or working directly with the
structure described in an evolutionary history like Scoary (2) does.

We introduce PSL-GWAS, a mGWAS framework that uses the statistical relational
learning framework Probabilistic Soft Logic (Bach, et al. 3). By leveraging relationships
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in the dataset captured in interpretable first-order logical rules, our method assigns a
confidence score to each genetic variant for each phenotype in the dataset. Our method
addresses the issue of population structure through directly using the distance matrix
and can jointly infer genetic variant-phenotype association scores over multiple
phenotypes. Like many other existing GWAS approaches, our approach uses DNA
words of length k (k-mers) to capture many different forms of genetic variation
including single-nucleotide polymorphisms (SNPs) and base pair insertion/deletion
(indels.) Our method performs comparably with current, well-known mGWAS methods
on the task of assigning high confidence scores to k-mers that have been confirmed to
cause antibiotic resistance in E. Coli.

3 Related work

San, et al. (4) provide a thorough review of mGWAS literature. We focus here on two
popular methods: PySEER and Scoary. These methods both apply a population
structure-naive filter to the genetic variants in the dataset, and then perform a
structure-aware analysis of gene-phenotype association. Both methods return a set
k-mers identified as significantly associated with a particular phenotype.

PySEER (5) is a Python package that contains ready-to-go implementations of
several mGWAS methods, including the fixed effects model SEER (1) that it is named
after. Depending on the model, either a chi-squared or simple correlation test are
applied as an initial filter. To address population structure in SEER, metric
multi-dimensional scaling is applied to the sample-sample distance matrix and the
resulting eigenvectors are included as covariates in either a linear or logistic regression
model, depending on whether the phenotype is binary or continuous. MDS and related
principal component analysis-based methods for structure correction are commonly used
in other linear model-based GWAS methods such as BugWAS (6) and HAWK (7).
Other methods implicitly account for population structure. For example, in PySEER’s
linear mixed model, the full similarity matrix is included as random effects.

Scoary (2) is a lightweight package that implements a phylogeny-aware pairwise
comparison algorithm that counts non-intersecting sample pairs where samples A and B
differ in both gene presence and displayed trait. A binomial test is then used to
compute p-values. The authors note that care must be taken to account for the many
possible pairings of samples and propose some methods for addressing this issue and
validating the significant genes it returns.

4 PSL Overview

PSL-GWAS uses the statistical relational learning frame Probabilistic Soft Logic (PSL)
to predict genetic variants that are likely associated with phenotypes of interest. PSL
induces a hinge-loss Markov Random Field (HL-MRF) that encodes a knowledge base of
variables and relations among them. The HL-MRF is associated with the following
conditional probability distribution of unobserved variables Y and evidence X:

P(Y|X) ∝ exp(−
m∑
j=1

wjϕj)

w is a vector of weights and ϕ is a vector of convex potential functions that correspond
to user-defined first-order logical rules that serve as templates for potentials. PSL
relaxes template rules with  Lukasiewicz logic, an intermediate logic that defines the
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following fundamental operations:

p ∧ q = max(0, p + q − 1)

p ∨ q = min(1, p + q)

¬p = 1 − p

These rules relate predicates, which for our purposes can be considered as templates
for individual variables in the dataset. Predicates are defined by a unique name and
some fixed number of arguments c that are associated with it. Predicates are
instantiated with constant identifiers from the data to create ground atoms which
correspond to particular variables in the dataset. An instantiation of a template relates
ground atoms and is called a ground rule. Ground rules each have a corresponding
potential in the HL-MRF. Each template rule is associated with a single weight wi that
is tied to every potential generated from it. In the j-th ground rule, let I−j be the

indices of negated variables in the disjunctive normal form of the rule and I+j be the
non-negated variable indices. The potential ϕj is defined as:

ϕj = max

0, 1 −
∑
i∈I+

j

yi −
∑
i∈I−

j

(1 − yi)


p

p ∈ {1, 2}

The choice of p is left to the user.
Since the potentials are convex, minimizing their sum to perform maximum a

posteriori (MAP) inference is a convex optimization problem that can be solved
efficiently. In our experiments, we use tandem inference (8), an out-of-core optimization
algorithm that stores potentials on disk and uses stochastic gradient descent to minimize
the MAP inference objective. In our experiments, removing the requirement that a
model must fit in RAM was necessary to have PSL-GWAS work with our full dataset.

5 PSL-GWAS

PSL-GWAS uses Probabilistic Soft Logic (PSL), the statistical relational learning
framework described in Section 4 to infer a confidence score for each k-mer, phenotype
pair. PSL-GWAS takes in genome information (represented as a collection of continuous
sub-sequences of DNA) and observed phenotype information for some set of n isolates.
The data construction process specifies the values of observed variables and enumerates
the unobserved, or target, variables whose values are inferred. In our experiments, the
inference targets are confidence scores for every k-mer, phenotype pair in the dataset.
All other variables are observed.

5.1 K-mer counting and filtering

PSL-GWAS relies external tools for k-mer counting—in our experiments, the genomic
data is in FASTA format and we use tools that can work directly with these files.
PSL-GWAS uses the tool’s output to create a map from k-mers to the sets of samples
that contain them. We then consider all possible k-mer, phenotype pairs and apply two
steps of filtering. First, any k-mer that is present in fewer than n samples is filtered out
immediately. Second, to reduce computational costs and the number of false positives,
we filter out k-mer, phenotype pairs where the correlation between the k-mer’s presence
and display of the phenotype is below some threshold. This is analogous to the use of
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Fisher’s exact test in Scoary or the χ2 test in SEER. We consider the simple correlation
between a k-mer K and phenotype P:

C(K,P ) =
# of samples with K that display P

# of samples with K

5.2 PSL data

We define the following predicates to use in our model:

1. Contains(S, K) — 1 if sample S has k-mer K, 0 otherwise.

2. SamplePheno(S, P) — 1 if sample S displays phenotype P, 0 otherwise.

3. SimilarPheno(P1, P2) — The degree of similarity between phenotypes P1 and
P2. For example, a user might set SimilarPheno(Ceftazidime, Ceftriaxone) to 1
because they are both cephalosporin antibiotics.

4. DissimilarSample(S1, S2) — The degree of dissimilarity between samples S1
and S2. By default, PSL-GWAS uses a distance matrix output by Mash to set
these values.

5. SimilarSample(S1, S2) — The degree of similarity between samples S1 and S2.
By default, PSL-GWAS defines similarity as the complement of the dissimilarity.

6. KmerPheno(K, P) — The PSL-GWAS confidence score that k-mer K causes
phenotype P. Unlike previous predicates, this is used to represent the unknown
confidence scores that we infer.

5.3 PSL model

A PSL model consists of weighted logical rules and constraints that capture known
relationships within the dataset. The relationships leveraged by rules in PSL-GWAS
belong to one of four general classes: simple correlation between k-mer and phenotype,
similarity between phenotypes, population structure-based rules, and a negative prior.
The rules are given below:

1. Simple correlation

(a) 1.0: Contains(S, K) ∧SamplePheno(S, P) →KmerPheno(K, P) ∧2

If a sample contains a k -mer and displays a phenotype, there is evidence that
k -mer causes that phenotype.

(b) 1.0: Contains(S, K) ∧¬SamplePheno(S, P) →¬KmerPheno(K, P) ∧2

If a sample contains a k -mer and does not display a phenotype, there is
evidence that k -mer does not cause that phenotype.

2. Phenotype similarity

(a) 1.0: SimilarPheno(P1, P2) ∧KmerPheno(K, P1) →KmerPheno(K, P2) ∧2

The same k -mer can cause two very similar phenotypes.

(b) 1.0: ¬SimilarPheno(P1, P2) ∧KmerPheno(K, P1) →¬KmerPheno(K, P2)
∧2

The same k -mer likely does not cause two very dissimilar phenotypes.

3. Population structure
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(a) 1.0: SimilarSample(S1, S2) ∧SamplePheno(S1, P) ∧Contains(S1, K)
∧¬SamplePheno(S2, P) ∧¬Contains(S2, K) →KmerPheno(K, P) ∧2

If two samples are similar, and one contains a k -mer and displays a
phenotype and the other does neither, there is evidence that k -mer causes
that phenotype.

(b) 1.0: DissimilarSample(S1, S2) ∧SamplePheno(S1, P) ∧Contains(S1, K)
∧SamplePheno(S2, P) ∧Contains(S2, K) →KmerPheno(K, P) ∧2

If two samples are dissimilar, and both display a phenotype and both contain
the same k -mer, there is evidence that k -mer causes the phenotype.

(c) 1.0: ¬DissimilarSample(S1, S2) ∧SamplePheno(S1, P)
∧Contains(S1, K) ∧SamplePheno(S2, P) ∧Contains(S2, K)
→¬KmerPheno(K, P) ∧2

If two samples are similar, and both display a phenotype and both contain
the same k -mer, there is not evidence that k -mer causes the phenotype. This
rule limits the number of k -mers with very high confidence scores.

4. Negative prior

(a) 1.0: ¬KmerPheno(K, P) ∧2

Most k -mers do not cause a particular phenotype.

PSL-GWAS assigns a uniform weight to every rule, though we plan to develop a
method for selecting better weights in the future. PSL’s flexibility allows PSL-GWAS
models to be easily adapted to incorporate domain-specific information. Logical rules
can be added or discarded easily, and modelers have free choice in setting the observed
values for any predicate they use. This also allows users to incorporate the output of
other microbial GWAS methods in PSL-GWAS. For example, users could add the rule:

Baseline(K, P) → KmerPheno(K, P)

Finally, to make our model computationally feasible, we use a strategy known as
blocking, in which we only consider the top p% most similar sample pairs in the
population structure-based rules. We refer to the hyperparameter p as the blocking
threshold. Although it’s omitted from the rules above for clarity, we add an additional
blocking predicate to the left-hand side of the population structure rules to ensure those
rules are only grounded with the selected most-similar pairs.

6 Experiments

6.1 Dataset

We evaluated our method on a dataset of 355 E. Coli samples collected from two
hospitals in the United States. The dataset contains each sample’s assembled genome
and associated binary phenotype data, where the phenotypes of interest are resistance
to one of these seven antibiotics: ceftazidime, ceftriaxone, cefepime, tobramycin,
gentamicin, cefazolin, and ampicillin. Missing phenotype observations are marked with
“NA.” For truth data, we used 11 genes that are present in the dataset and are known to
cause resistance to some subset of the seven antibiotics for which we have data.
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6.2 PSL-GWAS Hyperparameters

We use k-mers to capture genetic variation in our experiments. k-mers are flexible
enough to capture variation caused by several major types of mutation, including
single-nucleotide polymorphisms (SNPs), base pair insertions/deletions (indels), and
copy number variations. We count k-mers with fsm-lite and estimate the full
sample-sample distance matrix using Mash. We use fsm-lite’s default k-mer frequency
cutoffs of 1% at the minimum and 99% at the maximum, and a fixed k-mer length of 31.
We then apply the filtering steps described in Section 5.1 with a frequency threshold of
5 and a correlation threshold of 0.9.

For sample-sample dissimilarity observations, we use the genetic distance estimates
from Mash. Distances are scaled into [0, 1] by subtracting the minimum distance and
dividing by the maximum. We then filter out all but the top p = 10% most similar
sample pairs. The complements of the remaining dissimilarity observations are then
used for similarity. We define phenotype similarity as the correlation between two
phenotypes in the original dataset.

We perform MAP inference using tandem inference (8), an out-of-core optimization
algorithm that leverages stochastic gradient descent. We found that using this
algorithm was necessary to apply PSL-GWAS to the full dataset. Because we found
that the whole model wouldn’t even fit in 250 gigabytes of RAM, all non-out-of-core
optimization algorithms available in PSL, such as the alternating direction method of
multipliers (ADMM) (9), couldn’t be used in our experiments.

6.3 Baseline

We compare PSL-GWAS to the well-known, well-documented, and flexible microbial
GWAS package PySEER. Specifically, we use PySEER’s linear mixed model (LMM)
and whole genome elastic net (WG) with default hyperparameters to identify significant
k-mers. We use fsm-lite to count k-mers and use Mash (10) for genetic distance
estimation.

6.4 Evaluation metrics

Many microbial GWAS programs, including our baseline PySEER, return a set of
k-mers that pass some p-value threshold for significance. In contrast, PSL-GWAS
returns a ranked list of k-mers. For our evaluation, we sort the k-mers returned by
PySEER by p-value to rank them.

If a k-mer is part of one of the 11 causal genes in the dataset (i.e. is a substring of
the gene sequence) then we consider it a hit. We evaluate our method on the mean
reciprocal rank of the hits and hits/precision at K. In the results that follow, metrics are
first computed with respect to individual phenotypes, and are then used to compute a
mean metric value across all phenotypes.

7 Experiment results

Table 1 gives the mean values for mean reciprocal rank and precision at K, and the
standard deviations, for each method. PySEER-LMM refers to PySEER’s
implementation of a linear mixed model, and PySEER-WG refers to its whole genome
model. Within each column, bolding a model’s mean metric value indicates that 1) its
difference with non-bolded values is statistically significant and 2) its difference with
other bolded values is not statistically significant. We use a paired t test with a p value
cutoff of α = 0.05 to determine whether the difference in mean value of a metric
between any two methods is statistically significant.
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All three methods are capable of identifying significant k-mers in a meaningful
capacity and show statistically insignificant differences in their mean reciprocal ranks
(MRRs.) PySEER-WG and PSL-GWAS perform comparably well at ranking known
causal k-mers close to the top of their results, as shown in their mean hits/precision at
K = 100. PySEER-LMM does not find any known causal k-mers at K = 100. However,
all three methods achieve non-trivial precisions at K = 500 and the differences between
each method are statistically insignificant. For hits/precision at K > 500, both
PySEER models perform comparably to each other, and both outperform PSL-GWAS.

Method MRR Prec. @100 Prec. @500 Prec. @1000

PSL-GWAS 0.0026 ± 0.0028 0.3614 ± 0.2698 0.2594 ± 0.1321 0.1577 ± 0.0763

PySEER-LMM 0.0007 ± 0.0006 0.0 ± 0.0 0.5106 ± 0.3199 0.5686 ± 0.1508

PySEER-WG 0.0020 ± 0.0028 0.1771 ± 0.3515 0.3357 ± 0.3684 0.4569 ± 0.2394

Method Prec. @5000 Prec. @10000 Prec. @50000 Prec. @100000

PSL-GWAS 0.0398 ± 0.0256 0.0205 ± 0.0129 0.0044 ± 0.0026 0.0027 ± 0.0013

PySEER-LMM 0.17 ± 0.045 0.0853 ± 0.0225 0.0182 ± 0.0032 0.0102 ± 0.0030

PySEER-WG 0.2138 ± 0.0638 0.1147 ± 0.0383 0.0304 ± 0.0137 0.0152 ± 0.0068

Table 1. PSL-GWAS vs. PySEER. Mean values of mean reciprocal rank and precision
at K for K ∈ {100, 500, 1000, 5000, 10000, 50000, 100000}.

Investigating a potentially-causal genetic variant can be a lengthy or expensive
process, which may drive researchers to only consider the most highly-ranked k-kmers
returned by a microbial GWAS method. These results suggest that PSL-GWAS may
have comparable utility to a linear mixed model or whole-genome elastic net in this
kind of setting.

8 Conclusion and future work

Microbial genome-wide association studies (mGWAS) are a recent research area that
involves identifying genetic variants that are associated with particular phenotypes.
Given the rise of multi-drug resistant strains of bacteria, mGWAS results concerning
traits such as virulence and antibiotic resistance are particularly important from a
public health perspective. We introduce PSL-GWAS, a mGWAS method that is robust
in its ability to handle binary or continuous phenotype measurements, richly model
heavily structured data, and incorporate other GWAS methods in its predictions.

PSL-GWAS uses the statistical relational learning framework Probabilistic Soft
Logic (PSL) to rank variants in the pan-genome of samples in a mGWAS dataset. Our
method combines a variety of information sources and infers k-mer, phenotype
association confidence scores over all phenotypes simultaneously. We then compare
PSL-GWAS against two baselines: PySEER’s implementations of a linear mixed model
and a whole genome elastic net.

On an E. Coli antibiotics-resistance dataset, we find that PSL-GWAS outperforms a
linear mixed model and performs comparably to a whole genome elastic net. All three
methods perform similarly at placing known causal k-mers in their top 500 results, with
PSL-GWAS and the whole genome model outperforming the linear mixed model when
only considering the top 100. All three methods achieve comparable mean reciprocal
ranks with respect to known causal k-mers, indicating the PSL-GWAS may be a
similarly effective mGWAS method to either of these baselines.

Our assessment of PSL-GWAS’s performance is limited by several factors. First, we
only have 2 baselines to compare against and only evaluate PSL-GWAS on a single
dataset. It is also limited by our choice of uniform weights for all of the rules—future
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work in this area can give a better sense of PSL-GWAS’s effectiveness. Restricting
ourselves to a single set of hyperparameters is a related limitation.

It is also worth noting that only the phenotype similarity rules capture relationships
among more than one unobserved variable. It is possible that our current model design
overlooks PSL’s unique ability to collectively reason about the relations between the
association scores of separate k-mers.

Future work may address the limitations of this study and better describe
PSL-GWAS’s efficacy as a mGWAS method. Evaluating on multiple datasets,
addressing the choice of weights, and potentially performing an ablation study are all
natural directions for further work.
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