
To appear in the Tenth International Conference on Machine Learning and Applications, 2011

Improving Classifier Performance by Autonomously
Collecting Background Knowledge from the Web

Steven N. Minton
InferLink Corp

El Segundo, CA

Matthew
Michelson

Fetch Technologies
El Segundo, CA

Kane See
InferLink Corp

El Segundo, CA

Sofus Macskassy
Fetch Technologies

El Segundo, CA

Bora C. Gazen
Google

Mountain View, CA

Lise Getoor
Univ. Maryland

College Park, MD

Abstract— Many websites allow users to tag data items to make
them easier to find. In this paper we consider the problem of
classifying tagged data according to user-specified interests. We
present an approach for aggregating background knowledge
from the Web to improve the performance of a classier. In
previous work, researchers have developed technology for
extracting knowledge, in the form of relational tables, from semi-
structured websites. In this paper we integrate this extraction
technology with generic machine learning algorithms, showing
that knowledge extracted from the Web can significantly benefit
the learning process. Specifically, the knowledge can lead to
better generalizations, reduce the number of samples required
for supervised learning, and eliminate the need to retrain the
system when the environment changes. We validate the
approach with an application that classifies tagged Fickr data.

Keywords: Information Extraction, Web Harvesting,
Ontologies, Classifiers, Background Knowledge

I. INTRODUCTION
A common way that websites organize crowd-sourced data is
by asking users to tag the data. A tag is a keyword or
“folksonomic term” assigned as metadata to an information
object, such as a picture on Flickr, a video on YouTube, or a
document on DocStoc. In this paper, we describe an
application that monitors sites with tagged data items, such as
pictures on Flickr, to identify items that match user-specified
interests, such as pictures of NBA basketball games. While
this classification problem could be addressed using standard
information retrieval techniques, we can take a more
interesting approach here because we are monitoring data
sources over time, as opposed to searching in real-time
 In particular, we describe a system that can, in response to a
particular classification task, extract domain knowledge from
the Web and autonomously “educate itself” to improve its
performance. The approach is interesting in part because we
use a very general, unsupervised extraction system that can
capture relational data from semi-structured web sites. This
relational data can be expressed in the form of standard first-
order “domain theories” and which can be directly utilized by
generic machine-learning classifiers.

 In contrast to many other systems that learn from the
Web, our system starts with a (domain-independent)
classification task, rather having the goal of simply building an
ontology. It is distinguished from other task-oriented systems
in that it employs generic extraction, representation and

learning methods (rather than methods designed for the specific
task).

II. THE APPLICATION
Our research was motivated by a “Web Intelligence” portal
builder that we are developing for situation awareness in niche
domains. This application allows a domain expert to integrate
and monitor Web data from heterogeneous sources. The
collected data can then be displayed in a “vertical portal”,
which end-users can easily browse on a regular basis to find
out what’s happening in that domain. For an example, we built
a portal that tracks wildfires in the U.S., aggregating statistics
on each fire from the U.S. Forest Service, news stories from
online newspapers, fire warnings from state agencies, pictures
of wildfires from Flickr, videos from YouTube, etc. The
information is integrated so that users can easily see what’s
new in a region or find out about a particular fire.
 The portal infrastructure is domain-independent and
applicable for a wide-variety of domains, including musical
groups, political events and sports. Our challenge is enabling a
domain expert to aggregate information about a particular
domain, without requiring any programming.
 In particular, one type of valuable data is tagged data from
sites like Flickr, YouTube, Del.i.cious, etc. In these sites,
users collaboratively annotate data with informal tags to help
categorize the data. This makes it possible, in theory, to
search a site such as Flickr for pictures of wildfires for the
wildfire portal, or pictures of professional basketball games
for an NBA portal, and so forth. Unfortunately, however,
entering the search term "wildfire” into Flickr returns a wide
variety of photos, only a minority of which are relevant,
because the tags are informal, and each tag may have a
plethora of “meanings”. For instance, on Flickr the tag
“wildfire” is associated with photos of roses (the “Wildfire”
variety), girls with red hair, sunsets, horses, etc., along with
the wildfire incident photos relevant to this portal.
 To filter out irrelevant data from tagged sources, the portal
employs a classifier which can be trained by a domain expert.
The expert first provides a few search keywords such as
“wildfire” and “fire” (or “basketball”, “NBA”, etc.) which
system uses to disjunctively query a tagged data source such
as Flickr, YouTube, Technorati, etc.1 We refer to the set of key

1 To query the source, we can either rely on an API provided by the source,
such as Flickr’s API, or use a web agent to harvest data from the source. In

To appear in the Tenth International Conference on Machine Learning and Applications, 2011

words used to query the source as Q, and the union of the
tagged data objects returned by the source in response to Q is
Ө = {O1, O2,…On}. Each of these objects Ox is associated with
a set of tags { , ,.. }.
 The expert then labels a random sample of the returned data
Ө as positive/negative, and the system induces a classifier to
identify instances of the target concept based on their tags.
The classifier not only is useful for automatically filtering the
data set Ө but can be re-applied when the data source is re-
queried later, i.e., using the same query set Q to generate a
new set of objects Ө�.

 This approach eliminates the need to manually filter
the data. Even so, it suffers from two well-known problems
with machine learning. First, to induce a good classifier, the
expert may be required to train the system on many examples,
which can be tedious. Second, the classification rules may
grow stale over time since the distribution of tags associated
with the target concept may change.

III. WELLGROUND
In order to address these short-comings, we developed the
WebGround system, which is designed to collect background
knowledge from the Web to aid classification. As we will
show, background knowledge can significantly improve the
accuracy of classification and reduce the number of training
examples required, saving experts considerable time and
effort. Consider, for instance, the task of identifying tagged
photos of NBA games. For this task, knowing the names of
NBA players, teams, and arenas can be helpful. In particular,
this knowledge is particularly useful for identifying the less
popular players, since their names rarely occur in the training
set.
 Background knowledge can also be useful if the target
concept changes over time. For instance, new NBA players are
drafted each year. Rather than retraining the system, one can
simply monitor the appropriate knowledge sources and update
the background knowledge appropriately.

 The WebGround system, in response to a
classification problem, “educates itself” by aggregating
background knowledge from the Web. WebGround’s process
begins by querying the source with the search keywords in Q to
return tagged data that the expert can label, as described earlier.
However, to reduce the number of examples required to
achieve a given level of performance, the system also searches
for and extracts relational data on the Web that mention the
tags. This relational data is potentially useful as background
knowledge for classification. In the next sections we describe
the process of extracting potentially relevant data from Web
sites, and how the data is encoded to augment standard
classifiers.

IV. SITE SELECTION AND DATA EXTRACTION
WebGround identifies sites with potentially useful domain
knowledge by employing commercial search engines, such as
Google, to return a list of URLs based on the user-provided

either case, it is straightforward to regularly retrieve data from an internet
source that matches at least one of our keywords.

search keyword set, Q. This simple approach has tended to
work well in our experiments, because the search keywords
tend to be general, such as “NBA” or “wildfire”, and Google
is proficient at returning a mix of sites that are rich with data.
Our approach does not require all the sites to be relevant; as
long as relevant data is found in at least one site, the approach
can be useful.
 WebGround analyzes each site and extracts relations (i.e.,
tables of data). Our extraction approach is based on previous
work by Gazen & Minton (2005), who developed an
unsupervised learning system that automatically extracts semi-
structured (and structured) data from a website. Semi-
structured data consists of data where the formatting of the
data can be described by a (reasonably simple) formal
grammar; however, that grammar must be induced (rather than
being explicit, as in HTML tables explicitly specified by a
<table> tag). For instance, much of the data on Amazon.com
is semi-structured, such as the product titles, prices, feature
lists, etc, all of which are formatted in a regular fashion
throughout the site.
 Before explaining the extraction process, let us consider
how websites are built. Consider the schematic for a
(extremely simplified) weather website “Forecast.com” shown
in Figure 1. From the homepage the user can choose a U.S.
state, each of which is associated with a URL. On each state
page there is a list of cities and URLs. At the next level, each
city page includes the weather outlook and a high and low
temperature. This information can be described by three
database tables. Note that there are three types of pages, each
type being similarly formatted and containing the same data
fields.
 The site extraction problem is to extract all the data from
the site, essentially to reconstruct the database tables. Our
approach works as follows. First, starting from the URL
provided by the search engine, the system spiders the site (to a
specified depth). Next, a set of “expert” modules analyze the
pages. Each expert is an algorithm that makes similarity
judgments about the pages, focusing on a particular type of
structure. For example, we have experts that identify pages
with similar HTML sections, experts that identify pages with
similar visual layout components, experts that identify pages
with similar semantic elements, and so forth. Based on the
similarity judgments the system clusters the pages, following
the approach of Gazen and Minton. The goal is to cluster the
pages into page types, so that each cluster contains similarly
formatted pages.

 After the pages are clustered, the system identifies
which strings on the pages represent “data”. Essentially, this
involves inducing a grammar that describes the organization of
the data on the page. Previous authors have developed a variety
of methods for this (e.g.., Crescenzi, 2001). Once the pages
have been clustered into page types, WebGround searches for
template components that are common to all the pages in the
cluster, as discussed by Lerman et al. (2003). To make the
process efficient, WebGround relies on a restricted class of
grammars based on the Embedded Catalog formalism (Muslea
et al., 2001). Specifically, a page type must consist of a
sequence of fields separated by template components. Each
field is either an atomic field, containing one data item, such as

To appear in the Tenth International Conference on Machine Learning and Applications, 2011

the city’s high temperature, or a list field containing of a
repeated sequence of atomic fields [a1, a2,...an]* separated by
template components, such as a list of US states and their
URLs.

 For each page type, WebGround constructs a set of
relational tables. All the non-list fields are included in one
table, and each list field results in its own table. Thus each
atomic field corresponds to a distinct column in these tables.
Note that the current version of WebGround does not generate
meaningful names for the columns. The system has no
understanding of the semantics of the data.

As shown in Figure 1, each page type corresponds to a cluster
of one or more pages, and each table normally includes data
from each of the pages in the cluster. Of course, for a given
web site, there may be many tables generated, with many
columns per table, because the system attempts to extract all
the data on the site, including URLS, scripts, HTML, as well as
text fields and numbers

V. FEATURE CREATION
The next step is to convert the tables into features that can be
used for classification. Our current approach is to create a
new predicate for each column in each table, using the
projection operator. That is, for each column c in relational
table r of site s we create a predicate Ps,r,c such that for each
data element x in column c, Ps,r,c(x) holds. Then, for every
data element in each table, we identify matching tags,
effectively enabling a classifier to use the predicates as
generalized tags. For instance, suppose we have a data object
-- a photo -- named O27 that has a tag “San Diego”, which we
might represent as HasTag(O27, “San Diego”), or some
equivalent representation depending the classification
algorithm used. If WebGround extracts the tables from the
Forecast.com site shown in Figure 1, then column 2 of table 2,
which lists U.S. cities, will generate the background fact
PForecast.com,2,2(“San Diego”). Essentially, PForecast.com,2,2 functions

as an “Is-City” predicate. This enables the classifier to learn
to classify photos about cities in general, as opposed to having
to learn individual rules that mention each city.2
 One issue that arises with employing background
knowledge for classifying tagged data is that tags may not
precisely match the acquired knowledge. In part, this arises
because the tags are very informal. For instance, Flickr tags
may not include spaces, even in long phrases, so a single tag
might be “SanDiegoROCKS”. To address this, we employ a
tag cleaning process which rewrites each tag and heuristically
inserts spaces to separate words. A tag t then matches
background fact Ps,r,c(f) iff the words in f are a subsequence of
the words in t. This insures that verbose tags match the
relevant background facts, while tags that only match part of a
fact do not (they often have other meanings). So, for instance,
the tag “IloveSanDiego” matches the city “San Diego”.
However, the tag “Diego” does not match the city “San
Diego”. For the purposes of this paper, we also refer to a
predicate Ps,r,c matching a tag t, by which we mean that there
exists a background fact Ps,r,c(f) such that f matches t.
 Even though we create only unary predicates, as we noted
earlier, there are potentially a large number of predicates
created by WebGround. In our example, all of the columns in
Figure 1 become predicates, including the list of cities, the list
of weather conditions, the temperatures, etc. However, only a
small minority of the columns in most tables are likely to be
useful. Because of the cost of testing the predicates during
learning, WebGround eliminates predicates that appear
irrelevant. Specifically, WebGround includes the following
criteria that potential predicates must satisfy:
• Each predicate must match more than k1 distinct tags within

the positive training examples. In our experiments, k1 was
set to 1, so that predicates have to convey more information
than any single existing tag.

• The ratio of positive training examples that match the
predicate to negative examples matched by the predicate
must be greater than k2. In our experiments, K2 was set to 1,
so that predicates must be at least minimally informative
with respect to the target concept.

• Each predicate must have at least k3 members in the
corresponding column. In our experiments k3 was set to 5, so
that very short lists were eliminated from contention.

In our experiments we integrated several different learners
with WebGround, including Weka’s SMO SVM and J48
decision tree implementations (Hall, et al., 2009), Naïve Bayes
(our own implementation), and the Aleph first-order logic ILP
system (Srinivasan, 2001). In the case of SVMs and decision
trees, the WebGround knowledge is encoded as propositional
features of the data objects. For instance, when classifying
Flickr photos, the tags associated with each picture are
encoded as binary features, and the matching predicates are
also encoded as binary features. That is, if a photo has a tag t,
and Ps,r,c is a predicate that matches t, we add the tag Ps,r,c to
the photo.

2 Note that our method only takes advantage of a portion of the background
knowledge, because only unary predicates are created. Later, we discuss
creation of n-ary predicates.

Figure 1: A Simplified Weather Website

To appear in the Tenth International Conference on Machine Learning and Applications, 2011

For Naïve Bayes, we use a slightly different scheme to avoid
adding many potentially-similar features to the photos (which
violates the conditional independence assumption underlying
Naïve Bayes). For each tag that matches one or more
predicates, we replace the tag with the most informative
matching predicate as the feature.3 So each photo is associated
with a “bag-of-tags” that includes the predicate names as part
of this bag. Finally, for the ILP system we can encode the
background knowledge directly as facts, as was described
previously.

VI. EXPERIMENTAL RESULS
In this section, we report on experiments in classifying tagged
NBA images and wildfire images, two very different domains.
As noted above, we have previously built portals for both
domains using a more manual, labor-intensive approach. The
experiments here were conducted separately to evaluate
WebGround’s performance under controlled conditions.

A. NBA Experiments
 Our first experiments focus on the NBA domain. To create
our dataset of NBA photos we sampled Flickr using the search
keywords “NBA” and “basketball”, as described previously,
and then manually identified pictures with current NBA
players and/or pictures of NBA games (the same criteria we
use for our portal) to create a labeled dataset.4 This full data
set contains 640 images, of which 204 were labeled as positive
examples. For our classification task, we created 10
experimental folds, each consisting of these 204 positive
samples and 204 randomly sampled negative examples. For
each fold, we then broke the data into a test set composed of a
random sample of 40% of the fold’s data, setting aside the
remaining 60% of the data for training. This results in 10
distinct folds, each with a set of positive and negative
examples for testing. We kept the number of positive and
negative examples equal in both the training and test data to
simplify thresholding (i.e., we assume equal priors).
 We then used WebGround to collect background knowledge
using the same search keywords “NBA” and “basketball”. As
described above, the system queried Google with these terms,
and retrieved the URLs returned on the first page of results.
WebGround extracted a large number of relevant tables from
sites such as NBA.com and Sportsillustrated.com, including
tables listing players, teams, as well as other information.
 The system then classified the images as NBA photos (or
not) using our four different classifiers (Naïve Bayes, decision
trees, SVM, and Aleph). Figure 2 shows the average F-
measure of each classifier as the amount of training data
increases from 10% to 60%. (Initially we set aside the full

3 Using the training data, we define a predicate’s “informativeness” as a
combination of its ratio of positive to negative samples in the training data,
and its size (i.e., the number of elements in the corresponding column), under
the assumption that larger predicates are more likely to match unseen tag
samples in test data.
4 To keep the experiments simple, the learning task was designed to focus
solely on analyzing user tags. We ignored the photo’s title and description.
We also eliminated the tags “NBA” and “basketball” because they were used
as the query terms. So in some respects this experimental task is harder than
the actual application requires. (The same methodology was used for both the
NBA and Wildfire dataset described later.)

60% of training data for each fold such that when we train on
20% of the data, for instance, we are including the 10% of

training data it subsumes.)
 As the graphs illustrate, in all cases, the additional
background knowledge resulted in accuracy increases due to
better generalization and faster learning (in that fewer
examples were required to achieve any given level of
accuracy). We note that with one exception (Naïve Bayes at
60%) these F-measures are statistically significant at 95%
confidence, using a two-tailed t-test.
 Digging deeper into these results, we found that in fact, it is
a boost in recall that results in the increased F-measure. In
almost all cases, the differences in precision are not
statistically significant, while the large boost in recall is.
Therefore, the background knowledge allows the classifier to
correctly identify more correct cases, without hindering its
precision.
 The key point is that the classifiers clearly make use of the
background knowledge. For example, analysis of the decision
trees show that acquired predicates are often used near the root
of the trees, indicating that they are often more informative
than the individual tags. If we look at the specific predicates
acquired by WebGround that were incorporated in the
classifiers, we find that lists of NBA players, teams, and
locations were among those selected by the learners, as one
might expect. As we noted earlier, the background
knowledge appears particularly useful for helping the
classifiers “recognize” infrequently occurring tags. For
example, the tag “KobeBryant” occurred frequently enough in
training so that the classifiers learned it was a strongly
predictive of a positive instance. However, tags associated
with less popular players, such as “Earl Watson” may not even
show up in the training set. Thus, the learned predicate that
matches NBA player names is particularly helpful for
classifying pictures of less popular players.
 One potential disadvantage of our current approach is that,
in many cases, the lists included spurious elements that were
extracted by overly aggressive heuristics. For instance, one list
of NBA teams included terms such as “NHL” and “NFL” in

Figure 2: Experimental Results, NBA Domain

To appear in the Tenth International Conference on Machine Learning and Applications, 2011

addition to the team names. This may occur for several
reasons. For example, WebGround may incorrectly cluster
pages, incorporating too many pages into a cluster. In this
case, the system may then create a single field from different
HTML structures (e.g., two different lists) on multiple pages,
and the result will be a noisy list. Alternatively, the syntactic
structure of the pages may not precisely reflect the semantics
of the target domain. For example, there may be a list of
URLS for navigating the site that not only includes the NBA
teams but also includes the terms “contact us” and “help”.
 Interesting, the learning algorithms achieve significantly
higher accuracy than people when classifying the photos based
on the tags alone (an artificial task for people, so perhaps not
surprising). We recruited three volunteers, all NBA fans, who
were given all the training data (60%) for a given fold, and
asked to manually classify the photos based on the tags alone.
Table 1 shows the average recall, precision, and F1-mesaure
for the three human volunteers, compared to the four
classifiers using WebGround.
 We found that the humans had low recall and high
precision, because they focused on tagged photos that they are
confident about. Interestingly, we computed the Kappa
agreement statistics between all pairs of volunteers, and found
only moderate-to-fair agreement between the pairs. This
means that each human user was able to accurately classify
only a subset of the photos, and these subsets did not have
high overlap. By contrast, the machine learners have better
overall coverage.

Table 1: Comparison with Human Subjects on NBA domain
 Recall Precision F1

Humans 51.22% 85.6% 64.1%
SVM with Webground 75.61% 80.0% 77.7%
NaïveBayes with WebGround 89.76% 75.3% 81.8%
Decision Tree with WebGround 70.85% 81.1% 75.4%
Aleph ILP with WebGround 66.6% 82.5% 73.5%

B. Wildfire Experiments
Our experiments with the Wildfire domain were designed to
validate our claim that WebGround can learn background
knowledge to reduce the need for retraining when the
environment changes. We used the same methodology to
construct an initial data set, identifying Flickr pictures that
showed wildfire incidents. This corpus contained 402 images,
of which 100 were positive examples. Again, we broke the
data into 10 folds, consisting of 60% of the positive samples
(and an equal number of random negative samples), and 40%
for testing.
 In our evaluation, we trained the system, and then, to
simulate the occurrence of new fires over time, we discarded
the original testing data for each fold, and replaced it with a
modified test set containing 20 new positive samples and 20
random negative samples. To generate this special test set we
identified some wildfire incidents (listed by the National
Forest Service) that were not included in our initially gathered
dataset of 402 images, due to the nature of our sampling
process and the fact that not all fires receive equal attention

from Flickr users. We then searched Flickr, specifically
looking for pictures of these fires to create the special test set.
 We invoked WebGround to collect background knowledge
using the search keywords “wildfire” and “fire”, and used
Yahoo as our search engine to find relevant sites (we used
Yahoo rather than Google to demonstrate that the system is
search engine agnostic). All three classifiers we tested did
significantly better with the background knowledge extracted
from these sites. (Aleph was not tested due to time
constraints.) As with the NBA data, the best overall
performance was achieved by Naïve Bayes. Naïve Bayes
alone had 62.5% recall and 69.7% precision, whereas with
Webground the algorithm achieved 85.5% recall and 71.4%
precision. Thus, F1 improved from 65.58 to 77.52., an 18%
boost. These results validate our claim that WebGround
knowledge (which generalizes fire instances into predicate
concepts) can produce results that are less brittle in the face of
a changing environment.
 Our review of the extracted concepts and the rules learned
by the system shows a few concepts were particularly
important. For example, relevant concepts included a list of
recent fires from Inciweb.org, a government sponsored site
that publishes information about U.S. wildfire incidents,
including a list of wildfires during the last three months. As
with the NBA results, the extracted lists often included a
variety of spurious terms, however this did not significantly
impact our results.

 Figure 3 shows an illustrative decision tree learned by
the system. The list of InciWeb fires is the root node in the
tree. (Inciweb.org,5,4, refers to the 5th table, 4th column of the
Inciweb.org site, which lists the names of fires.) Other nodes
in the tree refer to a table from CNN (which happens to include
terms that are fire-related) and a table from Smokeybear (which
has some forest-related terms).5 This tree also includes nodes
that test for some basic tags, such as the tag “Nature”.

5 Note that once the system identifies which extracted concepts are included
in a classifier, it is straightforward to build a Web agent that is specifically
designed to monitor the site and update the data, as in (Lerman et al., 2003).

Figure 3: Example of a Learned Decision Tree

To appear in the Tenth International Conference on Machine Learning and Applications, 2011

VII. RELATED WORK AND DISCUSSION
Our work focuses on monitoring folksonomy-oriented sites for
tagged objects. Previous work has primarily considered
searching such sites, the difference being that in monitoring
applications the query Q is fixed and the set of data objects Ө
are (slowly) changing, whereas in searching, query Q changes
on each invocation. While the work on search is generally
quite different from our focus, some researchers (e.g. Passant,
2007, Specia & Motta, 2007) have considered how an
ontology can be used to enrich or disambiguate tags, which is
similar to our goal. However, as Limpens et al. (2009) point
out, “the main limitation of such an approach is the limited
coverage of currently available ontologies”. We are not aware
of any research on enhancing folksomy search where
background theories are extracted from web sites.
 More closely related to WebGround are systems that harvest
Web data for constructing knowledgebases or ontologies.
Most of this research focuses on unstructured text sources
(e.g, Schoenmackers et al, 2010; Kozareva et al., 2008).
Several researchers have focused on automously extracting
ontological data from structured sites, such as Wikipedia (e.g.,
Suchanek et al, 2008) However, as useful as it is, Wikipedia
is not as comprehensive as the Web itself (e.g., Wikipedia
does not currently include a list of recent wildfires.) There
has been comparatively little work on unsupervised extraction
of relational data from semi-structured sites. One reason, as
we described, is that the harvested tables can be noisy, and
much of the data is not suitable for inclusion in an ontology.
Because WebGround has a concrete classification task, it has a
clear measure of the utility of the harvested data.
 Other task-oriented Web harvesting systems exist, of
course, but many of these are customized to extract and
process data using task-specific methods. For instance, Ern et
al. (2005) describe a crossword puzzle solver that extracts
potential answers from web pages by looking specifically for
words/terms of given length. In contrast, WebGround’s
extractor (which harvests arbitrary relational data) and
classifiers are completely generic.

 One direction for future work is to create more
complex predicates from the harvested relational data.
Currently, WebGround creates only unary predicates. In effect,
although the system is harvesting tables, we are considering
each column as an isolated list. We could theoretically take
advantage of the rows of the table to create binary, or even n-
ary predicates, so that relations could be used by the classifier.
In the NBA domain, this would allow the creation of predicates
capturing “teammate-of” or “plays for” relations. To avoid
overwhelming the classifier with too many additional
predicates, we believe that more sophisticated predicate
selection criteria could be developed.

VIII. CONCLUSION
A distinguishing feature of our work is that the knowledge
acquisition process is both autonomous and driven by the
classification problem. This is both a strength and a weakness.
On the positive side, the harvesting process is both highly
directed and there is a clear goal – to improve the performance
of the classifier. On the other hand, this leads to potentially
myopic behavior. The system collects information that is
relevant to the problem, but does not create a clean and
complete domain theory. As a result, the acquired knowledge
often contains spurious data items, as we pointed out.

 Our work takes a step towards more autonomous
classifier systems that can learn about a domain. Specifically,
we have shown in two domains that using rich features
extracted by WebGround resulted in significant improvements
in classification performance for all the classifiers we tested.
We believe this approach is a promising direction for future
research.

REFERENCES
[1] Crescenzi, V., Mecca, G., Merialdo, P. 2001 RoadRunner: Towards

Automatic Data Extraction from Large Web Sites. VLDB: 109-118.
[2] Ern, M., Angelini, G., and Gori, M. 2005.Webcrow: A web-based

system for crossword solving, Proc. AAAI .
[3] Kozareva, Z., E. Riloff, and E.H. Hovy. 2008. Semantic Class Learning

from the Web with Hyponym Pattern Linkage Graphs. Proc. ACL-08.
[4] Gazen, B. & Minton, S. 2005 AutoFeed: an unsupervised learning

system for generating webfeeds., K-CAP : 3-10.
[5] Hall, M., Frank, E.,Holmes, G., Pfahringer, B., Reutemann, P., and

Witten, I.H., 2009, The WEKA Data Mining Software: An Update.
SIGKDD Explorations 11(1).

[6] Lerman, K., Minton, S., Knoblock, C. A., 2003. Wrapper Maintenance:
A Machine Learning Approach. JAIR 18.

[7] Limpens, F., Gandon, F., Buffa, M., 2009. Linking Folksonomiesand
Ontologies for Supporting Knowledge Sharing: a State of the Art. Tech.
Report, ISICIL.

[8] Muslea, I., Minton, S. and Knoblock, C.A. 2001 Hierarchical Wrapper
Induction for Semistructured Information Sources. Autonomous Agents
and Multi-Agent Systems 4(1/2): 93-114.

[9] Passant, A. 2007. Using Ontologies to Strengthen Folksonomies and
Enrich Information Retrieval in Weblogs, ICWSM.

[10] Schoenmackers, S., Davis, J., Etzioni O. and Weld, D.S. 2010. Learning
First-Order Horn Clauses from Web Text. Empirical Methods in NLP.

[11] Specia, L. & Motta, E. 2007. Integrating folksonomies with the semantic
web. 4th European Semantic Web Conference..

[12] Suchanek, F.M., Kasneci, G., Weikum, G. 2008. YAGO: A Large
Ontology from Wikipedia and WordNet. J. Web Sem. 6(3): 203-217.

[13] Srinivasan, A. The Aleph Manual, 2001.
[14] Weld, D.S., Hoffmann, R., and Wu, F., 2009, Using Wikipedia to

Bootstrap Open Information Extraction, ACM SIGMOD Record, 37 (4)

