
GRDB: A System for Declarative and Interactive Analysis
of Noisy Information Networks

Walaa Eldin Moustafa, Hui Miao, Amol Deshpande, Lise Getoor
Department of Computer Science, University of Maryland, USA

{walaa, hui, amol, getoor}@cs.umd.edu

ABSTRACT
There is a growing interest in methods for analyzing data describ-
ing networks of all types, including biological, physical, social,
and scientific collaboration networks. Typically the data describ-
ing these networks is observational, and thus noisy and incomplete;
it is often at the wrong level of fidelity and abstraction for mean-
ingful data analysis. This demonstration presents GRDB, a system
that enables data analysts to write declarative programs to specify
and combine different network data cleaning tasks, visualize the
output, and engage in the process of decision review and correc-
tion if necessary. The declarative interface of GRDB makes it very
easy to quickly write analysis tasks and execute them over data,
while the visual component facilitates debugging the program and
performing fine grained corrections.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query languages;
H.2.8 [Database Management]: Database Applications—Data Min-
ing

Keywords
Social Network Analysis, Graph Data, Datalog

1. INTRODUCTION
In today’s world, networks abound. Examples include social net-

works, communication networks, financial transaction networks,
gene regulatory networks, disease transmission networks, ecolog-
ical food networks, sensor networks, and more. There is a grow-
ing interest in real-time methods for analyzing such network data
for scientific discovery, anomaly detection, vulnerability predic-
tion, and assessing the potential impact of interventions. Although
observational data describing these networks can often times be ob-
tained, an inherent problem with much of this data is that it is noisy
and incomplete, and at the wrong level of fidelity and abstraction
for meaningful data analysis. Thus there is a need for methods
which extract and infer “clean” annotated networks from noisy ob-
servational network data. This involves inferring missing attribute

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

values (attribute prediction), adding missing links and removing
spurious links between the nodes (link prediction), and eliminat-
ing duplicate nodes (entity resolution).

While methods have been proposed for doing each of these ex-
tractions/inferences in isolation, there has been little work on fully
integrated approaches. The little work that has been done has been
ad hoc, domain-specific, and typically performed outside a declar-
ative data management framework. This makes it cumbersome
to store and compare results of different approaches, or to han-
dle dynamic updates to the underlying observation network. Fur-
thermore, the sizes of real-world networks are growing at a rapid
pace, with networks with millions of nodes and edges becoming
ubiquitous. To support analysis and cleaning of these networks, a
framework is needed for efficiently storing, managing, and analyz-
ing such large, dynamic network data.

In this demonstration, we present GRDB, a system that enables
efficient, declarative, visual, and interactive analysis and cleaning
of large-scale information networks. Our goal is two-fold. First,
we wish to provide a declarative framework for specifying common
operations required in cleaning and extracting networks, a mecha-
nism for combining them in various ways, and an implementation
for efficiently applying them to a large observational network. Sec-
ond, we wish to allow the system users, or data analysts, to in-
spect the system decisions visually, interact with them, and correct
them if necessary. The four main challenges in building such a
framework are: (a) network analysis is heavily dependent on the
actual graph structure and typically requires traversal of the node
neighborhoods and computation of structural features; (b) most
network analysis techniques are inherently iterative, and require
repeated passes over the graph; (c) network cleaning and analy-
sis often needs to be “collective” (where a decision in one part of
the network affects the information flow in other parts of the net-
work); and (d) since decisions are collective, errors in some deci-
sions might affect further future decisions, and hence, it becomes
necessary to avoid wrong predictions, especially in early iterations,
to keep them from propagating.

The key to our approach is to decouple the graph traversal op-
erations from the modification operations; the traversal operations
are typically computationally expensive, especially for large disk-
resident graphs. We present a declarative analysis language based
on Datalog, and show how it can be used to cleanly achieve such
decoupling. This decoupling enables us to develop a framework
for declarative analysis over large networks, and facilitates effi-
cient execution, by allowing us to push much of the computation
inside a database system. Further, the declarative framework al-
lows us to efficiently incorporate, and propagate through the anal-
ysis task, dynamic updates to the network data. In addition, we
involve data analysts into the decision loop, present them with de-

cisions before applying them to the data, and allow them to change
the predictions before proceeding with further decisions. We have
implemented a prototype system called GRDB that supports our
declarative framework with user feedback. Our preliminary results
illustrate the computational and usability advantages of our system.

2. NETWORK INFERENCE OPERATIONS
The operations that are commonly required in cleaning network
data include filling in missing information, correcting inaccurate
information, and consolidating and reconciling redundant informa-
tion. In this work, we frame these operations as prediction prob-
lems, and use machine learning classification algorithms to perform
them. The predictions are made at the granularity of a prediction
element, which may be a node whose label is to be predicted, or a
pair of nodes to be linked, etc., depending on the task. We make
a distinction between local classification algorithms that make pre-
dictions based only on the attributes of the prediction element, and
collective classification algorithms where predictions for a predic-
tion element can depend on the output of other classifiers corre-
sponding to other prediction elements. The prediction problems
supported can be broadly classified into three categories:
Attribute prediction: The goal here is to predict the value for an
attribute of a node. Predictions can be made based on the values
of other attributes of the node (local classification) or based on
the neighbors’ predicted attribute values (collective attribute pre-
diction). The underlying assumption in attribute prediction is that
the links between nodes carry important information for inferring
the attribute values [6]. In many cases, there is auto-correlation be-
tween the labels of the nodes, which means that linked nodes are
likely to share the same attribute values, but other, more complex
correlations can be modeled and exploited [12].
Link prediction: Here the task is to predict the edges in the net-
work [8, 11]. The link prediction problem can be formulated as
a classification problem where we associate a binary variable for
each pair of nodes that is true if a link exists between the two nodes
and false otherwise. The prediction can depend on structural fea-
tures computed based on the network (e.g., the number of common
neighbors, etc.) and attribute values of nodes. Link prediction is
difficult since it involves a large class skew (a priori, an edge is
typically much more likely to not exist).
Entity resolution: Here the task is to identify when two nodes in
the graph are referring to the same real-world entity. In that case,
the nodes should be merged, and their attributes and links should
be updated accordingly. Common approaches use a variety of sim-
ilarity measures, often based on approximate string matching cri-
teria [5, 4]. These work well for correcting typographical errors
and other types of noisy reference attributes. More sophisticated
approaches make use of domain-specific similarity measures and
often learn such mapping functions from resolved data. Other ap-
proaches take graph structure and similarity into account [1, 7] and
allow dependencies among the resolutions, e.g., collective entity
resolution [3]. Other approaches adopt a constraint programming
approach to express and solve the entity resolution problem [2].

Finally, recently a new approach [10] has been proposed to per-
form joint inference between the different types of tasks that uses
coupled collective classifiers to propagate information among so-
lutions to the problem.

3. PROPOSED FRAMEWORK
The workflow of our proposed framework is depicted in Figure 1.

Data analysts start by specifying the prediction domain and fea-

Evaluate the domain

Compute features

Make predictions, and compute
confidence in the predictions

Choose which predictions to
apply

Input Noisy Graph

Output Graph

Figure 1: Workflow of the unifying framework

tures (Section 3.1), and then specify the type of prediction (attribute
prediction, link prediction, or entity resolution), the prediction and
confidence functions, and the iteration mechanism (Section 3.2).
Our specification language for defining inference tasks builds upon
Datalog. A detailed explanation and discussion of the language and
other data model aspects can be found in [9]. Two example pro-
grams for performing attribute prediction and entity resolution are
shown in Figure 2. We will use these programs as running exam-
ples for our discussion. The programs are used to clean scientific
collaboration data extracted from DBLP. The data is structured as
follows. Nodes represent authors, and edges represent scientific
collaboration relationships between pairs of authors. Each author
is associated with an attribute indicating his/her main research in-
terest among three different areas of Computer Science: Databases,
Machine Learning, and Software Engineering. The purpose of the
attribute prediction program is to figure out the research interests of
authors who do not have them, and the purpose of the entity reso-
lution program is to figure out whether similar names in the dataset
actually refer to the same author.

3.1 Defining Prediction Domains and Features
In order to define our graph inference tasks, we need to specify

the prediction domains and features. Prediction domains are used
to specify the set of nodes (in case of attribute prediction) or the set
of pairs of nodes (in the case of link prediction or entity resolution)
that are considered for prediction. Features are used to define dif-
ferent metrics and signals that are given to the prediction function
in order to come up with the decision.
Features: We can divide the features broadly into three categories
based on their complexity: local, local structural, and global struc-
tural. Local features are based on the attributes of the prediction
elements. They can be defined for nodes (e.g., age, income, etc.)
or pairs of nodes (e.g., similarity based on an attribute). Local
Structural features require exploration of a small fixed neighbor-
hood around the prediction element. Examples of such features
can be a node’s degree, the number of common neighbors between
pairs of nodes, etc. Global Structural features are not tied to a spe-
cific neighborhood and can encompass the entire graph (e.g., Katz
coefficient or betweenness centrality).

The features can be specified using Datalog in a straightforward
manner. In Figure 2, we define DB-Coauthors to express the
number of coauthors of author X whose research interests are in
Databases. Another example is Intersectionwhich counts the
number of common coauthors between a pair of authors.
Domains: While features may be defined for all prediction ele-

DOMAIN AP-Domain(#X):- Node(X,’?’) {
 DBCoauthors(#X,Count<Y>):- Edge(X,Y),Node(Y,’DB’)
 ...
 AP-Features(#X,DB,ML,SE):- DBCoauthors(X,DB),
 MLCoauthors(X,ML),SECoauthors(X,SE)
 AP-Predictions(#X,predict-AP(DB,ML,SE),
 confidence-AP(DB,ML,SE)):- AP-Features(X,DB,ML,SE)
}
ITERATE(*) {
 UPDATE Node(X,A):- AP-Predictions(X,A,C) IN TOP(C,10)
}

 (a)
DOMAIN AllNodes(#X) :- Node(X,_)
 { Degree(#X,Count<Y>):- Edge(X,Y) }
DOMAIN ER-DOMAIN(#X,#Y):- Edge(X,Z),Edge(Y,Z) {
 Sim(#X,#Y,strsim(X,Y)):- Node(X,_),Node(Y,_)
 Intersection(#X,#Y,Count<Z>):- Edge(X,Z),Edge(Y,Z),
 X!=Y
 Union(#X,#Y,DX+DY-I):- Degree(X,DX),Degree(Y,DY),
 Intersection(X,Y,I)
 Jaccard(#X,#Y,I/U):- Intersection(X,Y,I),Union(X,Y,U)
 ER-Features(#X,#Y,S,J):= Sim(X,Y,S),Jaccard(X,Y,J)
 ER-Predictions(#X,#Y,confidence-ER(S,J)):-
 ER-Features(X,Y,S,J), predict-ER(S,J)=TRUE
}
ITERATE(*) {
 Merge(X,Y) :- ER-Predictions(X,Y,C) IN TOP(C,10)
}
DEFINE Merge(X,Y) {
 INSERT Edge(X,Z) :- Edge(Y,Z)
 DELETE Edge(Y,Z)
 DELETE Node(Y,_)
}

 (b)
Figure 2: (a) Attribute prediction and (b) Entity resolution pro-
gram fragments

ments, often we want to restrict our attention to only a subset of
the elements to make analysis tractable. We refer to such a subset
of elements as the prediction domain. Prediction domain constructs
are used to enumerate the elements for which predictions are made
and feature values need to be computed. For attribute prediction,
the prediction is over attribute values of the nodes and we can use
the DOMAIN construct to restrict our attention to a subset of the
nodes. This allows us, for example, to predict attribute values only
for nodes with missing attribute values, or to predict attribute val-
ues only for nodes that have some percentage of neighboring val-
ues observed (not missing). Judicious use of prediction domains
is especially important for tasks such as link prediction and entity
resolution, where the prediction takes place for pairs of nodes. For
a reasonably-sized network, it is infeasible to check every possible
prediction element, and we must be able to limit the possible node
pairs that are considered.

We use the keyword DOMAIN for defining a domain for features.
For example, during entity resolution, we may want to restrict our-
selves to pairs of nodes that are sufficiently close to each other in
terms of graph distance, or string similarity distance [5] between
their names. In Figure 2(b), we define ER-DOMAIN to include
pairs that are within a distance of 2 links from each other. In addi-
tion to string similarity and graph neighborhood predicates, other
efficient DOMAIN-rule-friendly predicates are equality predicates,
and locality sensitive hashing. All of these predicates capture dif-
ferent notions of closeness/similarity.

3.2 Iterative Inference and Updating
The next step in the analysis process is to perform the required

inferences and updates. For each prediction element, the predic-
tion is made by applying a user supplied function over the features
computed in the previous step and returning a prediction and a con-

fidence (or score) value. This function can either be a user defined
function or a function that is the output of some machine learning
system; in the context of GRDB, we treat it as a black box. For
attribute prediction, commonly used prediction functions include
classifiers like naïve Bayes, logistic regression, and decision trees.
Similarly, for link prediction, the problem of deciding whether to
add an edge between a pair of nodes is often treated as a binary
classification problem, and the functions listed above can be used
as well. In some cases, especially for entity resolution, a similarity
function might be used instead to compute a similarity score for a
pair of nodes, and then a thresholding mechanism may be used to
decide which nodes to merge or which edges to add.

Depending on the user’s specification in the program, the pro-
gram may just make one pass and commit all of the predictions
made. In other cases, the program may choose to commit a subset
of the predictions, and iteratively recompute the features and per-
form inference on the updated graph. The updates include attribute
value changes (for attribute prediction), edge insertions/deletions
(for link prediction), and node merges (for entity resolution), and
we must recompute the values of the features in response to these
updates. Before the update acutally takes place, the data analyst
can browse the proposed predictions and fix mis-predictions if any.
We discuss this interactive aspect of GRDB in Section 5.

In Figure 2(b), predict-ER and confidence-ER are the
prediction and confidence functions respectively. They both take
the value of the string similarity and the Jaccard coefficient (de-
fined as the size of the common neighborhood between two nodes
divided by the size of the combined neighborhood), and return the
prediction and confidence, respectively. In this program, we com-
mit only the top 10 predictions after every iteration (sorted by confi-
dence), and continue iteratively for further predictions. Merge(X,
Y) indicates that the graph update operation to be performed is a
merge (corresponding to entity resolution). Other examples include
INSERT Edge(X, Y), indicating edge addition between nodes
X and Y (for link prediction), and UPDATE Node(X,Att=V),
indicating that the attribute value of Att should be changed to V
for node X, (for classification or attribute prediction).

The update operations corresponding to link prediction and at-
tribute prediction are simple (i.e., a single rule). However, the
Merge operation can be composite, i.e., defined in terms of other
operations. This allows the user specify exactly how to update the
attribute values for the new node that is created. In Figure 2 the
merge operation for two nodes X and Y simply copies the edges of
Y to X and then deletes Y.

4. SYSTEM ARCHITECHTURE
To implement our framework, we built a deductive database sys-

tem on top of the Java Edition of the Berkeley DB key/value store.
Our implementation of a graph data analysis system involved two
key components. First, we implemented a full fledged non-transa-
ctional relational database system that has a query parser, a rule-
based query optimizer, a relational expression converter for con-
verting Datalog rules to relational expressions, and a plan executor.
Second, we implemented the necessary special logic to enable our
framework, such as incremental maintenance of various types of
views. Incremental maintenance is particularly important because
of the iterative nature of the framework. After every iteration, not
all the features/domains have to be recomputed as a result of the
updates/predictions. Therefore, we materialize the result of every
Datalog rule in the system, and we treat them as materialized views
over the base relations. As the base relations change in response
to the predictions made during analysis, we maintain these views
accordingly. In our prototype, we use different methods to handle

Figure 3: Main interface and visualization of selected dataset

feature views, DOMAIN views, and cascaded views (where the out-
put of one rule is propagated to another rule). We refer the reader
to [9] for further details.

5. DEMONSTRATION PLAN
Our demonstration will illustrate how the user can easily perform

graph analysis declaratively on several noisy networks, and how
she can participate in the analysis process in GRDB.

SIGMOD attendees will be able to explore different datasets,
and interact with the visualization of the network through GRDB’s
web-based console. After choosing a dataset, the corresponding
graph will be visualized and the users will be able to zoom in and
out to see the local structures; the user can also click a vertex to
see its attribute details, by using the main interaction pane on the
left side. To perform analysis, the user can edit and run Datalog
programs for performing different prediction tasks. Figure 3 shows
the main GRDB screen used for analyzing a subset of the DBLP
coauthor network described above (having 16k authors and 40k
coauthor relationships), using the ER Datalog program shown in
Figure 2(b). After specifying a Datalog program, the user clicks
the Run button to call the GRDB inference engine. After each it-
eration, the inference engine will return potential predictions that
will be listed in the bottom right suggestions pane, including the
details of possible actions and the confidence score.

GRDB allows the user to make the final decisions about the pre-
diction results, if so desired. A practical middle ground is for the
user to review the low-confidence predictions, and for the system
to apply the high-confidence predictions automatically. After re-
ceiving the prediction results for a set of nodes/pairs of nodes, the
user can examine the detailed node/neighborhood information to
make a decision of whether to apply or ignore each of the sug-
gested changes. In the suggestions pane of our web console, the
user can click More button at the end of each suggestion to open a
detail subgraph of the node or the pair of nodes under considera-
tion. Figure 4 shows the detail subgraph view for a pair of authors
that are predicted to be the same. The two nodes in the pair are
highlighted by making them larger than their neighbors. If the user
clicks on a node, it will be highlighted and its attribute details will
be shown. By examining the details of the suggested node or pair,
user can click Confirm or Ignore on the suggestion. They can con-
tinue the execution of the program by clicking Cont., or they could
revisit and modify the Datalog program to perform a new analysis.

Figure 4: User feedback and local subgraph view

6. TAKE-AWAY MESSAGE
This demonstration highlights the effectiveness of our system for

performing declarative graph analysis over noisy information net-
works. The key insight behind our approach is to decouple the
operations that require traversing the graph structure (typically the
computationally expensive step) from the operations that perform
modification and update of the extracted network. Our working
GrDB prototype enables analysts to write declarative programs (in
a Datalog-based language) to specify attribute prediction, link pre-
diction, and entity resolution tasks. It additionally enables the ana-
lyst to visualize and control the analysis process through providing
feedback about specific inferences being made.

Acknowledgements: This work was supported in part by NSF
Grants IIS-0916736 and IIS-0746930, and an IBM Collaborative
Research Award.

7. REFERENCES
[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy

duplicates in data warehouses. In VLDB, 2002.
[2] A. Arasu, C. Re, and D. Suciu. Large-scale deduplication with

constraints using dedupalog. In ICDE, 2009.
[3] I. Bhattacharya and L. Getoor. Collective entity resolution in

relational data. ACM TKDD, 1:1–36, 2007.
[4] M. Bilenko and R. J. Mooney. Adaptive duplicate detection using

learnable string similarity measures. In KDD, 2003.
[5] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of

string distance metrics for name-matching tasks. In Proc. of IJCAI
Workshop on Information Integration, August 2003.

[6] D. Jensen, J. Neville, and B. Gallagher. Why collective inference
improves relational classification. In SIGKDD, 2004.

[7] D. Kalashnikov, S. Mehrotra, and Z. Chen. Exploiting relationships
for domain-independent data cleaning. In SIAM SDM, 2005.

[8] D. Liben-Nowell and J. Kleinberg. The link prediction problem for
social networks. In CIKM, 2003.

[9] W. E. Moustafa, G. Namata, A. Deshpande, and L. Getoor.
Declarative analysis of noisy information networks. In ICDE
Workshop on Graph Data Management, 2011.

[10] G. Namata, S. Kok, and L. Getoor. Collective graph identification. In
KDD, 2011.

[11] M. J. Rattigan and D. Jensen. The case for anomalous link discovery.
SIGKDD Explorations Newsletter, 7:41–47, 2005.

[12] P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gallagher, and
T. Eliassi-Rad. Collective classification in network data. AI
Magazine, 2008.

