
Chapter 4
A Survey of Link Mining Tasks for Analyzing
Noisy and Incomplete Networks

Galileo Mark Namata, Hossam Sharara, and Lise Getoor

Abstract Many data sets of interest today are best described as networks or graphs
of interlinked entities. Examples include Web and text collections, social networks
and social media sites, information, transaction and communication networks, and
all manner of scientific networks, including biological networks. Unfortunately,
often the data collection and extraction process for gathering these network data
sets is imprecise, noisy, and/or incomplete. In this chapter, we review a collection
of link mining algorithms that are well suited to analyzing and making inferences
about networks, especially in the case where the data is noisy or missing.

4.1 Introduction

A key emerging challenge for data mining is tackling the problem of mining richly
structured, heterogeneous data sets. These kinds of data sets are best described as
networks or graphs, where the nodes can be of different types, and the edges (or
hyperedges) can represent different kinds of links. As evidenced by this volume,
there has been a growing interest in methods which can mine and make inferences
about such data (see also an earlier survey article and special issue issue of KDD
Explorations [41]).

In the context of network data, statistical inference can be used in a variety of
ways. Two of the most common are for inferring missing information and identify-
ing (and correcting) incorrect network data. Furthermore, one way of understanding
the different inference tasks in network data is according to whether they predict (or
correct) information associated with nodes, edges, or larger subgraphs of the net-
work. The inference task may be about inferring missing values (such as the label or
attribute values for a node or edge), reasoning about the existence of nodes and edges
(such as predicting whether two nodes should be merged because they refer to the

L. Getoor (B)
Department of Computer Science, University of Maryland, College Park, MD, USA
e-mail: getoor@cs.umd.edu

P.S. Yu, et al. (eds.), Link Mining: Models, Algorithms, and Applications,
DOI 10.1007/978-1-4419-6515-8_4, C© Springer Science+Business Media, LLC 2010

107

108 G.M. Namata et al.

same underlying entity, predicting whether a relationship exists), or reasoning about
the existence of groupings of nodes and edges (group or community detection).

Examples of work applying statistical inference to infer missing or incorrect net-
work data can be found in various domains. For example, in the social sciences,
there is interest in studying human interaction from large online social networks
[69, 113]. In these large online networks, individuals may own multiple accounts
which need to be resolved to get an accurate count of the individuals in the network.
Furthermore, the relationships (e.g., unspecified friends), attributes (e.g., gender),
and membership in social groups (e.g., political affiliation) of the individuals of
interest may not be given and need to be inferred. Similarly, in biology, there is
interest in gaining new insight into biological processes by studying protein–protein
interaction (PPI) networks [50, 107, 118]. The high-throughput methods typically
used to create and annotate these networks are notoriously noisy and incomplete.
Even the proteins of the most studied organisms, yeast, are not completely anno-
tated with their functions and complex memberships and it is estimated that up to
52% the interactions for the current yeast PPI are spurious [50]. Analysis of these
PPI networks requires applying statistical inference to infer the missing and correct
function, interaction, and complex membership of proteins. As a final example, in
computer networks, there is work in creating a map of the Internet to understand
its vulnerabilities and limitations [105]. While some ISPs and research networks
publish high-level topologies, in general the information about the topology and
attributes of a large part of the Internet are privately owned and rarely published.
Consequently, research in mapping the Internet mainly relies on inexact techniques
which can only give a partial view of the global picture. Inference needs to be
applied to the noisy and incomplete map to resolve IP addresses to routers and
autonomous systems (AS), predict the existence and type of links between AS, and
discover well-connected (and poorly connected) parts of the Internet.

All of the above examples require data mining and machine learning algorithms
which can help to clean and improve the quality of the networks, before they are
analyzed. In this chapter, we survey a subset of the inference tasks that are par-
ticularly useful in dealing with noisy and incomplete network data. We begin with
some notation and then describe methods for collective classification (Section 4.3),
link prediction (Section 4.4), entity resolution (Section 4.5), and group detection
(Section 4.6).

Fig. 4.1 Example of a collective classification problem. Nodes with a question mark are nodes
whose labels are unknown. Collective classification uses the attributes and labels of neighboring
nodes. Ann Smith, for example, is likely to have the same research area as her co-authors, Robert
Cole and Mark Taylor

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 109

4.2 Terminology and Notation

We begin by introducing some general notation and terminology used through this
chapter. First, let G(V, E) denote a graph G with nodes v ∈ V and edges e ∈ E .
|V | and |E | are used to denote the size of the node and edge sets in the graph,
respectively. We describe an edge and the nodes on that edge as incident to each
other. Also, we refer to nodes which share an edge as adjacent to each other. For this
document, whenever we use the term graph, we normally refer to either a directed
graph (where each edge, e ∈ E , consists of an ordered pair of vertices) or undirected
graph (where each edge, e ∈ E , consists of an unordered pair of vertices); in both
cases, the edges are incident to exactly two nodes (i.e., e = (vi , v j)). In some cases,
we refer to a bipartite graph, where the nodes can be divided into two disjoint sets,
V1, V2 ⊂ V , so that every edge has one node in each of the two sets (i.e., vi ∈ Vi ,
v j ∈ Vj). Although we mainly use the terms graph, nodes, and edges in this chapter,
we note that graphs are often used to represent networks, and the terms edges, link,
and relationships are often used interchangeably.

Finally, throughout this chapter, we use a simple author collaboration network to
illustrate the different inference tasks (shown in Figs. 4.1, 4.2, 4.3, and 4.4). In the
collaboration network figures, the nodes represent authors and the edges between the
authors indicate that the authors have co-authored at least one paper together. The
shading of the nodes indicates the research area of the authors; to make it simple,
here we assume there are just two areas, shown either in white (i.e., theory) or gray
(i.e., systems), if observed, and as a “?” if it is unobserved. The bounded areas (as
shown in Fig. 4.4) indicate group structure.

4.3 Collective Classification

A traditional problem in machine learning is to classify objects: given a corpus of
documents classify each according to its topic label; given a collection of email
communications determine which are not spam; given individuals in a collaboration
network determine a characteristic of that individual; given a sentence, determine
the part of speech for each word, etc. In networks, the problem of inferring labels
has traditionally been applied to the nodes of the graph. Initial work in classification
makes an independent and identically distributed (IID) assumption where the class
label of each object is made in isolation. In graphs, however, studies have shown
that predicting the labels of nodes can benefit by using autocorrelations between
the node label and the attributes of related nodes. For example, in the collaboration
network in Fig. 4.1, nodes with a question mark represent authors whose research
areas are unknown. While we can use attributes of the author (e.g., titles of their
papers) to predict the label, we can also use the research areas of the other authors
they share a co-authorship edge with. The author, Ann Smith, for one is likely to
work in theory given she has only co-authored with individuals in the theory field.

In the past decade there have been a number of approaches proposed which
attempt to classify nodes in a joint or collective manner instead of treating each

110 G.M. Namata et al.

in isolation. In the following sections, we formally define the problem of collective
classification and introduce several types of approaches that have been proposed to
address it.

4.3.1 Definition

Collective classification is an optimization problem where we are given the set of
nodes, V = {v1, v2, ..., vn}, over a graph G(V, E), with a set of pre-defined labels,
L = {l1, l2, ..., lq}. Each node v ∈ V can take exactly one value from the set of
labels in L , denoted as v.L . Moreover, V is divided into two sets of nodes: Vk , the
nodes for which we know the correct labels and Vu , the nodes whose labels need to
be determined. We are also given a neighborhood function, N , over the nodes where
Ni ⊆ V \ vi , which captures the relationships of a node, vi . The task of collective
classification is to infer the values of the labels v.L for the nodes v ∈ Vu .

4.3.2 Approaches

In this section, we describe the three main categories of collective classification
algorithms which vary based on their mathematical underpinnings as well as how
they exploit the relationships between the nodes.

4.3.2.1 Relational Classifiers

Traditional classification concentrates on classifying a given node using only the
observed attributes of that node. Relational classifiers [104] go beyond that by also
considering the observed attributes of related nodes. For instance, when classify-
ing authors, not only would we use the words present in their papers, we would
also look at the authors who they have co-authored with and their word usage and
research area (if known) to arrive at the correct class label. One relational classifier,
popular due to its simplicity, is the relational classifier proposed by Macskassy and
Provost [73]. Their classifier makes two assumptions: some node labels are known
and related nodes are likely to have the same labels. The classifier assigns a label to
a node, vi , by looking at the labels of related nodes whose label values are known,
Ni∩Vu , and taking the weighted proportion of neighbors for each possible label. The
label with largest weighted proportion among neighbors is the predicted label of vi .
Although relational classifiers have been shown to perform well in some domains,
overall the results have been mixed. For instance, although there have been reports
of classification accuracy gains using such techniques over traditional classification,
in certain cases, these techniques can harm classification accuracy [22].

4.3.2.2 Approaches Based on Local Conditional Classifiers

A source of information in collective classification is to use not only the attributes
and the known labels of related nodes, but also the predicted labels of other nodes

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 111

whose labels are unobserved. For instance, going back to the classification example
in Fig. 4.1, authors which share a co-authorship edge to other authors predicted to
have a certain research area, are likely to work in the same area. In this section, we
look at this source of information and exploit it using local conditional classifiers.
Chakrabarti et al. [22] illustrated the use of this approach and reported impressive
classification accuracy gains for labeling Web pages. Neville and Jensen [81] further
developed the approach as an iterative classification algorithm (ICA) and studied the
conditions under which it improved classification performance [57].

We provide pseudocode for a simple variant of ICA in Algorithm 1. The basic
premise behind ICA is simple. Consider a node vi ∈ V whose label needs to be
determined. Suppose we know the attributes and labels of related nodes, Ni , ICA
assumes that we are given a local classifier f that takes the attributes and labels
of the nodes in Ni and returns the most likely value of vi .L . This makes the local
classifier f an extremely flexible function and we can use popular classifiers like
decision trees [95] and SVM [58] in its place. However, since Ni may contain nodes
whose labels we also need to predict, we need to repeat the process iteratively where
in each iteration, we label each vi .L using the current best estimates of Ni and
classifier f . We continue to do so until the assignments to the labels stabilize or
some stopping criterion is met.

Algorithm 1 Iterative Classification Algorithm
Iterative Classification Algorithm (ICA)

for each node vi ∈ V do {bootstrapping}
{c}ompute label using only observed nodes in Ni
compute ai using only Vk ∩ Ni
vi .L ← f (ai)

end for
repeat {iterative classification}

generate ordering O over nodes in Vu
for each node vi ∈ O do

{c}ompute new estimate of vi .L
compute ai using current assignments to Ni
vi .L ← f (ai)

end for
until all class labels have stabilized or a threshold number of iterations have elapsed

A number of aspects of the iterative approach have been studied. An important
aspect is how to use the values provided by NI in f [70]. Most classifiers are defined
as functions with a fixed-length vector of attribute values as arguments while the
number of nodes in Ni may vary for different vi . A common approach to address
this is to use an aggregation operator such as count, mode, or prop, which measures
the proportion of neighbors with a given label. In Algorithm 1, we use ai to denote
the vector encoding the values in Ni obtained after aggregation. Another aspect
to consider is the choice of the local classifier f . Classifiers used include naive
Bayes [22, 81], logistic regression [70], decision trees [57], and weighted-vote [73].

112 G.M. Namata et al.

There is some evidence to indicate that discriminately trained local classifiers such
as logistic regression tend to produce higher accuracies than others [101].

Previous work has also looked at different ways of ordering and updating the
labels in ICA. While there is some evidence which shows ICA is fairly robust to
simple ordering strategies such as random ordering, visiting nodes in ascending
order of diversity of its neighborhood class labels or labeling nodes in descending
order of label confidence [40], strategies which vary what labels are updated at each
iteration have been shown to improve accuracies [76].

Extensions have also been proposed for the ICA algorithm. Researchers in col-
lective classification [73, 76, 82] have extended the simple algorithm described in
Algorithm 1 and developed a version of Gibbs sampling that is easy to implement
and faster than traditional Gibbs sampling approaches. The basic idea behind this
algorithm is to assume, just like in the case of ICA, that we have access to a local
classifier f that can sample for the best label estimate for vi .L given all the values
for the nodes in Ni . We keep doing this repeatedly for a fixed number of iterations
(a period known as burn-in). After that, not only do we sample for labels for each
vi ∈ Vu , but we also maintain count statistics as to how many times we sampled
a give label for node vi . After collecting a predefined number of such samples, we
output the best label assignment for node vi by choosing the label that was assigned
the maximum number of times to vi during the sampling.

4.3.2.3 Approaches Based on Global Formulations

In addition to the local conditional classifier approaches discussed in
Section 4.3.2.2, another approach to collective classification is to represent the
problem with a high-level global graphical model and then using the learning and
inference techniques for the graphical modeling approach to arrive at the correct
classification. Graphical models which have been used include both directed [43]
and undirected [62, 109] models. While these techniques can use both the labels
and attributes of related nodes, we note that these techniques tend to be less efficient
and scalable than the iterative collective classification techniques.

A common way of defining such a global model is by using a pairwise Markov
random field (pairwise MRF) [109]. Let G(V, E) denote a random variable graph
where V consists of the two types of random variables: the unobserved, Y , which
need to be assigned from a label set L, and observed variables, X , whose labels are
known. Let � denote a set of clique potentials which contain three distinct types of
functions. First, for each Yi ∈ E , ψi ∈ Ψ is a mapping ψi : L → R ≥ 0, where
R ≥ 0 is the set of non-negative real numbers. Next, for each (Yi ,X j) ∈ E , ψi j ∈ �

is a mapping ψi j : L → R ≥ 0. The last type of function is for each (Yi ,Y j) ∈ E ,
ψi j ∈ � is a mapping ψi j : L × L → R ≥ 0.

Let x denote the values assigned to all the observed variables in G and let xi

denote the value assigned to Xi . Similarly, let y denote any assignment to all the
unobserved variables in G and let yi denote a value assigned to Yi . For brevity of

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 113

notation we will denote by φi the clique potential obtained by computing φi (yi) =
ψ(yi)

∏
(Yi ,X j)∈E ψi j(yi). A pairwise MRF can then be defined as follows:

Definition 1 A pairwise Markov random field (pairwise MRF) is given by a pair
〈G, �〉 where G is a graph and � is a set of clique potentials with φi and ψi j as
defined above. Given an assignment y to all the unobserved variables Y, the pairwise
MRF is associated with the probability distribution:

P(y|x) = 1

Z(x)

∏

Yi∈Y
φi (yi)

∏

(Yi ,Y j)∈E
ψi j (yi , y j)

where x denotes the observed values of X and

Z(x) =
∑

y′

∏

Yi∈Y
φi (y′i)

∏

(Yi ,Y j)∈E
ψi j (y′i , y′j).

Given a pairwise MRF, it is conceptually simple to extract the best assignments
to each unobserved variable in the network. For instance, we may adopt the crite-
rion that the best label value for Yi is simply the one corresponding to the highest
marginal probability obtained by summing over all other variables from the proba-
bility distribution associated with the pairwise MRF. Computationally, however, this
is difficult to achieve since computing one marginal probability requires summing
over an exponentially large number of terms. Hence, approximate inference algo-
rithms are typically employed, the two most common being loopy belief propagation
(LBP) and mean-field relaxation labeling. A comparison of these two approaches are
given in [90, 101].

Fig. 4.2 Example of a link prediction problem. The graph on the left represents a collaboration
network at time t , and the graph on the right represents the predicted collaboration network at time
t + 1. Predicted collaboration edges are highlighted using a dashed line

4.4 Link Prediction

In this section, we change our focus from inferring information about the nodes of
a network to inferring information about the links or edges between them. Inferring
the existences of edges between nodes has traditionally been referred to as link

114 G.M. Namata et al.

prediction [69, 110]. We provide a formal definition of the problem of link predic-
tion, as well as discuss variants and closely related problems in Section 4.4.1.

Link prediction is a challenging problem that has been studied in various guises
in different domains. For example, in social network analysis, there is work on pre-
dicting friendship links [119], event participation links (i.e., co-authorship [89]),
communication links (i.e., email [89]), and links representing semantic relation-
ships (i.e., advisor of [110] and subordinate manager [30]). In bioinformatics,
there is interest in predicting the existence of edges representing physical protein–
protein interactions [50, 107, 118], domain–domain interactions [29], and reg-
ulatory interactions [4]. Similarly, in computer network systems there is work
in inferring unobserved connections between routers, and inferring relationships
between autonomous systems and service providers [105]. There is also work on
using link prediction to improve recommender systems [36, 51], Web site navigation
[120], surveillance [52], and automatic document cross-referencing [77].

4.4.1 Definition

We begin with some basic definitions and notation. We refer to the set of possible
edges in a graph as potential edges. The set of potential edges depends on the graph
type and how the edges for the graph are defined. For example, in a directed graph,
the set of potential edges consists of all edges e = (v1, v2) where v1 and v2 are
any two nodes V in the graph (i.e., the number of potential edges is |V | × |V |).
In an undirected bipartite graph with two subsets of nodes (V1, V2 ∈ V), while the
edges still consist of a pair of nodes, e = (v1, v2), there is an added condition such
that one node must be from V1 and the other node must be from V2; this results in
|V1|×|V2| potential edges. Next, we refer to set of “true” edges in a graph as positive
edges, and we refer to the “true” non-edges in a graph (i.e., pairs of nodes without
edges between them) as negative edges. For a given graph, typically we only have
information about a subset of the edges; we refer to this set as the observed edges.
The observed edges can include both positive and negative edges, though in many
formulations there is an assumption of positive-only information. We can view link
prediction as a probabilistic inference problem, where the evidence includes the
observed edges, the attribute values of the nodes involved in the potential edge, and
possibly other information about the network, and for any unobserved, potential
edge, we want to compute the probability of it’s existing. This can be reframed as
a binary classification problem by choosing some probability threshold and con-
cluding that potential edges with existence probability above the threshold are true
edges, and those below the threshold are considered false edges (more complex
schemes are possible as well).

The earliest and most cited formulation of the link prediction problem was pro-
posed by Liben-Nowell and Kleinberg [69]. Liben-Nowell and Kleinberg [69] pro-
posed a temporal formulation defined over a dynamic network where given a graph
Gt (Vt , Et) at time t, infer the set of edges at the next time step t+1. More formally,

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 115

the objective is to infer a set of edges Enew where Et+1 = Et
⋃

Enew. In this chap-
ter, we use a more general definition of link prediction proposed by Taskar et al.
[110] where given a graph G and the set of potential edges in G, denoted P(G), the
problem of link prediction is to predict for all p ∈ P(G) whether p exists or does
not exists, remaining agnostic on whether G is a noisy graph with missing edges or
a snapshot of a dynamic graph at a particular time point.

In addition to the definition of link prediction discussed above, it is also impor-
tant to mention four closely related problems: random graph models, link com-
pletion, leak detection, and anomalous link discovery, whose objectives are dif-
ferent but very similar to link prediction. The first related research area, random
graph models, is the problem of defining models for generating random graphs
which capture the properties of graphs found in real networks [11, 33, 65, 66, 86].
Properties include scale-free degree distributions [1, 11, 35], the small-world phe-
nomenon [11, 114], and densification and shrinking diameters of dynamic net-
works over time [66]. An important aspect of these models is modeling how to
randomly generate edges between the nodes of the graph to capture these prop-
erties. The preferential attachment model [11], for example, creates edges based
on the degree of nodes (i.e., higher degree nodes are more likely to be incident to
more edges). The Forest Fire model [66], on the other hand, generates edges for
nodes in an epidemic fashion, growing outward from some initial set of neighboring
nodes.

The next two related problems, link completion [10, 21, 45] and leak detection
[10, 20, 60], are a variation of link prediction over hypergraphs. A hypergraph is a
graph where the edges (known as hyperedges) can connect any number of nodes.
For example, in a hypergraph representing an email communication networks, a
hyperedge may connect nodes representing email addresses that are recipients of
a particular email communication. In link completion, given the set of nodes that
participate in a particular hyperedge, the objective is to infer nodes that are miss-
ing. For our email communication network example, link completion may involve
inferring which email address nodes need to be added to the hyperedge represent-
ing the recipients list of an email communication. Conversely, in leak detection,
given the set of nodes participating in a particular hyperedge, the objective is to
infer which nodes should not be part of that hyperedge. For example, in email
communications, leak detection will attempt to infer which email address nodes
are incorrectly part of the hyperedge representing the recipient list of the email
communication.

The last problem, anomalous link discovery [53, 96], has been proposed as
an alternate task to link prediction where the existence of the edges are assumed
to be observed, and the objective is to infer which of the observed links are
anomalous or unusual. Specifically, anomalous link discovery identifies which
links are statistically improbable with the idea that these may be of interest for
those analyzing the network. Rattigan and Jensen [96] show that some methods
which perform poorly for link prediction can still perform well for anomalous link
discovery.

116 G.M. Namata et al.

4.4.2 Approach

In this section, we discuss the two general categories of the current link pre-
diction models: topology-based approaches and node attribute-based approaches.
Topology-based approaches are methods which rely solely on the topology of the
network to infer edges. Node attribute-based approaches make predictions based on
the attribute values of the nodes incident to the edges. In addition, there are models
which make use of both structure and attribute values.

4.4.2.1 Topology-Based Approaches

A number of link prediction models have been proposed which rely solely on the
topology of the network. These models typically rely on some notion of structural
proximity, where nodes which are close are likely to share an edge (e.g., sharing
common neighbors, nodes with a small shortest path distance between). The ear-
liest topological approach for link prediction was proposed by [69]. In this work,
Liben-Nowell and Kleinberg proposed various structure-based similarity scores and
applied them over the unobserved edges of an undirected graph. They then use a
threshold k and only predict edges with the top k scores as existing. A variety of
similarity scores were proposed, given two nodes v1 and v2, including graph dis-
tance (the negated shortest path between v1 and v2), common neighbors (the size
of the intersection of the sets of neighbors of v1 and v2), and more complex mea-
sures such as the Katz measure (the sum of the lengths of the paths between v1 and
v2 exponentially damped by length to count short paths more heavily). Evaluating
over a co-authorship network, the best performing proximity score measure was the
Katz measure; however, the simple measures, which rely only on the intersection
of the set of nodes adjacent to both nodes, performed surprisingly well. A related
approach was proposed by [118] which applies the link prediction problem to pre-
dicting missing protein–protein interactions (PPI) from PPI networks generated by
high-throughput methods. This work assumes that interacting proteins tend to form
a clique. Thus, missing edges can be predicted by predicting the existence of edges
which will create cliques in the network. More recent work by [24] has tried to go
beyond predicting edges between neighboring nodes. In their problem domain of
food webs, for example, pairs of predators often prey on a shared prey species but
rarely prey on each other. Thus, in these networks, predicting “predator–prey” edges
need to go beyond proximity. For this, they propose a “hierarchical random graph”
approach which fits a hierarchical model to all possible dendrograms of a given
network. The model is then used to calculate the likelihood of an edge existing in
the network.

4.4.2.2 Node Attribute-Based Approaches

Although topology has been shown useful in link prediction, topology-based
approaches ignore an important source of information in networks, the attributes
of nodes. Often there are correlations in the attributes of nodes which share an

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 117

edge with each other. One approach which exploits this correlation was proposed by
Taskar et al. [110]. In this approach, a relational Markov network (RMN) framework
was applied to predicting the existence and class of edges between Web sites. They
exploit the fact that certain links can only exist between nodes of the appropriate
type. For example, an “advisor” edge can only exist between a student and a faculty
nodes. Another approach which uses node attributes was proposed by [94]. In that
approach, they used a structured logistic regression model over learned relational
features to predict citation edges in a citation network. Their relational features
are built over attributes such as the words used in the paper nodes. O’Madadhain
et al. [89] also proposed an attribute based approach, constructing local conditional
probability models based on the attributes such as node attribute similarity, topic
distribution, and geographical location in predicting “co-participation” edges in an
email communication network. More recently, there is work on exploiting other
node attributes like the group membership of the nodes. Zheleva et al. [119] showed
that membership in family groups are very useful in predicting friendship links in
social networks. Similarly, [106] showed that using protein complex information
can be useful in predicting protein–protein interactions. Finally, we note that in link
prediction, as in classification, the quality of predictions can be improved by making
the predictions collectively. Aside from the relational Markov network approach by
[110] mentioned earlier, Markov Logic networks [98] and Probabilistic Relational
models [42] have also been proposed for link prediction and are capable of perform-
ing joint inference.

4.4.3 Issues

There are a number of challenges which make link prediction very difficult. The
most difficult challenge is the large class skew between the number of edges which
exist and the number of edges which do not. To illustrate, consider directed graph
denoted by G(V, E). While the number of edges |E | is often O(|V |), the number
of edges which do not exist is often O(|V |2). Consequently, the prior probability
edge existence is very small. This causes many supervised models, which naively
optimize for accuracy, to learn a trivial model which always predicts that a link does
not exist. A related problem in link prediction is the large number of edges whose
existence must be considered. The number of potential edges is O(|V |2) and this
limits the size of the data sets which can be considered.

In practice, there are general approaches to addressing these issues either prior
to or during the link prediction. With both large class skew and number of edges to
contend with, the general approach is to make assumptions which reduce the number
of edges to consider. One common way to do this is to partition the set of nodes
where we only consider potential edges between nodes of the same partition; edges
between partitions are not explicitly modeled and are assumed not to exist [2, 118].
This is useful in many domains where there is some sort of natural partition among
the nodes available (e.g., geography in social networks, location of proteins in a

118 G.M. Namata et al.

cell) which make edges across partitions unlikely. Another way is to define some
simple, computationally inexpensive distance measure such that only edges whose
nodes are within some distance are considered [30, 69].

Another practical issue in link prediction is that while real-world data often indi-
cates which edges exist (positive examples), the edges which do not exist (negative
examples) are rarely annotated for use by link prediction models. In bioinformatics,
for example, the protein–protein interaction network of yeast, the most and anno-
tated studied organism, is annotated with thousands of observed edges (physical
interactions) between the nodes (proteins) gathered from numerous experiments
[13]. There are currently, however, no major data sets available which indicate which
proteins definitely do not physically interact. This is an issue not only in creating and
learning models for link prediction but also an issue with evaluating them. Often,
it is unclear whether a predicted edge which is not in our ground truth data is an
incorrectly predicted edge or an edge resulting from incomplete data.

Fig. 4.3 Example of a entity resolution problem. In this example, the nodes on the left are ambigu-
ous due to variations in the spelling of their names. While attributes may suffice to resolve the
entities in some cases (e.g., Juan Hernandez and J. Hernandez are likely the same person due to
the similarity in their names), some cases (e.g., J. Phillips can refer to either Jane or John Phillips)
it may not. However, if we use the edges (i.e., both Jane Phillips and J. Phillips have collaborated
with Larry Jones), we are able to improve our predictions

4.5 Entity Resolution

Many networks have uncertain and imprecise references to real-world entities. The
absence of identifiers for the underlying entities often results in noisy networks
which contain multiple references to the same underlying entity. In this section,
we look at the problem of resolving which references refer to the same entity, a
problem known as entity resolution.

Examples of entity resolution problems can be found in many domains, often
under different names. The earliest applications of entity resolution is on medical
data [37, 83, 84, 117]. In this work, in a problem they referred to as record linkage,
the goal was to identify which medical records refer to the same individual or family.
Later, in computer vision, entity resolution was applied in identifying which regions
in the same image are part of the same object (the correspondence problem). Also,

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 119

in natural language processing, there is interest in determining which noun phrases
refer to the same underlying entity (coreference resolution, object consolidation).
The problems of deduplication and data integration, determining when two tuples
in or across databases refer to the same entity, can also be seen as entity resolution.

4.5.1 Definition

We begin by introducing some additional notation. For a graph G(V, E) we are
given a set of reference nodes R ⊆ V where the reference nodes correspond to
some set of unknown entity nodes E . We introduce the notation r.E to refer to the
entity to which r corresponds. Formally, the general goal of entity resolution is to
recover the hidden set of entities E and the entity labels r.E for all the reference
nodes.

We note that there are two commonly used interpretations of entity resolution and
which is more natural depends on the algorithm chosen. First, entity resolution can
be viewed as a pairwise classification problem, where for each pair of references,
ri , r j ∈ R, we are interested in determining whether ri and r j are co-referent (i.e.,
ri .E = r j .E). Note the similarity here with link prediction; in fact, many of the
challenges of link prediction (class skew and scaling) are issues in entity resolution
as well. The second view is as a clustering problem, where the goal is to assign the
reference nodes to clusters C ∈ C. The subset of reference nodes in each cluster are
assumed to be co-referent to each other (i.e., ∀ri , r j ∈ C, ri .E = r j .E).

4.5.2 Approach

In this section, we survey existing entity resolution approaches. We distinguish
between three categories of approaches: attribute-based, naive relational, and col-
lective relational. Attribute-based approaches are the traditional approaches to entity
resolution which rely solely on the attributes of the reference nodes. More recently,
naive and collective relational approaches have been proposed which take the
edges between these nodes into consideration. The naive relational approaches con-
sider the attribute similarity of related reference node. The collective relational
approaches, on the other hand, use the edges to make decisions jointly.

4.5.2.1 Attribute-Based Entity Resolution

The attribute-based approach to entity resolution typically uses the pairwise for-
mulation of the entity resolution problem [26, 37, 48]. Given two reference nodes,
ri , r j ∈ R, the attribute-based approaches generally make use of a similarity mea-
sure, sim A(ri , r j), or a weighted combination of multiple similarity measures, over
the attributes of the reference nodes. Several sophisticated similarity measures have
been proposed for use in entity resolution based on the types of features and domain

120 G.M. Namata et al.

knowledge. For example, there are string similarity measures used commonly over
the names of an entity such as

• Jaccard [54]: the size of the intersection among the characters divided by the size
of the union of the characters occurring.

• Jaro and Jaro-Winker [56, 117]: string similarity scores which attempt to take into
account typical spelling deviation by looking at the similarity within a certain
neighborhood of the string characters; the Jaro-Winkler score is based on Jaro
and weights matches at the beginning more highly.

• Levenshtein (edit distance) [67]: the minimum number of insertions, deletions,
and substitutions required to transform one string to the other.

• Monge-Elkan [78]: recursive subcomponent matching algorithm which looks at
matching subcomponents of the strings; it is good at finding swapped fields, such
as first and last names.

Approaches have also been proposed which learn a string similarity measure
from labeled data [18]. Pairs of nodes whose similarity is above a certain threshold
are predicted as co-referent. Transitivity may also be enforced such that if ri and
r j are predicted co-referent and r j and rk predicted co-referent, ri and rk are also
predicted co-referent.

4.5.2.2 Naive Relational Entity Resolution

While attribute-based approaches have been shown to do well in some domains,
work in relational data has focused on incorporating links, in particular, co-
occurrence information. The earliest work using links for entity resolution was
explored in the database community. Ananthakrishna et al. [6] introduce a method
for deduplication using edges in data warehouse applications where there is a
dimensional hierarchy over the link relations. Kalashnikov et al. [59] proposed
the Relationship-based Data Cleaning (RelDC) approach which uses graph theo-
retic techniques to discover and analyze relationships, such as affiliation and co-
authorship, that exist between reference nodes.

4.5.2.3 Collective Relational Entity Resolution

Although the approaches in Section 4.5.2.2 consider the edges for entity resolution,
only the attributes of linked references are considered and the different resolution
decisions are still taken independently. Work in collective relational entity reso-
lution addresses this by using the edges between nodes to establish dependencies
in the resolution decisions. In databases, for example, approaches have been pro-
posed [14, 32] where one resolution decision affects another if they are linked.
Bhattacharya and Getoor [14, 17] propose different measures for edge similarity
and show how those can be combined with attribute similarity iteratively to perform
entity resolution on collaboration networks. Dong et al. [32] collectively resolve

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 121

entities of multiple types by propagating evidence along the links in a dependency
graph. In machine learning, probabilistic models have also been proposed to con-
sider the interactions between the different entity resolution decisions. McCallum
and Wellner [75] use conditional random fields for noun coreference and use clique
templates with tied parameters to capture repeated relational structure. Singla and
Domingos [103] use the idea of merging evidence to allow the flow of reason-
ing between different pairwise decisions over multiple entity types. Markov logic
networks have also been applied for collective entity resolution [93, 103]. Pasula
et al. [92] propose a generic probabilistic relational model framework for perform-
ing entity resolution on citations. Li et al. [68] propose a probabilistic generative
model which captures a joint distribution over pairs of entities in terms of co-
mentions in documents. Similarly, Bhattacharya and Getoor [16] proposed a genera-
tive group model by extending the Latent Dirichlet Allocation model for documents
and topics.

4.5.3 Issues

A major issue in entity resolution is that it is a known hard problem computation-
ally; a naive algorithm is O(N 2), which for very large data sets is not feasible. For
many networks, it is infeasible to compare all pairs of references for approaches
which use expensive similarity measures. Similarly, for many probabilistic models,
it is infeasible to explicitly represent all the variables required for the inference.
Thus, efficiencies have long been a focus for research in entity resolution. One
mechanism for doing this involves computing the matches efficiently and employing
techniques commonly called “blocking” to place nodes into disjoint “blocks” using
cheap and index-based similarity computations [49, 79]. The number of potential
pairs is greatly reduced by assuming that only pairs of nodes in the same block
can be co-referent pairs. Another mechanism, proposed by McCallum et al. [74],
relaxes the use of disjoint blocks and places nodes into possibly overlapping subsets
called “canopies”. Potential co-referent pairs are then restricted only to pairs of
nodes which share at least one common canopy.

Fig. 4.4 Example of a group detection problem. The goal of group detection is to predict the
underlying groups which the nodes, and/or edges, participate in. The three regions surrounded
with a rounded rectangle represent the affiliations of our authors

122 G.M. Namata et al.

Another issue in entity resolution is referred to a “canonicalization” [27, 116].
Once the reference nodes have been resolved to their corresponding entities, there
is the problem of constructing a standard representation of the entity from the
attributes of those references. In particular, canonicalization resolves the inconsis-
tencies in the attributes among the reference nodes. Simple heuristics for determin-
ing the appropriate values for the attributes and edges of an entity based on the
attributes of the references are possible; often these amount to choosing the longest
string, or the most recently updated value. Such approaches, however, are not robust
to noisy and incomplete attributes. Another approach is, instead of returning a single
value for an attribute, keeping all the values, returning a ranked list of the possible
values and edges [7, 111]. When there are a large number of references, however,
the ranked list may be too long. Culotta et al. [27] addresses this by using adaptive
similarity measures to select values in order to create a standard representation most
similar to each of the different records. A unified approach was also proposed by
Wick et al. [116] which performs entity resolution and canonicalization jointly using
discriminatively trained model.

4.6 Group Detection

Another common problem that often occurs in reasoning about network data is
inferring the underlying hidden groups or community structures of the nodes in the
network. This problem is strongly related to data clustering; a traditional unsuper-
vised learning problem in data mining. In cluster analysis, data points are organized
in different groups based on the similarity of their feature values [55], where points
in the same cluster are more similar to each other than points in different clusters
according to a specific similarity measure. Similarly, a community in a network can
be defined as a group of nodes that share dense connections among each other, while
being less tightly connected to nodes in different communities in the network.

The importance of identifying the communities in networks lies in the fact that
they can often be closely related to functional units of the system, e.g., groups of
individuals interacting with each other in a society [8, 44, 71], WWW pages related
to similar topics [38], compartments in food webs [61], or proteins responsible for
similar biological functions [23]. Furthermore, analyzing the community structure
itself provides insight into understanding the various roles of different nodes in their
corresponding groups. For instance, by studying the structural properties of commu-
nities, one can distinguish between the functions of the central nodes in the group
and the ones at the periphery.

In this section, we review some of basic methods for group detection and com-
munity discovery in network settings.

4.6.1 Definition

As before, we consider a graph G = (V, E); in the case of weighted networks,
w(vi , v j) denotes the weight of the edge connecting nodes vi and v j . A community

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 123

or a group C is a subgraph C(V ′, E ′) of the original graph G(V, E) whose nodes
and edges are subsets of the original graph’s nodes and edges, i.e., V ′ ⊂ V and
E ′ ⊂ E . For each node v′ in group C of G, we define an internal and an external
degree as dint(v

′) = |e′(v′, vt)|; vt ∈ V ′ and dext(v
′) = |e′(v′, vt)|; vt /∈ V ′, where

the internal degree of a node with respect to a certain group is the number of edges
connecting it to other nodes of the group, while its external degree is the number
of edges connecting it to nodes in the graph other than those in the corresponding
group. Intuitively, nodes with relatively high internal degree and low external degree
for a specific group are potentially good candidates to be included in that group. The
opposite is also true, where nodes with low internal degree and high external degree
for a specific group are candidates for removal. Throughout the discussion, the terms
group, community, and cluster are used exchangeably.

To identify communities in networks, a basic set of properties that is capable of
distinguishing a true community structure from a randomly selected set of nodes
and edges is needed. One of the important properties that can be utilized is the
graph density, which is the number of edges present in the network relative to the
total number possible. Similarly, the density of a group of nodes in the network
can be defined as the ratio between the number of edges connecting pairs of nodes
within that group and the maximum number of possible edges within the same
group:

δ(C) = |E ′|
|V ′| × (|V ′| − 1)/2

. (4.1)

A randomly selected set of nodes from a network is likely to have a density
similar to that of the global network structure. However, for community structures,
the density of a group is expected to be higher than that of the overall graph. For-
mally, for any community C in a graph G, it is expected that δ(C) > δ(G), where
δ(G) is the overall graph density. Similarly, the average density of sets of nodes
belonging to different communities, calculated using the ratio between the number
of edges emanating from a group and terminating in another, and the maximum
number possible of such edges, should generally be low. This basic idea is exploited
in many of the group detection methods described next.

4.6.2 Approaches

Beyond the intuitive definition above, precisely defining what constitutes a com-
munity involves a number of aspects: whether the definition relies on global or
local network properties, whether nodes can simultaneously belong to several com-
munities, whether link weights are utilized, and whether the definition allows for
hierarchical community structure. Global methods utilize the whole network struc-
ture for defining the communities. This can be achieved in several ways, such as
global optimization methods [87, 97], algorithms based on different global central-
ity measures [39, 44], spectral methods [9, 31], or information-theoretic methods

124 G.M. Namata et al.

[99, 100]. Local methods, on the other hand, define communities based on purely
local network structure, such as detecting cliques of different sizes [34], clique per-
colation method [91], and subgraph fitness method [63].

As mentioned above, another important aspect is whether nodes are allowed to
belong simultaneously to several communities. In general, overlapping communities
do commonly occur in natural settings, especially in social networks. Currently, only
a few methods are able to handle overlapping communities [88, 91]. Another diffi-
culty in community detection is that networks may contain hierarchical structures,
which means that communities may be parts of even larger communities. This leads
to the problem of evaluating the best partitioning among different alternatives. One
solution for evaluating the quality of a given community structure was suggested by
Girvan and Newman [87], who introduced the concept of modularity as a measure
for the goodness of a partitioning.

The methods used for community detection with respect to different perspectives
are briefly reviewed in the following sections.

4.6.2.1 Clique-Finding Techniques

Cliques are graph structures that are frequently used in local techniques for commu-
nity detection. A clique is defined as a complete subgraph {C(V ′, E ′) : ∀v1, v2 ∈
V ′, ∃(v1, v2) ∈ E ′}, where there exists an edge between every pair of nodes belong-
ing to it. In this context, communities can be considered as maximal clique, which
cannot be extended with the addition of any new nodes or edges.

One of the problems of using this approach for group detection is the fact that
finding cliques in a graph is an NP-complete problem. Another problem arises from
the interpretation of communities, especially in social networks, where we expect
different individuals to have different centrality in their corresponding groups, con-
tradicting with the degree symmetry of nodes in cliques. To overcome these draw-
backs, the notion of cliques is often relaxed to k-clique, which is a maximal sub-
graph where the distance between each pair of its nodes is not larger than k [3].

Recently, Palla et al. [91] introduced a local method for community detection
called the clique percolation method. The method is based on the observation that,
due to the high density of community structures, it is more likely that nodes within
a given community form more small-sized cliques than nodes belonging to different
communities. The clique percolation algorithm defines communities by consider-
ing overlapping chains of small cliques, which are likely to explore a significant
fraction of each community, without crossing the boundary between different com-
munities. Specifically, a community of size k is obtained by “rolling” a clique of
size k over cliques of the same size that share at least k − 1 nodes with the current
clique.

4.6.2.2 Clustering Techniques

Data clustering is one of the earliest techniques for group detection, where data
points are grouped according to a specific similarity measure over their features.

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 125

The main objective of traditional clustering methods is to obtain clusters or
groups of data points possessing high intra-cluster similarity and low inter-cluster
similarity. Classical data clustering techniques can be divided into partition-
based methods such as k-means clustering [72], model-based methods such as
Expectation-Maximization algorithm [28], spectral clustering algorithms [5, 115]
and hierarchical clustering methods [47] which are very popular and commonly
used in many fields.

One advantage of the hierarchical clustering techniques is that they provide the
ability to look at the groups at multiple resolutions. Hierarchical techniques are
further divided into agglomerative and divisive algorithms. The agglomerative algo-
rithm is a greedy bottom-up algorithm which starts with individual data points,
then successively merge pairs with highest similarity. At each iteration, the simi-
larities between the new cluster and each of the old clusters are recomputed and
again the maximally similar pair of clusters merged. Divisive algorithms work
in a reverse manner, where initially the whole set of points is regarded as one
cluster which is successively divided into smaller ones by splitting nodes of low-
est similarity. In both algorithms, clusters are represented as a dendrogram (see
Fig. 4.5), whose depths indicate the steps at which two clusters are joined. This
representation provides insight into the formed groups, where it is clear which com-
munities are built up from smaller modules, and how these smaller communities are
organized.

Fig. 4.5 A dendrogram resulting from a hierarchical clustering technique. Different levels in the
tree correspond to partitions of the graph into clusters

126 G.M. Namata et al.

Hierarchical clustering techniques can easily be adapted to network domains,
where data points are replaced by individual nodes in the network, and the similarity
is based on edges between them. In addition, there are other divisive algorithms
based on spectral methods and other community detection techniques, which are
discussed in the following sections.

4.6.2.3 Centrality-Based Techniques

Girvan and Newman introduced several community detection algorithms that have
received much attention. The first method [44] uses a divisive algorithm based on
the betweenness centrality of edges to be able to recover the group structure within
the network. Betweenness centrality is a measure of centrality of nodes in networks,
defined for each node as the number of shortest paths between pairs of nodes in the
network that run through it. The Girvan–Newman algorithm extended this definition
for edges in the network as well, where the betweenness centrality of an edge is
defined as the number of shortest paths between pairs of nodes that include this
edge.

The algorithm is also based on the fact that there exists denser connections
between nodes belonging to the same group structure than those in different groups.
Thus, all shortest paths between nodes from different communities should pass
along one of these sparse set of edges, increasing their edge betweenness centrality
measure. By following a divisive approach and removing edges with highest
betweenness centrality from the network successively, the underlying community
structure is revealed.

One of the drawbacks of the algorithm is its time complexity which is
O(|E |2|V |) generally, and O(|V |3) for sparse networks. However, by limiting the
re-calculations of the edge betweenness for only those affected by the prior edge
removal can be factored in, making the algorithm efficient in sparse networks with
strong community structure, but still not very efficient on dense networks. Following
the same approach, other methods based on different notions of centrality have been
introduced [64, 112].

4.6.2.4 Modularity-Based Techniques

The concept of modularity was introduced by Newman and Girvan [87] as a mea-
sure to evaluate the quality of a set of extracted communities in a network and has
become one of the most popular quality functions used for community detection.
The basic idea is utilizing a null model; a randomly rewired version of the original
network preserving the node degrees, which is expected to contain no community
structure. Modularity is then calculated by comparing the number of edges within
the extracted communities against the expected number of edges in the same com-
munities from the random network. More specifically, the modularity Q is defined
as follows:

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 127

Q = 1

2|E |
∑

i j

[

Ai j − ki .k j

2|E |
]

δ(ci , c j), (4.2)

where Ai j is the element of the adjacency matrix of the network denoting the num-
ber of edges between nodes i and j , ki and k j are the degrees of nodes i and j
respectively, ci and c j are the communities to which nodes i and j belong respec-
tively. The summation runs over all pairs of nodes within the same community.

Clearly, a higher modularity value indicates that the average density of the
extracted community is larger than that of the random network where no community
structure is present. Thus, modularity maximization can be used as the objective for
producing high-quality community structure. However, modularity maximization is
an NP-hard problem [19]. Nevertheless, there has been several heuristics for approx-
imate modularity maximization with reasonable time complexity.

An efficient greedy modularity maximization algorithm was introduced by New-
man [85]. The algorithm starts with individual nodes and merges them agglomera-
tively, by choosing the pair that gives the largest increase in modularity. The time
complexity of this greedy algorithm is O(|V |(|E | + |V |)) or O(|V |2) for sparse
networks, which enables users to run community detection on large networks in a
reasonable amount of time. A further speedup was achieved by Clauset et al. [25]
by utilizing specialized data structures for sparse matrices.

4.6.3 Issues

Because the majority of work on group detection in relational setting has focused
on the structural properties of the nodes and the edges in the underlying network,
the resulting communities often lack a correspondence with the actual functional
communities in the network [102]. Recently, relational clustering methods have
been introduced for combining structural information with node characteristics to
obtain better communities that are more related to the functional units in the network
[15, 80]. However, more work is needed for tying the information about the target
function with the group detection process to obtain different community structures
from the network according to the specific function that needs to be highlighted.

One of the issues that has attracted more attention lately is the fact that most
group detection methods works on single-mode networks, with less work focused
on finding groups in more complex, multi-mode settings [12, 46]. Most algorithms
deal with these types of networks by projecting them onto a series of individual
graphs for each mode, thus losing some of the information that could have been
retained by operating collectively on the original multi-modal setting.

Another issue that is gaining more interest is developing new methods for group
detection in dynamic network settings [108], where the underlying network struc-
ture changes over time. Most of the previous work on group detection mainly
focused on static networks, and handles the dynamic case by either analyzing a
snapshot of the network at a single point in time, or aggregating all interactions over

128 G.M. Namata et al.

the whole time period. Both approaches do not capture the dynamics of change in
the network structure, which can be an important factor in revealing the underlying
communities.

4.7 Conclusion

In this chapter, we have surveyed some of the common inference tasks that can
be applied to graph data. The algorithms we have presented are especially well
suited to the situation where we have noisy and incomplete observations. Some
of the methods focus on predicting attribute values, some focus on inferring the
existence of edges, and some focus on grouping nodes, either for entity resolution
or for community detection. There are many other possibilities and combinations
still to be explored, and this research area is likely to expand as we gather more and
more graph and network data from a wider variety of sources.

Acknowledgments The work was supported by NSF Grant #0746930.

References

1. J. Abello, A. L. Buchsbaum, and J. R. Westbrook. A functional approach to external graph
algorithms. In Proceedings of the 6th Annual European Symposium on Algorithms, Venice,
Italy, 1998.

2. S. F. Adafre and M. de Rijke. Discovering missing links in wikipedia. In Proceedings of the
3rd International Workshop on Link Discovery, Chicago, IL, 2005.

3. R. D. Alba. A graph-theoretic definition of a sociometric clique. Journal of Mathematical
Sociology, 3:113–126, 1973.

4. R. Albert, B. DasGupta, R. Dondi, S. Kachalo, E. Sontag, A. Zelikovsky, and K. Westbrook.
A novel method for signal transduction network inference from indirect experimental evi-
dence. Journal of Computational Biology, 14:407–419, 2007.

5. C. Alpert, A. Kahng, and S. Yao. Spectral partitioning: The more eigenvectors, the better.
Discrete Applied Math, 90:3–26, 1999.

6. R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy duplicates in data ware-
houses. In Proceedings of the 28th International Conference on Very Large Databases, Hong
Kong, China, 2002.

7. P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers over dirty databases: A probabilistic
approach. In Proceedings of the 22nd International Conference on Data Engineering, Hong
Kong, China, 2006.

8. A. Arenas, L. Danon, A. Daz-Guilera, P. M. Gleiser, and R. Guimer. Community analysis in
social networks. The European Physical Journal B, 38(2):373–380, 2004.

9. A. Arenas, A. Daz-Guilera, and C. J. Prez-Vicente. Synchronization reveals topological
scales in complex networks. Physical Review Letters, 96(11):114102, 2006.

10. R. Balasubramanyan, V. R. Carvalho, and W. Cohen. Cutonce- recipient recommendation
and leak detection in action. In Workshop on Enhanced Messaging, Chicago, IL, 2009.

11. A.-L. Barabasi and R. Albert. Emergence of Scaling in Random Networks. Science,
286(5439):509–512, 1999.

12. J. Barber. Modularity and community detection in bipartite networks. Physical Review E,
76:066102, 2007.

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 129

13. A. Ben-Hur and W. Noble. Choosing negative examples for the prediction of protein-protein
interactions. BMC Bioinformatics, 7:S2, 2006.

14. I. Bhattacharya and L. Getoor. Iterative record linkage for cleaning and integration. In Data
Mining and Knowledge Discovery, Paris, France, 2004.

15. I. Bhattacharya and L. Getoor. Relational clustering for multi-type entity resolution. In ACM
SIGKDD Workshop on Multi Relational Data Mining, Chicago, Illinois, 2005.

16. I. Bhattacharya and L. Getoor. A latent dirichlet model for unsupervised entity resolution. In
SIAM Conference on Data Mining, Bethesda, MD 2006.

17. I. Bhattacharya and L. Getoor. Collective entity resolution in relational data. ACM Transac-
tions on Knowledge Discovery from Data, 1:1–36, 2007.

18. M. Bilenko and R. J. Mooney. Adaptive duplicate detection using learnable string similarity
measures. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Washington, D.C., 2003.

19. U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. N. Z, and D. Wagner. On
finding graph clusterings with maximum modularity. In Proceedings of 33rd International
Workshop on Graph-Theoretical Concepts in Computer Science, Dornburg, Germany, 2007.

20. V. R. Carvalho and W. W. Cohen. Preventing information leaks in email. In SIAM Conference
on Data Mining, Minneapolis, MN, 2007.

21. P. Chaiwanarom and C. Lursinsap. Link completion using prediction by partial matching.
In International Symposium on Communications and Information Technologies, Vientiane,
Lao, 2008.

22. S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext categorization using hyperlinks.
In ACM SIGMOD International Conference on Management of Data, Seattle, WA, 1998.

23. J. Chen and B. Yuan. Detecting functional modules in the yeast protein-protein interaction
network. Bioinformatics, 22(18):2283–2290, 2006.

24. A. Clauset, C. Moore, and M. E. J. Newman. Hierarchical structure and the prediction of
missing links in networks. Nature, 453:98, 2008.

25. A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure in very large
networks. Physical Review, 70(6):066111, 2004.

26. W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string distance metrics
for name-matching tasks. In Proceedings of the International Joint Conference on Artificial
Intelligence Workshop on Information Integration, Acapulco, Mexico, 2003.

27. A. Culotta, M. Wick, R. Hall, M. Marzilli, and A. McCallum. Canonicalization of database
records using adaptive similarity measures. In Proceedings of the 13th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, San Jose, CA, 2007.

28. A. P. Dempster, N. M. Laird, and D. Rubin. Maximum likelihood from incomplete data via
the em algorithm. Journal of the Royal Statistical Society Series B, 39(1):1 – 38, 1977.

29. M. Deng, S. Mehta, F. Sun, and T. Chen. Inferring domain-domain interactions from protein-
protein interactions. Genome Research, 12(10):1540–1548, October 2002.

30. C. Diehl, G. M. Namata, and L. Getoor. Relationship identification for social network discov-
ery. In Proceedings of the 22nd National Conference on Artificial Intelligence, Vancouver,
Canada, 2007.

31. L. Donetti and M. A. Muoz. Detecting network communities: A new systematic and efficient
algorithm. Journal of Statistical Mechanics, 10:10012, 2004.

32. X. Dong, A. Halevy, and J. Madhavan. Reference reconciliation in complex information
spaces. In Proceedings of the ACM SIGMOD International Conference on Management of
Data, Baltimore, MD, 2005.

33. P. Erdos and A. Renyi. On the evolution of random graphs. Mathematics Institute Hungarian
Academy of Science, 5:17–61, 1960.

34. M. G. Everett and S. P. Borgatti. Analyzing clique overlap. Connections, 21(1):49–61, 1998.
35. M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet

topology. In Proceedings of the Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, Cambridge, MA, 1999.

36. S. Farrell, C. Campbell, and S. Myagmar. Relescope: an experiment in accelerating relation-
ships. In Extended Abstracts on Human Factors in Computing Systems, 2005.

130 G.M. Namata et al.

37. I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of the American Statistical
Association, 64(328):1183–1210, 1969.

38. G. W. Flake, S. Lawrence, C. L. Giles, and F. Coetzee. Self-organization and identification
of web communities. IEEE Computer, 35:66–71, 2002.

39. S. Fortunato, V. Latora, and M. Marchiori. Method to find community structures based on
information centrality. Physical Review E, 70(5):056104, 2004.

40. L. Getoor. Advanced Methods for Knowledge Discovery from Complex Data, chapter Link-
based classification. Springer, London, 2005.

41. L. Getoor and C. P. Diehl. Link mining: a survey. SIGKDD Explorations Newsletter, 7:3–12,
2005.

42. L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic models of link
structure. Machine Learning, 3:679–707, 2003.

43. L. Getoor, E. Segal, B. Taskar, and D. Koller. Probabilistic models of text and link struc-
ture for hypertext classification. In International Joint Conferences on Artificial Intelligence
Workshop on Text Learning: Beyond Supervision, 2001.

44. M. Girvan and M. E. J. Newman. Community structure in social and biological networks. In
Proceedings of National Academy of Science, 2002.

45. A. Goldenberg, J. Kubica, P. Komarek, A. Moore, and J. Schneider. A comparison of sta-
tistical and machine learning algorithms on the task of link completion. In Conference on
Knowledge Discovery and Data Mining, Workshop on Link Analysis for Detecting Complex
Behavior, Washington, D.C., 2003.

46. R. Guimera, M. Sales-Pardo, and L. A. N. Amaral. Module identification in bipartite and
directed networks. Physical Review E, 76:036102, 2007.

47. J. A. Hartigan. Clustering Algorithms. Wiley, New York NY, 1975.
48. O. Hassanzadeh, M. Sadoghi, and R. J. Miller. Accuracy of approximate string joins using

grams. In 5th International Workshop on Quality in Databases at VLDB, Vienna, Austria,
2007.

49. M. A. Hernández and S. J. Stolfo. The merge/purge problem for large databases. In Proc. of
the ACM Sigmod International Conference on Management of Data, San Jose, CA, 1995.

50. H. Huang and J. S. Bader. Precision and recall estimates for two-hybrid screens. Bioinfor-
matics, 25(3):372–378, 2009.

51. Z. Huang, X. Li, and H. Chen. Link prediction approach to collaborative filtering. In
ACM/IEEE-CS Joint Conference on Digital Libraries, 2005.

52. Z. Huang and D. K. J. Lin. The Time-Series Link Prediction Problem with Applications in
Communication Surveillance. Informs Journal On Computing, 21:286–303, 2008.

53. Z. Huang and D. D. Zeng. A link prediction approach to anomalous email detection. In IEEE
International Conference on Systems, Man, and Cybernetics, Taipei, Taiwan, 2006.

54. P. Jaccard. Étude comparative de la distribution florale dans une portion des alpes et des jura.
Bulletin del la Société Vaudoise des Sciences Naturelles, 37:547–579, 1901.

55. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Computing Surveys,
31(3):264–323, 1999.

56. M. A. Jaro. Probabilistic linkage of large public health data files. Statistics in Medicine,
14:491–498, 1995.

57. D. Jensen, J. Neville, and B. Gallagher. Why collective inference improves relational classi-
fication. In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Seattle, WA, 2004.

58. T. Joachims. Learning to Classify Text Using Support Vector Machines. PhD thesis, Univer-
sity of Dortmund, 2002.

59. D. V. Kalashnikov, S. Mehrotra, and Z. Chen. Exploiting relationships for domain-
independent data cleaning. In SIAM International Conference on Data Mining, Newport
Beach, CA, 2005.

60. C. Kalyan and K. Chandrasekaran. Information leak detection in financial e-mails using mail
pattern analysis under partial information. In Proceedings of the 7th Conference on WSEAS

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 131

International Conference on Applied Informatics and Communications, Athens, Greece,
2007.

61. A. E. Krause, K. A. Frank, D. M. Mason, R. E. Ulanowicz, and W. W. Taylor. Compartments
revealed in food-web structure. Nature, 426(6964):282–285, 2003.

62. J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In International Conference on Machine Learning,
Williamstown, MA, 2001.

63. A. Lancichinetti, S. Fortunato, and J. Kertesz. Detecting the overlapping and hierarchical
community structure in complex networks. New Journal of Physics, 11:033015, 2009.

64. V. Latora and M. Marchiori. Efficient behavior of small-world networks. Physical Review
Letters, 87(19):198701, 2001.

65. J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins. Microscopic evolution of social net-
works. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Las Vegas, Nevada, 2008.

66. J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification and shrinking
diameters. ACM Transactions on Knowledge Discovery from Data, 1(1):2, 2007.

67. V. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. Soviet
Physics Doklady, 10:707, 1966.

68. X. Li, P. Morie, and D. Roth. Semantic integration in text: From ambiguous names to identi-
fiable entities. AI Magazine Special Issue on Semantic Integration, 26(1):45–58, 2005.

69. D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks. In Inter-
national Conference on Information and Knowledge Management, New Orleans, LA, 2003.

70. Q. Lu and L. Getoor. Link-based classification. In Proceedings of the International Confer-
ence on Machine Learning, 2003.

71. D. Lusseau and M. E. J. Newman. Identifying the role that animals play in their social net-
works. In Proceedings of the Royal Society of London, 2004.

72. J. B. MacQueen. Some methods for classification and analysis of multivariate observations.
In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967.

73. S. A. Macskassy and F. Provost. Classification in networked data: A toolkit and a univariate
case study. Journal of Machine Learning Research, 8:935–983, 2007.

74. A. McCallum, K. Nigam, and L. Ungar. Efficient clustering of high-dimensional data sets
with application to reference matching. In Proceedings of the 6th International Conference
On Knowledge Discovery and Data Mining, Boston, MA, 2000.

75. A. McCallum and B. Wellner. Toward conditional models of identity uncertainty with appli-
cation to proper noun coreference. In International Workshop on Information Integration on
the Web, 2003.

76. L. McDowell, K. M. Gupta, and D. W. Aha. Cautious inference in collective classification.
In Association for the Advancement of Artificial Intelligence, 2007.

77. D. Milne and I. H. Witten. Learning to link with wikipedia. In Proceedings of the 17th ACM
conference on Information and Knowledge Management, Napa Valley, CA, 2008.

78. A. E. Monge and C. P. Elkan. The field matching problem: Algorithms and applications. In
Proceedings of the 2nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Portland, Oregon, 1996.

79. A. E. Monge and C. P. Elkan. An efficient domain-independent algorithm for detecting
approximately duplicate database records. In Proceedings of the Special Interest Group on
Management of Data Workshop on Research Issues on Data Mining and Knowledge Discov-
ery, Tucson, AZ, 1997.

80. J. Neville, M. Adler, and D. Jensen. Clustering relational data using attribute and link infor-
mation. In Proceedings of the Text Mining and Link Analysis Workshop, 18th International
Joint Conference on Artificial Intelligence, Acapulco, Mexico, 2003.

81. J. Neville and D. Jensen. Iterative classification in relational data. In Association for the
Advancement of Artificial Intelligence Workshop on Learning Statistical Models from Rela-
tional Data, 2000.

132 G.M. Namata et al.

82. J. Neville and D. Jensen. Relational dependency networks. Journal of Machine Learning
Research, 8:653–692, 2007.

83. H. B. Newcombe and J. M. Kennedy. Record linkage: making maximum use of the discrim-
inating power of identifying information. Communications ACM, 5(11):563–566, 1962.

84. H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P. James. Automatic linkage of vital
records. Science, 130:954–959, October 1959.

85. M. E. J. Newman. Fast algorithm for detecting community structure in networks. Physical
Review E, 69(6):066133, 2004.

86. M. E. J. Newman, A. L. Barabasi, and D. J. Watts. The Structure and Dynamics of Networks.
Princeton University Press, Princeton, NJ, 2006.

87. M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks.
Physical Review E, 69:026113, 2004.

88. M. E. J. Newman and E. A. Leicht. Mixture models and exploratory analysis in networks. In
Proceedings of National Academy of Science, 2007.

89. J. O’Madadhain, J. Hutchins, and P. Smyth. Prediction and ranking algorithms for event-
based network data. SIGKDD Explorations Newsletter, 7(2):23–30, 2005.

90. M. Opper and D. Saad, editors. Advanced Mean Field Methods. Neural Information Pro-
cessing Series. MIT Press, Cambridge, MA, 2001. Theory and practice, Papers from the
workshop held at Aston University, Birmingham, 1999, A Bradford Book.

91. G. Palla, I. Dernyi, I. Farkas, and T. Vicsek. Uncovering the overlapping community structure
of complex networks in nature and society. Nature, 435(7043):814–818, 2005.

92. H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser. Identity uncertainty and citation
matching. In Neural Information Processing Systems, Vancouver, Canada, 2003.

93. H. Poon and P. Domingos. Joint unsupervised coreference resolution with markov logic.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing,
Honolulu, HI, 2008.

94. A. Popescul and L. H. Ungar. Statistical relational learning for link prediction. In Interna-
tional Joint Conferences on Artificial Intelligence Workshop on Learning Statistical Models
from Relational Data, Acapulco, Mexico, 2003.

95. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco,
CA, USA, 1993.

96. M. J. Rattigan and D. Jensen. The case for anomalous link discovery. SIGKDD Explorations
Newsletter, 7:41–47, 2005.

97. J. Reichardt and S. Bornholdt. Statistical mechanics of community detection. Physical
Review E, 74(1):016110, 2006.

98. M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62:107–136,
2006.

99. M. Rosvall and C. T. Bergstrom. An information-theoretic framework for resolving commu-
nity structure in complex networks. In Proceedings of National Academy of Science, 2007.

100. M. Rosvall and C. T. Bergstrom. Maps of random walks on complex networks reveal com-
munity structure. In Proceedings of National Academy of Science, 2008.

101. P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad. Collective
classification in network data. AI Magazine, 29(3):93–106, 2008.

102. C. R. Shalizi, M. F. Camperi, and K. L. Klinkner. Discovering functional communities
in dynamical networks. Statistical Network Analysis: Models, Issues, and New Directions,
pages 140–157, 2007.

103. P. Singla and P. Domingos. Entity resolution with markov logic. IEEE International Confer-
ence on Data Mining, 21:572–582, Hong Kong, China, 2006.

104. S. Slattery and M. Craven. Combining statistical and relational methods for learning in
hypertext domains. In Proceedings of the 8th international Conference on Inductive Logic
Programming, Madison, Wisconsin, 1998.

105. N. Spring, D. Wetherall, and T. Anderson. Reverse engineering the internet. SIGCOMM
Computer Communication Review, 34(1):3–8, 2004.

4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks 133

106. E. Sprinzak, Y. Altuvia, and H. Margalit. Characterization and prediction of protein-protein
interactions within and between complexes. Proceedings of the National Academy of Sci-
ences, 103(40):14718–14723, 2006.

107. A. Szilagyi, V. Grimm, A. K. Arakaki, and J. Skolnick. Prediction of physical protein-protein
interactions. Physical Biology, 2(2):S1–S16, 2005.

108. C. Tantipathananandh and T. Y. Berger-Wolf. Algorithms for identifying dynamic commu-
nities. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Paris, France, 2009.

109. B. Taskar, A. Pieter, and D. Koller. Discriminative probabilistic models for relational data. In
Conference on Uncertainty in Artificial Intelligence, Alberta, Canada, 2002.

110. B. Taskar, M.-F. Wong, P. Abbeel, and D. Koller. Link prediction in relational data. In
Advances in Neural Information Processing Systems, Vancouver, Canada, 2003.

111. S. Tejada, C. A. Knoblock, and S. Minton. Learning object identification rules for informa-
tion integration. Information Systems, 26:2001, 2001.

112. I. Vragovic and E. Louis. Network community structure and loop coefficient method. Physi-
cal Review E, 74(1):016105, 2006.

113. S. Wasserman, K. Faust, and D. Iacobucci. Social Network Analysis: Methods and Applica-
tions (Structural Analysis in the Social Sciences). Cambridge University Press, Cambridge
November 1994.

114. D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
393(6684):440–442, June 1998.

115. Y. Weiss. Segmentation using eigenvectors: A unifying view. In Proceedings of International
Conference on Computer Vision, 1999.

116. M. L. Wick, K. Rohanimanesh, K. Schultz, and A. McCallum. A unified approach for schema
matching, coreference and canonicalization. In Proceedings of the 14th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, Las Vegas, Nevada, 2008.

117. W. E. Winkler. The state of record linkage and current research problems. Technical report,
Statistical Research Division, U.S. Census Bureau, 1999.

118. H. Yu, A. Paccanaro, V. Trifonov, and M. Gerstein. Predicting interactions in protein net-
works by completing defective cliques. Bioinformatics, 22(7):823–829, 2006.

119. E. Zheleva, L. Getoor, J. Golbeck, and U. Kuter. Using friendship ties and family circles for
link prediction. In 2nd ACM SIGKDD Workshop on Social Network Mining and Analysis,
Las Vegas, Nevada, 2008.

120. J. Zhu. Mining Web Site Link Structure for Adaptive Web Site Navigation and Search. PhD
thesis, University of Ulster at Jordanstown, UK, 2003.

	4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks
	Galileo Mark Namata, Hossam Sharara, and Lise Getoor
	4.1 Introduction
	4.2 Terminology and Notation
	4.3 Collective Classification
	4.3.1 Definition
	4.3.2 Approaches

	4.4 Link Prediction
	4.4.1 Definition
	4.4.2 Approach
	4.4.3 Issues

	4.5 Entity Resolution
	4.5.1 Definition
	4.5.2 Approach
	4.5.3 Issues

	4.6 Group Detection
	4.6.1 Definition
	4.6.2 Approaches
	4.6.3 Issues

	4.7 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

