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ABSTRACT

There is a growing wealth of data describing networks of var-
ious types, including social networks, physical networks such
as transportation or communication networks, and biologi-
cal networks. At the same time, there is a growing interest
in analyzing these networks, in order to uncover general laws
that govern their structure and evolution, and patterns and
predictive models to develop better policies and practices.
However, a fundamental challenge in dealing with this newly
available observational data describing networks is that the
data is often of dubious quality — it is noisy and incom-
plete — and before any analysis method can be applied, the
data must be cleaned, and missing information inferred. In
this paper, we introduce the notion of graph identification,
which explicitly models the inference of a “cleaned” output
network from a noisy input graph. It is this output net-
work that is appropriate for further analysis. We present
an illustrative example and use the example to explore the
types of inferences involved in graph identification, as well
as the challenges and issues involved in combining those in-
ferences. We then present a simple, general approach to
combining the inferences in graph identification and exper-
imentally show the utility of our combined approach and
how the performance of graph identification is sensitive to
the inter-dependencies among these inferences.

Categories and Subject Descriptors

E.1 [Data]: Graphs and networks; G.2.2 [Discrete Math-
ematics|: Graph Theory—graph algorithms
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1. INTRODUCTION

Data describing networks of various types, including social
networks (e.g., friendship networks, affiliation networks), phys-
ical networks (e.g., transportation networks, computer net-
works), and biological networks (e.g., protein interaction
networks, transcriptional regulatory networks) are increas-
ingly becoming available. At the same time, there is a grow-
ing interest in analyzing these networks, in order to uncover
general laws that govern their structure and evolution, and
patterns and predictive models to develop better policies
and practices. However, a fundamental challenge in deal-
ing with this newly available observational data describing
networks is that the data is often of dubious quality. Meth-
ods to directly acquire accurate and complete networks, if
even possible, are often prohibitively expensive. Thus, more
often data is gathered from indirect sources or high through-
put experimental methods. This results in networks that are
noisy and incomplete. If analysis is done directly on these
networks it is likely to be biased and lead to faulty conclu-
sions. Before any analysis method can be applied, the data
must be cleaned, and missing information inferred. It is this
output network that is appropriate for further analysis. In
this paper, we introduce the notion of graph identification,
which explicitly models the inference of a “cleaned” output
network from a noisy input graph. In section 2, we present
an illustrative example and use the example to explore the
types of inferences involved in graph identification, as well
as the challenges and issues involved in combining those in-
ferences, in section 3. We then present a simple, general ap-
proach to combining the inferences for graph identification
in section 4. We propose a novel synthetic data generator to
evaluate this approach in section 5 and experimentally show
how the performance of graph identification is sensitive to
the inter-dependencies among these inferences. We present
related work in section 6 and discuss our conclusions and
future work in section 7.

2. MOTIVATING EXAMPLE

Suppose we wish to understand and analyze the social net-
work of a large organization. Specifically, we wish to explore
the network which identifies the individuals in the organiza-
tion, the close friendships between those individuals, and the
roles of the individuals. For large organizations, it may be
very difficult, if possible, to gather such a network directly.
What may instead be available for such an organization are
the archived email communications. Using these communi-
cations, we can construct a communication network where
nodes represent email addresses, edges represent a communi-
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Figure 1: An illustration of the motivating example in section 2. The network on the right, the friendship
network, is the output network appropriate for analysis where the nodes represent people, the edges represent

friendships, and the color represent company roles.

The network on the left is the network which is the

available but noisy and incomplete network, the email communication network, where the nodes represent
email addresses and edges represent communication between email addresses. Graph identification explicitly
models the “cleaned” output friendship network from the noisy input email communication network.

cation between the email addresses, and attributes for these
nodes and edges may include traffic statistics (e.g., frequency
of communications) and content (e.g., presence of a word or
phrase in an email). This available network, however, is
noisy and incomplete for our analysis. To illustrate, con-
sider the small example networks shown in Figure 1. The
nodes in the communication network do not accurately re-
flect the individuals in the organization. If we perform anal-
ysis, substituting email address nodes for people nodes, even
a simple statistic, like the number of individuals, would be
inflated by the fact that people have multiple email ad-
dresses (i.e., mary@ezample.com and mtaylor@ezxample.com
both belong to Mary Taylor). Moreover, the communica-
tion network links are not the same as the social relation-
ships between individuals (i.e., email communications exist
between robert@example.com and mjones@example.com al-
though their users, Robert Lee and Mary Jones, are not close
friends) nor the attributes for our analysis (i.e., the email ad-
dresses are not explicitly annotated with roles). Although
the communication network is not directly appropriate for
our task, we can use the information in the communication
network to infer the social network that we would like to
analyze. This requires identifying the people and the corre-
spondence of email addresses to people (these may be email
addresses which have similar writing and communication
patterns), friends (who are likely to email each other regard-
ing social events), and their roles (reflected in the content of
communications and/or with whom they communicate). We
refer to this process, from the available noisy network to the
network appropriate for our analysis as graph identification.

3. DEFINITION

Graph identification involves identifying the output graph
from a given input graph, and involves constructing the
mapping from the input to the output graph. The output
graph (Go) is the graph that is appropriate for further anal-
ysis. Ideally, the output graph can be acquired directly. In
most cases, however, the output would be too difficult or

expensive to directly acquire. What may be available, in-
stead, is another graph which reflects the output graph but
is too noisy and incomplete to directly use for our analysis.
We refer to this available graph as the input graph (Gz).
Given these graphs, we define graph identification as the
general problem of inferring the desired output graph given
a noisy input graph. The process of doing graph identifica-
tion results in a mapping from elements (i.e., nodes, edges,
and/or attributes) of the input graph to nodes in the output
graph, the identification, or prediction, of edges that exist
in the output graph, and mapping attributes of the nodes
and edges in the output graph to values.

By its nature, graph identification is domain dependent.
The specific inferences needed to perform graph identifica-
tion will vary based on what the input and output graphs
are and how the those graphs are related. In the scenario
presented in section 2, for example, we are interested in the
friendship network of individuals in a company as our out-
put graph while our available input graph is the company’s
email communication network. We know, given our domain,
that the mapping from the elements of the input graph to
the nodes of the output graph is a many-to-one mapping
from the email address nodes of the communication graph
to the person nodes of the social network. Specifically, all in-
dividuals in our social network likely own at least one email
address in the communication network and are likely to have
multiple. Thus, we can identify the set of person nodes by
mapping all email address nodes, which belong to the same
person, to a single person node in the output graph. The
problem of creating this type of mapping is commonly re-
ferred to as entity resolution[l]. Once we define the map-
ping between the nodes of the input and output graph, we
can identify the set of edges that exist between the nodes
of the output graph. In our domain, we can use the do-
main knowledge that people who are friends likely email
each other, likely have similar attributes (e.g., interests) and
likely communicate using terms common to that type of re-
lationship (e.g., invitations to social events). We can thus



use this knowledge to construct an edge prediction function
for friendship edges which we can then apply over all peo-
ple nodes in the output graph. The problem of defining (or
learning) this existence function is commonly referred to as
link prediction[10]. Finally, we know that individuals who
fill a particular role are likely to discuss their role in their
communications. We also know that social networks are of-
ten homophilic such that individuals who fill the same role
are likely to be friends. We can use this knowledge to define
a mapping for the attribute value of a person’s role. The
problem of predicting the values of these types of attributes
is commonly referred to as collective classification[13]. Con-
sequently, in our example in section 2, graph identification is
performed by the application of entity resolution, link pre-
diction, and collective classification over the input graph.

Although the specific inferences in graph identification is
domain dependent, at its core graph identification is still the
problem of performing three general inferences: the node
mapping, edge existence function, and attribute value map-
ping. An important aspect of graph identification is how
these three inferences should be applied and how they inter-
act. One method for doing graph identification involves ap-
plying a collection of local predictors for the three inferences
(e.g., applying entity resolution (ER), link prediction (LP),
and collective classification (CC') models). Another method
for doing graph identification involves defining a joint model,
and extracting the output graph with the most likely con-
figuration. For the rest of this paper, we will explore the
former method. We will examine a simple, general way the
local predictors can be combined, discuss issues involved us-
ing this method of combination, and show, in general, how
inter-dependent these inferences are.

4. PIPELINE GRAPH IDENTIFICATION

One method to perform graph identification is to apply
a collection of local predictors. The benefit of this method
is that we can use any previously defined models for each
of the individual predictors. For our scenario in section 2,
for example, this method allows us to apply a previously
learned local entity resolution, link prediction, and collec-
tive classification models. When applying local predictors,
however, we have to address the additional challenge of how
to combine these predictors. First, we need to consider what
order the predictors are applied. This is important for any
approaches which focus on a single pass, sequential applica-
tion of the predictors. In these approaches, order defines the
set of previous predictions a predictor can use for its infer-
ence. In our motivating example, in particular, application
of link prediction prior to collective classification provides
the collective classification models predicted links to define
relational features. Conversely, application of collective clas-
sification prior to link prediction allows the link prediction
to use the labels of incident nodes in its features. Another
issue to consider is when and how the predictions should be
committed and information shared between the predictors.
Predictions can be applied all at once or be applied iter-
atively. Since our predictors are strongly inter-dependent
it may be beneficial to perform each task partially and ex-
change information more frequently. We may also want to
vary how much information is shared between predictors.
Committing only the most likely predictions at each itera-
tion[12] may mitigate the propagation of incorrect informa-
tion between the predictors. Predictions can also be shared

as hard or soft predictions. Depending on the predictors
used for each inference, there may be information about the
probability or confidence of the predictions that maybe use-
ful to share among the predictors. Graph identification also
provides challenges in that there are two graphs whose in-
formation we can use in our predictors. When predicting
over the nodes of the output graph, we not only have the at-
tributes and edges of the output graph to use, we also have
the additional information provided by the parts of the input
graph mapped to those nodes. For example, the words used
in email communications of a subset of email addresses may
be used to infer the label of the person they belong to. We
need to figure out how best to combine and exploit the infor-
mation in both graphs during both learning and inference.
Finally, we need to consider constraints between the predic-
tions. In our motivating example, we can have constraints
like all friends must have shared email communications or
that individuals with a certain role must be friends. We
must consider how and when to enforce these constraints in
the final output graph.

In this paper, we present and analyze the most direct way
of applying these inferences, in a pipeline [17]. In the pipeline
approach, we apply the predictors one at a time and in se-
quence where all predictions are committed as hard predic-
tions at the end of each turn and are available for use in
the next predictor in the pipeline. Referring to the example
in section 2, this means applying entity resolution, link pre-
diction, and a collective classification in turn, as defined in
section 4.1.

4.1 Example Pipeline

Let Gz(Vz, 1) represent the input graph, and Go (Vo, o)
represent the output graph where Vz and Vo are the sets
of nodes and £z and £p are the sets of edges for the cor-
responding graphs. For all input graph nodes, v; € Vi, let
entity(vr) = vo denote the unknown output graph node,
vo € Vo, which v; corresponds to (e.g., the person who
owns a given email address). In this instance of the pipeline
approach, we begin by applying an entity resolution model,
ERpodel, to create a set of disjoint clusters, ¢ € C, of input
graph nodes such that a pair of input graph nodes, vi,v?,
are in the same cluster if entity(v}) = entity(v) and in
different clusters if entity(v}) # entity(v}). We then cre-
ate a node in the output graph mapped from each cluster
resulting in the full set of output graph nodes. Next, we
consider all pairs of the newly created output graph nodes,
vjo,vg € Vo, and apply the LP,,04e; over these pairs. The
L Py, 04e1 defines an indicator function such that:

LProae (0, vg) - {0 otherwise.

(1)
We create an output graph edge between all output graph
nodes where LPmodel(v{),vg) = 1. Finally, we apply the
CCrodel Over the output graph nodes, vo € Vo in order to
predict the value of the label attribute, vo.A. Given a set of
possible values, L, of the target attribute, A, the CCioder
defines a function, CCogei(vo) = | where | € L. For all
vo € Vo, we assign vo.A = CCpodet (VO)-

To further illustrate the inferences involved in this ap-
proach, we now present a specific instance of the approach
over the motivating problem. In this instance, we assume
a supervised scenario where we have test and train pairs of
input and output graphs, as well as the mapping between

1 if an edge should exists between v/, and v,



Algorithm 1 Example Pipeline Graph Identification

IHDUt= eg ERmodeh meodeh Ccmodel

Output: Go

1: Apply ERmoder on Gr (i.e., cluster nodes)

2: Create nodes Vo € Go mapped from the clusters

3: Apply LPioder Over possible edges between Vo

(i.e., apply edge existence)

4: Create edges £o € Go for existing edges
Apply CChoder on Vo and Eo (i.e., predict labels)
6: Set labels for all Vo and o to their predicted value

o

them. We also use three commonly used predictors and sets
of features for the ER, LP, and CC models. For entity resolu-
tion, we use collective relational clustering (CRC) [1] which
iteratively creates subsets of references, each corresponding
to a single entity, using a weighted combination of the simi-
larity of local attributes and neighborhoods of the references.
In CRC, for a given pair of nodes we use the normalized
similarity between the node entity attributes of the input
graph nodes for the feature similarity (e.g., similarity of the
email address strings[6]) and the Jaccard-Coefficient sim-
ilarity[1] of their neighborhoods (e.g., email address nodes
adjacent to a given node with a communication edge) for the
relational similarity. We vary the o parameter, controlling
the weighting between the local and neighborhood similar-
ities, and threshold parameter, the minimum similarity of
two reference clusters predicted to refer to the same entity,
in CRC based on the training graphs and the mapping be-
tween them. For link prediction and collective classification,
we use the aggregate values of input graph nodes mapped to
each output graph node. We take the aggregate by setting
the value of an attribute a for an output graph node with
the mapping v, = {v},v7,...,v]} as:

Vo.a = mode(v; .a,v}.a, ..., v].a) (2)

where mode takes the most common value of an attribute
a among the mapped input graph nodes. In link predic-
tion, we use these aggregates to create a feature which mea-
sures the percent similarity of the aggregate values of a
given output graph node pair. Specifically, given two out-
put graph nodes and their mapped input graph node sub-
sets, vt = {vi',v}?, . v} and v2 = {02! 0, 0P}, we
compute:

> aead(vh.a,vi.a)
€A |A‘ (3)

similarity(vs,v2) =

where A is the set of all attributes of the input graph
nodes, |A| is the set size of A, and 6(z,y) is an indicator
function which returns 1 if x = y and 0 otherwise. We use
this similarity as a feature in logistic regression[20] model to
predict whether or not an edge exists. Finally, for collective
classification, we use the iterative classification algorithm
(ICA)[11], using logistic regression for the bootstrap and
relational classifiers. For a given output graph node, we use
aggregates of the attributes over the mapped input graph
nodes in the bootstrap classifier (i.e., Va € A, v,.a). For the
relational classifier, we use these aggregates, as well as the
percent of neighboring nodes (i.e., nodes adjacent to a given
node with a friendship edge) which have a specific label.

S. EXPERIMENT

In order to study the pipeline approach of graph identifi-
cation, we experiment to see the strengths and weaknesses
this approach has for different types of networks. First, we
developed a novel synthetic data generator which allows us
to create an input and output graph modeled after the com-
munication and social networks presented in section 2. In
our generator, we can control the reference, link existence,
and label ambiguity in the inference so that we can vary
the ability of each predictor, ER, LP, and CC, respectively,
to make an accurate inference. We generate networks with
different ambiguity levels (Low, Med, High) for each type of
ambiguity. We provide specific details of the synthetic data
generator in section 5.1. We perform graph identification
by applying Algorithm 1 and using the models and features
described in section 4.1. We train predictors, for all com-
binations of ambiguity (27 in total), on one graph and test
on another graph to compute the F1 performance, averaged
over six runs, for each predictor. We also explored the ef-
fects of order, as discussed in section 4, by using a variant
which exchanges the order we apply LP and CC (lines 4 and
5 in Algorithm 1). For both versions, we also explored the
challenge of how to make use of both the input and output
graphs by varying how the LP and CC were trained. We
note that in this example, there are two ways to train LP
and CC. The first is to train the models directly over the
edges and labels of the training output graph. Another way
to train LP and CC is to use the correspondence between
the output and input graph to transfer equivalent edges and
labels to the input graph. Specifically, an equivalent edge is
created between two input graph nodes if the known corre-
sponding output graph nodes also share an edge. Similarly,
an input graph node is assigned a label if the known corre-
sponding output graph node has that label. We then train
the models over the modified training input graph.

5.1 Synthetic Data Generator

To evaluate the performance improvements of our op-
timizations, we developed a novel synthetic data genera-
tor that creates a noisy network with ambiguous references
which need to be merged to entities, missing labels which
need to be classified, missing edges which need to be pre-
dicted, and the graph structure and attributes commonly
used for those types of inferences. The graph and the at-
tributes created by this synthetic data generator is modeled
after the motivating problem presented in the paper where
the desired output graph is a social network where nodes
are people, edges are close friendships between those people,
and attributes represent a trait of that person (e.g., role).
Intuitively, the generator works by creating a synthetic out-
put graph which mimics the structure and attributes of real
world social networks. The generator then creates communi-
cation network input graph from the social network output
graph by adding different types of noise common to these
types of network. The algorithm for the synthetic data gen-
erator is shown in Algorithm 2.

The synthetic data generator begins by creating the struc-
ture of the network (i.e., the set of nodes and edges of the
output graph). A number of network generation models
have been proposed which create networks which exhibit
properties, observed in many real world networks. For our
experiments, we implemented the widely used Forest Fire
generation model [9] which models many of these proper-



Algorithm 2 Synthetic Data Generator

Output: Output Graph (Go), Input Graph (Gr)

Giemp < Generate network structure

Add node labels to Giemp

Add node attributes based on node labels to Giemyp
Add node attributes based on neighboring nodes to
gtemp

5: Add node entity attributes to Giemp

6: Go < Giemp {Set clean graph as output graph}

7: Giemp < Create ambiguous references for nodes in Giemp
8: Remove node labels from Giemp

9: Randomly change values of attributes from Giemp

10: Randomly remove edges from Giemp

11: Add random edges between some node pairs to Giemp
12: G1 <= Giemp {Set noisy graph as input graph}

ties including heavy tailed degree distribution, “small world”
phenomenon, and densification over time. We used a for-
ward burn probability of 0.4 and a backward burn probability
of 0.2. This creates the output graph nodes (people nodes)
and output graph edges (friendship edges).

Once the initial network structure is generated, we add
three sets of attributes to the nodes corresponding to the
three types of inferences we will perform on the graph. The
first set is for use with collective classification and includes
the labels and attributes based on those labels. We use the
label generation method described in [14] (2 labels, with
1/10 of the graph initially labeled randomly) to create the
“role” label of the people nodes where “role” has a high pos-
itive autocorrelation (i.e., people who are friends like have
the same role). We then create binary attributes based on
those labels using the method described in [3] (5 attributes
per label where secondary probability is set to 0.45 while
the primary probability is varied to control label ambiguity).
The second set of attributes is used for link prediction and
consist of between 1 and 100 attributes (varied to control link
existence ambiguity) generated using the method described
in [14]. These attributes were generated for link predic-
tion with the intuition that nodes with similar attributes are
likely to share an edge. The last set of attributes are used for
entity resolution and represent attributes that imply, non-
uniquely, the entity it refers to (e.g., first name references
non-uniquely imply who the individuals are as multiple in-
dividuals may have the same first name). To generate these
attributes, we use the method described in [1] and vary pa
to control the reference ambiguity. The resulting network is
our synthetic output graph (friendship network).

We create an input graph from our output graph by creat-
ing a noisy version of the output graph. We add noise in four
ways. First, we add ambiguous references (email addresses)
to the input graph by adding a random number of nodes (be-
tween 1 and 3) for a percentage of the nodes in the graph
(25% of the original nodes). Each input graph node initially
has the same attributes and labels as the corresponding node
in the output graph and we also create edges similar to those
of the output graph by ensuring all input graph nodes have
an edge “equivalent” to the edges of the corresponding out-
put graph nodes. Equivalent edges are created by adding at
least one edge from an input graph node, corresponding to
a node v? of the output graph, to a input graph node, corre-
sponding to an output graph node v¥, if vJ and v¥ share an
edge. Once the reference nodes are generated, we add noise

to the attributes of those nodes by removing the “role” labels
of all the nodes and randomly changing, as appropriate, the
values of the other attributes. Finally, we add edge noise
to the graph by randomly removing a percent of the exist-
ing edges (20% of the current number of edges) and adding
edges between randomly selected pairs of nodes in the graph
(adding 50% more edges) where the resulting edges are our
communication edges. The resulting noisy network is our
synthetic input graph (communication network).

5.2 Results and Discussion

We evaluate the performance of the ER, LP, and CC mod-
els using the average F1 performance of each predictor over
the different networks. For entity resolution, we use the
method of calculating F1 over ER predictions as described
in [1] where we consider all possible pairs of input graph
nodes and whether or not each pair is accurately mapped to
the same or different output graph node. For link prediction
and object classification, however, we cannot compute the
F1 performance directly over the nodes of the predicted out-
put graph because the set of output graph nodes will vary
based on the entity resolution performance. We address this
by evaluating link prediction and object classification over
predictions mapped onto the input graph. A predicted edge
is mapped between nodes in the input graph if the predicted
output graph nodes of the two input graph nodes have a pre-
dicted edge between them. Moreover, the predicted edge be-
tween two nodes in the input graph is a true positive edge if
an edge exists between the mapped true output graph nodes
and a false positive edge otherwise. Similarly, the predicted
label of a node in the input graph is the label of the node
it is mapped to in the predicted output graph and the true
label of that node is the label of the node it is mapped to in
the true output graph.

The results are presented in Table 1 and Table 2. For clar-
ity, we only show results where we vary one type of ambigu-
ity while holding the others at medium. First, in general, we
see that good performance of predictors early in the pipeline
result in improved performance of later predictors. In fact,
the best performances are seen when the entity ambiguity is
low resulting in ER performing well. Good ER performance
results in a more accurate set of person nodes, and thus a
more accurate set of mappings for use by the features of LP
and CC. We see the same trend in CC performance when
link existence ambiguity is low in Table 1. LP performance
improves which results in more accurate links for the rela-
tional features used in CC. Note though the improvement
in LP performance does not affect ER and the improvement
in CC performance does not affect LP and ER. This is a
weakness in the pipeline approach in that the flow of infor-
mation is only one way. Ideally, in graph identification, the
models and features used by the predictors should be able to
make use of predictions from all other predictors to improve
its performance (e.g., use labels and predicted edges in the
ER feature and relational similarity, use predicted labels in
LP relational features). An obvious extension to address this
weakness is an iterative pipeline approach where the pipeline
is repeatedly applied over the network. We performed an
initial study of the iterative pipeline approach but the re-
sults were inconclusive indicating a naive iterative approach
may not be enough. This is a subject of future work. Next,
we note that when predictors early in the pipeline perform
poorly, the effect is reduced performance for all predictors



later in the pipeline. In fact, the resulting reduction in per-
formance can be drastic as shown when we increase reference
ambiguity. Although link existence and label ambiguity is
held constant, poor performance by ER early in the pipeline
results in substantial drop in LP and CC performance as
both are forced to make predictions over people nodes whose
mapped email address nodes inaccurately and incompletely
reflect a person and that person node’s friendships and at-
tributes. Thus, in graph identification, we need to be aware
of what the expected performance of each predictor is and
how each predictor will impact the other predictors in the
overall inference.

Comparing the results from the two ways of training our
LP and CC models, shown in Table 1, we see a general
trend where LP performs better when trained over the out-
put graph. On the other hand, we see that CC generally
performs better when trained over the input graph. The
improvement in both cases demonstrates two things. First,
the improvement shows the importance of understanding
and exploiting information in both the input and output
graphs in the inferences. Second, the differences over the
two sets of results, where the output graph predicted over
models trained over the output graph has better LP per-
formance but worse CC performance than the alternative,
demonstrate the complexity of the inference interactions, as
well as the difficulty in comparing the quality of one pre-
dicted output graph from another.

In the comparison between approaches varying the or-
der the inferences are performed, shown in Table 2, we see
that order can substantially impact the overall performance.
Both LP and CC performance declines when applying CC
prior to LP. The decline is particularly noticeable for CC
performance when the label ambiguity is high. When label
ambiguity is high, the classifier used must rely on relational
features more. However, given that the edges LP predicts,
over which the nodes are homophilic, are not available the
classifier is unable to accurately predict the label. This in
turn affects the performance of LP which uses the predicted
label in its predictions. Although the inter-dependence of
these inference have the potential to positively affect their
performance as a whole, the inverse is also true. In graph
identification, the impact of a poorly performing predictor
must be mitigated when combining the inferences.

6. RELATED WORK

There have been a number of machine learning problems
defined over network data[7]. In this work, we discussed
how some of these problems (i.e., entity resolution, link pre-
diction, and entity resolution) correspond to types of in-
ferences involved in graph identification. We note however,
that these problems only infer specific parts of a graph. They
do not, individually, address all the inferences involved in in-
ferring both the structure and attributes of a whole graph.
There are previous work which infer more of the graph by
combining many of these inferences. Many attempts per-
form pairwise combinations of these inferences such as com-
bining model link prediction and collective classification[4,
5, 19] or combining entity resolution and collective classifi-
cation[2]. There have also been work on creating a general
framework which allows for a general combination of these
problems[16, 17, 8, 15, 18]. To our knowledge, none of the
previous work have explored the benefits, issues, and chal-

lenges in performing this combination to explicitly infer a
full graph.

7. CONCLUSION AND FUTURE WORK

In this paper, we introduce the notion of graph iden-
tification. We discuss the types of inferences involved in
graph identification and explore those inferences using an
illustrative example problem. We discuss the types of ap-
proaches applicable for graph identification and explored one
approach which uses a combination of local predictors. We
discuss the issues we must consider when using this approach
and present a simple, general approach to applying these
inferences in graph identification. We then experimentally
evaluate the general approach and show the importance of
the inter-dependence of these inferences is in accurately pre-
dicting the output graph. In future work, we plan to further
explore these inter-dependencies by exploring alternate ways
to combine local predictors and comparing those methods to
a full joint approach to graph identification. We are also ex-
ploring methods for comparing the quality of two predicted
output graphs. and are in the process of collecting real world
datasets we can evaluate our approaches over.
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