
ABSTRACT

Title of dissertation: IDENTIFYING GRAPHS FROM
NOISY OBSERVATIONAL DATA

Galileo Mark S. Namata Jr.
Doctor of Philosophy, 2012

Dissertation directed by: Professor Lise Getoor
Department of Computer Science

There is a growing amount of data describing networks – examples include so-
cial networks, communication networks, and biological networks. As the amount of
available data increases, so does our interest in analyzing the properties and charac-
teristics of these networks. However, in most cases the data is noisy, incomplete, and
the result of passively acquired observational data; naively analyzing these networks
without taking these errors into account can result in inaccurate and misleading con-
clusions. In my dissertation, I study the tasks of entity resolution, link prediction,
and collective classification to address these deficiencies. I describe these tasks in
detail and discuss my own work on each of these tasks. For entity resolution, I
develop a method for resolving the identities of name mentions in email communi-
cations. For link prediction, I develop a method for inferring subordinate-manager
relationships between individuals in an email communication network. For collec-
tive classification, I propose an adaptive active surveying method to address node
labeling in a query-driven setting on network data. In many real-world settings,
however, these deficiencies are not found in isolation and all need to be addressed
to infer the desired complete and accurate network. Furthermore, because of the
dependencies typically found in these tasks, the tasks are inherently inter-related
and must be performed jointly. I define the general problem of graph identifica-
tion which simultaneously performs these tasks; removing the noise and missing
values in the observed input network and inferring the complete and accurate out-
put network. I present a novel approach to graph identification using a collection
of Coupled Collective Classifiers, C3, which, in addition to capturing the variety of
features typically used for each task, can capture the intra- and inter-dependencies
required to correctly infer nodes, edges, and labels in the output network. I dis-
cuss variants of C3 using different learning and inference paradigms and show the
superior performance of C3, in terms of both prediction quality and runtime perfor-
mance, over various previous approaches. I then conclude by presenting the Graph
Alignment, Identification, and Analysis (GAIA) open-source software library which



not only provides an implementation of C3 but also algorithms for various tasks
in network data such as entity resolution, link prediction, collective classification,
clustering, active learning, data generation, and analysis.



IDENTIFYING GRAPHS FROM
NOISY OBSERVATIONAL DATA

by

Galileo Mark S. Namata Jr.

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2012

Advisory Committee:
Professor Lise Getoor, Chair/Advisor
Professor Amol Deshpande
Professor Carl Kingsford
Professor William Rand
Professor Najib M. El-Sayed



c© Copyright by
Galileo Mark S. Namata Jr.

2012



Foreword

Portions of this dissertation are derived from research and publications co-

authored by the candidate and published elsewhere. Chapter 2 is based on the

book chapter A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete

Networks [121] and magazine article Collective Classification in Network Data [149].

The entity resolution work in Chapter 3 is based on the paper Name Reference

Resolution in Organizational Email Archives [47]. The link prediction work in the

paper Chapter 4 is based on Relationship Identification for Social Network Discovery

[48]. Work in Chapter 5 is based on an active submission Active Surveying for

Query-Driven Collective Classification. Finally, Chapter 6 is an extension of the

work Collective Graph Identification [120].

ii



Dedication

To my loving and supportive parents.

iii



Acknowledgments

I am forever grateful to everyone whose encouragement and support allowed

me to complete my Ph.D. studies and dissertation. Due to my name sake, Galileo

Galilei, performing scientific research has been a lifelong dream but one I never

really expected to ever attain.

First and foremost, I thank my advisor, Lise Getoor, for her patience, support,

and guidance from the very beginning. She taught me so much through her guidance

and example – from writing good papers and presentation skills to being passionate

about my research and always striving for my best. I cannot express my extreme

gratitude for all she has done and cannot imagine a more perfect advisor.

Next, I would like to thank my other committee members, Carl Kingsford,

Amol Deshpande, William Rand, and Najib El-Sayed, for taking time from their

busy schedules to review my dissertation, participate in my defense, and providing

insightful suggestions. I would like to give a special thanks to Amol for his guid-

ance and help through our collaborations together and to Carl for allowing me to

learn about biological networks from his always energetic group meetings and for

introducing me to the cluster resources which allowed me to take my research to the

next level.

Graduate school takes many years to complete but my friendships here have

made that time fly. I thank the LINQS members – Indrajit Bhattacharya, Rezarta

Islamaj, Prithviraj Sen, Louis Licamele, Mustafa Bilgic, Elena Zheleva, Hossam

Sharara, Walaa Moustafa, Lilyana Mihalkova, Stanley Kok, Stephen Bach, Ben Lon-

iv



don, Theodoros Rekatsinas, Bert Huang, and Angelika Kimmig, for their mentor-

ship, our stimulating discussions, our memorable lunch outings, the wonderful work

atmosphere, and their friendships. To my research collaborators, I have learned so

much from each and every one of you and it has been a tremendous pleasure work-

ing with all of you. I give special thanks Chris Diehl whose guidance, advice, and

friendship have been invaluable not only for my time at graduate school but also in

defining my long term goals.

I would like to thank the department staff for all their hard work and always

being so helpful with dealing with the logistics of being a graduate student. I es-

pecially thank Fatima Bangura and Felicia Chelliah whose positive attitude and

beautiful smiles were always something to look forward to and whose active com-

munity service has inspired me to do more in my own community.

Last, but certainly not least, I would like to thank my family. To my extended

family, especially my many cousins, thank you for always one of my biggest sources

of support, encouragement, and laughter. To my siblings, Anna Lisa Namata Licud

and Jonathan James Namata, thank your for a lifetime of always being there and

being my oldest and closest confidants. To my future wife, Ivy Pimentel, thank you

for all your patience, your heart, and being all that you are. I look forward to our life

together. The final acknowledgement of this dissertation goes specifically to Galileo

B. Namata and Melba S. Namata, my parents. Thank you for the unconditional

love, endless encouragement, and for all the many sacrifices you made to get me

where I am today.

v



Table of Contents

List of Tables x

List of Figures xii

1 Introduction 1
1.1 Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Social Network Analysis . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Protein Networks . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Internet Topology . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Work 13
2.1 Entity Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Link Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Collective Classification . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Joint Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Entity Resolution of Name References in Email Archives 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Exploiting Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Name Reference Entity Resolution Process . . . . . . . . . . . . . . . 30

3.4.1 Candidate Set Generation . . . . . . . . . . . . . . . . . . . . 31
3.4.2 Candidate Scoring . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.2.1 Relationships . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2.2 Time Scale . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.2.3 Summary Statistics . . . . . . . . . . . . . . . . . . . 35
3.4.2.4 Integrating Traffic History . . . . . . . . . . . . . . . 36

3.4.3 Candidate Rejection . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.1 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.1.1 The Data: Enron Email Corpus . . . . . . . . . . . . 38
3.5.1.2 Extracting Enron Employee Names . . . . . . . . . . 39
3.5.1.3 Constructing the Email Traffic Network . . . . . . . 39
3.5.1.4 Detecting Name References . . . . . . . . . . . . . . 40

3.5.2 Ground Truth Generation . . . . . . . . . . . . . . . . . . . . 41
3.5.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 41

3.5.3.1 Relative Ranking Performance . . . . . . . . . . . . 42
3.5.3.2 Absolute Ranking Performance . . . . . . . . . . . . 43

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7.1 Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7.2 Enron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vi



3.7.3 Entity Resolution in Email . . . . . . . . . . . . . . . . . . . . 48
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Link Prediction for Social Network Discovery 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Learning to Rank Relationships . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.3 Lower Bound on the Mean Reciprocal Rank . . . . . . . . . . 61

4.4 Message Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 Manager-Subordinate Relationship Link Prediction . . . . . . . . . . 64

4.5.1 Traffic-Based Relationship Ranking . . . . . . . . . . . . . . . 64
4.5.2 Content-Based Relationship Ranking . . . . . . . . . . . . . . 65

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6.1 Traffic-Based Relationship Ranking . . . . . . . . . . . . . . . 67
4.6.2 Content-Based Relationship Ranking . . . . . . . . . . . . . . 68
4.6.3 Content-Based Message Ranking . . . . . . . . . . . . . . . . 69

4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 73

5 Active Surveying for Query-driven Collective Classification 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1 Intelligence Gathering . . . . . . . . . . . . . . . . . . . . . . 78
5.2.2 Disease Transmission . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.3 Viral Marketing . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.1 Collective Classification . . . . . . . . . . . . . . . . . . . . . 81
5.3.2 Active Learning and Inference . . . . . . . . . . . . . . . . . . 82
5.3.3 Active Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3.3.1 Uncertainty Sampling for Active Learning . . . . . . 84
5.3.3.2 Structure-based Sampling for Active Inference . . . . 85

5.4 Query-driven Active Surveying . . . . . . . . . . . . . . . . . . . . . . 86
5.4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4.2 The Smoothness Assumption . . . . . . . . . . . . . . . . . . 88

5.4.2.1 Feature Smoothness . . . . . . . . . . . . . . . . . . 90
5.4.2.2 Structural Smoothness . . . . . . . . . . . . . . . . . 91

5.4.3 Survey Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.4 An Adaptive Survey Strategy . . . . . . . . . . . . . . . . . . 93

5.5 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 95
5.5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5.3 Sampled Query Sets . . . . . . . . . . . . . . . . . . . . . . . 97
5.5.4 Targeted Query Sets . . . . . . . . . . . . . . . . . . . . . . . 99

vii



5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Collective Graph Identification 105
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Graph Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.1 Independent Models . . . . . . . . . . . . . . . . . . . . . . . 109
6.2.2 Joint Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.4 Coupled Collective Classifiers . . . . . . . . . . . . . . . . . . . . . . 113

6.4.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.4.2 Weight Learning . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4.2.1 Semi-Supervised Learning . . . . . . . . . . . . . . . 121
6.4.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.4.4 Constructing the Output Graph . . . . . . . . . . . . . . . . . 123
6.4.5 C3 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.5.1.1 Citation Networks . . . . . . . . . . . . . . . . . . . 129
6.5.1.2 Email Communication Network . . . . . . . . . . . . 130
6.5.1.3 Discourse Opinion Network . . . . . . . . . . . . . . 131
6.5.1.4 Synthetic Networks . . . . . . . . . . . . . . . . . . . 132

6.5.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . 134
6.5.3 Prediction Quality . . . . . . . . . . . . . . . . . . . . . . . . 138

6.5.3.1 Comparison to Other Approaches . . . . . . . . . . . 138
6.5.3.2 Varying Dependencies . . . . . . . . . . . . . . . . . 139
6.5.3.3 Comparison of Variants . . . . . . . . . . . . . . . . 140
6.5.3.4 Applying Graph Construction Procedures . . . . . . 141

6.5.4 Runtime Performance . . . . . . . . . . . . . . . . . . . . . . . 146
6.5.4.1 Learning and Inference Time . . . . . . . . . . . . . 146
6.5.4.2 Convergence Results . . . . . . . . . . . . . . . . . . 150
6.5.4.3 Parallelization Results . . . . . . . . . . . . . . . . . 151
6.5.4.4 Scalability Results . . . . . . . . . . . . . . . . . . . 153

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7 GAIA 156
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.3 GAIA Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.3.1 Algorithmic and Analysis Support . . . . . . . . . . . . . . . . 160
7.3.2 Graph Support . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.3.3 Modular Architecture with Abstraction . . . . . . . . . . . . . 163
7.3.4 Accessibility and Development . . . . . . . . . . . . . . . . . . 166

7.4 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 167

viii



8 Conclusion and Future Work 168
8.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 168
8.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Bibliography 174

ix



List of Tables

3.1 Summary statistic definitions. m(e1, e2, Tk,GM) is the number of mes-
sages sent from network reference e1 to network reference e2 over the
time interval Tk. I(·) is the indicator function. . . . . . . . . . . . . . 34

4.1 List of possible communications events corresponding to a dyadic
relationship (na, nb). Nc is the common set of network references
with whom both na and nb communicate. nc is a generic reference to
any network reference in Nc. . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Mean reciprocal rank for the various approaches. The MRR reported
for the learned rankers results from the best performing regularization
parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Statistics on the four real-world networks used in the evaluation . . . 96
5.2 Number of iterations (out of 30) where ASQ2C scores higher on av-

erage (wins) or lower (losses) than each other method. Of those, the
number of significant wins and losses, using paired t-tests with 90%
significance, are listed in parentheses. . . . . . . . . . . . . . . . . . . 100

6.1 Cora and Citeseer Feature Definition . . . . . . . . . . . . . . . . . . 115
6.2 Enron Feature Definition . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3 Discourse Opinion Feature Definition . . . . . . . . . . . . . . . . . . 117
6.4 Overall F1 performance (representing the average over the entity res-

olution, link prediction, and node labeling F1 performance) on the
output of the different models. Bold indicates the highest value in a
given column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.5 Each row indicates the number of times the approach, in each row,
significantly outperforms the average overall performance of the ap-
proaches in each column, over all three levels of noise and three levels
of sampling (a maximum of 9 pairwise comparisons for Cora and
Citeseer and a maximum of 3 for Enron and Discourse). . . . . 143

6.6 Average F1 performance over the entity resolution, link prediction,
and node labeling output on the different models. We also compute
the overall F1 performance (representing the average over the entity
resolution, link prediction, and node labeling F1 performance) on the
different models. Bold indicates the highest value in a given column. 144

6.7 Overall F1 performance (representing the average over the entity res-
olution, link prediction, and node labeling F1 performance) after ap-
plying hard constraints on the output of the different models . Bold
indicates the highest value in a given column. . . . . . . . . . . . . . 147

x



6.8 Each row indicates the number of times the approach, in each row,
significantly outperforms the average overall performance after ap-
plying hard constraints of the approaches in each column, over all
three levels of noise and three levels of sampling (a maximum of 9
pairwise comparisons for Cora and Citeseer and a maximum of 3
for Enron and Discourse). . . . . . . . . . . . . . . . . . . . . . . 148

6.9 Average F1 performance after applying hard constraints over the en-
tity resolution, link prediction, and node labeling output of the dif-
ferent models on all datasets for medium percentage unknown and
medium noise for Cora and Citeseer. We also compute the overall
F1 performance (representing the average over the entity resolution,
link prediction, and node labeling F1 performance) on the different
models. Bold indicates the highest value in a given column. . . . . . 149

6.10 Average learning, inference, and overall runtimes (in minutes) for
each model over the experiments on Cora. . . . . . . . . . . . . . . 150

6.11 Number of times convergence or oscillation was reached in the experi-
ments using C3 for all datasets (a maximum entry of 45 for Cora and
Citeseer and 15 for Enron and Discourse). We also present the
average number of iterations performed prior to reaching convergence
or oscillation. Note that all our C3 experiments either converged or
reached an oscillation point. . . . . . . . . . . . . . . . . . . . . . . . 151

xi



List of Figures

1.1 An illustration of graph identification. a) shows the input graph,
which represents a communication network, where the nodes are email
addresses, the edges are email communications, and the edges have
attributes describing the communication content b) shows the out-
put graph, which represents the social network, which is identified,
or inferred, from the input graph. The nodes in the output graph rep-
resent entities (people), and the edges represent social relationships,
in this case employee-manager relationship. In addition, nodes in the
output graph are labeled with their functional role in the company. . 4

2.1 Example of a entity resolution problem. In this example, the nodes on
the left are ambiguous due to variations in the spelling of their names.
While attributes may suffice to resolve the entities in some cases (e.g.,
Juan Hernandez and J. Hernandez are likely the same person due to
the similarity in their names), some cases (e.g., J. Phillips can refer
to either Jane or John Phillips) it may not. However, if we use the
edges (i.e., both Jane Phillips and J. Phillips have collaborated with
Larry Jones), we may be able to improve our predictions. . . . . . . . 14

2.2 Example of a link prediction problem. The graph on the left repre-
sent a collaboration network at time t, and the graph on the right
represent the predicted collaboration network at time t+1. Predicted
collaboration edges are highlighted using a dashed line. . . . . . . . . 17

2.3 Example of a collective classification problem. Nodes with a question
mark are nodes whose labels are unknown. Collective classification
uses the attributes and labels of neighboring nodes. Ann Smith, for
example, is likely to have the same research area as her co-authors,
Robert Cole and Mark Taylor. . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Example of a graph identification problem. In this example, the nodes
on the left are ambiguous due to variations in the spelling of their
names, there are unobserved edges between the ambiguous nodes,
and nodes with a question mark are nodes whose labels are unknown.
Performing graph identification requires applying jointly performing
the entity resolution, link prediction, and collective classification tasks. 22

3.1 The name reference resolution process . . . . . . . . . . . . . . . . . . 31
3.2 Autoregressive Filter Performance: (a) Daily Interval Rank 1 Rates,

(b) Average True Referent Ranks and (c) Areas Under the ROC Curves 50
3.3 Autoregressive Filter Performance: (a) Weekly Interval Rank 1 Rates,

(b) Average True Referent Ranks and (c) Areas Under the ROC Curves 51
3.4 Moving Average Filter Performance: (a) Daily Interval Rank 1 Rates,

(b) Average True Referent Ranks and (c) Areas Under the ROC
Curves (d) Weekly Interval Rank 1 Rates, (e) Average True Referent
Ranks and (f) Areas Under the ROC Curves . . . . . . . . . . . . . . 52

xii



5.1 Accuracy per iteration (i.e., survey budget) of active surveying av-
eraged over 40 runs each of the Cora, Citeseer, Wikipedia, and
PubMed networks. Each point indicates the average accuracy after
surveying some number of nodes. . . . . . . . . . . . . . . . . . . . . 99

5.2 Accuracy per iteration averaged over 40 runs on the Citeseer dataset
where the query set is selected using snowball sampling. . . . . . . . . 103

5.3 Accuracy per iteration averaged over 40 runs on the PubMed dataset
where the query set is selected by filtering on keywords (e.g., death,
hypoglycemia, stress). . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1 Input and output of graph identification. (a) Input graph represent-
ing a communication network where the nodes are email addresses
and the edges are email communications. (b) Output graph repre-
senting the social network identified by graph identification. The
nodes correspond to people and the edges to employee-manager rela-
tionships. The people are also labeled with their roles. (c) Mapping
from input to output nodes. . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Learning, Inference, and Overall Time on Cora dataset for C3 varying
the numbers of available threads. . . . . . . . . . . . . . . . . . . . . 153

6.3 Learning, Inference, and Overall Time on synthetic dataset for C3 as
the number of nodes and edges in the input graph increase. . . . . . . 154

xiii



Chapter 1

Introduction

There is a growing wealth of data describing networks of various types in-

cluding social networks, communication networks, transportation networks, and bi-

ological networks. At the same time, there is growing interest in analyzing these

networks in order to uncover (1) general laws that govern their structure and evolu-

tion, and (2) patterns and predictive models to develop better policies and practices.

However, a fundamental challenge in dealing with this newly available observational

data describing networks is that the data is often of dubious quality—it is noisy

and incomplete—and before any analysis method can be applied, the data must be

cleaned, missing information inferred, and mistakes corrected. Skipping this clean-

ing step can lead to flawed conclusions for measures as basic as the label and degree

distribution; for more complex analytic queries, the results are even more likely to be

inaccurate and misleading. In this dissertation, we identify and develop approaches

to the inference tasks involved in addressing common deficiencies in network data.

Deficiencies in network data can be caused by errors in the set of nodes, edges,

and attribute values. Determining the nodes is often challenging because the nodes

are often constructed from data in which the identifiers are ambiguous. Social

networks, for example, can be generated using name mentions from the text of email

communications. Name references, however, are typically ambiguous, relying on a

1



shared context between the individuals communicating that may not be immediately

available. For example, in the message “How’s John doing today?” there is a shared

context that a common friend named “John” is ill. We need this shared context

to uniquely identify the person to which this name mention refers. Due to this

ambiguity when creating nodes for people from name mentions, multiple nodes which

refer to the same underlying individual may be incorrectly instantiated. To resolve

this deficiency, these duplicate nodes must be merged together, a task referred to as

entity resolution.

Next, the set of edges between nodes are often spurious and incomplete. In

using high throughput experiments for generating protein networks, for example,

the presence of spurious and missing links have been shown to be as high as 17%

and 51%, respectively, even for well studied organisms [76]. Similarly, while we may

have an accurate set of edges observed, the observed edges may not semantically be

what we are interested in analyzing. For example, we maybe interested in studying

the managerial relationships within a company social network but the only avail-

able relationship maybe observed communication relationships. Directly using the

communication relationships to represent managerial relationships is incorrect given

that communications reflect multiple types of relationships (e.g., friendships, adver-

sarial, family). To acquire the network structure desired, spurious edges must be

removed and missing edges must be inferred, a task referred to as link prediction.

Beyond the structure of a network, an important and widely studied deficiency

in network data is that the node attribute values of interest are often only partially

observed. For example, while the text of papers in a citation network maybe avail-

2



able, the topics of those papers may not be provided. Typically, there is a cost

(e.g., time, money, resources) associated with acquiring attribute values and often

the available budget does not allow for acquiring the values of all the nodes. Conse-

quently, the missing attribute values must be inferred, a task referred to as collective

classification.

There has been a significant amount of work in the individual tasks of entity

resolution, link prediction, and collective classification. In practice, however, these

problems do not occur in isolation. Networks with duplicate nodes are also very

likely to have missing and spurious edges and missing attribute values. In such

cases, entity resolution is needed to infer the correct set of nodes over which the

edges of link prediction are defined and the labels of collective classification are

assigned. Similarly, link prediction edges can be used to guide which nodes should

be merged in entity resolution, as well as to guide in the prediction of labels in

collective classification. The attribute values provided by collective classification

may also guide the entity resolution and link prediction. As this highlights, these

tasks are inherently inter-related tasks that must be performed simultaneously to

clean and complete the network. We define this joint application of entity resolution,

link prediction, and collective classification as the problem of graph identification.

In the next section, we discuss various examples of entity resolution, link pre-

diction, and collective classification, with an emphasis on highlighting how they fit

in the problem of graph identification. The examples were chosen to demonstrate

the applicability and impact progress work in these tasks, particularly under graph

identification, can achieve in multiple domains. The examples also show the diver-

3



Figure 1.1: An illustration of graph identification. a) shows the input graph, which

represents a communication network, where the nodes are email addresses, the edges

are email communications, and the edges have attributes describing the communica-

tion content b) shows the output graph, which represents the social network, which

is identified, or inferred, from the input graph. The nodes in the output graph

represent entities (people), and the edges represent social relationships, in this case

employee-manager relationship. In addition, nodes in the output graph are labeled

with their functional role in the company.

sity in the features and types of inferences used within and across tasks in graph

identification.

1.1 Motivating Examples

1.1.1 Social Network Analysis

Suppose we wish to understand and analyze the social network of a large or-

ganization. Specifically, we wish to analyze the organizational structure, including

the managerial relationships and roles of the individuals. For certain organizations,

4



it may be very difficult, if possible, to gather such a network directly. What may

instead be available for such an organization are archived email communications

[90]. These communications define a network where nodes represent email addresses,

edges represent communication between the email addresses, and attributes for these

nodes and edges may include traffic statistics (e.g., frequency of communications)

and content (e.g., presence of a word or phrase in an email). This available net-

work, however, is inherently inappropriate for our analysis. To illustrate, consider

the small example networks shown in Figure 1.1. The nodes in the communica-

tion network do not accurately reflect the individuals in the organization. If we

perform analysis, substituting email address nodes for people nodes, even a basic

statistic, like the number of individuals, would be inflated by the fact that people

have multiple email addresses (i.e., mary@example.com and mtaylor@example.com

both belong to Mary Taylor). Moreover, the communication network links are not

the same as the desired social relationships between individuals (i.e., email com-

munications exist between robert@example.com and mjones@example.com although

their users, Robert Lee and Mary Jones, do not share a managerial relationship).

The attributes for our analysis are also not given (i.e., the email addresses are not

explicitly annotated with roles). Although the communication network is not di-

rectly appropriate for our task, we can use the information in the communication

network to infer the appropriate social network. This requires identifying the people

and the correspondence of email addresses to people (these may be email addresses

which have similar writing and communication patterns), managerial relationships

(who are likely to email each other regarding work events), and their roles (reflected

5



in the content of communications and with whom they communicate).

1.1.2 Protein Networks

In recent years, protein-protein interaction (PPI) networks from high through-

put experiments have become a widely studied source of data for understanding

biological processes in organisms. These networks have been used to explore various

characteristic about proteins from protein essentiality [186, 12] and function anno-

tation [34, 119], to patterns of how these proteins interact to perform higher level

functions [10, 14, 45]. Ideally, an accurate and complete protein network, where the

proteins are annotated with their function, all edges are accounted for, and proteins

are mapped to their complexes, is available. However, a fundamental challenge of

studying these networks is that these networks are notoriously noisy and incomplete.

Comparisons of high confidence networks of well annotated species show as little as

9% overlap [76]. Estimates for the presence of false links and missing links have been

shown to be as high as 17% and 51%, respectively, for well-studied organisms [76].

Moreover, most proteins, even for comparatively well-annotated species like yeast

and worm, have most proteins without any functional [153] or complex annotations

[117]. Although this available network may not be ideal for our analysis, we can

use it to infer a network that is more suitable. We can use the known annotations

of some proteins to infer the missing annotations of proteins related by observed

or predicted interactions [119, 34]. Similarly, we can use auto-correlation between

the function of interacting proteins, as well as attributes like cellular localization, to

6



infer the true set of interactions [187, 158]. We can also use the topology of the PPI

and the functional enrichment common in complexes to predict protein complexes

[10, 190].

1.1.3 Internet Topology

As Internet usage continues to grow, it is becoming increasingly essential that

we understand the structure and design of the Internet in order to understand its

vulnerabilities and limitations [165]. Ideally, for example, we would like to have a

map of the Internet which shows all routers, information about these routers (such

as type or geographic location), the administrative domain of the routers (known

commonly as autonomous systems), and the existence and types of relationships

between those autonomous systems. The Internet, however, is not owned or man-

aged by a single organization. Instead, the Internet is a collection of networks run

by different Internet Server Providers (ISPs) who do not publish many of the de-

tails regarding their networks. Generally, the available maps of the Internet are

created using tools which provide only a partial view of the full network and are

error prone. For example, router level networks created using TTL-limited probes

(i.e., traceroute) tend to over inflate the true number of routers, as well as incor-

rectly record the existence of links between those routers [156]. As in the previous

examples, while the available networks may be ill-suited for our analysis, we can

use them to infer a network which is appropriate for further analysis. We can infer

which IP addresses belong to the same router and, similarly, which routers belong

7



to which autonomous system by using their attributes (e.g., geographic location and

DNS names) and their observed and inferred connectivity. We can also infer the

existence and types of relationships between the autonomous systems by looking at

the attributes and connectivity of its routers [46].

1.2 Outline and Contributions

In this dissertation, we present our research on entity resolution, link predic-

tion, and collective classification first as independent tasks and then as tasks within

the problem of graph identification. We begin by providing some additional back-

ground for the tasks of entity resolution, link prediction, and collective classification

in Chapter 2. We provide formal definitions, describe the characteristics and chal-

lenges, and survey previous approaches to these problems. We also describe previous

work which looks at jointly performing pairs of these tasks, including domain-specific

problems, related to the problem of graph identification.

Next, we discuss our work on entity resolution in Chapter 3. Specifically,

we look at entity resolution applied to name references in email communications.

Name references are the various forms of an individual’s given name, along with

their nicknames, that may appear in the body of an email communication. Name

references are an important element in understanding the social network. Before

we can process the email content in an archive and associate activities and other

attributes with individuals, we need to understand who is participating in and is

mentioned in the email communications. For example, consider an email containing

8



the body:

“Will Bob be joining us later? See you soon!”

In this example, the word “Bob” is a name mention to a specific person whose iden-

tity, given the topic of conversation along with the name reference, is clearly known

by both the email sender and recipient. Yet to someone without knowledge of the

context, the reference is meaningless and consequently it is unclear if the message

is in regard to a social occasion (e.g., lunch) or business event (e.g., meeting). In

this work, we test the hypothesis that communications around the name mention

can provide this missing context. We developed unsupervised algorithms which

leverages communication traffic (quantity, time, and direction) to resolve the given

name mentions in a communication. We evaluate our approach on manually an-

notated name mentions over corporate emails and demonstrate how effective traffic

information alone can accurately disambiguate name references.

In Chapter 4, we present our work on link prediction as applied to predicting

social relationships. As with the work described in Chapter 3, our work in link

prediction is applied in the context of email communication networks. In this work,

we consider the scenario from domains such as intelligence analysis and litigation

support where an analyst is attempting to reconstruct a representation of the social

network from the data with minimal context. For this setting, the link discovery

process of identifying relationships is inherently a collaborative process between hu-

man and machine. Consequently, the goal of the link prediction task here is not

9



to simply restore the missing edges, but rather to focus the analyst’s attention on

both the (1) relevant communications relationships that express the given social

relationship of interest (2) and the relevant message traffic that supports this asso-

ciation. Our hypothesis in this work is that the words used in the communications,

as well as the amount and direction of traffic between individuals, are indicative of

the relationships individuals share. We propose a supervised ranking approach to

test this hypothesis and evaluate the approach on predicting subordinate-manager

relationships in a major corporation. We show that not only does our approach

highlight the most likely subordinate-manager relationships for a given individual,

it also provides a natural way of highlighting the relevant communication and text

which supports that decision.

Next, we present our work in collective classification in Chapter 5. While

traditional collective classification aims to learn a predictor that accurately labels

all available data, in this work we consider the setting in which one is primarily

interested in labeling a particular subset of nodes which we refer to as the query

set. For example, when labeling a social network, we may only be interested in the

labels of key high-ranking or influential individuals. Accurate classification of the

rest of the social network may only be useful to help collectively classify the targeted

nodes. Furthermore, in many practical scenarios, labels and network structure may

not be immediately available for all nodes, and certainly are not available for the

nodes in the query set. Instead, there is a cost for acquiring this information. We

therefore define the problem of query-driven collective classification in an active

surveying setting. The goal in this task is to identify the labels and structural

10



information to acquire, given some budget constraints, to maximize the collective

classification performance over the query set. The underlying hypothesis in this

work is that active learning approaches which specifically address the query-driven

nature of the problem will yield better performance compared to traditional active

learning approaches. Leveraging common assumptions on feature and structural

smoothness, We propose a novel adaptive algorithm, ASQ2C, and empirically show

its superiority over standard active learning approaches on four real-world datasets.

In many real-world settings, the deficiencies addressed by entity resolution,

link prediction, and collective classification are not found in isolation and all need

to be addressed to infer the desired complete and accurate network. Furthermore,

because of the dependencies typically used in these tasks, the tasks are inherently

inter-related and must be performed jointly. In Chapter 6 we formally define the

general problem of graph identification which simultaneously performs these tasks;

removing the noise and missing values in the observed input network and inferring

the complete and accurate output network. The main hypothesis in this work is that

jointly performing these tasks can yield better overall performance. We present

a novel approach to graph identification using a collection of Coupled Collective

Classifiers, C3, which can not only capture the variety of local features typically

used for each task, but also intra- and inter-dependency required in order to correctly

infer nodes, edges, and labels in the output network. We discuss variants of C3 using

different learning and inference paradigms and show the superior performance of C3,

in terms of both prediction quality and runtime performance, over approaches which

look at each task individually and over previous joint approaches.

11



A major obstacle in studying network data is the lack of a software system

which has support for representing and applying various tasks (such as those defined

in this chapter) on these networks. While various implementations are available

for specific tasks like visualization, clustering, and collective classification, most

systems are ad-hoc and are developed solely for the task at hand. Moreover, the

different systems are developed with various architectures, programming languages,

and rarely share even a common input and output format. Consequently, it is very

difficult to directly use these systems, particularly for more complex tasks like graph

identification. As part of our dissertation work, we developed the Graph Alignment,

Identification, and Analysis (GAIA) software library which provides a common,

reusable interface for various problems involving relational data. We provide an

overview of GAIA in Chapter 7 describing its goals and high level architecture.

We also provide an overview of the tasks it currently supports including entity

resolution, link prediction, collective classification, graph identification, clustering,

active learning, data generation, sampling, and analysis.

To summarize, the rest of the thesis is organized as follows. We first discuss

related work in Chapter 2. We then discuss our work in entity resolution, link

prediction, and collective classification in Chapters 3, 4, and 5 respectively. We

present our work in graph identification, which jointly performs the preceding tasks,

in Chapter 6. We then introduce the GAIA software library to perform these and

a variety of other tasks on network data in Chapter 7. Finally, we summarize our

contributions, discuss future directions, and conclude in Chapter 8.

12



Chapter 2

Related Work

In this chapter, we begin by discussing work in entity resolution, link predic-

tion, and collective classification. We then discuss work related to graph identifica-

tion problem including work on joint inference models and similar domain-specific

problems. To illustrate these different problems, we use a simple author collabo-

ration network (shown in Figure 2.1 – Figure 2.4). In the collaboration network

figures, the nodes represent authors and the edges between the authors indicate

that the authors have co-authored at least one paper together. The shading of the

nodes indicates the research area of the authors; to make it simple, here we assume

there are just two areas, shown either in white (i.e., theory) or gray (i.e., systems),

if observed, and shown as a ‘?’ if it is unobserved.

2.1 Entity Resolution

Many networks have uncertain and imprecise references to real-world entities.

The absence of identifiers for the underlying entities often results in noisy networks

which contain multiple references to the same underlying entity. In this section, we

look at the problem of resolving which references refer to the same entity, a problem

known as entity resolution.

Examples of entity resolution problems can be found in many domains, often

13



Figure 2.1: Example of a entity resolution problem. In this example, the nodes

on the left are ambiguous due to variations in the spelling of their names. While

attributes may suffice to resolve the entities in some cases (e.g., Juan Hernandez and

J. Hernandez are likely the same person due to the similarity in their names), some

cases (e.g., J. Phillips can refer to either Jane or John Phillips) it may not. However,

if we use the edges (i.e., both Jane Phillips and J. Phillips have collaborated with

Larry Jones), we may be able to improve our predictions.

under different names. The earliest applications of entity resolution is on medical

data [126, 125, 59, 183]. In this work, in a problem referred to as record linkage, the

goal was to identify which medical records refer to the same individual or family.

Next, in computer vision, entity resolution was applied in identifying which regions

in the same image are part of the same object (the correspondence problem) [129].

Also, in natural language processing, there is interest in determining which noun

phrases refer to the same underlying entity (coreference resolution) [113]. The prob-

lems of deduplication [146] and data integration [176], determining when two tuples

in or across databases refer to the same entity, can also be seen as entity resolution.

14



There are three general categories of approaches to entity resolution: attribute-

based, naive relational, and collective relational. Attribute-based approaches are

the traditional approaches to entity resolution which rely solely on the attributes

of the reference nodes. Given two reference nodes, ri, rj ∈ R, the attribute-based

approaches generally make use of a similarity measure [80, 81, 183], simA(ri, rj), or

a weighted combination of multiple similarity measures, over the attributes of the

reference nodes. More recently, naive and collective relational approaches have been

proposed which take the edges between these nodes into consideration. The naive

relational approaches consider the attribute similarity of related reference nodes

[7, 85]. The collective relational approaches, on the other hand, use the relationships

to make decisions jointly [51, 16, 112, 133, 160].

A major issue in entity resolution is that it is a known hard problem compu-

tationally for large networks; a naive algorithm is O(N2) where N is the number of

references in the network. For many networks, it is infeasible to compare all pairs

of references for approaches which use expensive similarity measures. Similarly, for

many probabilistic models, it is infeasible to explicitly represent all the variables

required for the inference. Thus, efficiencies have long been a focus for research in

entity resolution. One mechanism for doing this involves computing the matches

efficiently and employing techniques commonly called ‘blocking’ to place nodes into

disjoint ‘blocks’ using cheap and index-based similarity computations [74, 180]. The

number of potential pairs is greatly reduced by assuming that only pairs of nodes

in the same block can be co-referent pairs. Another mechanism, proposed by Mc-

Callum et al. [110], relaxes the use of disjoint blocks and places nodes into possibly

15



overlapping subsets called ‘canopies.’ Potential co-referent pairs are then restricted

only to pairs of nodes which share at least one common canopy.

Another issue in entity resolution is referred to as “canonicalization” [42, 182].

Once the reference nodes are resolved to their corresponding entities, there is the

problem of constructing a standard representation of the entity from the attributes

of those references. In particular, canonicalization resolves the inconsistencies in

the attributes among the reference nodes. Simple heuristics for determining the

appropriate values for the attributes and edges of an entity based on the attributes

of the references are possible; often these amount to choosing the longest string,

or the most recently updated value. Such approaches, however, are not robust to

noisy and incomplete attributes. Another approach is, instead of returning a single

value for an attribute, keeping all the values, returning a ranked list of the possible

values and edges [170, 8]. When there are a large number of references, however,

the ranked list may be too long. Culotta et al. [42] addresses this by using adaptive

similarity measures to select values in order to create a standard representation most

similar to each of the different records. A unified approach was also proposed by

Wick et al. [182] which performs entity resolution and canonicalization jointly using

a discriminatively-trained model. We note that the problem of canonicalization is

related to the problem of performing node labeling after entity resolution. In the case

of a noisy network, our node labeling problem can be cast as the canonicalization of

the predicted entity. In general, however, canonicalization resolves inconsistencies

in the observed attributes of the merged references while node labeling may also

include inferring the value of some previously unobserved attribute.

16



Figure 2.2: Example of a link prediction problem. The graph on the left represent a

collaboration network at time t, and the graph on the right represent the predicted

collaboration network at time t + 1. Predicted collaboration edges are highlighted

using a dashed line.

2.2 Link Prediction

Link prediction is a challenging problem that has been studied in various guises

in different domains. For example, in social network analysis, there is work on pre-

dicting friendship links [191], event participation links (i.e., co-authorship [131]),

communication links (i.e., email [131]), links representing semantic relationships

(i.e., advisor-of [169], and subordinate-manager [48]). In bioinformatics, there is in-

terest in predicting the existence of edges representing physical protein-protein inter-

actions [166, 187, 76], domain-domain interactions [45], and regulatory interactions

[5]. Similarly, in computer network systems there is work in inferring unobserved

connections between routers, as well as inferring relationships between autonomous

systems and service providers [165]. There is also work on using link prediction to

improve recommender systems [57, 77], website navigation [193], surveillance [78],

17



and automatic document cross referencing [118].

There are the two general categories of the current link prediction models:

topology-based approaches and node attribute-based approaches. Topology-based

approaches[99, 187, 35] typically rely on some notion of structural proximity, where

nodes which are close are likely to share an edge (e.g., sharing common neighbors,

nodes with a small shortest path distance between, etc.). Although topology has

been shown useful in link prediction, topology-based approaches ignore an impor-

tant source of information in networks, the attributes of nodes. Often there are

correlations in the attributes of nodes which share an edge with each other. For

example, individuals with common interests (e.g., sports, politics) are more likely

to be friends than individuals with no interests in common. Also, in academic set-

tings, an “advisor” edge can only exist between a student and a faculty node. Node

attribute-based approaches [169, 135, 131, 140, 62] use these correlations, often along

with topology, in making its predictions.

A difficult challenge in link prediction is the large class skew between the

number of edges which exist and the number of edges which do not. To illustrate,

consider a directed graph denoted byG(V,E). While the number of edges |E| is often

O(|V |), the number of edges which do not exist is often O(|V |2) [137]. Consequently,

the prior probability of edge existence is very small. This causes many supervised

models, which naively optimize for accuracy, to learn a trivial model which always

predicts that a link does not exist. A related problem in link prediction is the large

number of edges whose existence must be considered. As with entity resolution, the

number of potential pairs is O(|V |2). Applying complex inference models over such

18



a large number of edges limits the size of the data sets which can be considered.

In practice, there are general approaches to addressing these issues either prior

to or during the link prediction. With both large class skew and number of edges

to contend with, the general approach is to make assumptions which reduce the

number of edges to consider. One common way to do this is to partition the set of

nodes where we only consider potential edges between nodes of the same partition;

edges between partitions are not explicitly modeled and are assumed not to exist

[3, 187]. This is useful in many domains where there is some sort of natural partition

among the nodes available (e.g., geography in social networks, location of proteins

in a cell) which make edges across partitions unlikely. Another way is to define some

simple, computationally inexpensive distance measure such that only edges whose

nodes are within some distance are considered [99, 48].

2.3 Collective Classification

A traditional problem in machine learning is to classify objects: e.g., given

a corpus of documents classify each according to its topic label; given a collection

of email communications determine which are not spam; given individuals in a col-

laboration network determine a characteristic of that individual; given a sentence,

determine the part-of-speech for each word, etc. In networks, the problem of infer-

ring labels has traditionally been applied to the nodes of the graph. Initial work

in classification makes an independent and identically distributed (IID) assumption

(i.e., the class labels are assumed conditional independent given object attributes).

19



Figure 2.3: Example of a collective classification problem. Nodes with a question

mark are nodes whose labels are unknown. Collective classification uses the at-

tributes and labels of neighboring nodes. Ann Smith, for example, is likely to have

the same research area as her co-authors, Robert Cole and Mark Taylor.

In graphs, however, studies have shown that predicting the labels of nodes can ben-

efit by using correlations between the node label and the labels of related nodes.

For example, in the collaboration network in Figure 2.3, nodes with a question mark

represent authors whose research areas are unknown. While we can use attributes

of the author (e.g., titles of their papers) to predict the label, we can also use the

research areas of the other authors they share a co-authorship edge with. The au-

thor, Ann Smith, is likely to work in theory given she has only co-authored with

individuals in the theory field.

There are two main categories of collective classification algorithms which vary

based on their mathematical underpinnings, as well as how they exploit the rela-

tionships between the nodes. The first category, relational classifiers [104], consider

the observed attributes of related nodes. For instance, when classifying authors,

we use the words present in their papers and the labels of the authors who they

20



have co-authored with (if known) to arrive at the correct class label. Although

relational classifiers have been shown to perform well in some domains, overall the

results have been mixed. For instance, although there have been reports of classifi-

cation accuracy gains using such techniques over traditional classification, in certain

cases, these techniques can harm classification accuracy [30]. The second category

of algorithms go beyond that by not only using the known attributes and labels of

related nodes, but to also use the predicted labels of other nodes whose labels are

unobserved [30, 123, 101, 65, 95, 168]. For instance, going back to the classification

example in Figure 2.3, authors which share a co-authorship edge to other authors

predicted to have a certain research area, are likely to work in the same area.

2.4 Joint Inference

We define graph identification as a probabilistic joint inference task in which we

must infer the nodes, edges, and node labels of a hidden graph based on evidence

provided by the observed network. This in turn corresponds to the problems of

performing entity resolution, link prediction, and collective classification to infer

the hidden graph. While we are the first to define and jointly solve all the inference

tasks involved, there is related work in the joint inference of subsets of these tasks

and other tasks. In this section, we provide an overview of this work.

Most previous work explore these components of graph identification inde-

pendently. Although they exploit the intra-dependence of the predictions in each

component, there is little work in exploiting the observation that the components

21



Figure 2.4: Example of a graph identification problem. In this example, the nodes

on the left are ambiguous due to variations in the spelling of their names, there are

unobserved edges between the ambiguous nodes, and nodes with a question mark are

nodes whose labels are unknown. Performing graph identification requires applying

jointly performing the entity resolution, link prediction, and collective classification

tasks.

are inter-dependent. The few that explore this inter-dependence mainly come from

the statistical relational learning area where various general frameworks have been

proposed which model the dependencies between predictions. One example is the

work of Getoor et al. [64] on Probabilistic Relational Models (PRM). Their work

explored using PRMs when there is both attribute and structural uncertainty. Sim-

ilarly, there is work by Taskar et al. [169] on Relational Markov Networks (RMN).

Taskar applied RMNs to the task of jointly inferring the labels and the existence

of edges between websites noting that certain relationships can only exists between

nodes with a given label (e.g., an advisor relationship can only exist between a

faculty and student node). More recently, Bhattacharya et al. [17] proposed a gen-

22



erative model which jointly applies entity resolution and node labeling to movie

data.

There is also work in combining multiple inference problems in the computer

vision and natural language processing literature. Roth et al. proposed frameworks

for learning and applying multiple classifiers using a linear programming formulation

[142] and sequential learning [141]. Similarly, Heitz et al. [72] proposed cascaded

classification models (CCM) for applying a set of models involved in the task of

holistic scene understanding. To our knowledge, previous work in joint models has

not formulated the complex structured prediction problem in graph identification as

interacting components which collectively infer the graph via a collection of proba-

bilistic graph transformations.

Graph identification is related to the domain specific problems of information

extraction in natural language processing [134, 145, 182], network mapping in com-

puter networks [156, 164, 165], and biological network inference in bioinformatics

[107]. While many of the underlying inferences are similar, the abstraction and

tasks involved vary from graph identification. Information extraction traditionally

infers structured output from unstructured data (e.g., newspaper articles, emails),

while graph identification is specifically focused on inferring structured data (i.e.,

the cleaned graph) from other structured data (i.e., the noisy graph, perhaps pro-

duced from an information extraction process). Similarly, network mapping and

biological network inference is mainly concerned with inferring network topology.

Consequently, work in these two problems can be formulated as instantiations of

the more general problem of graph identification.

23



Another related line of research is the problem of modeling network evolution.

A number of global properties of graphs have been found in real networks [55,

11, 98, 97, 128]. Properties include scale-free degree distributions [2, 56, 11], the

small-world phenomenon [179, 11], and densification and shrinking diameters of

dynamic networks over time [98]. An important aspect of these models is modeling

how to randomly generate edges between the nodes of the graph to capture these

properties. The preferential attachment model [11], for example, creates edges based

on the degree of nodes (i.e., higher degree nodes are more likely to be incident to

more edges). The Forest Fire model [98], on the other hand, generate edges for

nodes in an epidemic fashion, growing outward from some initial set of neighboring

nodes. As before, however, the focus of this work is only the topology while graph

identification is also interested in the attributes of the graph. Also, work in this

area are mainly interested in generating random graphs which exhibit some global

property while the transformations in graph identification are interested in inferring

a particular graph given some noisy or incomplete input.

24



Chapter 3

Entity Resolution of Name References in Email Archives

In this chapter, we discuss our work in entity resolution for email communica-

tions. We look at name mentions in email communications and develop unsupervised

models for ranking individuals by the likelihood of being the target of a given name

mention. In this work, we focus on how to leverage temporal traffic information

(i.e., time, frequency, and number of communications between individuals around

the time of the name mention) to infer the target of the name mention.

3.1 Introduction

Within the networked world, email has become a ubiquitous form of global

communication. Whether communicating with friends or colleagues in a local area

or halfway around the world, email allows us to maintain or develop relationships

with others at any distance. Given email traffic is a reflection of the relationships

in an underlying social network, email archives present a potentially rich collection

of evidence that can be used to infer the structure, attributes and dynamics of the

social network. The challenge is to infer these properties from email data that is

often ambiguous, incomplete, and context-dependent.

Email collections contain both structured and unstructured data. The struc-

tured data or metadata indicates which parties communicated and when the commu-

25



nication occurred. By focusing solely on the metadata, we can identify communica-

tion patterns, but we cannot easily ascribe meaning to the underlying relationships.

The unstructured data in the body of the email can clarify the roles of individuals

and their relationships with others. Yet without the appropriate context, an outside

observer may find a message provides little insight.

When communicating with others, people constantly rely on shared context to

simplify communication. Shared context is common knowledge among individuals

that allows them to use ambiguous references which are clear within the shared

context. A common example of this occurs when two people refer to a mutual

friend by a first name or a nickname in conversation.

“How’s John doing today? Is he feeling better?”

Given the topic of conversation along with the name reference, it is clear to both

parties who John is. Yet to someone without knowledge of the context, the reference

is meaningless.

Consider the problem of exploiting name references in the email body. Name

references are an important element in understanding the social network. Before

we can process the email content in the archive and associate activities and other

attributes with individuals, we need to infer the number and identities of the indi-

viduals generating the observed traffic. Each individual has two classes of references:

network references and name references. Network references in the context of email

are simply the individual’s email addresses. Note that this is potentially a many to

26



many mapping: individuals may have multiple email addresses and a single email

address may serve more than one individual. There is also a temporal component;

an individual may have one email address for the time they are in one position in

the company, but when they change roles within the company, perhaps moving to

another division, their email address may change. Name references are the various

forms of an individual’s given name along with their nicknames that may appear in

the email body. In order to define an individual’s identity and draw broader connec-

tions across emails in the archive, we need to be able to map both name references

and network references to the individual.

In this chapter, we focus on the problem of resolving ambiguous name refer-

ences, specifically first name references, to network references. The core challenge in

this problem is identifying ways to exploit context from the email archive to effec-

tively resolve the ambiguity. We describe this in the next section. Next we formally

define the general problem of name reference entity resolution. Then we discuss the

types of context available that can potentially be exploited. We investigate several

different approaches, which vary in the context features and temporal models used,

and introduce a methodology for evaluating their performance. Finally we present

results from our algorithm evaluation on the Enron email archive and conclude with

thoughts on future work.

27



3.2 Exploiting Context

When reading email, what types of context do we exploit to resolve ambiguous

name references? In addition, what context does an email collection offer when

analyzing relationships retrospectively? Below is a list of some of the contextual

cues available to us for understanding name references:

• The participants in the conversation

• The larger group of people known by the participants in the conversation and

the types of relationships among them

• The individuals that the participants in the conversation have recently com-

municated with, either before or after the email was sent

• The topic of conversation in the email

• Recent topics of conversation among the participants and others outside the

current conversation, either before or after the email was sent

• Cues contained within other emails in the thread

• Related name references within the current email

• Prior knowledge linking individuals to topics of conversation

This list of contextual cues is by no means exhaustive. Yet it reminds us of the two

broad classes of context that email captures: social context (who’s talking?) and

topical context (what are they talking about?).

28



Our long term goal is to exploit both to characterize the underlying social

network, as each form of context can help clarify ambiguities in the other. Yet

the challenge of capturing and exploiting dynamic topical context is a significant

research thrust on its own, as evidenced by the work in the topic detection and

tracking community [6].

Our focus in this chapter will be to investigate the discriminative power of

dynamic social context. We want to first understand the performance of algorithms

that leverage the patterns of communication among network references to estimate

the mapping between name and network references.

3.3 Problem Definition

Let E = {ei} be a set of email addresses observed in the email collection and

let N = {nj} be a set of observed name references in the email bodies. The set

E may be extracted from the email metadata, or the set may come from another

source such as an employee directory, which lists individuals together with their

emails. The set N is the result of an entity extraction process that identifies name

references within the email bodies.

The objective of name reference entity resolution is to construct a mapping

from a set of observed name references N = {nj} in the email collection to either

ranked subsets of network references, Ej, where Ej ⊆ E or the null network reference

φ, if no network reference is sufficiently probable. The null network reference φ

serves two purposes. First, it is not a given that there exists a corresponding net-

29



work reference for each name reference. An email collection may not contain email

exchanges between all individuals referenced within the email bodies. Second, the

entity extraction process will incorrectly declare some terms in the email collection

to be name references, for which there is no network reference. In both cases, the

appropriate response is to map the given name reference to φ.

For each name reference nj, the corresponding candidate set Ej is ranked based

on the context of the name reference. A scoring function g is used to compute the

strength of association g(ec, nj|Cj) between each candidate ec ∈ Ej and nj, given the

context Cj associated with nj. Once all of the candidates have been scored, they are

ranked in descending order and only those candidates with scores g(ec, nj|Cj) > λ

are retained. The most likely network reference ẽ(nj) is either the candidate with

the maximum score greater than the threshold or φ otherwise.

In this chapter, we explore the use of the email traffic context for ranking

the candidate set. We define the email traffic network for a set of email messages

M = {mi} as follows: we have a directed hypergraph GM with the set of vertices E

and hyperedges H = {(esi , Eri , ti)}. For each email message mi, there is a hyperedge

from the sender network reference esi , esi ∈ E , to the set of recipients of the message,

Eri ⊆ E . The attribute ti is the time at which the email was sent.

3.4 Name Reference Entity Resolution Process

The general name reference entity resolution process is composed of three

phases: candidate set generation, candidate ranking and candidate rejection illus-

30



E m 
a
il:

To
:
lis
ag
@ e 
nron
.c
om


Fr 
: j 
ohnd
@ e 
nron
.c
om


He
y L 
is
a,

Bo 
b i 
s c 
orre
ct
. S 
el
l

yo
ur
st 
oc
k.

Jo 
hn


S c 
ore
d C 
an
dida
te
s L 
is
t:

Bo 
b A 
.

Bo 
b S 
.

Bo 
b J 
.
 (M
in
im
um


S c 
or
e

Th
re
sh
ol
d)


Fi 
na
l C 
an
dida
te
s L 
is
t:

Bo 
b A 
.

Bo 
b S 
.


Jo 
hn
D.


Bo 
b J 
.


C h 
ri
s D 
.
 Bo 
b A 
.


Bo 
b S 
.
Li
sa
G . 


Ma
rk
N.


Figure 3.1: The name reference resolution process

trated in figure 3.1. Given we envision a data analyst reviewing the candidate

associations in rank order to identify the true referent, our overall goal is to min-

imize the number of candidates the user must evaluate while identifying as many

true network references as possible. When the true referent is a member of the

candidate set, we want the algorithm to rank the true network reference as high as

possible. Given the true referent may not be part of the candidate set at all, we also

want to reject as many candidates as possible without severely impacting recall.

3.4.1 Candidate Set Generation

The role of the candidate set is to restrict our attention to a small number of

likely candidates prior to scoring the candidates. In our initial approach, we use two

levels of screening. We begin with the strong assumption that if any communication

has occurred between the true referent and the email participants, the sender was

involved. Therefore we initially restrict the candidate set to those network references

where at least one email communication has been observed with the sender.

Although we expect this assumption will be true in many cases, there are

31



clearly instances where it will break down. For example, not all name references

correspond to individuals that the email sender knows personally. Within the con-

text of an organization, references may be made to individuals many levels removed

in the management hierarchy. It is also not a given that an active relationship will

be observable through email communication. The parties involved may be in close

physical proximity allowing direct communication or may use other means of com-

munication. A third possibility is that the email communications are simply not

available in the email collection for one of a variety of reasons. Regardless of these

factors, as we show in the results section, our approach able to achieve surprisingly

high recall.

Our second level of screening relies on available name information for the net-

work references. We assume that some name information is initially available either

from the name tags attached to email addresses or from the email addresses them-

selves. In our initial experiments, we examine name references that match exactly at

least the first or last name associated with the candidate network reference. Clearly

this constraint can be relaxed by employing a string comparison function to look

for close name matches.

3.4.2 Candidate Scoring

As mentioned earlier, our main interest is in defining and evaluating candidate

scoring functions that leverage dynamic social context. If we begin with the pre-

sumption that name reference usage is often connected to events occurring around

32



the time of the reference, the question is what fraction of the name references can we

resolve by ranking candidates based on the level of email traffic around the time of

the reference? To explore this, we introduce a class of scoring functions and explore

the sensitivity of their performance along four general dimensions.

• The relationships examined

• The time scale at which the email traffic is viewed

• The summary statistic used to characterize relationship activity during a given

time interval

• The degree of traffic history considered

We consider each of these dimensions next and then describe two different temporal

models which make use of features defined according to these dimensions.

3.4.2.1 Relationships

Given our assumption of direct communication between at least the email

sender and the true referent, our objective is to characterize the degree of commu-

nication between the email participants, the sender and recipients Ep = es∪Eri , and

the candidate network reference ec.

Specifically we consider models that exploit either solely the traffic between

the sender es and the candidate ec (denoted sender-only) or models that exploit

the pairwise traffic between all the email participants, sender and recipients, and

the candidate ec (denoted sender+recipients). When integrating traffic from the

33



Table 3.1: Summary statistic definitions. m(e1, e2, Tk,GM) is the number of mes-
sages sent from network reference e1 to network reference e2 over the time interval
Tk. I(·) is the indicator function.

Name Definition

Binary, Sender-Only, Bidirectional I(m(es, ec, Tk,GM) +m(ec, es, Tk,GM)
Count, Sender-Only, Bidirectional m(es, ec, Tk,GM) +m(ec, es, Tk,GM)
Count, Sender-Only, Unidirectional m(es, ec, Tk,GM)
Count, Sender+Recipients, Bidirectional(β) (1− β)(m(es, ec, Tk,GM) +m(ec, es, Tk,GM))+

β
|Eri |

∑
eri∈Eri

(m(eri , ec, Tk,GM) +m(ec, eri , Tk,GM))

sender and recipients’ pairwise interactions with the candidate, we want to un-

derstand the relative discrimination power offered by each and identify summary

statistics that effectively leverage the relationships for candidate scoring.

3.4.2.2 Time Scale

To examine the email traffic at a given time scale, we first partition the time

axis into regular intervals of duration ∆t. The phase of the partition is fixed by

first selecting a reference time t0 such that t0 ≤ ti < t0 + ∆t where ti is the time

of the email containing the name reference. The time intervals {Tk} are defined as

Tk = {t′ : t0 +k∆t ≤ t′ < t0 +(k+1)∆t, k ∈ Z} so that the time interval T0 includes

the time ti of the email 1. In our experiments, we investigate daily and weekly time

intervals (denoted daily and weekly). The weekly time intervals are phased such

that they begin on Sunday.

34



3.4.2.3 Summary Statistics

Once the time axis is partitioned into regular intervals, our next step is to

compute a summary statistic or feature s(Ep, ec, Tk,GM) for each interval Tk that

provides an indication of relationship activity among some or all of the email partic-

ipants Ep and the candidate ec. We consider the following variations on computing

the statistic:

Binary versus Count. For any pair of network references, for the given interval,

we may either have a 0/1 indicator which denotes whether or not there has

been an email exchange between the pair (denoted binary) or we may want

to use the frequency information and keep track of the number of messages

exchanged (denoted count).

Unidirectional versus Bidirectional. For any network reference, we may be in-

terested in only the messages sent from the network reference to the candidate

reference (denoted unidirectional) or we may be interested in bidirectional

exchanges where the candidate and network references can take on either the

sender or recipient roles (denoted bidirectional)

As mentioned earlier, we can distinguish models which make use of the sender-

only traffic information versus the sender+recipients traffic information. In the

latter case, we introduce the parameter β to weight the sender versus recipient

contributions. Table 3.1 summarizes the statistics used in the experiments.

1Although the definition of T0 is dependent on the email of interest, we will not explicitly

indicate this dependence to avoid additional complexity in the notation.

35



3.4.2.4 Integrating Traffic History

The final step in computing the candidate score g(ec, n|C) given the context

C = {Ep, T0,GM} involves integrating the summary statistics for time intervals

around the time of the email containing the name reference. We compute the local

time average of the summary statistics using either a non-causal autoregressive

(denoted AR) or moving average filter (denoted MA) that incorporates both future

and past traffic patterns around the time of the name reference. The autoregressive

filter is defined as

gAR(ec, n|Ep, Tk,GM)

=
(1− α)

2
gAR(ec, n|Ep, Tk−1,GM) +

(1− α)

2
gAR(ec, n|Ep, Tk+1,GM) + αs(Ep, ec, Tk,GM)

=
α

2

∞∑
i=0

(1− α)i(s(Ep, ec, Tk−i,GM) + s(Ep, ec, Tk+i,GM))

while the moving average filter is defined as

gMA(ec, n|Ep, Tk,GM) =
1

2M+1

M∑
i=−M

s(Ep, ec, Tk−i,GM).

In practice, when evaluating the AR filter, we terminate the summation once a

convergence criterion is met. The degree of traffic history incorporated into the

candidate score g(ec, n|Ep, T0,GM) is controlled by the parameters α for the AR

model and M for the MA model.

3.4.3 Candidate Rejection

Once the scores have been computed for all network references in the candidate

set, the candidates with a score below the specified threshold λ are removed from

36



the candidate set. The objective of candidate rejection is to remove candidates that

are deemed unlikely to correspond to name references without rejecting a significant

fraction of true referents. The degree of performance achieved is dependent on

the ability of the scoring function to separate the true referents from the other

candidates.

Within the context of the models proposed above, performance is clearly de-

pends on the following two factors. First, it is dependent on the legitimacy of the

general assumption that a high degree of communication activity around the time

of the name reference is indicative of a potential correspondence between a name

and network reference. Second, performance is also dependent on the model’s char-

acterization of what qualifies as a high degree of traffic. All relationships are clearly

not equivalent. Yet our baseline models do not attempt to capture external factors

influencing the relationship activity. We will revisit these issues in later discussion.

3.5 Experiment Design

With a set of models defined, the next major task at hand is evaluating their

performance on a representative dataset. The bulk of our efforts to date have focused

on data preparation, ground truth generation and definition of evaluation protocols.

A number of subtle but important issues arise as one considers the various elements

of the overall experiment. We review all aspects of the approach in the following

sections.

37



3.5.1 Dataset Preparation

3.5.1.1 The Data: Enron Email Corpus

With the recent release of the Enron email dataset [157], researchers have

been given a unique opportunity to glimpse inside a large corporation and observe

a subset of email traffic among the employees. The Enron email dataset is the

collection of email from the folders of 151 Enron employees. The data is available in

several forms. CMU first released the original email data. Since then USC/ISI and

more recently UC Berkeley have released normalized forms of the data in a MySQL

database. Our results are based on the USC/ISI version of the dataset. There are

over 250000 email messages in the dataset with the majority of the traffic occurring

in the 2000-2002 time frame.

We initially chose to resolve name references in only those emails exchanged

between the core 151 employees. This was done primarily to reduce confounding

effects of observability in our experiments. Given we can only observe pairwise

relationships where at least one of the participants is a member of the set of 151

employees, constraining the set of emails in this way guarantees that all relationships

we will consider in the resolution process are observable in the email collection,

assuming emails haven’t been lost or deleted.

There are 7644 emails in the ISI database that were exchanged among the 151

employees. A non-trivial number of duplicate emails exist that need to be removed

to avoid skewing the results of the analysis. After deduplication of this set, 6550

emails remain. This is the set of emails from which the name references will be

38



extracted.

3.5.1.2 Extracting Enron Employee Names

To support named entity extraction and candidate set generation, we con-

structed a network reference set E of 7864 Enron email addresses and a correspond-

ing list of employee names by parsing the email addresses. In total, there are 29176

enron.com email addresses in the collection. This includes employee email addresses

along with group mailing lists. Given the most common email address format often

corresponding to employees is <name1> . <name2> @enron.com, we parsed these

addresses and saved only those where either name1 or name2 matched a first or

last name in the employeelist table in the ISI database. This reduced the list to

7713 email addresses that are distinct from the email addresses listed for the 151

employees in the ISI database.

As others have noted, some employees have multiple email addresses in the

collection. We believe that in most cases this is due to an employee moving within

the company. Therefore each email address and its associated relationship structure

characterizes the employee’s role over a certain time period in the company. We

chose not to de-duplicate the email addresses in order to preserve this context.

3.5.1.3 Constructing the Email Traffic Network

The hypergraph GM representing the email traffic network captures the ob-

served traffic exchanged between the 7864 Enron email addresses in E . Since the

39



Enron email collection is the union of email folders corresponding to the given 151

Enron email addresses, GM only captures the traffic exchanged between those 151

email addresses and the remaining 7713 email addresses in E . There are 64449

emails in the ISI database that were exchanged among the 7864 email addresses.

After deduplication of this set, 55395 emails remain. Therefore GM is composed of

7864 nodes and 55395 hyperedges.

3.5.1.4 Detecting Name References

To detect name references in the email bodies, we initially scan through the

emails searching for words that match exactly one or both first and last names of

an employee on the list of 7864 Enron employee names. We also merge adjacent

partial name matches, assuming in most cases this results in a full name not listed

on the employee list.

For our initial experiments, we chose to focus on resolving first name references

to others outside of the email conversation. Therefore to filter out name references

not of interest, we saved only partial name detections that matched one of the

151 Enron employee first names. Then we filtered out first name references at the

beginning or end of the email text composed by the sender, assuming those are

references to either the sender or recipients.

40



3.5.2 Ground Truth Generation

To evaluate algorithm performance, we manually identified the true network

references associated with a set of first name references. In some cases, the true

referent was obvious from other name references in the sender’s message or the at-

tached message. In others, we needed to search through the traffic to find other

emails in the thread or previous conversations to clarify the reference. When mul-

tiple email addresses appear to correspond to the referenced individual, the email

address in use around the time of the name reference is chosen as the true referent.

After this processing, we have 84 labelled first name references with candidate

sets of size 2 or greater. Of these, 54 have candidate sets that contain the true

referent. A number of first name references with no obvious context in the message

could not be resolved after further searching of the email collection.

3.5.3 Performance Evaluation

When evaluating the performance of a given scoring function, we have two

objectives. First, we want to understand how well the scoring function ranks the

true referent relative to other candidates on average in a candidate set. We refer to

this as the relative ranking performance of the scoring function. Second, we want

to characterize the ability of the scoring function to rank true referents higher than

other candidates in general across candidate sets. We refer to this as the absolute

ranking performance of the scoring function. We consider each evaluation task in

the following sections.

41



3.5.3.1 Relative Ranking Performance

To provide insights into relative ranking performance, three performance met-

rics are evaluated for each scoring function. First, we compute the rank 1 rate (R1R)

which is the fraction of candidate sets containing true referents over which the true

referent is the top ranked candidate. This is expressed as

R1R =
1

|Nt|
∑
n∈Nt

I (ẽ(n) = etrue(n))

where I(·) is the indicator function, etrue(n) is the true network reference associated

with the name reference n and Nt = {n : n ∈ N , etrue(n) ∈ E(n)} is the set of name

references with the true referent in the corresponding candidate sets. Note the R1R

is computed assuming no candidate rejection.

The rank 1 rate provides an intuitive summary of performance, but can be

misleading in this context given the variable sized candidate sets. Therefore to

establish a relative baseline, we compute the expected value of the random rank 1

rate (RR1R) achieved by random selection of the top ranked candidate from each

candidate set. This is expressed as

RR1R =
1

|Nt|
∑
n∈Nt

1

|E(n)|
.

Since the rank 1 rate gives no indication of how severe the failure is when the

true referent is not rank 1, we also compute a metric we refer to as the average true

referent rank (ATRR). The ATRR is the average of the ratio of the true referent

rank and the candidate set size. This is expressed as

ATRR =
1

|Nt|
∑
n∈Nt

1

|E(n)|

|E(n)|∑
k=1

kI
(
e(k)(n) = etrue(n)

)
42



where e(k)(n) is the network reference with rank k in the candidate set E(n). Each

true referent rank is normalized by the corresponding candidate set size to account

for the variation in the number of candidates and reduce the sensitivity of the

measure to large candidate sets.

3.5.3.2 Absolute Ranking Performance

Assessing the absolute ranking performance involves evaluating the scoring

function’s ability to rank true referents higher than other candidates across all can-

didates nominated for a given set of name references. Our interest in characterizing

ranking performance from this perspective stems from our desire to reject as many

candidates as possible without a significant loss of true referents. If the scoring

function is able to separate the two classes of candidates with reasonable success,

we will achieve our aim.

A natural measure of ranking performance advocated in the literature [4, 38,

39, 60] is the area under the receiver operating characteristic (ROC) curve. The

ROC curve is a standard depiction of a detector’s performance from classical signal

detection theory, showing the detector’s true positive rate versus false positive rate

[173]. The area under the ROC curve (AUC) provides a measure of the separability

achieved by the detector between the two classes. More specifically, the empirical

AUC is an estimate of the probability that the detector will rank a randomly selected

positive example higher than a randomly selected negative example, assuming all

ties are broken uniformly at random [4]. When the AUC=1.0, perfect separability

43



is achieved. When the AUC=0.5, the detector performs no better than random

chance.

If one defines the true referents to be the positive class and the other candidates

to be the negative class, the AUC of the scoring function is the area under the

empirical ROC curve generated by sweeping the threshold over the range of scores

and computing the (false positive rate,true positive rate) operating points on the

curve. This empirical AUC can be directly expressed in the following manner

AUC =
1

NTRNOC

∑
n1∈Nt

∑
n2∈N

∑
eoc∈E(n2)/etrue(n2)

I (g(etrue(n1), n1|C1) > g(eoc, n2|C2)) +

1

2
I (g(etrue(n1), n1|C1) = g(eoc, n2|C2))

where NTR = |Nt| is the number of true referents and NOC =
∑

n∈N |E(n)/etrue(n)|

is the number of other candidates overall [4].

3.6 Discussion

We now examine the performance of the various scoring functions on the la-

belled name reference data. Figures 3.2-3.4 present a series of summary plots show-

ing the rank 1 rates, average true referent ranks and AUCs of the scoring functions

as a function of the amount of traffic history considered.

Consider first the R1R and ATRR metrics measuring relative ranking per-

formance. For all models, as the filter duration is increased 2, incorporating more

2The duration of the MA filter is simply the number of time intervals over which the filter

averages the summary statistic. We have defined the duration of the AR filter to be twice the

44



traffic history into the scoring process, the relative ranking performance generally

increases and approaches a maximal level of performance. In terms of rank 1 rate,

the performance of these simple models approaches 0.8 in most cases with sufficient

history and significantly outperforms the random selection baseline. The finer level

distinctions among the models can not yet be made; if one assumes the name ref-

erence resolutions are independent, there is no statistically significant different in

performance among the models considered.

It is important to note that the success of these models is not based on the

motivating assumption we made at the beginning of this investigation; namely, suc-

cessful relative ranking is not based on observing increased communications activity

over a short time interval around the time of the name reference. In contrast, the

models exploit long term communication patterns that occur over 6 months or more

to achieve peak performance.

Now let us consider the AUC metric measuring absolute ranking performance.

In contrast to the relative ranking results, we see a significant distinction between

the sender-only models and the sender+recipients models. As the influence of the

relationships between the recipients and the candidate is increased, the AUC curve

continues to shift lower indicating that separability between the true referents and

the other candidates is decreasing across all filter durations.

At first glance, it may seem that the trends for the relative and absolute

ranking performance measures are inconsistent. Why should the relative ranking

number of time intervals required for the impulse response of the filter to decay to 10% of its peak

response.

45



performance be fairly insensitive to the influence of the recipients while the absolute

ranking performance is much more so? This result suggests that while the relative

rankings are not changing significantly, the variances of the true referent and other

candidate score distributions are increasing, causing the decrease in separability.

Adding the pairwise relationship statistics for the recipients could be inducing this

result. Further investigation is needed to verify if this is indeed occurring.

To summarize, we demonstrate that our simple temporal traffic models pro-

duce a significant improvement in relative ranking performance over a baseline model

which does not exploit traffic information. Furthermore, evaluations based on ab-

solute ranking performance show that for a range of models, sender specific models

outperform sender+recipient models.

3.7 Related Work

This chapter uses a social network generated from the email traffic of the

Enron data set as a tool for name reference resolution. In this section, we describe

some of the relevant related work on social networks, the Enron data set and entity

resolution.

3.7.1 Social Networks

There has been a great deal of recent work in social network generation, analy-

sis and mining. Using semantic associations from email communication, for example,

McArthur and Bruza [108] propose methods of generating a social network using

46



implicit and explicit connections between people. Liben-Nowell and Kleinberg [99]

use co-authorship to create social networks to predict future interactions among

members of a given social network. Studies have also been done on creating and

mining social networks to identify possible collaborators for a given problem [130, 87]

and clustering people of similar interests [148]. Schwartz and Wood generate a so-

cial network using the to and from fields of email messages to discover users of a

particular interest and field.

3.7.2 Enron

The release of the Enron data set in 2003 provided an unprecedented collection

of emails from a major organization for use in research. Klimt and Yang [90] pro-

vides an overview of this corpus including the number of employees, the number of

emails and a representative social network derived from the email traffic. Moreover,

they used the Enron data to explore methods of email classification [89]. Corrada-

Emmanuel [37] created MD5 hashes of the Enron emails and contact information to

identify and deduplicate emails. Using the structure of the emails, Keila and Skil-

licorn [88] found a relationship in the word use pattern with message length as well

as relationships among individuals. Skillicorn [161] further demonstrated methods

to detect unusual and deceptive email communications. Diesner and Carley [49]

used analysis of the email social network patterns over time to explore crisis detec-

tion in email. Moreover, a number of useful tools have also been developed in order

to navigate and view email archives [70].

47



3.7.3 Entity Resolution in Email

There has been limited work in named entity resolution in email systems.

Abadi [1] uses emails from an online retailer for anaphora resolution within email

orders. Abadi’s research, however, is designed for the resolution of pronouns re-

ferring to product orders rather than individuals and relies mainly on NLP for

resolution. Holzer, Malin and Sweeney [75] on the other hand use social networks

created from online resources like personal websites to resolve email aliases. Their

approach of using social networks derived from relations from other sources, includ-

ing proximity of references in a given web site, is particularly effective in controlled

environments such as the university used in their evaluation. Of note, is Malin’s

evaluation of methods of disambiguation in relational environments [105]. Although

Malin’s work used actor collaborations in the Internet Movie Database rather than

email, Malin did find that methods which leverage community, in contrast to exact

similarity provide more robust disambiguation capability, supporting our approach

to the problem.

3.8 Conclusion

In this chapter, we have examined ways in which email traffic can be used

to resolve ambiguous name references within the body of the email messages. Our

contributions include 1) a formal statement of the problem, 2) the definition of the

resolution process in terms of candidate generation, candidate scoring and candidate

rejection, and 3) the development of a suite of models for candidate scoring, which

48



exploit both role and temporal information. We have validated our methods on

name resolution within a real-world corporate email archive, the Enron collection.

An additional contribution is our evaluation methodology; we have proposed an

evaluation based on both absolute rank and relative rank. Our overall goal is to

develop robust ways of exploiting context information during the resolution process.

The email traffic network is just one element of the context information and we

explore additional context information in later publications [54]. As a first step, here,

we have shown how simple email traffic models can achieve impressive resolution

performance.

49



0 100 200 300 400 500

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Duration (Days)

R
a
n
k
 O

n
e
 R

a
te

Autoregressive Filter, Daily Interval, RR1R = 0.266

Binary, Sender−Only, Bidirectional

Count, Sender−Only, Unidirectional

Count, Sender−Only, Bidirectional

Count, Sender−Recipient, Bidirectional(0.05)

Count, Sender−Recipient, Bidirectional(0.10)

Count, Sender−Recipient, Bidirectional(0.20)

0 100 200 300 400 500

0
.2

0
0
.2

5
0
.3

0
0
.3

5
0
.4

0
0
.4

5
0
.5

0

Duration (Days)

A
v
e
ra

g
e
 T

ru
e
 R

e
fe

re
n
t 
R

a
n
k

Autoregressive Filter, Daily Interval

Binary, Sender−Only, Bidirectional

Count, Sender−Only, Unidirectional

Count, Sender−Only, Bidirectional

Count, Sender−Recipient, Bidirectional(0.05)

Count, Sender−Recipient, Bidirectional(0.10)

Count, Sender−Recipient, Bidirectional(0.20)

(a) (b)

0 100 200 300 400 500

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Duration (Days)

A
U

C

Autoregressive Filter, Daily Interval

Binary, Sender−Only, Bidirectional

Count, Sender−Only, Unidirectional

Count, Sender−Only, Bidirectional

Count, Sender−Recipient, Bidirectional(0.05)

Count, Sender−Recipient, Bidirectional(0.10)

Count, Sender−Recipient, Bidirectional(0.20)

(c)

Figure 3.2: Autoregressive Filter Performance: (a) Daily Interval Rank 1 Rates, (b)

Average True Referent Ranks and (c) Areas Under the ROC Curves

50



0 20 40 60 80

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Duration (Weeks)

R
a
n
k
 O

n
e
 R

a
te

Autoregressive Filter, Weekly Interval, RR1R = 0.266

Binary, Sender−Only, Bidirectional

Count, Sender−Only, Unidirectional

Count, Sender−Only, Bidirectional

Count, Sender−Recipient, Bidirectional(0.05)

Count, Sender−Recipient, Bidirectional(0.10)

Count, Sender−Recipient, Bidirectional(0.20)

0 20 40 60 80

0
.2

0
0
.2

5
0
.3

0
0
.3

5
0
.4

0
0
.4

5
0
.5

0

Duration (Weeks)

A
v
e
ra

g
e
 T

ru
e
 R

e
fe

re
n
t 
R

a
n
k

Autoregressive Filter, Weekly Interval

Binary, Sender−Only, Bidirectional

Count, Sender−Only, Unidirectional

Count, Sender−Only, Bidirectional

Count, Sender−Recipient, Bidirectional(0.05)

Count, Sender−Recipient, Bidirectional(0.10)

Count, Sender−Recipient, Bidirectional(0.20)

(a) (b)

0 20 40 60 80

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Duration (Weeks)

A
U

C

Autoregressive Filter, Weekly Interval

Binary, Sender−Only, Bidirectional

Count, Sender−Only, Unidirectional

Count, Sender−Only, Bidirectional

Count, Sender−Recipient, Bidirectional(0.05)

Count, Sender−Recipient, Bidirectional(0.10)

Count, Sender−Recipient, Bidirectional(0.20)

(c)

Figure 3.3: Autoregressive Filter Performance: (a) Weekly Interval Rank 1 Rates,

(b) Average True Referent Ranks and (c) Areas Under the ROC Curves

51



0 100 200 300 400 500

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Duration (Days)

R
a

n
k
 O

n
e

 R
a
te

Moving Average Filter, Daily Interval, RR1R = 0.266

Binary, Sender−Only, Bidirectional

Count, Sender−Only, Unidirectional

Count, Sender−Only, Bidirectional

Count, Sender−Recipient, Bidirectional(0.05)

Count, Sender−Recipient, Bidirectional(0.10)

Count, Sender−Recipient, Bidirectional(0.20)

0 20 40 60 80

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Duration (Weeks)

R
a

n
k
 O

n
e

 R
a
te

Moving Average Filter, Weekly Interval, RR1R = 0.266

Binary, Sender−Only, Bidirectional

Count, Sender−Only, Unidirectional

Count, Sender−Only, Bidirectional

Count, Sender−Recipient, Bidirectional(0.05)

Count, Sender−Recipient, Bidirectional(0.10)

Count, Sender−Recipient, Bidirectional(0.20)

(a) (d)

0 100 200 300 400 500

0
.2

0
0

.2
5

0
.3

0
0
.3

5
0

.4
0

0
.4

5
0

.5
0

Duration (Days)

A
v
e

ra
g
e

 T
ru

e
 R

e
fe

re
n
t 

R
a

n
k

Moving Average Filter, Daily Interval

Binary, Sender−Only, Bidirectional

Count, Sender−Only, Unidirectional

Count, Sender−Only, Bidirectional

Count, Sender−Recipient, Bidirectional(0.05)

Count, Sender−Recipient, Bidirectional(0.10)

Count, Sender−Recipient, Bidirectional(0.20)

0 20 40 60 80

0
.2

0
0

.2
5

0
.3

0
0
.3

5
0

.4
0

0
.4

5
0

.5
0

Duration (Weeks)

A
v
e

ra
g
e

 T
ru

e
 R

e
fe

re
n
t 

R
a

n
k

Moving Average Filter, Weekly Interval

Binary, Sender−Only, Bidirectional

Count, Sender−Only, Unidirectional

Count, Sender−Only, Bidirectional

Count, Sender−Recipient, Bidirectional(0.05)

Count, Sender−Recipient, Bidirectional(0.10)

Count, Sender−Recipient, Bidirectional(0.20)

(b) (e)

0 100 200 300 400 500

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Duration (Days)

A
U

C

Moving Average Filter, Daily Interval

Binary, Sender−Only, Bidirectional

Count, Sender−Only, Unidirectional

Count, Sender−Only, Bidirectional

Count, Sender−Recipient, Bidirectional(0.05)

Count, Sender−Recipient, Bidirectional(0.10)

Count, Sender−Recipient, Bidirectional(0.20)

0 20 40 60 80

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Duration (Weeks)

A
U

C

Moving Average Filter, Weekly Interval

Binary, Sender−Only, Bidirectional

Count, Sender−Only, Unidirectional

Count, Sender−Only, Bidirectional

Count, Sender−Recipient, Bidirectional(0.05)

Count, Sender−Recipient, Bidirectional(0.10)

Count, Sender−Recipient, Bidirectional(0.20)

(c) (f)

Figure 3.4: Moving Average Filter Performance: (a) Daily Interval Rank 1 Rates,

(b) Average True Referent Ranks and (c) Areas Under the ROC Curves (d) Weekly

Interval Rank 1 Rates, (e) Average True Referent Ranks and (f) Areas Under the

ROC Curves

52



Chapter 4

Link Prediction for Social Network Discovery

In this chapter, we discuss our work in the link prediction of social relation-

ships. We specifically address the challenge of identifying relevant communications

that substantiate a given social relationship type. We propose a supervised rank-

ing approach to the problem and assess its performance on predicting manager-

subordinate relationships in an email archive.

4.1 Introduction

The Internet provides an increasing number of avenues for communication

and collaboration. From instant messaging and email to wikis and blogs, millions

of individuals are generating content daily that reflects their relationships with oth-

ers in the world, both online and offline. Now that storage has become vast and

inexpensive, much of this data will be archived for years to come. This provides

new opportunities and new challenges. As networked groups and organizations in-

creasingly leverage online means of communication and collaboration, there is an

opportunity to observe the formation and evolution of roles and relationships from

the communications archives. Such data provides a rich collection of evidence from

which to infer the structure, attributes and dynamics of the underlying social net-

work. Yet numerous challenges emerge as one contends with data that is often

53



ambiguous, incomplete and context-dependent.

If we wish to analyze the underlying social network that is at least partially

represented by a collection of informal, online communications, it is important to

think carefully about the data transformations required prior to conducting any type

of analysis. At the highest level, we are fundamentally interested in discovering

entities and the types of relationships they share. This implies that we must do

more than simply adopt the communications (hyper)graph as a surrogate for the

social network. Entities can and often do use more than one account online and

not all communications relationships are equivalent. In fact, the social network

can be thought of as a collection of networks with different relationship types (e.g.

friendship, trust, advice, management). Human relations are multi-faceted and

context-dependent. Therefore it is important to tease the communications apart

and understand what types of relationships are being expressed among the entities.

We consider the scenario from domains such as intelligence analysis and lit-

igation support where an analyst is attempting to reconstruct a representation of

the social network from the data with minimal context. In this setting, the network

discovery process of predicting relationship links is inherently a collaborative process

between human and machine. While our problem is an instance of the more general

link prediction tasks, our goal is not just to predict the existence of relationships,

but to focus the analyst’s attention on relevant communications relationships that

express a given social relationship along with relevant message traffic that supports

this association.

In this chapter, we propose a supervised ranking approach to address the re-

54



lationship link prediction problem. We begin the discussion in the following section

with a formal definition of the problem. We discuss our approach to learning a rela-

tionship ranker from traffic statistics and message content and present an evaluation

of these methods on a manager-subordinate link prediction task in email. We then

review related work and conclude with thoughts on future directions.

4.2 Problem Definition

Informal, online communications such as instant messaging, text messaging

and email are composed of structured and unstructured data. At the most basic

level, this includes the network references corresponding to the sender and one or

more recipients, the date and time of the communication and the message content.

We will define a communications archive C as a set of observed messages exchanged

among a set of network references N :

C = {mk = (ns
k, N

r
k , dk, bk) : ns

k ∈ N,N r
k ⊆ N} . (4.1)

For each message mk, ns
k is the sender’s network reference, N r

k is the set of recipient

network references, dk is the date and time and bk is the body of the message. Every

archive has a corresponding communications graph Cg = {N,L} that represents the

message data as a set of dyadic communication relationships

L =
{
lij = (ns

i , n
r
j ,Mij) : ns

i , n
r
j ∈ N,Mij ⊆ C

}
. (4.2)

among the network references N . For each directed relationship lij, n
s
i is the sender’s

network reference, nr
j is the recipient’s network reference and Mij is the set of mes-

sages sent by ns
i that include nr

j as one of the recipients.

55



The link prediction task here involves identifying a mapping from the dyadic

communications relationships L to one or more social relationships from a predefined

set S. To emphasize the collaborative nature of our approach to the task, it is

not our intention to develop an algorithm that automatically maps communications

relationships to social relationships without intervention. A validated social network

is one that the analyst believes is supported by evidence in the data. Therefore

the machine’s role in a collaborative approach to the task is to focus the analyst’s

attention on potentially relevant relationships along with supporting evidence in the

message traffic.

We envision the analyst navigating the communications graph by following

paths and incrementally investigating relationships in the ego networks correspond-

ing to network references along the path. The ego network for a given entity in a

network is generally defined as the subgraph that represents all of the direct rela-

tionships between the selected entity (the ego) and others (the alters). Formally in

the case of the communications graph, the ego network E(ni) for a given network

reference ni ∈ N can be defined as

E(ni) = Eo(ni) ∪ Ei(ni) (4.3)

where

Eo(ni) = {lij = (ni, nj,Mij) ∈ L}. (4.4)

is the set of directed communications relationships from the ego to the alters and

Ei(ni) = {lji = (nj, ni,Mji) ∈ L}. (4.5)

56



is the set of directed communications relationships from the alters to the ego. For

the purposes of ranking communications relationships within an ego network, we

will initially restrict our attention to the set Eo(ni) to avoid training and testing on

the same message traffic.

Relationships in a given ego network Eo(ni) will be ranked with a learned

scoring function h that assigns a real-valued score to the relationship indicating

its relative likelihood of expressing the social relationship of interest. If multiple

social relationships are defined in the set S, there will be a corresponding scoring

function for each social relationship. The task therefore is to learn a scoring function

from a set of known relationships that successfully ranks relevant communications

relationships higher than irrelevant relationships.

4.3 Learning to Rank Relationships

4.3.1 Objective

From initial exploration of the data or external sources of information, we

assume a set of ego networks in the communications graph have been labeled, indi-

cating whether or not the communications relationships exhibit the social relation-

ship of interest. Initially we will approach the problem of learning multiple scoring

functions independently. Therefore in each learning exercise, our goal is to learn a

single scoring function for the given social relationship.

For a subset Nt ⊆ N of network references in the collection, we assume the

57



corresponding set of ego networks

Ē = {Ē(ni) : ni ∈ Nt} (4.6)

are fully labeled

Ē(ni) = {(lij, sij) : lij ∈ L, sij ∈ {0, 1}} (4.7)

where sij indicates whether the communications relationship exhibits the given social

relationship. Given a feature extraction process f(l) ∈ Rp that maps a specified

communications relationship r to a p-dimensional feature vector, we can reexpress

the labeled training data as

F̄ = {F̄(ni) : ni ∈ Nt} (4.8)

where

F̄(ni) = {(fij, sij) : lij ∈ L, fij = f(lij), sij ∈ {0, 1}}. (4.9)

The goal is to estimate a scoring function h that yields good generalization

performance in terms of the mean reciprocal rank of relevant relationships on unseen

ego networks. The rank of a relevant relationship is defined with respect to the

irrelevant relationships within the corresponding ego network. For the ego network

Ē(ni),

Fr(ni) = {fij : (fij, sij) ∈ F̄(ni), sij = 1} (4.10)

is the set of feature vectors corresponding to the relevant communications relation-

ships and

Fo(ni) = {fij : (fij, sij) ∈ F̄(ni), sij = 0} (4.11)

58



is the set of feature vectors for the irrelevant communications relationships. The

rank r(fr, ni) of a relevant relationship fr ∈ Fr(ni) is therefore defined as

r(fr, ni) = 1 + |{fo : h(fo) ≥ h(fr), fo ∈ Fo(ni)}| (4.12)

where h(f) ∈ R. The mean reciprocal rank MRR(F̄) for the scoring function on

the labeled ego networks is then

MRR(F̄) =
1

R

∑
n∈Nt

∑
fr∈Fr(n)

1

r(fr, n)
(4.13)

where R = | ∪n∈Nt Fr(n)|.

4.3.2 Approach

Given the complexity of learning a scoring function that directly optimizes

the mean reciprocal rank, we will indirectly optimize a bound on this criteria by

minimizing the number of rank violations committed by the scoring function. The

ranking performance of the scoring function can be assessed by considering how

well the function satisfies a series of pairwise ranking constraints. For every possible

pairing of relevant and irrelevant relationships in an ego network, we desire a scoring

function that scores the relevant relationships higher than the irrelevant relationships

so that

h(fr)− h(fo) > 0

∀fr ∈ Fr(n), fo ∈ Fo(n), n ∈ Nt. (4.14)

59



A violation of one of these constraints is what we will refer to as a rank violation.

Clearly the number of rank violations maps directly to the rank as implied by

equation 4.12. Section 4.3.3 clarifies the connection between the number of rank

violations and the mean reciprocal rank. The important observation is that the

minimization of rank violations leads to maximization of a lower bound on mean

reciprocal rank.

We pursue a large-margin approach to learning the scoring function following

in the spirit of prior large-margin ranking work [73, 83, 185]. We define the rank

margin as

m(fr, fo) = h(fr)− h(fo) (4.15)

for a pair of relevant and irrelevant relationships (fr, fo). A positive rank margin

implies the rank constraint for the pair is satisfied. The magnitude of the rank

margin gives a measure of the degree of satisfaction.

We will assume the scoring function h takes a generalized linear form

h(f) = w · Φ(f) : Rp → R (4.16)

where Φ is an arbitrary nonlinear mapping. We will estimate the scoring function

through minimization of the following regularized objective function

C(w) =
1

2
||w||2 + λ

∑
n∈Nt

∑
fr∈Fr(n)

∑
fo∈Fo(n)

g (m(fr, fo)) (4.17)

where g is a convex margin loss function. At the optimum of this objective function,

w∗ =
∑
n∈Nt

∑
fr∈Fr(n)

∑
fo∈Fo(n)

α(fr, fo) (Φ(fr)− Φ(fo)) (4.18)

60



where α(fr, fo) = −λg′(m∗(fr, fo)) and m∗(fr, fo) are the rank margins at the opti-

mum. Substituting into equation 4.16, we find the optimum scoring function takes

the form

h(f) =
∑
n∈Nt

∑
fr∈Fr(n)

∑
fo∈Fo(n)

α(fr, fo) (Φ(fr)− Φ(fo)) · Φ(f). (4.19)

Given the transformed feature vectors enter the expansion solely as dot product

terms, we can employ kernel functions K(x, y) = Φ(x) · Φ(y) satisfying Mercer’s

Theorem which provides a range of functional forms. This ultimately yields the

general scoring function

h(f) =
∑
n∈Nt

∑
fr∈Fr(n)

∑
fo∈Fo(n)

α(fr, fo) (K(fr, f)−K(fo, f)) . (4.20)

The corresponding dual objective function for the general nonlinear case is obtained

by substituting equations 4.18 and 4.20 into equation 4.17 yielding

C(α) =
1

2

∑
n∈Nt

∑
fr∈Fr(n)

∑
fo∈Fo(n)∑

n′∈Nt

∑
f ′
r∈Fr(n′)

∑
f ′
o∈Fo(n′)

α(fr, fo)α(f ′r, f
′
o)(K(fr, f

′
r)

−K(fo, f
′
r)−K(fr, f

′
o) +K(fo, f

′
o))

+λ
∑
n∈Nt

∑
fr∈Fr(n)

∑
fo∈Fo(n)

g (m(fr, fo)) . (4.21)

4.3.3 Lower Bound on the Mean Reciprocal Rank

In order to show that minimizing the number of rank violations is a reasonable

proxy for maximizing the mean reciprocal rank (MRR), we need to understand how

61



these quantities are related. For a fixed number of rank violations, the resulting

MRR varies depending on how the rank violations are distributed across the relevant

relationships. If the rank violations are concentrated, so that a small number of

relevant relationships are low ranked, the MRR will be higher than the case where

the same number of rank violations are distributed across a larger number of relevant

relationships. It is this line of thought that leads to bounds on the MRR for a given

number of rank violations.

Let us assume that there are M relevant relationships and that the maximum

possible rank for the ith relationship is N i
r + 1. This implies that the maximum

number of rank violations that can be associated with the ith relevant relationship

is N i
r.

A useful analogy for this discussion is to imagine we have M bags and N

balls. Each bag has one ball prior to assigning any of the N balls. The ith bag can

hold N i
r + 1 balls. In this scenario, the mean reciprocal rank is the mean reciprocal

number of balls in a bag. To lower bound the MRR, we need to determine the

assignment of N balls to the bags that minimizes the mean reciprocal number of

balls in a bag.

To minimize the MRR for N balls, consider a process whereby the balls are

incrementally assigned to the bags so that at each step the MRR is minimized.

This implies that we want to assign the next ball to the bag that maximizes the

incremental reduction in MRR. If there are b balls in a bag already, the incremental

62



reduction in MRR from an additional ball is

1

M

(
1

b
− 1

b+ 1

)
=

1

Mb(b+ 1)
. (4.22)

Therefore, at each step, we should add the next ball to a bag with the least number

of balls that can accept an additional ball. By uniformly adding balls to bags that

can accept them, we will maintain a minimum MRR throughout the process.

Let Sk(k ≥ 2) be the number of bags that can hold k or more balls. We will

make p passes down the line of bags adding one ball to each bag that can accept

one until all N balls are placed. On the ith pass,

Bi = min

(
Si+1, N −

i−1∑
j=0

Bj

)
(4.23)

balls are placed. B0 = 0 by definition. The lower bound on MRR is therefore

MRRmin =
M −B1

M
+

1

M

(
1

p+ 1
Bp +

p−1∑
i=1

1

i+ 1
(Bi −Bi+1)

)

= 1− 1

M

p∑
i=1

1

i(i+ 1)
Bi. (4.24)

The key observation here is that all of the Bi for i < p remain constant and Bp de-

creases as N decreases. Therefore the lower bound on MRR is strictly monotonically

increasing with a decreasing number of rank violations.

4.4 Message Ranking

After ranking communications relationships with the scoring function, a nat-

ural question to ask is how does each message contribute to the overall score for a

63



From Recipients Include From Recipients Include

na nb nb na
na nc and not nb nb nc and not na
nc na and not nb nc nb and not na
nc na and nb

Table 4.1: List of possible communications events corresponding to a dyadic rela-
tionship (na, nb). Nc is the common set of network references with whom both na

and nb communicate. nc is a generic reference to any network reference in Nc.

given relationship? If we define a scoring function with the form

h(f) = w · Φ(f) = w ·
∑

mi∈M

Φ′(fm) =
∑

mi∈M

hm(fmi
) (4.25)

where the relationship score can be expressed as a linear combination of message

scores hm(fmi
), we can immediately assess the relative contributions and sort the

messages based on the message scores. We will employ a feature space and kernel

function for content-based relationship ranking that admits this decomposition.

4.5 Manager-Subordinate Relationship Link Prediction

To evaluate the utility of the proposed approach, we consider the problem of

manager-subordinate relationship link prediction within an email archive. For this

task, the goal is to identify relationships within each ego network where the alter

is the ego’s manager. In the following, we present two relationship summarization

methods for exploiting relationship traffic statistics and message content.

4.5.1 Traffic-Based Relationship Ranking

In a hierarchical organization, it seems reasonable to believe that traffic pat-

terns alone can provide significant indicators of organizational structure, assuming

64



that issues of observability do not unduly complicate matters. Within the literature,

there is evidence that group structure evident in email communications corresponds

well to organizational constructs [174]. Similarly, we investigate whether manage-

ment behavior is evident in the traffic statistics.

For a given dyadic relationship (na, nb), we compute a number of traffic-based

features between the network references na, nb and the set of network references Nc

with whom both na and nb communicate. nc is a generic reference to any network

reference in Nc. The common associates are included to allow the ranker to key on

potential differences in communication patterns with fellow colleagues and the man-

ager. For each type of communication event listed in Table 4.1, from the specified

network reference that includes/excludes the specified recipients, we compute the

number of messages of this type and the quartiles for the distribution of the number

of recipients observed across those messages. Including summary statistics for the

number of recipients is potentially important for capturing differences in information

distribution behavior and indications of group communications/directives.

4.5.2 Content-Based Relationship Ranking

Although traffic statistics alone may be sufficient for ranking relationships,

they do not provide insight to the analyst that enables her to make a judgement

about the type of social relationship expressed. Ultimately message content must

be identified that substantiates the social relationship. Therefore we will assess the

performance of a ranker that directly exploits the message content and allows us to

65



rank the messages within the communications relationship.

Prior to computing feature vectors for individual relationships, we perform

filtering steps on the message content to remove spurious characters and eliminate

text from previous messages in the thread. Then we construct a master term list for

the communications archive to define the feature space. For each communications

relationship, we summarize the traffic by simply counting the term frequencies across

the set of messages corresponding to the communications relationship. No stop word

removal or term weighting was applied prior to learning the ranker.

4.6 Results

To assess the performance of our approach, we utilized the Enron email dataset

along with organizational ground truth derived from an internal Enron document.

This dataset is the collection of email from the folders of 151 Enron employees

released as part of the government investigation into Enron’s financial practices.

Our results are based on the UC Berkeley version of the collection containing ap-

proximately 250000 unique email messages mainly occurring in the 2000-2002 time

frame.

Using an internal Enron document specifying the direct reports for Enron em-

ployees over 2000-2001, we identified 43 individuals in the collection with observable

manager-subordinate relationships and nontrivial ego networks. We constructed the

ego networks corresponding to each employee over this time frame and retained only

those relationships where a minimum of 5 emails were sent in each direction. The

66



Approach MRR
Content-Based with Attribute Selection 0.719
Content-Based 0.660
Traffic-Based (From na including nc and not nb) 0.613
Traffic-Based 0.518
Random 0.211
Worst-Case 0.141

Table 4.2: Mean reciprocal rank for the various approaches. The MRR reported for
the learned rankers results from the best performing regularization parameter.

resulting ego networks range in size from 2 to 107 relationships.

For both traffic and content-based relationship ranking, we use a linear kernel

function and evaluate generalization performance using leave-one-ego-network-out

cross-validation. We report the mean reciprocal rank (MRR) for the best performing

regularization parameter. We also provide results for the worst case, where all the

rank constraints are violated, and the average case for random selection. The results

are provided in Table 4.2.

4.6.1 Traffic-Based Relationship Ranking

The linear ranker trained on all of the traffic statistics performs well relative

to the baselines. By reducing the feature space to a single dimension, we achieve

a significant additional improvement. Ranking relationships solely based on the

number of emails sent from the ego to the common network references and not to

the alter yields the best performance. After some reflection on group dynamics,

this result is intuitively appealing. First the feature emphasizes relationships where

there is a large set of common network references. For a manager and subordinate,

these will likely correspond to fellow members of the group that the manager leads.

At the same time, the feature deemphasizes relationships where more emails are

67



sent from the ego to the common set and the alter. When both ego and alter are

colleagues, these events are more likely than when the alter is the manager.

4.6.2 Content-Based Relationship Ranking

We explored two content-based ranking approaches. In the first approach, a

linear ranker was trained on the relationship term frequencies for all 19067 terms.

Examining the absolute value of the resulting weight vector, we determined the 1000

most discriminative terms. Then we trained another linear ranker only on the term

frequencies for the selected terms.

We found that content-based ranking consistently outperforms traffic-based

ranking. We also found that attribute selection provides a significant additional

performance improvement. As shown in Table 4.2, the content-based ranker trained

in the constrained term space yields the highest MRR of 0.719. Examining the top

ranked terms in the weight vector, we find terms indicative of the relationship of

interest. Some notable words appearing in the top 20 include ”please”, ”report”,

”project”, ”termination”, and ”executed”.

We note that there are some ego networks in which content-based ranking

performs worse than traffic-based ranking. The messages in these relationships sug-

gest that the problem may be caused by more complex relationships. For example,

in one ego network where content-based ranking performs significantly worse, the

ego is a senior legal analyst. Although this individual had only one assigned man-

ager, she performed tasks for other individuals, such as writing and analyzing legal

68



documents, similar to those performed for her direct manager.

4.6.3 Content-Based Message Ranking

To qualitatively evaluate message ranking, we examined the highly ranked

messages identified by the top performing content-based ranker. In cases where the

manager-subordinate relationship achieved rank 1, we found that definitive evidence

was usually contained within the top 10 messages. Definitive evidence for this type

of social relationship includes emails with weekly reports, vacation requests, and

project assignments. For example:

From: Cheryl Nelson [cheryl.nelson@enron.com]

To: Mark E Taylor [.taylor@enron.com]

Subject: Holiday Vacation

Hi Mark,

I would like to take Wednesday, December 27th as a vacation day because

I could not get a flight on the 26th. Since I do not plan to leave town

until December 24, I could catch up with my work by working on sat.

December 23rd. Let me know if this is okay with you.

Although the analyst may have some preconceived notions about the nature

of the relationship that are accurate, there are other aspects that may be specific

to the domain or organization and therefore difficult to anticipate. For example,

message ranking revealed ”workload updates” requested by one manager from sub-

ordinates. Workload updates are weekly reports. This process also identified emails

69



that provide evidence for the social relationship in ways one would not expect. For

example:

From: Christian Yoder [christian.yoder@enron.com]

To: Elizabeth Sager [elizabeth.sager@enron.com],

Genia Fitzgerald [genia.fitzgerald@enron.com]

Subject: Happiness

Happiness is looking at the new legal org chart (which Jan just now

dropped on my desk). I always approach these dry documents as though

they were trigrams resulting from throwing the coins and consulting the

I-Ching. At the top of the trigram which I find myself listed in I see a

single name: Elizabeth Sager, and at the bottom I see the name Genia

FitzGerald. ... cgy

As this example hopefully illustrates, message ranking may help the analyst gain

additional insights and move beyond evidence that can be discovered through simple

keyword queries.

4.7 Related Work

In the scenario we are considering, where an analyst is examining a collection

of online communications with minimal context a priori, it will be important to have

a number of tools to examine the data from varying perspectives. By focusing solely

on the communications events through analysis of the communications graph, we

can identify groups/communities and key individuals that are influential based on

70



their position in the graph. Yet in general, we can conclude little about the nature

of the relationships without exploiting the corresponding content.

Within the context of email exploitation, McCallum et al. [109] took the first

step toward a richer model of email relationships by proposing a generative model

that captures the dependencies between topics of conversation and relationships.

Since then, several other generative models have been proposed [178, 163, 192, 189]

that support joint relationship-topic clustering or group-topic clustering. These

algorithms provide utility when initially exploring the data. Yet as the analyst

discovers various relationship types of interest, these approaches do not provide a

mechanism to capture and exploit the analyst’s relationship labels so that additional

relevant content tailored to her information needs can be identified. Our approach

therefore provides a complimentary capability by leveraging the context provided

by the analyst.

Other related approaches in the literature have focused primarily on process-

ing the communications events to understand the structure of the social network.

Eckmann et al. [52] develop an information-theoretic approach to email exchange

that allows for separating static and dynamic structure which appears to correspond

to formal and ad-hoc organizational structure. Tyler et al. [174] present a group

detection algorithm that segments the communications graph by eliminating edges

with low betweenness centrality. The validity of the groups detected within HP

Labs was verified through interviews. Diesner and Carley [50] analyze global prop-

erties of the Enron communications graph and rank network references using various

centrality measures from social network analysis to identify influential individuals.

71



O’Madadhain and Smyth [132] propose an approach for ranking vertices in graphs

representing event data and demonstrate a weak correlation between network refer-

ence rank and position in the organizational hierarchy using a corporate archive of

email events.

In recent years, there has been increasing interest in defining learning methods

that address ranking tasks [73, 83, 60, 25]. Our approach is inspired by earlier

work on large-margin methods for ranking [73, 83, 185] that learn a scoring function

through minimization of the number of rank violations on the training data. Similar

to [185], our general objective is to learn a ranker that successfully ranks relevant

objects higher than irrelevant objects across a set of object sets. In the case of

[185], the object sets are collections of retrieved documents corresponding to various

queries. In our scenario, the object sets are the communications relationships in

the labeled ego networks. We chose to minimize the number of rank violations in

order to indirectly maximize the mean reciprocal rank. As we have established in

Section 4.3.3, minimization of rank violations maximizes a lower bound on the mean

reciprocal rank (MRR). Recent work [84, 26] has examined the problem of directly

optimizing multivariate performance measures similar to MRR that more accurately

represent ranking performance across object sets of varying size. Additional work

is needed to define suitable methods for direct optimization of the MRR.

72



4.8 Conclusions and Future Work

In this chapter, we presented a formal definition of the relationship link predic-

tion task and proposed a supervised ranking approach to the problem. We showed

that through minimization of rank violations, we can indirectly learn a relation-

ship ranker that maximizes a lower bound on the mean reciprocal rank. Through

experimentation on the Enron email dataset, we demonstrated the utility of this

approach on a manager-subordinate relationship link prediction task. Using traffic

and content-based features, the ranking method is able to routinely cue the analyst

to relevant communications relationships. Message ranking using the content-based

ranker provided additional guidance by illuminating compelling evidence within the

message traffic substantiating the social relationship.

Cueing the analyst to relevant relationships and message content is an impor-

tant first step; yet it is only half of the collaborative cycle we envision. As the user

navigates the communications graph, she will make judgements about relationships

and message content. These judgements can be exploited to incrementally refine

the scoring function as her exploration proceeds. The goal is to enable continuous

learning behind the scenes that supports her in the discovery process. To realize this

capability, a number of challenges must be addressed such as automated model selec-

tion (feature selection and hyperparameter tuning) and learning from multiple types

of rank constraints indicating what relationships and message content are relevant.

Other questions emerge about how to most effectively leverage unlabeled relation-

ships in the communications graph and direct labeling efforts to rapidly accelerate

73



the learning. These are some of the issues we will focus on in future research.

74



Chapter 5

Active Surveying for Query-driven Collective Classification

In this chapter, we discuss our work in collective classification of node labels.

For this work, we describe a common, but previously unexplored problem setting we

define as query-driven collective classification. We look at query-driven collective

classification in an active surveying setting where the labels and most of the network

structure is initially unknown but can be acquired, with some cost and subject to

budget constraints, for learning a semi-supervised collective classification model.

Leveraging common assumptions on feature and structural smoothness, we propose

a novel adaptive algorithm and empirically show the superiority of our approach

over standard active learning approaches on four real-world datasets.

5.1 Introduction

Collective classification, the task of labeling nodes in a network, is an im-

portant problem in many domains, such as analysis of social networks, biological

networks, and citation databases [104, 149]. While traditional learning aims to learn

a predictor that accurately labels all available data, we consider the case in which

one is primarily interested in labeling a particular subset of nodes, which we refer

to as the query set. For example, when labeling a social network, we may only

be interested in the labels of key high-ranking or influential individuals. Accurate

75



classification of the rest of the social network may only be useful to help collectively

classify the targeted nodes. We refer to this problem as query-driven collective

classification.

In many practical scenarios, labels and network structure may not be immedi-

ately available for all nodes, and certainly are not available for the nodes in the query

set. Instead, there is a cost for acquiring this information. We therefore explore the

problem of query-driven collective classification in an active learning setting. In

traditional active learning, the learner controls the sequence of training examples

received. Unlike previous work [21, 94, 102, 150], we do not restrict the training

examples to simple instance-label pairs; we instead explicitly consider other infor-

mation that is inherent to relational domains. This leads to a more general view of

information acquisition, which we refer to as active surveying. Whereas prior work

in this area [154] was geared specifically to the problem of identifying opinion lead-

ers, here we present a more general view. In our setting, a survey returns not only

the label(s) of a node, but also any missing attributes and links. In social network

analysis, the neighbor information returned by a survey is often referred to as the

node’s ego network. The relational information is particularly valuable in network

domains, since one can exploit the potential correlations between connected data

points.

We require that the learning algorithm can never directly survey a query node.

For various reasons in practice, surveying a query node may incur a prohibitive cost.

For instance, in a viral marketing campaign, the surveying action may reveal the

product to targeted influentials, when the goal of the campaign is to limit exposure of

76



the product to only those predicted to promote it. Thus, the challenge is to identify

the optimal subset of non-query nodes to survey, subject to budget constraints, that

will enable us to correctly predict the labels of the query nodes.

We analyze the surveying problem using a distributional “smoothness” as-

sumption. We define a query-driven problem to be smooth if the distribution of

labels, conditioned on some measurable distance function, changes proportionally

to the distance. This distance function can be computed using features or network

structure, depending on the problem domain. If the smoothness property holds

for a given dataset and metric, then surveying nodes based on their proximity to

the query nodes should minimize the deviation between the query and survey node

distributions. Therefore, the smoothness assumption theoretically implies that min-

imizing this distance minimizes the average loss over the query nodes. Based on this

analysis, we develop several active surveying strategies: one that leverages feature

smoothness; one the leverages structural smoothness; and Adaptive Surveying for

Query-driven Collective Classification (ASQ2C), a novel adaptive algorithm that

automatically chooses between the two, based on an empirical estimate of the so-

called assortativity in the current observed graph. We evaluate these strategies on

several real-world networks using an iterative classification algorithm to perform

collective classification.

We begin by motivating our research by providing examples of real-world prob-

lems in Section 5.2. We then review some background and related work in Section

5.3. In Section 5.4, we introduce the problem of active surveying for query-driven

collective classification and define the smoothness property. We then discuss some

77



relevant metrics to use for surveying under various smoothness assumptions and

present the ASQ2C algorithm. We evaluate our query-driven surveying strategies

in Section 5.5.

5.2 Motivating Examples

In this section, we present three real-world examples of active surveying for

query-driven collective classification.

5.2.1 Intelligence Gathering

The query-driven active setting is particularly apt for intelligence gathering,

specifically for analyzing organized crime and terrorist networks. In this scenario,

we may be interested in ascertaining the affiliation, disposition, or role (i.e., label)

of key individuals (i.e., query nodes) in a population. For context specific reasons,

these individuals may be inaccessible, making it difficult, if not impossible, to as-

certain their affiliations or dispositions directly. Moreover, the full network may be

largely unobserved. Through surveillance, we can acquire information about the

network, including the labels of less important people, who may be more accessible.

This proxy knowledge can then be used to model the interaction of characteristics,

connections, and labels; furthermore, we may uncover relationships between the ob-

served and unobserved portion of the network, which can be used to infer correlation

of labels. Surveillance or investigation, however, are expensive in terms of both time

and resources, and so we aim to identify the optimal set of people to investigate,

78



given a budget.

5.2.2 Disease Transmission

Consider the task of monitoring the spread of an infectious disease in a social

network. In this context, the goal is to determine the infection status of individuals

in a population. While the population may be known beforehand, we may have

little or no information about the relevant characteristics or relationships between

people. Further, the set of individuals we are most interested in—those “at-risk”,

who are likely to become infected—may comprise only a small portion of the overall

network. The at-risk population may not have access to healthcare, or may be

reluctant to get tested, so this portion of the network may be unobservable. Yet we

can survey the observable network to identify contributing factors to infection, such

as an demographics, genetics and medical history, which people in the query set may

exhibit. Moreover, since there is an undeniable causal link between infection and

one’s proximity to, and interaction with, those infected, identifying the infection

status of related or connected individuals may offer insight about the query set.

Since some diseases must be handled with discretion (such as sexually-transmitted

diseases) and certain people may be less cooperative than others when it comes

to testing and observation, there is a natural cost structure associated with data

acquisition. Thus, as before, we are only able to test and observe a subset of the

overall population, so identifying the optimal subset to survey is important.

79



5.2.3 Viral Marketing

Finally, we consider the context of marketing. Suppose we are introducing a

new product and are interested in creating awareness of this product through viral

marketing. Given the recent proliferation of online social networks, there are various

means of identifying key opinion leaders and information hubs (i.e., the query set),

who comprise the optimal entry points into a market. Yet before advertising to

them, we must predict whether these individuals are likely to adopt and promote

our product. Receiving positive reviews would be beneficial, but having opinion

leaders disseminate negative feedback would be especially detrimental to sales. As

before, we can survey a less influential test market to model the behavior of the target

market without risk of negative publicity. We can also look at how people that are

connected to the opinion leaders react to the product, with the assumption that

they likely share similar opinions. Using their estimated reactions to the product,

we can target our marketing to the subset of opinion leaders likely to give positive

reviews, while minimizing the overall cost of the marketing.

5.3 Background

For the following, let X ⊆ Rd denote a d-dimensional instance space, Y a

finite set of labels, and Z , X × Y their cross-product. We are given a relational

graph G = (V , E), in which the nodes V represent individuals and the edges E

represent relationships between them. We assume that V is fully-specified, although

E is presumably incomplete. Each node is associated with a vector of attributes

80



v.X ∈ X and a label v.Y ∈ Y , although the latter is, for the most part, assumed to

be hidden.

We define a relational learning algorithm A as a function mapping an input

graph G to a hypothesis space F . Let fG denote a hypothesis returned by running

A on G, and note that fG can leverage any information revealed during training

to perform collective inference. Accordingly, we denote the prediction of a single

instance v ∈ V by fG(v). If fG is real-valued (confidence-rated or probabilistic), we

will use fG(v; y) to denote the predicted confidence (or probability) that v.Y = y.

(If fG outputs a probability distribution, then we require that
∑

y∈Y fG(v; y) = 1.)

Accordingly, we use hG(v) to denote the maximum a posteriori (MAP) assignment

hG(v) , argmaxy∈YfG(v; y).

We measure the error (or loss) of fG by a function ` : F × V → R, that

returns a real-valued measure of the discrepancy between fG(v) and v.Y . Denote

by L(U) , 1
|U|
∑

u∈U `(fG(u)) the average loss over a subset of nodes U ⊆ V . This

can be equivalently denoted by Eu∈U [`(fG, u)].

5.3.1 Collective Classification

The task of inferring node labels of network data using local and global struc-

tural information is generally known as collective classification. The underlying as-

sumption of collective classification models is that the relationships between nodes

can be used to supplement local information (attributes) used in prediction. For

instance, a node’s label might be positively or negatively correlated with that of

81



its neighbors. Some collective methods rely solely on this structural information

to propagate labels [104]. A number of collective classification models have been

proposed [149] and shown to outperform their non-relational counterparts in rela-

tional domains. This is especially true in semi-supervised settings like ours, in which

labeled and unlabeled instances are connected in the same network [21].

The aforementioned approaches operate under the assumption that all nodes

are equally important. To our knowledge, the query-driven approach to collective

classification has received little attention. In a non-relational setting, Fawcett and

Provost [58] present an approach to instance-varying cost sensitive classification, in

which the cost of misclassifying an instance varies depending on its characteristics

(e.g., the cost of misclassifying a fraudulent ATM transaction is a function of the

amount involved in the transaction). There has also been work in query-specific

belief propagation methods for graphical models [33].

5.3.2 Active Learning and Inference

While most prior work in collective classification has focused on the “passive”

setting, in which labeled data is drawn randomly from an unknown distribution, we

consider the “active” setting, in which the learning algorithm (or predictor) can de-

termine the sequence of examples. The learner is given an initial set of annotations

with which to bootstrap learning (or inference), after which it is allowed to request

additional examples (subject to some budget constraint) to improve performance.

In active learning, the benefit is two-fold: by selecting the most informative exam-

82



ples, the learner can refine the model for problematic or ambiguous instances, while

potentially reducing the sample complexity of the learning algorithm [21, 102, 195].

In the transductive setting, where the labeled and unlabeled instances belong to

the same network, additional labeled instances can inform the predictions of related

nodes, in a process commonly referred to as active inference [20, 139].

Prior work in active learning [21, 94, 102] for relational data has focused on

acquiring only label information, with the assumption that the network and all other

attributes are observed. Here, we make no such assumptions; instead, we explicitly

assume that the available network is largely incomplete. We therefore allow the

learner (or classifier) to obtain a richer form of feedback, including (but not limited

to) labels, attributes, and network structure. In the context considered herein, we

begin with a partially labeled network, with partially specified neighborhoods; sur-

veying any node returns its label, along with any edges connected to it. There may

also be contexts in which a survey returns the ground truth for missing or noisy

attribute values. Because this form of data acquisition is more general than tradi-

tional active learning, we refer to it as “active surveying”, acknowledging Sharara

et al. [154], who coined the term for the task of identifying key opinion leaders in a

social network.

5.3.3 Active Strategies

The effectiveness of active methods is largely predicated on the strategy for

acquiring new information. The goal is to select a sequence of surveys that max-

83



imizes the quality of the learned model, while minimizing the amount, or cost,

of the acquired information. Since determining an optimal solution is often in-

tractable [20, 143], active methods typically rely on intuitive heuristics. Popular

strategies for active learning and inference are uncertainty sampling and structure-

based sampling, respectively. The following sections discuss these techniques (in the

non-query-driven setting).

5.3.3.1 Uncertainty Sampling for Active Learning

Reasoning that instance ambiguity leads to error, uncertainty sampling fo-

cuses attention on those instances that the current model finds most difficult to

classify. In classification, this requires either confidence-rated prediction or an en-

semble of classifiers. There are numerous measures of uncertainty; arguably, the

most common of which is the information-theoretic entropy, due to Shannon [152],

defined as H(X) ,
∑

x Pr[X = x] log Pr[X = x]. Since this value is negative, it is

common to use the negative entropy as a measure of uncertainty. The objective is

thus to minimize the cumulative entropy of the predictions over all unlabeled nodes,∑
u∈U −H(f(u)). It is straightforward to show that this quantity is minimized by

obtaining the labels of the most uncertain instances (assuming the learning algo-

rithm is able to exploit the new information). Since deterministically selecting the

most uncertain instances can sometimes result in exploring outlier regions of the in-

stance space [144], uncertainty-based methods typically perform random sampling,

weighted by uncertainty, which increases robustness to outliers.

84



Note that uncertainty sampling optimizes for the entire unlabeled space. In

the query-driven setting, however, this is not efficient, since the distribution we are

interested in may differ from the global distribution.

5.3.3.2 Structure-based Sampling for Active Inference

Another broad category of strategies leverages the structure of the network

[21, 139]. These approaches rely on the assumption that, during inference, the

true labels of nodes with certain structural properties are likely to propagate and

positively impact the inference of the most nodes. One heuristic, for example, is to

survey the nodes with highest degree, with the intuition that these nodes have the

greatest influence over the connected nodes. In other words, the labels of high degree

nodes are likely to correlate with those of their neighbors [139]. Other common

heuristics include various centrality measures such as closeness and betweenness

centrality [102] with the assumption that nodes most central to a given connected

component are most likely to provide the most influence over nodes in that connected

component.

Note that these structure-based strategies have only been applied in settings

where the network structure is fully observed. In an active surveying setting, where

few, if any, edges are observed, these strategies do not have enough information to

function effectively.

85



5.4 Query-driven Active Surveying

In this section, we define the problem of query-driven collective classification

with active surveying. We motivate the discussion of surveying strategies by intro-

ducing the notion of smoothness. We then leverage the smoothness assumption to

derive several active surveying strategies.

5.4.1 Problem Definition

The learning problem is defined as follows. In query-driven applications, we

are given a specified (proper) subset of the full vertex set, Q ⊂ V . We refer to this

set as the query set. Let Q denote the distribution over this subset and note that it

is assumed to be different from the global distribution P. The labels of the query set

are hidden and assumed to be unobtainable; thus our primary objective is to predict

the labels of this subset. To do so, we will train a transductive model, leveraging the

label and structural information from the rest of the network.

The query-driven objective may seem counterintuitive at first; after all, most

learning algorithms strive for generalization with respect to the global distribution.

In a sense, query-driven learning seems tantamount to overfitting. The key distinc-

tion is that we optimize for the query set, not the training set; and since the labels

of the query set are unobservable, there is no way to overfit that distribution. Like

related work on transduction [61], the potential benefits of the query-driven ap-

proach are increased accuracy (with respect to the query set) and decreased sample

complexity. In contrast to the transductive setting, we are not interested in labeling

86



all of the unlabeled nodes; only the query set.

We obtain training data via a sequence of surveys. Each survey returns the

label of, as well as all edges adjacent to, a specified node. Let Ψ denote the survey

operator. Thus, surveying a node completely reveals all information about the node;

until a node is surveyed, one cannot assume that its adjacent edge set is completely

specified. Let S denote the set of nodes that have been surveyed and U denote the

nodes that have yet to be surveyed. When considering which nodes to survey, we

may refer to a subset U c ⊆ U as the survey candidates.

Acquiring complete information is considered expensive; we therefore assume

some cost structure associated with surveying. Let ϕ : V → R+ denote a real-valued

cost function. For the nodes in the query set, the cost is infinite1; for all other nodes,

the cost is a positive real number. For the purposes of this research, since our study

focuses on the efficacy of our survey strategies, we will assume that the cost of a

survey is uniform for all non-query nodes.

Our learning objective can be stated as the cost of the queries and the expected

loss over the query set:

argminS Eq∈Q [`(fG, q) |G← G ∪ S] +
∑
s∈S

ϕ(s).

Determining the optimal set of surveys is obviously hard, since we cannot measure

the expected error term. Even if we could measure the objective, the problem is

equivalent to exactly solving a knapsack problem, which is NP-hard. As such, we

consider an iterative greedy approach, in which we survey a fixed number of nodes

1While in certain settings query nodes may trivially be surveyed directly, we focus on the more

challenging setting where nodes in the query set cannot be surveyed.

87



at each time step. Without loss of generality, assume for the moment that we survey

one node at a time; at each iteration, the objective is

argminu∈U Eq∈Q [`(fG, q) |G← G ∪Ψ(u)] + ϕ(u).

Still, we cannot measure this objective. We discuss heuristics to approximate it in

the following section, and address surveying strategies based on these heuristics in

5.4.3.

5.4.2 The Smoothness Assumption

To motivate the discussion of survey strategies, we examine the following sce-

nario. Recall that Q is the set of query nodes and S the surveyed nodes, and let Q

and S denote their respective empirical distributions. That is, for a random variable

Z taking values in Z, Q(Z) = Pr[Z ∈ Q], and similarly for S. If the loss is bounded

by M for any z ∈ Z, then by the triangle inequality, we have that

Eq∈Q [`(fG, q) |G]

=
∑
z∈Z

`(fG, z) (Q(z |G)− S(z |G) + S(z |G))

≤ Es∈S [`(fG, s) |G] +M
∑
z∈Z

|Q(z |G)− S(z |G) |

= Es∈S [`(fG, s) |G] +M ||Q(Z |G)− S(Z |G) ||TV , (5.1)

where || · ||TV is the total variation norm. We interpret 5.1 to mean that the differ-

ence between the average errors over Q and S is a function of the statistical distance

between their respective distributions. Furthermore, note that Es∈S [`(fG, s) |G] is

an empirically measurable quantity, which is (typically) minimized by the learning

88



algorithm. Thus, in order to minimize the error over Q, we must not only minimize

the empirical error over S, but also survey nodes such that the S becomes “close”

to Q.

Since the labels of Q and the unsurveyed set U are hidden, deciding which

subset S will minimize the distance between Q and S is hard. Fortunately, intu-

ition offers a solution in the form of distributional smoothness. A common assump-

tion in semi-supervised learning is that the distribution over the instance space is

“smooth”—that is, high density areas are likely to exhibit the same labels. This

assumption has been used to explain the effectiveness of instance-based methods,

such as k-nearest neighbors [40] and various semi-supervised approaches [194]. We

can adapt this reasoning to the query-driven setting. Let P be some property asso-

ciated with each node, taking values in a space P . For instance, a specific feature

value, or perhaps its encoded location in the network. We say that a query-driven

problem is smooth with respect to a distance function d if there exists a constant

β ≥ 0 such that, for any p, p′ ∈ P ,

∣∣∣∣∣∣∣∣ Pr
v∈V

[v | v.P = p]− Pr
v∈V

[v | v.P = p′]

∣∣∣∣∣∣∣∣
TV

≤ β d(p, p′). (5.2)

In other words, the statistical distance2 between the conditional distributions of

a node with property p versus a node with property p′ should be bounded by a

constant multiplier of the distance between p and p′. 5.2 suggests a strategy for

minimizing the distance between Q and S without having access to the labels: if

2One could define smoothness using an alternate notion of statistical distance. In this case, the

total variation norm fit nicely with the preceding analysis.

89



the smoothness property holds for a given distance function, then survey nodes in U

that have minimal distance to nodes in Q.

Identifying a distance function for which the smoothness assumption holds is

a fundamental challenge in the query-driven setting. There are a number of metrics

to choose from, and the appropriateness of any given one depends on the data.

We emphasize the fact that smoothness is an assumption that we make about a

particular problem. Indeed, in certain applications, this assumption may not hold

for any metric. Yet it is reasonable to assume that it does hold in certain cases,

given insight into the problem domain.

5.4.2.1 Feature Smoothness

A common assumption in data analysis is that the distribution exhibits smooth-

ness with respect to a similarity or distance function in feature space. In the query-

driven setting, we can assume that nodes that are similar (or close) in feature space

will exhibit similar label distributions; in other words, the problem is smooth with

respect to attribute similarity (or distance).

The exact nature of the similarity or distance function is context-specific. One

popular similarity measure for arbitrary vectors is cosine similarity, with Euclidean

distance as the associated distance function. This has been shown particularly

effective with text data represented as TF/IDF-weighted word frequencies [106]. If

the data contains string values, one may also desire string similarity measures, such

as the string edit distance (which commonly refers to the Levenshtein distance).

90



5.4.2.2 Structural Smoothness

A fundamental assumption at the heart of relational domains is that the la-

bels of related (i.e., connected) nodes are correlated. Collective methods have been

shown to outperform traditional local models because they can exploit these corre-

lations (e.g., [149]). Consequently, a natural similarity criterion for network data is

adjacency.

Since the structure of the network may be only partially observed, there may

be few direct adjacencies to the query set. One can address this problem by also

applying a link predictor to the graph. Much work has been done on this topic,

resulting in learning algorithms to infer the existence of missing edges. If these

methods are too expensive, one can use a simpler, path-based link predictor instead.

One such method [99] is the Katz score, defined as

dKatz(q, u) ,
∞∑
t=1

βt
∣∣At(q, u)

∣∣ ,
where β ∈ [0, 1] is an attenuating constant and At(q, u) is the set of all length-t

paths between q and u. (For efficiency, one can approximate this score by giving

an upper bound to the maximum length considered, since longer paths will have

little impact on the score.) Note that this is a purely structural measure, whose

effectiveness cannot be explained by attribute similarity. Furthermore, since it will

tend to assign higher scores to directly adjacent nodes, it provides an easy way to

integrate observed edges; one can therefore use the Katz score as a single indicator

of both observed and inferred adjacency.

91



5.4.3 Survey Strategies

We now discuss exactly how we determine which nodes to survey subject to

a budget of k surveys. Under the smoothness assumption, we expect high utility

from nodes that are close (with respect to a metric d) to the query nodes Q. This

invokes two questions: (1) how to compute utility for each unsurveyed node; (2)

how to sample within the budget.

To address the first question, we could compute an aggregate utility value for

each u ∈ U by summing d(q, u) over all q ∈ Q. However, since Q may exhibit

high variance, the aggregated utility may yield little overall benefit. For example,

suppose that Q lies on the surface of a multidimensional sphere (in feature space);

applying an aggregate feature similarity will result in selecting nodes at the middle

of the sphere, which, while equidistant to all query nodes, may not be as informative

as those closer to the perimeter. As such, instead of computing an aggregate utility,

we could sample from the full cross-product of Q × U according to which u is the

best proxy for each q. For each q ∈ Q, we compute the utility of every u ∈ U

with respect to q, then add the highest scoring u to a pool of survey candidates U c.

The usefulness of each survey candidate is thus conditioned on a particular query

node, instead of over all query nodes. Interpreted differently, the utility measures

the amount of proxy information for a specific query node.

Given U c and a budget constraint of k surveys, we must determine how to

sample from this set. Assuming the utility function is perfect, we could just select

the top-k nodes. Yet since the utility is predicated on an assumption about the data,

92



a deterministic selection might yield suboptimal results. For this reason, we propose

introducing stochasticity by performing a weighted random sampling according to

utility.

To summarize, for each query node, we select its proxy from the pool of un-

surveyed nodes, based on the given utility (i.e., distance) function, and flag it as a

survey candidate. From the pool of survey candidates, we then perform a weighted

sampling, proportional to the utility. The following section introduces an adaptive

surveying strategy to combine feature- and structure-based criteria.

5.4.4 An Adaptive Survey Strategy

Any smoothness assumption—be it feature-based, structural, or otherwise—is

only an assumption, and is wholly data-dependent. There is no single utility function

that will always work. That said, given a set of potentially useful metrics, one can

adaptively select the best one for the given problem and current information.

We develop the Adaptive Surveying for Query-driven Collective Classification

(ASQ2C) algorithm to adaptively choose between feature-based and structural met-

rics. This algorithm uses a novel mechanism for determining when to trust structural

measures by using the assortativity [127] of the currently observed graph. Let ey be

the fraction of edges in the network that connect two nodes of class y. Let sy be

the fraction of edges with source nodes that are in class y. Similarly, let ty be the

fraction of destination nodes in class y. The assortativity of a graph is defined as

assortativity(G) =

∑
y∈Y ey −

∑
y∈Y syty

1−
∑

y∈Y syty
.

93



Algorithm 1 ASQ2C Algorithm
Input: Initial network G = (V, E); set of query nodes Q; cost function ϕ; feature similarity dfs;

structural similarity dss; survey budget B; survey batch size k.
Output: the surveyed network G.
1: S ← ∅, U ← V
2: while B > 0 do
3: α← Estimate assortativity of G
4: With probability p = |α|, d← dss; else d← dfs
5: Uc ← ∅
6: for q ∈ Q do
7: uq ← argmaxu∈U\(Uc∪Q)d(q, u)
8: Add uq to Uc with weight d(q, uq)
9: end for

10: Us ← Weighted sampling of k nodes from Uc
11: for u ∈ Us do
12: G← G ∪Ψ(u)
13: S ← S ∪ u, U ← U \ u
14: B ← B − ϕ(u)
15: end for
16: fG ← A(G)
17: end while

Informally, assortativity is a measure of how correlated the nodes in a network are.

We use this as an indicator of when there is sufficient correlation to use the structural

similarity as the utility function. More specifically, with probability equal to the

absolute value3 of the assortativity, we decide to exploit the structural smoothness;

otherwise, we use the feature smoothness. Note that because the labels of most

nodes and edges are initially unobserved, we cannot compute assortativity of the

fully observed graph exactly. We instead estimate the assortativity of the currently

observed graph using the observed edges and both the observed and predicted labels.

The rest of the algorithm follows the strategy outlined in 5.4.3. The details of

the ASQ2C algorithm are shown in Algorithm 1.

3The assortativity ranges from −1 to 1: positive scores indicate correlation, and negative scores

indicate anticorrelation. In either case, the magnitude is the quantity we are interested in, as it

indicates how much signal can be obtained from network structure.

94



5.5 Empirical Evaluation

We evaluate our approach using several benchmark collective classification

datasets. We begin by describing the characteristics of these networks, and our

general experimental setup. We evaluate our active surveying strategies on these

networks and compare the performance to active learning approaches.

5.5.1 Experimental Setup

In these experiments, we use four real-world networks: Cora, Citeseer,

Wikipedia, and PubMed4. The first two, Cora and Citeseer, are networks of

computer science publications. In these publication networks, each node represents a

publication and each edge a citation. Each node is annotated with a vector of binary

word indicators (i.e., whether it contains each word) and a label indicating the paper

topic. The Wikipedia network consists of Wikipedia articles, wherein each node

represents an article and each edge a hyperlink between articles. Each node is anno-

tated by a vector of TF/IDF-weighted word frequencies and a label specifying the

general category. Finally, the PubMed citation network is a set of articles related

to diabetes from the PubMed database. Node attributes are TF/IDF-weighted word

frequencies and the labels specify the type of diabetes addressed in the publication.

For each dataset, we limit our experiments to the largest connected component.

For the purposes of collective classification, we ignore the directionality of hyperlinks

and citations. To prepare the word attribute data, we use stemming, stop-word

4Datasets available from: http://www.cs.umd.edu/projects/linqs/projects/lbc.

95

http://www.cs.umd.edu/projects/ linqs/projects/lbc


Table 5.1: Statistics on the four real-world networks used in the evaluation

Network # Nodes # Edges # Labels Avg. Degree
Cora 2485 5209 7 4.2
Citeseer 2110 3705 6 3.5
Wikipedia 2776 30574 12 22
PubMed 19717 44338 3 4.5

removal, and filter for the highest TF/IDF-weighted words to reduce the size of the

dictionary to 500. Statistics for the resulting networks are given in Table 5.1.

In all of our experiments, the learning algorithm receives a partially observed

network where the node labels are hidden, but the node features, a random 10% of

the edges, and attributes are observed. Whenever a node is surveyed, the learner

acquires the node’s label and its incident edges.

5.5.2 Methodology

We compare our adaptive query-driven approach (ASQ2C) to two commonly

used active learning baseline strategies: uniform random sampling (RAND) from

the unsurveyed nodes U , and weighted uncertainty sampling (UNC) over the U

based on entropy [144]. We also compare to variants of ASQ2C which only exploit

one of the smoothness types each: QDFS for feature smoothness and QDSS for

structural smoothness. As mentioned in Section 5.4.2, we use cosine similarity for

feature smoothness and the approximate Katz score for structural smoothness. In

all experiments, we set the survey batch size k = 10 and allow the algorithm to run

for 30 iterations (yielding an effective budget of 300 surveys).

Our algorithm is largely agnostic to the underlying collective classification

96



model. For our experiments, we use a semi-supervised variant of the Iterative Clas-

sification Algorithm (ICA) [21] to perform the collective classification. In ICA, each

node is annotated with a vector of its attribute values (i.e., words), its label, and

the label distribution of its neighbors. ICA learns two base classifiers: a local clas-

sifier and a relational classifier. The local classifier, trained on the observed labels

using only the attribute values, is used to bootstrap the unobserved labels prior to

learning the relational classifier. The local classifier is also used to bootstrap the

unobserved labels prior to applying the relational classifier during inference. The

relational classifier, trained on the observed labels using the attribute values and

neighbor label distribution, is then iteratively applied during inference to propagate

the labels. We use linear support vector machines [31] for both classifiers.

To evaluate our approaches under different conditions, we explore various

query set generating processes. We evaluate both on query sets that are generated

by uniform random sampling and query sets generated by targeting a particular

structural or feature characteristics, described in greater detail below.

5.5.3 Sampled Query Sets

For our first set of experiments, we create query sets by randomly sampling

(uniformly and without replacement) 5% of the nodes. Figure 5.1 plots the average

classification accuracy (each point averaged over 40 runs) as additional surveys are

performed. Table 5.2 lists the number of iterations that ASQ2C outperforms each

other method on average, and lists in parentheses the number of times the improve-

97



ment by ASQ2C is statistically significant via a paired t-test. We find that in all

cases, at least one of our query-driven approaches outperforms both RAND and

UNC. ASQ2C performs best for over a majority of the budgets considered, with

most of these gains deemed statistically significant. Specifically, ASQ2C achieves

performance improvements of up to 17% over RAND and UNC. It is important

to note that neither QDFS nor QDSS performs uniformly well on all datasets, thus

motivating the adaptive strategy of ASQ2C. We find that the structural distance

criterion works well for Cora, Citeseer, and PubMed; this is likely due to the

fact that paper topic is typically correlated across citations. In these datasets, at-

tribute similarity is not as strong an indicator, and so QDFS does not perform as

well. However, in the Wikipedia dataset, we find that QDFS performs very well,

while QDSS performs the worst; this is likely due to the fact that Wikipedia articles

often link to a large number of unrelated articles, whereas their word frequencies

are better indicators of topic. Analyzing the true assortativity of these datasets

supports this claim. We find that Cora, Citeseer, and PubMed have high as-

sortativities with respective values of 0.79, 0.67 and 0.69; meanwhile, Wikipedia

has a low assortativity of 0.36.

Focusing on the query-driven strategies, we find that ASQ2C generally out-

performs QDFS and QDSS on all citation networks, by as much as 12% and 8%

respectively. Only on the Wikipedia dataset did a non-adaptive strategy generally

outperform our adaptive approach, typically in the early iterations (i.e., low survey

budgets); and even in this case, ASQ2C is still competitive. We note, however, that

the non-adaptive strategies are only useful if we know a priori which metric to use

98



in advance, which is rarely the case in practice.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  50  100  150  200  250  300

Av
er

ag
e 

Ac
cu

ra
cy

 o
ve

r Q
ue

ry
 N

od
es

Number of Surveys

RAND
UNC

QDFS
QDSS

ASQ2C

(a) Cora

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  50  100  150  200  250  300

Av
er

ag
e 

Ac
cu

ra
cy

 o
ve

r Q
ue

ry
 N

od
es

Number of Surveys

RAND
UNC

QDFS
QDSS

ASQ2C

(b) Citeseer

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  50  100  150  200  250  300

Av
er

ag
e 

Ac
cu

ra
cy

 o
ve

r Q
ue

ry
 N

od
es

Number of Surveys

RAND
UNC

QDFS
QDSS

ASQ2C

(c) Wikipedia

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  50  100  150  200  250  300

Av
er

ag
e 

Ac
cu

ra
cy

 o
ve

r Q
ue

ry
 N

od
es

Number of Surveys

RAND
UNC

QDFS
QDSS

ASQ2C

(d) PubMed

Figure 5.1: Accuracy per iteration (i.e., survey budget) of active surveying averaged

over 40 runs each of the Cora, Citeseer, Wikipedia, and PubMed networks.

Each point indicates the average accuracy after surveying some number of nodes.

5.5.4 Targeted Query Sets

In practice, query sets are selected for some context-specific reason, and thus

may have certain targeted characteristics. For example, in the disease transmission

example of Section 5.2.2, where physical contact is a significant factor, query nodes

may tend to be highly interconnected. Similarly, in the viral marketing example

99



Table 5.2: Number of iterations (out of 30) where ASQ2C scores higher on average
(wins) or lower (losses) than each other method. Of those, the number of significant
wins and losses, using paired t-tests with 90% significance, are listed in parentheses.

# of Wins # of Losses
Cora RAND 29 (28) 1 (0)

UNC 29 (27) 1 (0)
QDFS 30 (25) 0 (0)
QDSS 24 (21) 6 (0)

Citeseer RAND 30 (20) 0 (0)
UNC 30 (23) 0 (0)
QDFS 30 (18) 0 (0)
QDSS 24 (23) 6 (2)

Wikipedia RAND 24 (9) 6 (1)
UNC 26 (11) 4 (1)
QDFS 4 (0) 26 (7)
QDSS 28 (26) 2 (0)

PubMed RAND 27 (17) 3 (0)
UNC 26 (18) 4 (1)
QDFS 26 (14) 4 (1)
QDSS 22 (1) 8 (0)

of Section 5.2.3, query nodes may share a common characteristic such as being

popular or prolific. To study the impact of more targeted generating processes, we

next generate query sets with two types of targeted sampling: a structure-based

context and a feature-based context.

To generate a structure-based query-generating process, we select a query set

using snowball sampling. In snowball sampling, we initialize the query set using a

seed node. We then proceed to sample each of its neighbors with probability pneigh; if

we do not sample a neighbor (which occurs with probability 1−pneigh), then we select

a random node from the remaining unsampled network. We repeat this process for

each node currently in the query set, until the number of query nodes reaches 5%

of the overall network. We perform this procedure for pneigh = 0.1, 0.5, 0.9. Note

that, for higher values of pneigh, the query set tends to be a connected component.

100



Conversely, for lower values of pneigh, the query set tends to be randomly distributed

throughout the network. We test this structure-based setup using the Citeseer

network (Figure 5.2), repeating the experiment for 40 runs by sampling query sets

using different random seeds.

To recreate a targeted sample based on feature, we first identify a set of words

such that the probability of occurrence is low (below 5%) and which a domain expert

may find interesting. We then generate the query set from all documents that contain

the word. For this set of experiments, we focus on the PubMed network. We used

domain knowledge to select words such as “death”, “hypoglycemia”, and “suppress”

as the criteria for adding a paper to the query set. Figure 5.3 shows the results of

these experiments.

Examining the results, we see similar trends as before, with ASQ2C showing

even greater improvement over the baselines. Two important observations when

comparing the targeted query-set setting with the random query-set setting. First,

while ASQ2C is still overall the best performing, there are cases where either QDFS

or QDSS outperform ASQ2C on targeted query sets. We see this change when

comparing low and high values of pneigh and when comparing the results between

the randomly generated and attribute-based query sets. The effectiveness of the non-

adaptive smoothness heuristics is especially noticeable when the number of surveyed

nodes is particularly small (i.e., the learner’s budget is small). This effect implies

that when budget is particularly low for query sets that exhibit clear biases, and

there is domain knowledge that can identify in advance whether feature or structure

smoothness is more likely, using either QDFS or QDSS alone can potentially yield

101



better results. For most greater budgets, however, and in the absence of prior

knowledge about the general characteristics of the data, ASQ2C generally yields

the best performance.

Next, we observe a general upward trend when comparing the results from the

randomly generated query sets to targeted query sets. In both cases, the stronger the

bias for the query set sampling, the greater the improvement over the non-query-

driven strategies. For example, while the percent improvements of ASQ2C over

RAND and UNC reach up to 12% and 17% for uniformly random query sets, we find

improvement as great as 22% and 68% accuracy for high values of pneigh. Similarly,

in the PubMed experiments, where we reach up to 10% and 11% improvement

over RAND and UNC on a uniformly random query set, using ASQ2C on query

sets defined by the word attributes improves accuracy by up to 28% and 44%.

Consequently, while ASQ2C already yields significant improvements in the uniformly

random query-set setting from the previous section, the results from tests in this

section indicate that the more realistic setting where the query nodes are selected

based on some measurable criteria will benefit even more.

5.6 Conclusion

Query-driven collective classification is an important but understudied prob-

lem, applicable to a variety of domains. The query-driven setting, when coupled

with active surveying for partially observed networks, is natural in practice. It pro-

vides an opportunity to develop high impact algorithms for maximizing predictive

102



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  50  100  150  200  250  300

Av
er

ag
e 

Ac
cu

ra
cy

 o
ve

r Q
ue

ry
 N

od
es

Number of Surveys

RAND
UNC

QDFS
QDSS

ASQ2C

(a) Citeseer, pneigh = .10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  50  100  150  200  250  300

Av
er

ag
e 

Ac
cu

ra
cy

 o
ve

r Q
ue

ry
 N

od
es

Number of Surveys

RAND
UNC

QDFS
QDSS

ASQ2C

(b) Citeseer, pneigh = .90

Figure 5.2: Accuracy per iteration averaged over 40 runs on the Citeseer dataset

where the query set is selected using snowball sampling.

performance, over a range of annotation budgets. We identify two forms of data

smoothness, feature-based and structure-based, and demonstrate how to exploit

them for query-driven active surveying. We then develop the ASQ2C algorithm to

automatically determine the optimal smoothness assumption, given the observed

information. We evaluate these survey strategies on real network data and show

that our query-driven methods exhibit significant advantages over traditional (non-

query-driven) active learning heuristics. There is much room for further exploration:

for example, query-driven active surveying in which surveys may return incomplete

or noisy information; exploring non-uniform cost structures; and application in dy-

namic networks. Nevertheless, our work identifies this important and challenging

problem setting, and represents a major first step in addressing it.

103



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  50  100  150  200  250  300

Av
er

ag
e 

Ac
cu

ra
cy

 o
ve

r Q
ue

ry
 N

od
es

Number of Surveys

RAND
UNC

QDFS
QDSS

ASQ2C

Figure 5.3: Accuracy per iteration averaged over 40 runs on the PubMed dataset

where the query set is selected by filtering on keywords (e.g., death, hypoglycemia,

stress).

104



Chapter 6

Collective Graph Identification

In previous chapters we discussed the problems of entity resolution, link pre-

diction, and collective classification as individual tasks. While each of these prob-

lems have been studied separately, they have never been considered together as a

single coherent task. In this chapter, we discuss how these tasks are inherently

inter-related in the the problem we define as graph identification. We develop an

approach using coupled collective classifiers and empirically show the importance

of jointly performing these tasks. We also show the superiority of our proposed

approach over previously proposed joint approaches in both prediction quality and

runtime on a variety of real-world datasets.

6.1 Introduction

In recent years, there has been a surge of interest in network analysis applied

to diverse domains including social networks, technological networks, biological net-

works and more. In part, this interest is driven by the burgeoning growth in the

amount of digital information describing network data that is available including e-

mail, citation collections, epidemiological data, and social media. Such data contain

a wealth of information (e.g., key individuals, communities, and contagion trends)

that, when uncovered, can help to create better predictive models and help elucidate

105



general laws governing network evolution. However, the available network data is

typically noisy, observational, and, while it provides useful signal for uncovering the

underlying sociological or technological network, it is not the same thing.

We define the process of discovering the hidden structure which gives rise

to observational network data as the problem of graph identification. Figure 6.1

illustrates an example of inferring a social network (Figure 6.1(b)) from an email

communication network (Figure 6.1(a)). We refer to the observational network data

as the input graph, and the hidden network of interest as the output graph. Graph

identification uncovers the hidden network by simultaneously solving three problems:

Entity resolution: merging nodes in the input that refer to the same entity, e.g.,

“Do Neil Smith and N. Smith refer to the same person?”.

Link prediction: inferring the links between nodes in the output graph, often

based on links in the input graph, e.g., “Does an employer-employee relation-

ship exist between Anne and Robert?”.

Node labeling:1 determining the label of nodes in the output graph, e.g., “Is Neil

a CEO, manager or assistant?”.

In addition to constructing the hidden output graph, graph identification in-

volves constructing the mapping from nodes in the input graph to nodes in the

output graph (Figure 6.1(c)).

1Node labeling is also known as collective classification. In this chapter, we use the term node

labeling to emphasize that this problem predicts the label attributes of nodes.

106



Mary Taylor

Neil Smith

Robert Lee

Anne Cole Mary Jones

Label:        CEO          Manager        Assistant Programmer

Email Communication Network Social Network

(a) (b)

mtaylor@example.com

acole@example.com

nsmith@msn.com

neil@example.com

mary@example.com

robert@example.com

mjones@example.com
neil@example.com�Neil Smith

nsmith@msn.com�Neil Smith

mtaylor@example.com�Mary Taylor

mary@example.com�Mary Taylor

mjones@example.com�Mary Jones

acole@example.com�Anne Cole

robert@example.com�Robert Lee

Mapping

(c)

Figure 6.1: Input and output of graph identification. (a) Input graph representing

a communication network where the nodes are email addresses and the edges are

email communications. (b) Output graph representing the social network identified

by graph identification. The nodes correspond to people and the edges to employee-

manager relationships. The people are also labeled with their roles. (c) Mapping

from input to output nodes.

Each task informs the others, and by solving them simultaneously, we allow

information to propagate among them to obtain better solutions. For example, in

a bibliographic domain, predicting whether one paper cites another (link predic-

tion) allows us to determine whether two papers cite common papers. Co-citation

helps us to decide whether they have the same topic (node labeling), which in

turn aids in ascertaining whether they are the same paper (entity resolution). This

last information in turn helps to determine the citation links from the two pa-

pers to other papers, closing the information propagation loop. While previous

work [123, 99, 169, 28, 160, 16, 149] has addressed each of these tasks separately, to

our knowledge, we are the first to efficiently address them simultaneously.

To address the problem of graph identification, we present the C3 (Coupled

107



Collective Classifiers) algorithm. C3 defines a probabilistic model to capture the

dependencies within each task as well as the relational interactions among all three.

While it is conceptually possible for standard probabilistic inference algorithms to

jointly solve all three tasks within the framework of our model, in practice they

are too computationally expensive for large real-world datasets. C3 uses an itera-

tive procedure that simultaneously solves all three tasks. It begins by using a local

classifier based solely on observed information in the input graph to solve each task

independently. Then it iteratively propagates these solutions among the three tasks

by means of relational features that capture the interactions within and among the

tasks. To further tailor C3 as a practical approach, we designed it to address the

real-world scenario where it is costly to obtain fully labeled network data. C3 adopts

a semi-supervised learning algorithm that can exploit training data with only a small

fraction of labeled examples. We consider multiple variants of C3 based on different

learning and inference paradigms and empirically show that by propagating infor-

mation, C3 significantly improved predictive accuracy on four real-world networks.

We also provide scalability results for C3 by showing its runtime performance over

large synthetic network datasets, as well as its runtime performance when using

multiple threads as we exploit the natural parallelizability of its computation.

The remainder of the paper is organized as follows. We discuss the problems

involved in graph identification, previous work in those problems, and early attempts

to jointly perform subsets of those problems in Section 6.2. We then provide a

background review in Section 6.3. We describe C3 in detail (Section 6.4) and report

our experiments (Section 6.5). We conclude with future work (Section 6.6).

108



6.2 Graph Identification

Graph identification is the problem of discovering the hidden structure which

gives rise to observational network data. The problem consists of three tasks, cor-

responding to the three major components of a graph. First, we merge nodes in

the observational network data to the nodes they refer to in the hidden network

(entity resolution). Next, we infer the edges between the nodes of our hidden net-

work (link prediction). Finally, we infer the attribute values of our hidden network

(node labeling). There is significant prior work exploring the tasks within graph

identification individually. In this section, we discuss the previous work in each of

these tasks. We also discuss the limited related work at various ways these tasks

are inter-dependent, including various joint approaches that may also be used to

perform the tasks jointly. We note that to our knowledge, none of these approaches

have ever been used for the complex structured prediction problem of collectively

inferring a full graph.

6.2.1 Independent Models

The three tasks within graph identification are individually well studied. For

all three tasks, previous work can be naturally separated into two broad categories,

local approaches and approaches which exploit the dependence of predictions within

each task (intra-dependence). The local approaches, consisting the early work in

each task, focused on using the node attributes to perform the inference. For entity

resolution, various attribute similarity measures have been proposed such that nodes

109



whose attributes are similar above a defined threshold are predicted co-referent (e.g.,

name mentions with similar spelling likely refer to the same individual) [18, 36].

Early work in link prediction also used similarity with the observation that many

networks are homophilic (e.g., individuals with similar characteristics are likely to

be friends) [116]. For node labeling, various classification models including näıve

Bayes, decision trees [136], and support vector machines [31] were proposed to label

the nodes using their observed attributes (e.g., words in papers to infer the topic of

the paper).

More recent work exploit the relationships which exist between nodes, in par-

ticular the intra-dependencies they introduce, to perform these tasks. For entity res-

olution, approaches used knowledge that two nodes are predicted co-referent to col-

lectively infer that related nodes may also be co-referent to each other [16, 160, 181].

Within the link prediction, approaches collective inferred which nodes share a link

using concepts like triadic closure (two nodes predicted to share a link with a com-

mon node are likely to share an edge as well) [35, 86]. Finally, approaches have

been proposed to collectively infer the labels of nodes with the assumption that the

labels of related nodes are correlated [104, 114, 149].

6.2.2 Joint Models

While the vast majority of work in entity resolution, link prediction, and node

labeling have looked at each as independent tasks, there has been limited work

in recent years that have looked at how different pairs of these tasks are inter-

110



dependent. Taskar et al. [169] explored jointly performing link prediction and

node labeling using Relational Markov Networks. Bhattacharya et al. [17] used

a probabilistic generative model to perform entity resolution and node labeling.

Wick et al. [182] performed entity resolution and node labeling using conditional

random field. To our knowledge, however, previous work has not formulated the

full complex structured prediction problem as interacting components in order to

collectively infer a graph.

We note that graph identification is related to domain-specific joint infer-

ence problems such as information extraction in natural language processing [145],

network mapping in computer networks [156], and biological network inference in

bioinformatics [107]. While graph identification may provide a unifying paradigm

for these problems and others, there are some important differences as well. In-

formation extraction traditionally infers structured output from unstructured text

(e.g., newspaper articles, emails), while graph identification is specifically focused

on inferring structured data (i.e., the output graph) from other structured data

(i.e., the input graph, perhaps produced from a noisy information extraction pro-

cess). Network mapping and biological network inference are also related to graph

identification, but they are mainly concerned with inferring only network topology.

6.3 Background

Throughout the paper, we use an uppercase letter to represent a random

variable (e.g., Y ) and a lowercase letter (e.g., y) to represent its value. Bold letters

111



represent a vector or set (e.g., Y) and their values (e.g., y).

A Markov random field (also known as Markov network) encodes a joint distri-

bution over a set of random variables Y. Let C denote a set of subsets (or cliques)

of the random variables, and let Yc denote the random variables in a subset c. For

each c ∈ C, we have an associated potential φc(Yc), which is a non-negative function

defined over the joint domain of Yc. The Markov random field defines the following

distribution:

P (y) =
1

Z

∏
c∈C

φc(yc) (6.1)

where Z =
∑

y′
∏

c∈C φc(y
′
c) is a normalization constant. The potential functions are

often represented more compactly as a log-linear combination over a set of features:

φc(yc) = exp (
∑

iwifi(yc)) = exp (wc · fc(yc)) . In this case, Equation 6.1 can be

equivalently expressed as

P (y) =
1

Z
exp

(∑
c∈C

wc · fc(yc)

)
. (6.2)

In many applications, we are interested in conditional distributions where a

subset of the variables X are provided as evidence, and we predict a set of target

variables Y. A conditional Markov network defines the distribution P (y | x) =

1
Z(x)

∏
c∈C φc(xc,yc), where the partition function Z(x) now depends on x : Z(x) =∑

y′
∏

c∈C φc(xc,y
′
c).

Note that evaluating the above equation requires that we compute Z(x), which

in turn, requires that we sum over all possible assignments to y′. Since this is

exponential in |Y|, computing Z(x) and hence the equation are generally intractable.

A common approximation is the pseudolikelihood [15]:

112



P ∗(y | x)

=
∏
i

P (yi|y−i,x)

=
∏
i

exp
(∑

c∈C:yi∈yc
wc · fc(xc,yc)

)
Z(yc\yi,x)

(6.3)

where y−i = y1, . . . , yi−1, yi+1, . . . , ym and

Z(yc \ yi,x) =
∑

yi
exp

(∑
c∈C:yi∈yc

wc · fc(xc,yc)
)

. Note that we only sum over

the possible values of yi. Hence evaluating the normalization constants of all terms

only requires time that is linear in |Y|.

6.4 Coupled Collective Classifiers

C3 takes a graph (V,E) as input where V and E are respectively a set of

vertices and directed edges2. Each vertex v ∈ V represents a reference to an entity,

and each edge (vi, vj) ∈ E represents an interaction between references vi and vj.

Each node vi in the input graph has associated attributes Ai. For example, if a

node represents a reference to a paper, the attributes may describe the words which

appear in the paper. Edges (vi, vj) may also have associated attributes, denoted Aij.

An example of an edge attribute is the number of emails sent on a communication

link from person vi to vj. We use A = {Ai}∪{Aij} where i, j = 1, . . . , |V| to denote

the attributes of all input nodes and edges.

2C3 extends straightforwardly to graphs with more than one kind of edge and hypergraphs. We

focus on the case of a single edge type for simplicity of presentation.

113



C3 jointly performs the three tasks of entity resolution, link prediction and

node labeling. For entity Resolution, we define binary random variables R={Rij}

where i, j = 1, . . . , |V| and Rij is an indicator variable denoting whether references

Vi and Vj are co-referent. For Link prediction, we define binary random variables

L={Lij} where i, j = 1, . . . , |V| and Lij is an indicator variable denoting whether

there is a link, or edge, from Vi to Vj, in the output graph3. For Node labeling,

we define random variables for each node representing its label N = {Ni}|V|i=1 and

Ni ∈ {1, 2, . . . , k} where k is the number of possible label values.

We partition each set of variables into a set representing variables that are

observed (i.e., evidence), and a set representing variables that are predicted (i.e.,

are target variables). We denote observed variables as Ro, Lo, and No, and target

variables as Rp, Lp, Np, where R = Ro ∪ Rp, L = Lo ∪ Lp and N = No ∪ Np.

In addition, attributes A and edges E in the input graph are also assumed to be

observed. Thus Ro, Lo, No, A and E constitute evidence, i.e., X = Ro ∪ Lo ∪

No ∪ A ∪ E. The target variables Y are made up of the predicted variables, i.e.,

Y = Rp ∪ Lp ∪Np.

Given the above definitions and using Equation 6.3, we can represent the joint

probability over the target variables Rp,Lp,Np given evidence X as follows:

3In practice, we do not instantiate all the |V|2 variables in R and L. Section 6.5 describes how

we use filtering techniques to only create variables for pairs that have some possibility of being

co-referent/linked.

114



Table 6.1: Cora and Citeseer Feature Definition

Task Type Feature Description
ER Local · Cosine similarity of observed words over nodes

Intra-Rel. · Jaccard similarity of the set of nodes adjacent via observed edges
· Jaccard similarity of the set of nodes adjacent via observed edges

to observed or predicted co-referent nodes
· Indicator for whether or not a node exists that is observed or pre-

dicted co-referent to both nodes
Inter-Rel. · Jaccard similarity of the set of nodes adjacent via observed and

predicted citation edges
· Jaccard similarity of the set of nodes adjacent via observed and

predicted citation edges to observed and predicted co-referent nodes
· Indicator for whether the observed or predicted labels of the nodes

are the same
LP Local · Cosine similarity of observed words over nodes

· Indicator variable of matches of observed words at both nodes
Intra-Rel. · Indicator variable for the existence of nodes adjacent to both nodes

via observed edges
· Indicator variable for the existence of nodes adjacent to both nodes

via observed and predicted citation edges
Inter-Rel. · Indicator for whether the observed or predicted labels of the nodes

are the same
· Indicator for whether or not the nodes have observed or predicted

co-referent nodes adjacent via observed or predicted citation edges
NL Local · Observed words of node

Intra-Rel. · For each possible label value, the % of nodes adjacent via observed
edges with this observed and predicted label

Inter-Rel. · For each possible label value, the % of nodes adjacent via observed
and predicted citation edges with this observed and predicted label
· For each possible label value, the % of nodes which are observed

and predicted co-referent with this observed and predicted label

P ∗ (rp, lp,np | x)

=

∏
rp∈rp

P (rp|y\rp,x)

∏
lp∈lp

P (lp|y\lp,x)

∏
np∈np

P (np|y\np,x)

.
(6.4)

6.4.1 Features

C3 makes use of two kinds of features: local and relational. Local features

capture the dependencies between a single predicted variable and evidence. For

115



Table 6.2: Enron Feature Definition

Task Type Feature Description
ER Local · String similarity of observed email addresses

· Cosine similarity of observed word usage
Intra-Rel. · Indicator for whether or not a node exists that is observed or pre-

dicted co-referent to both nodes
· Jaccard similarity of the nodes adjacent via observed communica-

tion edges
· Jaccard similarity of the nodes adjacent to observed and predicted

co-referent nodes via observed communication edges
Inter-Rel. · Indicator for whether the observed or predicted labels of the nodes

are the same
· Jaccard similarity of the nodes adjacent via observed and predicted

managerial edges
· Jaccard similarity of the nodes adjacent to observed and predicted

co-referent nodes via observed and predicted managerial edges
LP Local · Indicator variable of observed words in shared communications

Intra-Rel. · Indicator variable of observed and predicted managerial edges be-
tween nodes adjacent via observed incoming and/or outgoing com-
munication edges

Inter-Rel. · Indicator for whether the observed or predicted labels of the nodes
are the same
· Indicator for whether or not the nodes have observed or predicted

co-referent nodes adjacent via observed or predicted managerial
edges

NL Local · Observed words in communications
Intra-Rel. · For each label, the % of nodes adjacent via observed incoming

and/or outgoing communication edges with this observed and pre-
dicted label
· For each label, the % of observed communications with nodes adja-

cent via observed incoming and/or outgoing communication edges
with this observed and predicted label

Inter-Rel. · For each label, the % of nodes adjacent via observed and predicted
managerial edges with this observed and predicted label
· For each possible label value, the % of nodes which are observed

and predicted co-referent with this observed and predicted label

116



Table 6.3: Discourse Opinion Feature Definition

Task Type Feature Description
ER Local · Discourse and dialog continuity features defined in [162]

Intra-Rel. · Indicator for whether or not a node exists that is observed or pre-
dicted co-referent to both nodes

Inter-Rel. · Indicator for whether or not the nodes are adjacent via observed
and predicted reinforcing edges
· Indicator for whether or not the nodes have observed or predicted

co-referent nodes adjacent via observed and predicted reinforcing
edges
· Indicator for whether the observed or predicted labels of the nodes

are the same
LP Local · Discourse and dialog continuity features defined in [162]

Intra-Rel. · Indicator for whether or not a node exists that is observed or pre-
dicted reinforcing to both nodes

Inter-Rel. · Indicator for whether the observed or predicted labels of the nodes
are the same
· Indicator for whether or not the nodes are observed or predicted

coreferent
· Indicator for whether or not the nodes have observed or predicted

co-referent nodes adjacent via observed and predicted reinforcing
edges

NL Local · Opinion lexicon, dialog information, and unigram features defined
in [162]

Intra-Rel. · For each possible label value, the % of nodes adjacent via observed
co-occurence edges with this observed and predicted label

Inter-Rel. · For each possible label value, the % of nodes adjacent via observed
and predicted reinforcing edges with this observed and predicted
label
· For each possible label value, the % of nodes which are observed

and predicted co-referent with this observed and predicted label
· For each possible label value, the % of nodes which are observed

and predicted co-referent and reinforcing with this observed and
predicted label

117



example, in a bibliographic domain, a local feature f(Ni, Ai) represents how the

topic Ni of a paper i depends on its content words Ai. Relational features cap-

ture the interaction between multiple predicted variables. We further differenti-

ate between two kinds of relational features: intra-relational and inter-relational.

Intra-relational features help in propagating information among variables of one

task, whereas inter-relational features aid in disseminating information among vari-

ables of different tasks. For example, for node labeling the intra-relational feature

f(Ni, {Nij}∀j:(vi,vj)∈E) represents the condition that the label of node Ni depends on

the predicted label of its observed neighbors along edges E in the input graph, and

the inter-relational feature f(Ni, {Nij}∀j:Lij=1) represents the condition that the la-

bel of node Ni depends on the predicted label of its inferred neighbors along edges L

in the output graph. Similarly, for entity resolution, we may have an intra-relational

feature f(Rij,{Rik,Rjk}∀k:Rik=Rjk=1) representing the condition that nodes i and j are

likely to be co-referent if they have a common neighbor k that they are predicted to

be co-referent with. And we may have an inter-relational feature f(Rij, Ni, Nj) ex-

pressing the condition that nodes i and j are likely to be co-referent if their inferred

node labels Ni and Nj are the same.

Note that a wide gamut of dependencies can be cast in terms of C3’s features.

This is essential for graph identification because it allows us to exploit the diverse set

of dependencies which have been proposed for each of the underlying tasks. Previous

work in entity resolution, for example, has proposed using a variety of attribute

similarity measures between potentially co-referent pairs of nodes [36]. Similarity

measures have also been proposed to quantify the set similarity of “neighborhoods”

118



of pairs of nodes [16]. Common definitions of a node’s neighborhood include adjacent

nodes, all nodes within a given shortest path distance, and all nodes which have an

adjacent node in common (e.g., all papers which cite some common subset of papers).

All of these definitions can be captured in our framework.

Work in link prediction also makes use of features based on attribute and

neighborhood similarity. These features capture the assumption that many net-

works are homophilic, i.e., similar nodes are likely to share a link. Link prediction

features also tend to rely on topology-based characteristics which capture the struc-

tural similarity (e.g., degree) or proximity (e.g., existence of paths) between two

potentially adjacent nodes [99]. In multi-relational networks, link prediction may

rely on features based on the attributes of links between the same pair of nodes

(e.g., attributes of a communication edge between people imply something about

their social relationship). For node labeling, features traditionally include the ob-

served attributes of the given node, as well as observed and predicted values of

nodes in its neighborhood. Table 6.1, 6.2, and 6.3 contain more examples of lo-

cal and relational features, and shows the diversity of features that we used in our

experimental evaluation.

We use F to denote the set of features used by C3, and yf to denote the

random variables used in the definition of features f ∈ F . Then, from Equation 6.3

and Equation 6.4, we can represent the joint probability over the target variables

Rp,Lp,Np as follows:

119



P ∗ (rp, lp,np | x) =
∏

y∈rp∪lp∪np

exp
(∑

f∈F :y∈yf
wf · f(xf ,yf )

)
Z(yf \y,x)

. (6.5)

6.4.2 Weight Learning

Observe that Equation 6.4 decomposes into three terms, one for each of the Rp,

Lp and Np target variables. A feature that is defined over more than one type of vari-

able appears in more than one of the terms with the same weight (e.g.,f(Rp,Lp,x)

appears in both
∏

rp∈rpP (rp|y \ rp,x) and
∏

lp∈lpP (lp|y \ lp,x)). We simplify the

equation further by assuming that the appearances of such a feature in a term are

distinct from those in another term, thus allowing the weights of the feature to be

different. This simplifies the weight learning algorithm by allowing it to find the

optimal weights for each term separately.

In C3, we are interested in inferring the most likely assignment of the variables

(also known as the maximum a posteriori state). Hence, for each term
∏

v∈v P (v|y\

v,x) (v ∈ {rp, lp,np}), we want to find feature weights that maximize the ratio

P (v|y\v,x)
P (v′|y\v′,x) between the conditional probability of each correct assignment v and every

incorrect assignment v′. Taking logs of the ratio, we see that we are equivalently

maximizing the margins
∑

f∈F :v∈yf
wf · (f(xf ,yf \v, v) − f(xf ,yf \v, v′)) for each

v ∈ v and v′ 6= v, i.e.,

maximize γ s.t.
∑

f∈F w
2
f ≤ 1 and

∀v ∈ v, ∀v′ 6=v ∆f(xf ,yf )(v, v
′) ≥ γ

where ∆f(xf ,yf )(v, v
′) =

∑
f∈F :v∈yf

wf · (f(xf ,yf \v, v)− f(xf ,yf \v, v′)).

120



Applying a standard transformation to eliminate γ and introducing slack vari-

ables ξv to allow some constraints to be violated to accommodate non-linearly-

separable data, we get:

minimize 1
2

∑
f∈F w

2
f + K

∑
v∈v ξv s.t.

∀v ∈ v, ∀v′ 6=v ∆f(xf ,yf )(v, v
′) ≥ 1− ξv

where K is a constant. The above is precisely the optimization that a multi-class

support vector machine (SVM) [41] performs4. Hence we train three SVMs, one for

each of the Rp, Lp, and Np variables.

Even though we have derived the SVM optimization for C3, we would like to

emphasize that C3 can easily be used with other classifiers (logistic regression, näıve

Bayes, etc.).

6.4.2.1 Semi-Supervised Learning

Thus far, we have assumed that training data is fully observed, i.e., we know

the ground truth values of all R, L, and N variables. For large real-world networks,

this is an impractical assumption because the ground truth values are seldom readily

available and it is too costly to manually label them. Hence, we focus on the

more realistic scenario of semi-supervised learning where only a small portion of the

variables are observed.

One difficulty with partially observed data is that we cannot compute the

4We use a multi-class SVM rather than a binary-class one because the node-labeling variables

N can be assigned to one of more than two possible values.

121



values of relational features containing unlabeled variables. One solution to this

problem is to use the observed variables to train a new set of SVMs containing

only local features, one SVM for each of the Rp, Lp, and Np variables. These are

then used to infer the values of the target variables (recall that their values are

not observed). With these inferred values, we can evaluate the relational features

involving predicted variables, and hence learn feature weights that optimize the

margins for the originally observed variables. Algorithm 2 contains the pseudocode

for C3’s semi-supervised weight learning.

Algorithm 2 C3 Semi-supervised Weight Learning

input: f local, a set of local features
frelational, a set of relational features
yobserved, values of observed variables
Ypredicted, predicted variables
x, evidence variables

output: w, weights of f local ∪ frelational

wlocal, weights of f local

calls: LearnWeights(f ,y,x, C), which returns weights of
features f given observed variables y, evidence x and
classifier C

InferV alue(Y, f ,w,x, C), which returns the MAP value
of variable Y given features f , their weights w,
evidence x and classifier C

1: wlocal ← LearnWeights(f local,yobserved,x,SVM)
2: for each Y ∈ Ypredicted

3: ypredicted ← InferV alue(Y, f local,wlocal,x,SVM)
4: f ← f local ∪ frelational

5: w← LearnWeights(f ,yobserved,x ∪ ypredicted,SVM)
6: return (w,wlocal)

6.4.3 Inference

Algorithm 3 gives the pseudocode for C3’s inference procedure. Given a set of

target variables Y = (Rp,Lp,Np) and evidence x, we begin by using a local SVM

122



(i.e., one containing only local features) with learned weights, wlocal, to infer the val-

ues of each of the Rp,Lp, and Np variables. At this point, the variable assignments

are based solely on the evidence x. The algorithm then proceeds to capture the

dependencies between the variables. It iteratively evaluates the relational features

using the variable values inferred in the previous iteration, and uses a relational

SVM (i.e., one containing local and relational features) with learned weights w (or

wk when using stacked learning) to infer new variable values for the current iter-

ation. The algorithm terminates when the variable values converge, oscillate, or a

user-specified maximum number of iterations is reached.

We note that our iterative approach is similar in spirit to the iterative classi-

fication algorithm (ICA) presented by Neville and Jensen [123] and the link-based

classification work by Lu and Getoor [101]. We note that previous work in these

methods have mainly looked only at the problem of node labeling, using simple ag-

gregations for relational features. C3 is a generalization of these approaches which

use coupled classifiers to perform multiple tasks simultaneously, as well as using a

richer set of relational features including aggregate, set similarity, and structure-

based features.

6.4.4 Constructing the Output Graph

Given an assignment of values to the predicted variables, we can construct an

output graph. We create an entity node in the output graph for each collection of co-

referent references. We also create edges between the entities based on whether the

123



Algorithm 3 C3 Inference

input: Y, target variables
x, evidence
f , a set of local and relational features
w, weights of features in f
f local, a set of local features
wlocal, weights of features in f local

maxIter, maximum number of iterations
output: y, values of target variables
calls: InferV alue(Y, f ,w,x, C), which returns the MAP

value of variable Y given features , their weights w,
evidence x, and classifier C

1: i← 0
2: for each Y ∈ Y
3: yi ← InferV alue(Y, f local,wlocal,x, SVM)
4: repeat
5: i← i+ 1
6: for each Y ∈ Y
7: yi ← InferV alue(Y, f ,w,x ∪ {yi−1 \ yi−1}, SVM)
8: until i = maxIter or y values converge
9: return yi

majority of their corresponding variables L, defined over their references, indicate

that the entities are linked. Finally, we can assign the label to an entity based on

the values in N corresponding to its references. It is possible that assignments to

these variables are inconsistent (i.e., Ni may not equal Nj even though references i

and j are predicted co-referent). In these cases, we can define a procedure to resolve

the inconsistencies prior to generating the output graph (e.g., enforce transitivity

over co-referent pairs, add edges between entities whose references have an edge, and

taking the mode label over the labels of its references). For the evaluation in this

paper, we evaluate over the predicted variables Y both with and without applying

these procedures.

124



6.4.5 C3 Variants

Beyond the semi-supervised learning and inference procedures discussed in

Section 6.4.2 and Section 6.4.3, we explored variants of C3 based on various learning

and inference paradigms. For inference, we consider three variants of C3’s inference

procedure which exploit the ability of SVMs to not only return the most likely value

for each variable, but also a probability distribution over all possible values [184].

Previous work has shown that approaches which deterministically assign the most

likely value can converge to a poor local optimum [67]. To avoid this and potentially

reach a global optimum, we can replace deterministic assignments in C3 with samples

drawn from the inferred probability distribution. The first variant, C3-PS, performs

this sampling for each variable in each iteration. With probability 1− (i/maxIter)

where i is the current iteration, we assign the variable to the sampled value for that

variable in iteration i. Otherwise, we proceed as before and set the variable to the

most likely value. Note that by setting the probability of sampling relative to each

iteration, we are more likely to sample in early iterations while later iterations are

more likely to use the most likely value.

Our second variant, C3-GS, is based on the extensive work in Gibbs Sampling

[66]. Gibbs sampling is widely regarded as one of the most accurate approximate

inference procedures. Unfortunately, it is also very slow due to the number of

samples that need to be collected. As with C3-PS, we sample values from the

returned probability distributions for each variable. We then assign variables to

these sampled values for a fixed number of iterations. After this “burn-in” period,

125



we not only continue assigning the sampled values but also maintain a count of

how often a value was sampled and assigned for a given variable. We perform this

count for some predefined number of samples. After all the samples are collected, we

assign each variable to the to the value most sampled for that variable. Algorithm 5

gives the pseudocode for C3’s Gibbs sampling procedure.

Our third variant uses the idea that collective performance is improved by

explicitly identifying and preferentially exploiting the more certain relational infor-

mation. McDowell et al. [115] refer to approaches which use this idea as “cautious”

and showed that cautious approaches can significantly improve performance over

their “aggressive” counterparts. In our cautious variant of C3, denoted C3-CI, we

modify the inference such that we only update the top K (K = (1/maxIter) ∗

(number of random variables)) most confident predictions (i.e., probability of most

likely class) for each task. Variables whose values are set in an iteration are not

updated in later iterations.

We also propose a learning and inference variant based on the work in expec-

tation maximization (EM) [44]. In this variant, C3-EM , we do not learn a single

set of SVMs to iteratively apply. We instead relearn a different set of SVMs at the

beginning of each iteration using the output of the previous iteration. Algorithm 4

contains the pseudocode for C3-EM . As with our first weight learning algorithm, we

begin by learning and applying SVMs containing only local features to infer values

of the target variables. These inferred values are then used in the relational fea-

tures for learning weights for our first iteration, denoted w1. To learn the weights of

subsequent iterations, wk, we apply SVMs using the feature weights of the previous

126



iteration, wk−1, to update the inferred values of the target variables. The updated

inferred values are then used in the relational features for learning wk over the origi-

nally observed variables. This is repeated for each iteration for some pre-determined

number of iterations. The assignments when applying the classifiers with the last

set of weights are returned as output. We note that while we only use the values of

unlabeled instances in computing the relational features, typical applications of EM

would have learned classifiers over both the labeled and unlabeled instances. We

explored the variant where labeled and unlabeled instances were used as training

instances and and found that it performed poorly.

Algorithm 4 C3 EM Learning and Inference

input: f local, a set of local features
frelational, a set of relational features
yobserved, values of observed variables
Ypredicted, predicted variables
x, evidence variables
maxIter, maximum number of iterations

output: y, values of target variables
calls: LearnWeights(f ,y,x, C), which returns weights of

features f given observed variables y, evidence x and
classifier C

InferV alue(Y, f ,w,x, C), which returns the MAP value
of variable Y given features f , their weights w,
evidence x and classifier C

1: wlocal ← LearnWeights(f local,yobserved,x,SVM)
2: w0 ← wlocal

3: i← 0
4: repeat
5: i← i+ 1
6: if i == 1, then f ← f local, else f ← f local ∪ frelational

7: for each Y ∈ Ypredicted

8: yi ← InferV alue(Y, f ,wi−1,x ∪ yi−1 ∪ yobserved,SVM)
9: wi ← LearnWeights(f ,yobserved,x ∪ yi ∪ yobserved,SVM)
10: until i = maxIter
11: for each Y ∈ Ypredicted

12: y ← InferV alue(Y, f ,wi,x ∪ yi ∪ yobserved,SVM)
13: return y

127



Algorithm 5 C3 Gibbs Sampling Inference

input: Y, target variables
x, evidence
f , a set of local and relational features
w, weights of features in f
f local, a set of local features
wlocal, weights of features in f local

burnIn, number of iterations for burnIn
maxIter, maximum number of iterations

output: y, values of target variables
calls: InferV alue(Y, f ,w,x, C), which returns the MAP

value of variable Y given features , their weights w,
evidence x, and classifier C

1: i← 0
2: for each Y ∈ Y
3: yi ← InferV alue(Y, f local,wlocal,x, SVM)
Initialize sample counts c[Y, ·] = 0
4: repeat
5: i← i+ 1
6: for each Y ∈ Y
7: yi ← InferV alue(Y, f ,w,x ∪ {yi−1 \ yi−1}, SVM)
8: if i > burnIn
9: c[Y, yi] = c[Y, yi] + 1
10: until i = maxIter or y values converge
11: for each Y ∈ Y
12: yi ← argmaxl c[Y, l]
13: return yi

6.5 Experimental Evaluation

6.5.1 Datasets

We evaluate our approach using three sets of real-world networks: citations

network, email communication, and discourse opinion networks.5 We also develop a

novel data generator to create synthetic networks for use in evaluating the scalability

of C3.

5Additional information about the datasets, features, and settings used for these experiments

are available from http://www.cs.umd.edu/projects/linqs/c3.

128



6.5.1.1 Citation Networks

We evaluate on two citation networks, Cora and Citeseer [149]. In a cita-

tion network, nodes represent papers and directed edges represent citations. The

Cora network contains 2708 nodes with 5428 edges. The Citeseer network con-

tains 3312 nodes with 4732 edges. The nodes of both networks also contain, after

pruning, 500 binary attributes representing the presence of a word in a paper, as

well as a label indicating the topic of a paper (7 possible labels in Cora and 6 in

Citeseer). Because noisy versions of these networks are not readily available6, we

create noisy versions of these graphs (i.e., input graphs) which attempt to mimic the

types of noise likely encountered during the extraction of a network from multiple

sources.

We create an input network by first adding a “reference” paper for a paper

entity for each of its citation edges. For each reference, we copy the words from

the corresponding entity, but introduce noise, with probability ηattr, by replacing

the observed word with a randomly chosen word that did not occur in that paper.

Next, for the citation links between the entity papers, we create a citation edge

between each each reference, and introduce noise by replacing a percentage of the

edges, ηedge, chosen randomly, with random edges between previously unconnected

input nodes. These edges simulate the edges that may be encountered in a noisy

extraction process. In our experiments, we used settings of ηattr and ηedge at 0.2,

6We note that while there are annotations for entity resolution (e.g., [16, 159]), link prediction

(e.g., [99]), and node labeling (e.g., [149]) available, we are unable to use them directly since they

are over different subsets of the network.

129



0.3, and 0.4 (denoted Low, Medium, and High Noise, respectively).

For entity resolution and link prediction, because the inferences are made over

pairs of nodes, there are important scalability issues. If done naively, both entity

resolution and link prediction require O(|V |2) predictions. Clearly this will be in-

tractable for all but the smallest of graphs. In both tasks, a filtering step is often

applied to limit the potential pairs that are considered [110, 169]. This is crucial

for making the algorithm scalable, and has been shown to improve the accuracy

of the predictions. The filtering step is referred to as blocking [59] or canopies

[110]. Any method that can quickly identify the potential pairs while minimizing

the false negatives can be used. In our setting, the blocking criterion for entity

resolution filters potential pairs as nodes which have at least two nodes, adjacent

via edges in the input graph, in common. For link prediction, the blocking criterion

filters potential pairs as nodes which have an extracted edge between them. Note

that while this substantially reduces the number of potential pairs, in our experi-

ments there remain up to 120, 000 pairs for entity resolution and 34, 000 pairs for

link prediction.

6.5.1.2 Email Communication Network

The second type of network we evaluate over is a corporate communication

and social network, based on the Enron dataset [90]. The input graph is an email

communication network where the nodes correspond to email addresses, directed

edges represent emails sent from one email address to another, and edge attributes

130



indicate the words used and the number of communications between those email

addresses. The output graph is a social network where the nodes represent people,

edges indicate a managerial relationships, and the node labels indicate people’s titles.

We also have annotations on which email addresses belong to the same person. The

full network consists of 211 email address nodes with 2837 directed communication

edges corresponding to 146 individuals with 5 job title labels and 139 managerial

relationships among them. Candidate pairs for entity resolution are limited to pairs

of email addresses which are at most a distance three away in the communication

network. Similarly, candidate managerial relationships are limited to pairs of nodes

which share a communication edge.

6.5.1.3 Discourse Opinion Network

We next evaluate over a discourse co-occurence and opinion reinforcement

networks using annotations by Somasundaran et al.[162]. The input graph consists

of a co-occurence network where the nodes represent opinions in a discourse, edges

represent that the opinions occur in the same portion of the discourse, and attributes

are those defined in [162] which capture discourse and dialogue continuity, opinion

lexicons, dialog information, and unigram features of the text. The output graph

consists of opinion and object nodes where the objects are linked to the opinions

that refer to it, opinions are linked by reinforcement edges indicating whether or

not the two opinions reinforce each other, and the node labels indicate the polarity

(positive, negative, or neutral) of each opinion. The full network consists of 4606

131



opinion nodes corresponding to 3920 objects with 22925 co-occurence edges and

1045 reinforcement edges. Candidate pairs for entity resolution and link prediction

are limited to opinions which co-occur.

6.5.1.4 Synthetic Networks

To test the scalability of our approach, we developed a novel synthetic data

generator that creates a noisy network with ambiguous references which need to

be merged to entities, missing labels which need to be classified, and missing edges

which need to be predicted. The graphs and the attributes created by this syn-

thetic data generation are modeled after the motivating problem presented in Sec-

tion 6.5.1.1 where the desired output graph is a clean citation network where nodes

are papers, edges are citation edges between those papers, and attributes represent

the topic of that paper. Intuitively, the generator works by creating a synthetic out-

put graph which mimics the structure and attributes of real-world networks. The

generator then creates an observed input graph from the citation network output

graph by adding different types of noise common to these networks.

The synthetic data generator begins by creating the structure of the network

(i.e., the set of nodes and edges of the output graph). A number of network gen-

eration models have been proposed which create networks which exhibit properties

observed in many real-world networks. For our experiments, we implemented the

widely used Forest Fire generation model [98] which models many of these prop-

erties including heavy tailed degree distribution, “small world” phenomenon, and

132



densification over time. We used a forward burn probability of 0.4 and a backward

burn probability of 0.2. This creates the output graph nodes (paper nodes) and

output graph edges (citation edges).

After we generate the initial network structure, we add three sets of attributes

to the nodes corresponding to the three types of inferences we will perform on the

graph. The first set is for use with collective classification and includes the labels

and attributes based on those labels. We use the label generation method described

in [138] (5 labels, with 20% of the graph initially labeled randomly) to create the

“topic” label of the paper nodes where “topic” has a high positive autocorrelation

(i.e., papers which cite each other are likely to have the same topic). We then

create 20 binary attributes based on those labels using the method described in [19].

The second set of attributes is used for link prediction and consist of 20 attributes

generated using the method described in [138]. We generate these attributes for link

prediction with the intuition that nodes with similar attributes are likely to share an

edge. The last set of attributes are used for entity resolution and represent attributes

that imply, non-uniquely, the entity it refers to (e.g., first author names non-uniquely

imply the paper as multiple papers may have the same first author name). To

generate this attribute, we use the method described in [16]. The resulting network

is our synthetic output graph (citation network).

We create an input graph from our output graph by creating a noisy version

of the output graph. We add noise in four ways. First, we add a “reference” paper

for a paper entity for each of its citation edges.7 Each input graph node initially has

7In these experiments, we allow for a maximum of 10 references per paper.

133



the same attributes and labels as the corresponding node in the output graph. We

also create edges similar to those of the output graph by ensuring all input graph

nodes have an edge “equivalent” to the edges of the corresponding output graph

nodes. Equivalent edges are created by adding at least one edge from an input

graph node, corresponding to a node vjo of the output graph, to an input graph

node, corresponding to an output graph node vko , if vjo and vko share an edge. Once

we generate the reference nodes, we add noise to the attributes of those nodes by

removing the “topic” labels of all the nodes and randomly permuting the values of a

subset of the other attributes. Finally, we add edge noise to the graph by randomly

removing a percent of the existing edges (50% of the current number of edges) and

replacing them with edges between randomly selected pairs of nodes in the graph;

the resulting edges are our “noisy” observed edges. The resulting noisy network is

our synthetic input graph. We limit the candidate pairs for entity resolution using

blocking [59] over the attributes created for entity resolution. Similarly, we limit

candidate pairs for link prediction to pairs of nodes which share a noisy edge.

6.5.2 Evaluation Metrics

The evaluation for these networks is semi-supervised; we train on the observed

part of the network and predict the remaining parts of the network. We varied the

percentage of missing annotations over the reference labels for node labeling and

the potential pairs for entity resolution and link prediction, evaluating at 25%, 50%,

and 75% for Cora, Citeseer and Discourse and 20%, 30%, and 40% for the

134



much smaller Enron network (denoted Low, Medium, and High, respectively). We

construct five random samples for each setting (and each noise level for Cora and

Citeseer) using stratified snowball sampling and the results are average over those

five samples.

We apply C3 and the variants of C3 described in Section 6.4 on the four

real-world datasets. To explore the impact of the inter and intra-dependencies,

we also define variants of C3 which use different subsets of the full set of fea-

tures. In the first variant, LOCAL, we use only features based on the observed

attributes of the nodes (i.e., words, email address string). This is equivalent to

commonly used approaches for entity resolution, link prediction, and node labeling

which make predictions independently and base predictions on only observed at-

tributes [31, 36]. The second variant, INTRA, performs C3 using only the relational

features which capture the intra-dependencies of the predictions (dependencies on

predictions of the same type). This variant allows us to study the relative impact

of capturing the collective propagation among target variables of the same type.

The INTRA variant is also representative of approaches which perform collective

entity resolution, collective link prediction, and collective node labeling as separate,

unrelated tasks [123, 160, 16]. For all variants of C3, we the LibSVM [31] imple-

mentation of support vector machines and use the features defined in Table 6.1, 6.2,

and 6.3. We run C3 until convergence or oscillation and for variants which require

running to a maximum number of iterations, C3-EM , C3-PS, and C3-CI, we set

maxIter = 20. For C3-GS, we set burnIn = 100 and maxIter = 500.

We also compare against two popular approaches to performing inference in-

135



volving multiple tasks: PIPELINE and Markov Logic Networks (MLN) [140]. The

PIPELINE approach performs tasks one at a time and in a fixed order. At each

stage of the PIPELINE, we perform collective inference for a particular task only,

using a similar learning and inference procedure to C3 for comparability, but with

the intra-relational features for that task and the inter-relational features from tasks

which occurred earlier. Consequently, while the intra-dependencies are captured at

each stage, the flow of information in PIPELINE does not allow earlier stages to use

the predictions of later stages. This baseline is sensitive to ordering so we consider

all possible orderings (six in total for the three tasks in graph identification). To

differentiate the results for the different orderings, we use the initials of each com-

ponent in the corresponding order of the PIPELINE (i.e., PIPELINE with ordering

ER, LP, NL is shown as PIPELINE-ELN). For space, in some cases we present only

the performance of the best possible ordering (denoted PIPELINE∗). The other

approach we compare to, MLN, is a state-of-the-art joint inference model proposed

by Richardson and Domingos [140]. For this comparison, we use an open source

implementation of MLN called Alchemy[92].8 Because dependencies in MLN are

represented using first order logic, we define first order logic formulae to mimic

features defined in Tables 6.1–6.3. We explored various data representations and

parameters for Alchemy, including the option to perform MAP or marginal infer-

ence, and present the results for the best performing combination in terms of both

runtime and performance.

8We had to modify Alchemy to improve its efficiency when grounding its large underlying

Markov network.

136



We evaluated entity resolution, link prediction, and node labeling performance

using the average F1 performance over the predictions for the target variables Y,

defined in Section 6.4. We note that due to the blocking used by all approaches

for entity resolution and link prediction, there are a large number of pairs which

none of the approaches explicitly predict over and implicitly are always predicted

as not co-referent or not linked by all the approaches. To highlight the performance

differences between the different approaches, we compute the entity resolution and

link prediction F1 performance over only the random variables we are explicitly

predicting over (i.e., the blocked pairs). We present the average F1 performance on

the three tasks as well as overall (representing the average over the entity resolu-

tion, link prediction, and node labeling F1 performances) over the multiple levels

of noise and annotation. We first evaluate over the random variables without ap-

plying the procedures for enforcing consistency. To explore these procedures when

constructing the output graph, we present an evaluation of the random variables

after applying of these procedures in Section 6.5.3.4. Next, we look at the runtime

performance characteristics of C3. We look at the convergence characteristics of C3

in our experiments by analyzing the number of times convergence or oscillations are

encountered and the average number of iterations required in our experiments. We

also look at the average learning, inference, and overall runtime in our experiments

to see how C3 runtime performance compares to our baselines. Next, we discuss the

potential in parallelization for C3 and show runtime performance for varying degrees

of parallelization. Finally, we explore scalability by looking at C3 performance on

large synthetic datasets.

137



6.5.3 Prediction Quality

We begin this section by discussing the quality of predictions for all algorithms

prior to applying the graph construction procedures defined in Section 6.4.4. We

identify trends in the overall prediction quality of all approaches, as well as for the

individual tasks of entity resolution, link prediction, and node labeling. We then

discuss the impact of applying the graph construction procedures, which may update

some of the predicted values, in Section 6.5.3.4.

6.5.3.1 Comparison to Other Approaches

We first present the overall F1 performance of all algorithms (representing

the average over the entity resolution, link prediction, and node labeling F1 perfor-

mances) to summarize the performance over the multiple levels of noise, annotation,

and datasets in Table 6.4. The best performance for each set is indicated in bold.

We also perform statistical significance tests, using a paired-t test with significance

> 95%, over the F1 values for all pairs of approaches. The results are summarized

in Table 6.5 which indicates the number of times one approach, shown in each row,

significantly outperforms another approach, shown in the columns. We also present

Table 6.6 a representative subset of the individual F1 performance for entity reso-

lution, link prediction, and node labeling.

Comparing the performances of all the approaches, we see that C3 and C3-EM

are overall the best performing. Looking at Table 6.5, we see that C3 and C3-EM

significantly outperforms all the other approaches in most cases while there are no

138



instances where either does significantly worse than the other algorithms. Next,

looking at the approaches which exploit varying subsets of the dependencies within

and among the different tasks, we see that LOCAL has the worst performance, fol-

lowed by INTRA, and PIPELINE∗. The trend in performance is directly correlated

with the amount of intra- and inter-dependencies used by each approach; the more

intra- and inter-dependencies are exploited, the better the overall performance.

Comparing the performance of the two joint models, we find that C3 signifi-

cantly outperforms MLN performance. We found that despite multiple attempts to

optimize the MLN, the performance of MLN in our experiments remained relatively

poor. One possibility for this is that there is insufficient training data for the MLN

weight learning given the number of dependencies and features involved. We may

also need to look at extensions of the basic MLN model [177, 79]. Understanding

the causes of the poor MLN performance and addressing those issues is part of

our future work. Our experience with MLN, however, highlights the challenge in

efficiently and successfully modeling all the dependencies to jointly infer the tasks

involved in graph identification, and the advantages of using a simpler approach

based on collections of coupled classifiers.

6.5.3.2 Varying Dependencies

Relating the performance of the INTRA and LOCAL approaches, we see that

making use of the intra-dependencies can, by itself, significantly improve perfor-

mance. This is consistent with previous work which looked at these tasks in iso-

139



lation and shows the importance of exploiting these types of dependencies. Sim-

ilarly, comparing the relative performance of the INTRA to the PIPELINE∗ and

C3 approaches, we find that further making use of the inter-dependence yields a

comparable, if not larger, improvement in performance with little impact on overall

runtime. While using the inter-dependencies in these tasks has not been widely stud-

ied, the results show the importance of these types of dependencies. Relative to the

PIPELINE∗ approach, we found the best performing PIPELINE∗ to be a competi-

tive baseline. We note, however, that when we look at the per task performance and

overall performance for various PIPELINE orderings in Table 6.6, there is a signifi-

cant variance in the performance. Successful application of the PIPELINE∗ requires

the non-trivial task of identifying which ordering is optimal which we accomplish by

evaluating all possible orderings. Our C3 approach, on the other hand, requires no

ordering yet still significantly outperforms even the best performing PIPELINE∗.

6.5.3.3 Comparison of Variants

We now look at our variants we considered for learning and inference, C3-

EM , C3-PS, C3-CI, and C3-GS. While the variants based on sampling, C3-PS

and C3-GS occasionally show improvement over C3, none of the improvements are

significant. In most cases, these variants actually result in significantly worse per-

formance than C3. The same is also true for our cautious variant, C3-CI, which

show improvement in few cases, but generally significantly worse. While this maybe

addressed by running more iterations, particularly for C3-GS, the additional cost

140



of running more iterations and these initial results do not support using these two

variants over the standard C3 inference procedure. The overall F1 performance of

C3-EM , on the other hand, generally outperforms C3 with 13 cases significantly

better. The improvement, however, is not consistent among all datasets. While C3-

EM results in significant improvement over C3 on over half of the cases for Cora

and Citeseer, it provides only one case of significant improvement in Enron and

none in the Discourse networks. While there are no cases where C3-EM does

significantly worse than C3, the additional overhead of relearning classifiers at ev-

ery iteration, discussed further in Section 6.5.4.1, should be taken into considering

before applying this variant.

6.5.3.4 Applying Graph Construction Procedures

As discussed in Section 6.4.4, the predicted co-references, links, and labels

maybe inconsistent relative to some set of task and domain specific hard constraints.

Entity resolution in some cases, for example, may require transitivity on the co-

references (i.e., if pairs {A,B} and {B,C} are co-referent, then {A,C} must also be

co-referent). Similarly, for our Discourse dataset, opinions which are predicted as

having a reinforcing edge must, by definition, have the same label. These inconsis-

tencies must be resolved prior to constructing the graph.

Inconsistencies can arise in the predictions of all approaches evaluated in our

experiments. In these situations, we can define a procedure to resolve the inconsis-

tencies prior to generating the output graph. The procedure we need to apply for

141



Table 6.4: Overall F1 performance (representing the average over the entity res-
olution, link prediction, and node labeling F1 performance) on the output of the
different models. Bold indicates the highest value in a given column.

Citeseer (Vary Noise Level) Cora (Vary Noise Level) Enron Discourse
Low Medium High Low Medium High

L
ow

%
U

n
k
n

ow
n

LOCAL 0.800 0.736 0.657 0.827 0.756 0.645 0.425 0.361
INTRA 0.843 0.792 0.745 0.900 0.854 0.798 0.516 0.648
PIPELINE∗ 0.871 0.834 0.793 0.939 0.911 0.878 0.559 0.706
MLN 0.677 0.673 0.663 0.570 0.560 0.591 0.137 0.320
C3 0.882 0.853 0.819 0.950 0.928 0.899 0.550 0.729
C3-EM 0.882 0.855 0.825 0.951 0.928 0.904 0.544 0.729
C3-PS 0.880 0.851 0.817 0.947 0.924 0.890 0.539 0.679
C3-CI 0.883 0.853 0.817 0.949 0.926 0.897 0.552 0.693
C3-GS 0.881 0.852 0.817 0.949 0.928 0.897 0.459 0.624

M
ed

iu
m

%
U

n
k
n

ow
n

LOCAL 0.786 0.725 0.648 0.821 0.747 0.639 0.363 0.309
INTRA 0.833 0.782 0.730 0.889 0.840 0.778 0.465 0.545
PIPELINE∗ 0.853 0.816 0.768 0.921 0.888 0.849 0.509 0.604
MLN 0.425 0.534 0.563 0.456 0.519 0.470 0.143 0.217
C3 0.861 0.828 0.782 0.934 0.900 0.862 0.515 0.658
C3-EM 0.864 0.833 0.797 0.935 0.908 0.875 0.515 0.664
C3-PS 0.860 0.827 0.782 0.930 0.896 0.855 0.497 0.478
C3-CI 0.860 0.826 0.781 0.932 0.899 0.861 0.512 0.621
C3-GS 0.858 0.823 0.777 0.931 0.898 0.854 0.383 0.314

H
ig

h
%

U
n

k
n

ow
n

LOCAL 0.775 0.716 0.633 0.800 0.734 0.626 0.398 0.232
INTRA 0.816 0.770 0.708 0.868 0.816 0.741 0.448 0.351
PIPELINE∗ 0.831 0.795 0.743 0.895 0.861 0.811 0.479 0.419
MLN 0.216 0.222 0.228 0.190 0.211 0.216 0.096 0.143
C3 0.835 0.801 0.750 0.902 0.869 0.819 0.479 0.483
C3-EM 0.844 0.813 0.770 0.910 0.883 0.841 0.493 0.482
C3-PS 0.836 0.800 0.748 0.902 0.868 0.818 0.436 0.313
C3-CI 0.834 0.799 0.749 0.899 0.868 0.814 0.480 0.437
C3-GS 0.833 0.797 0.744 0.901 0.864 0.809 0.322 0.176

142



Table 6.5: Each row indicates the number of times the approach, in each row,
significantly outperforms the average overall performance of the approaches in each
column, over all three levels of noise and three levels of sampling (a maximum of
9 pairwise comparisons for Cora and Citeseer and a maximum of 3 for Enron
and Discourse).

LOCAL INTRA PIPELINE∗ MLN* C3 C3-EM C3-PS C3-CI C3-GS
Citeseer

LOCAL – 0 0 8 0 0 0 0 0
INTRA 9 – 0 9 0 0 0 0 0
PIPELINE* 9 9 – 9 0 0 0 0 0
MLN 0 0 0 – 0 0 0 0 0
C3 9 9 9 9 – 0 1 0 6
C3-EM 9 9 9 9 7 – 7 7 8
C3-PS 9 9 9 9 0 0 – 1 6
C3-CI 9 9 8 9 0 0 0 – 2
C3-GS 9 9 6 9 0 0 0 0 –

Cora
LOCAL – 0 0 9 0 0 0 0 0
INTRA 9 – 0 9 0 0 0 0 0
PIPELINE* 9 9 – 9 0 0 0 0 0
MLN 0 0 0 – 0 0 0 0 0
C3 9 9 9 9 – 0 6 3 5
C3-EM 9 9 9 9 5 – 8 6 6
C3-PS 9 9 8 9 0 0 – 0 2
C3-CI 9 9 9 9 0 0 2 – 3
C3-GS 9 9 7 9 0 0 4 0 –

Enron
LOCAL – 0 0 3 0 0 0 0 0
INTRA 3 – 0 3 0 0 0 0 0
PIPELINE* 3 2 – 3 0 0 0 0 0
MLN 0 0 0 – 0 0 0 0 0
C3 3 1 0 3 – 0 0 1 0
C3-EM 3 2 0 3 1 – 1 1 0
C3-PS 2 1 0 3 0 0 – 0 0
C3-CI 3 1 0 3 0 0 0 – 0
C3-GS 0 0 0 3 0 0 0 0 –

Discourse
LOCAL – 0 0 3 0 0 0 0 1
INTRA 3 – 0 3 0 0 2 0 2
PIPELINE* 3 3 – 3 0 0 2 1 3
MLN 0 0 0 – 0 0 0 0 0
C3 3 3 3 3 – 0 3 3 3
C3-EM 3 3 3 3 0 – 3 3 3
C3-PS 3 1 0 3 0 0 – 0 3
C3-CI 3 3 2 3 0 0 2 – 2
C3-GS 1 0 0 3 0 0 0 0 –

143



Table 6.6: Average F1 performance over the entity resolution, link prediction,
and node labeling output on the different models. We also compute the overall F1
performance (representing the average over the entity resolution, link prediction,
and node labeling F1 performance) on the different models. Bold indicates the
highest value in a given column.

ER LP NL Average ER LP NL Average
Cora Citeseer

LOCAL 0.837 0.814 0.523 0.725 0.830 0.823 0.586 0.747
INTRA 0.901 0.860 0.586 0.782 0.892 0.841 0.787 0.840
PIPELINE-ELN 0.901 0.893 0.652 0.816 0.892 0.913 0.860 0.888
PIPELINE-ENL 0.901 0.908 0.616 0.809 0.892 0.916 0.828 0.879
PIPELINE-LEN 0.913 0.860 0.652 0.808 0.905 0.842 0.858 0.868
PIPELINE-LNE 0.916 0.860 0.621 0.799 0.908 0.842 0.828 0.859
PIPELINE-NEL 0.904 0.907 0.586 0.799 0.896 0.917 0.787 0.867
PIPELINE-NLE 0.916 0.890 0.586 0.797 0.912 0.898 0.787 0.866
MLN 0.596 0.743 0.264 0.534 0.403 0.786 0.369 0.519
C3 0.920 0.910 0.654 0.828 0.919 0.918 0.862 0.900
C3-EM 0.919 0.913 0.665 0.833 0.914 0.935 0.874 0.908
C3-PS 0.917 0.911 0.652 0.827 0.907 0.920 0.862 0.896
C3-CI 0.922 0.910 0.646 0.826 0.921 0.919 0.857 0.899
C3-GS 0.917 0.910 0.643 0.823 0.908 0.922 0.864 0.898

Enron Discourse
LOCAL 0.703 0.077 0.308 0.363 0.164 0.211 0.552 0.309
INTRA 0.891 0.100 0.405 0.465 0.552 0.530 0.553 0.545
PIPELINE-ELN 0.891 0.100 0.528 0.506 0.552 0.646 0.613 0.604
PIPELINE-ENL 0.891 0.124 0.513 0.509 0.552 0.655 0.602 0.603
PIPELINE-LEN 0.888 0.100 0.528 0.505 0.663 0.530 0.612 0.602
PIPELINE-LNE 0.894 0.100 0.404 0.466 0.663 0.530 0.597 0.597
PIPELINE-NEL 0.894 0.124 0.405 0.474 0.551 0.651 0.554 0.585
PIPELINE-NLE 0.894 0.124 0.405 0.474 0.665 0.533 0.554 0.584
MLN 0.187 0.007 0.235 0.143 0.151 0.195 0.306 0.217
C3 0.894 0.124 0.528 0.515 0.684 0.671 0.618 0.658
C3-EM 0.896 0.100 0.548 0.515 0.679 0.690 0.623 0.664
C3-PS 0.826 0.124 0.541 0.497 0.431 0.406 0.596 0.478
C3-CI 0.890 0.124 0.522 0.512 0.630 0.627 0.607 0.621
C3-GS 0.527 0.124 0.499 0.383 0.201 0.194 0.546 0.314

144



resolving consistencies can vary depending on the data. For our experiments, we

use the following procedure to resolve the inconsistencies for Cora, Citeseer, and

Enron: apply transitive closure over co-referent pairs, add edges between entities

whose references have an edge, and taking the mode label of the labels over its

references. For Discourse, we define a separate procedure for its domain specific

constraints: apply transitive closure over co-referent pairs, remove reinforcing edges

between pairs not co-referent, and taking the mode label over the labels of opinions

transitively co-referent and reinforcing.

We explore the impact of applying these procedures on the output of all al-

gorithms prior to evaluation. For C3, we also explore an alternative way these

procedures are applied. Instead of just applying these procedures only after all

the iterations in C3 are completed, we can also apply these procedures at the end

of every iteration. This ensures that at the end of each iteration in C3, the pre-

dicted values are always consistent. We denote this variants C3-CO. The results

are provided in Tables 6.7 – 6.9.

Compared to the performance when the procedures are not applied, we gener-

ally see improvement for all the algorithms. This is especially true for LOCAL and

INTRA which see improvements up to 80% and 61%, respectively. While LOCAL

and INTRA do not capture either the intra- and inter-dependencies, the application

of these procedures partially does. While we generally find improvement for all ap-

proaches when applying these procedures, we still find that the trends from Tables

6.4 – 6.6 remain. Approaches which explicitly take these dependencies into account

still significantly outperform those which do not. Furthermore, C3 and C3-EM

145



are still the overall best performing for all amounts of noise, annotated data, and

datasets. In comparison to C3-CO variant, we found that applying the procedure

once to the output of C3, rather than per iteration, performed significantly better.

The significant improvement of C3-CO over C3 without these procedures, however,

does suggest that there maybe benefit in having more explicit support for ensur-

ing consistency. We are currently exploring alternative ways to ensure consistency

within the iterations of C3.

6.5.4 Runtime Performance

6.5.4.1 Learning and Inference Time

In Table 6.10, we list the average learning, inference, and overall runtimes for

the Cora experiments. These experiments were run on comparable servers with

dual Intel Xeon 2.66Ghz processors and 48GB of memory. All implementations are

in Java except for Alchemy which is in C++. Ordering the results based on the

amount of intra- and inter-dependencies they capture, we see that there is a run-

time cost associated with capturing more and more dependencies. Relative to the

significant improvement in predictive performance, however, we see that the addi-

tional runtime required by C3 compares favorably to the fastest algorithm evaluated

while being an order of magnitude faster than the slowest algorithm. Comparing

the two algorithms with the best predictive performance, there is a notable increase

in learning time over C3 when applying C3-EM due to the need to relearn SVMs at

every iteration. While C3-EM shows significant improvement in prediction quality

146



Table 6.7: Overall F1 performance (representing the average over the entity res-
olution, link prediction, and node labeling F1 performance) after applying hard
constraints on the output of the different models . Bold indicates the highest value
in a given column.

Citeseer (Vary Noise Level) Cora (Vary Noise Level) Enron Discourse
Low Medium High Low Medium High

L
ow

%
U

n
k
n

ow
n

LOCAL 0.813 0.766 0.667 0.881 0.826 0.793 0.713 0.523
INTRA 0.863 0.813 0.760 0.932 0.902 0.861 0.743 0.637
PIPELINE∗ 0.877 0.848 0.799 0.945 0.920 0.891 0.764 0.697
MLN 0.798 0.788 0.723 0.826 0.796 0.783 0.402 0.470
C3 0.885 0.854 0.818 0.952 0.930 0.905 0.762 0.738
C3-EM 0.886 0.857 0.807 0.954 0.931 0.905 0.756 0.744
C3-PS 0.881 0.854 0.810 0.947 0.922 0.892 0.727 0.683
C3-CI 0.884 0.852 0.807 0.952 0.929 0.902 0.764 0.716
C3-GS 0.885 0.857 0.808 0.953 0.931 0.899 0.562 0.623
C3-CO 0.884 0.853 0.802 0.951 0.929 0.903 0.763 0.720

M
ed

iu
m

%
U

n
k
n

ow
n

LOCAL 0.780 0.695 0.622 0.853 0.794 0.752 0.655 0.429
INTRA 0.844 0.787 0.710 0.913 0.876 0.830 0.701 0.521
PIPELINE∗ 0.853 0.808 0.744 0.926 0.894 0.854 0.722 0.605
MLN 0.495 0.602 0.565 0.488 0.463 0.439 0.306 0.334
C3 0.858 0.817 0.756 0.933 0.906 0.866 0.724 0.657
C3-EM 0.862 0.819 0.765 0.936 0.909 0.875 0.731 0.668
C3-PS 0.852 0.814 0.750 0.926 0.896 0.846 0.679 0.469
C3-CI 0.858 0.815 0.749 0.931 0.903 0.864 0.724 0.637
C3-GS 0.851 0.810 0.723 0.928 0.898 0.844 0.483 0.278
C3-CO 0.859 0.815 0.748 0.933 0.904 0.864 0.726 0.648

H
ig

h
%

U
n

k
n

ow
n

LOCAL 0.749 0.681 0.592 0.817 0.746 0.678 0.602 0.290
INTRA 0.818 0.758 0.675 0.885 0.841 0.777 0.642 0.326
PIPELINE∗ 0.827 0.776 0.698 0.896 0.859 0.806 0.660 0.418
MLN 0.363 0.348 0.342 0.310 0.319 0.316 0.211 0.190
C3 0.829 0.782 0.708 0.901 0.866 0.814 0.659 0.484
C3-EM 0.839 0.792 0.724 0.910 0.877 0.832 0.664 0.481
C3-PS 0.829 0.777 0.703 0.894 0.858 0.799 0.596 0.295
C3-CI 0.827 0.776 0.704 0.897 0.864 0.807 0.662 0.454
C3-GS 0.820 0.767 0.668 0.891 0.854 0.781 0.358 0.119
C3-CO 0.828 0.780 0.704 0.897 0.861 0.803 0.659 0.469

147



Table 6.8: Each row indicates the number of times the approach, in each row, signif-
icantly outperforms the average overall performance after applying hard constraints
of the approaches in each column, over all three levels of noise and three levels of
sampling (a maximum of 9 pairwise comparisons for Cora and Citeseer and a
maximum of 3 for Enron and Discourse).

LOCAL INTRA PIPELINE∗ MLN* C3 C3-EM C3-PS C3-CI C3-GS C3-CO
Citeseer

LOCAL – 0 0 4 0 0 0 0 0 0
INTRA 9 – 0 8 0 0 0 0 0 0
PIPELINE* 9 8 – 9 0 0 0 0 0 0
MLN 2 0 0 – 0 0 0 0 0 0
C3 9 9 7 9 – 0 1 1 4 2
C3-EM 9 9 6 9 5 – 5 4 6 7
C3-PS 9 7 3 9 0 0 – 0 2 0
C3-CI 9 9 3 9 0 0 0 – 1 0
C3-GS 9 6 3 9 1 0 0 0 – 0
C3-CO 9 9 4 9 0 0 0 0 3 –

Cora
LOCAL – 0 0 8 0 0 0 0 0 0
INTRA 9 – 0 9 0 0 0 0 0 0
PIPELINE* 9 9 – 9 0 0 1 0 2 0
MLN 0 0 0 – 0 0 0 0 0 0
C3 9 9 9 9 – 0 9 3 6 3
C3-EM 9 9 9 9 4 – 9 5 7 6
C3-PS 9 9 0 9 0 0 – 0 2 0
C3-CI 9 9 7 9 0 0 4 – 5 0
C3-GS 9 7 4 9 0 0 4 1 – 0
C3-CO 9 9 6 9 0 0 5 0 5 –

Enron
LOCAL – 0 0 3 0 0 0 0 0 0
INTRA 1 – 0 3 0 0 0 0 0 0
PIPELINE* 1 1 – 3 0 0 1 0 0 0
MLN 0 0 0 – 0 0 0 0 0 0
C3 1 2 0 3 – 0 1 0 0 0
C3-EM 1 2 0 3 0 – 1 0 0 0
C3-PS 0 0 0 3 0 0 – 0 0 0
C3-CI 1 2 0 3 0 0 2 – 0 0
C3-GS 0 0 0 0 0 0 0 0 – 0
C3-CO 1 1 0 3 0 0 1 0 0 –

Discourse
LOCAL – 0 0 3 0 0 0 0 2 0
INTRA 3 – 0 3 0 0 1 0 2 0
PIPELINE* 3 3 – 3 0 0 2 0 3 0
MLN 0 0 0 – 0 0 0 0 2 0
C3 3 3 3 3 – 0 3 3 3 3
C3-EM 3 3 3 3 1 – 3 3 3 2
C3-PS 2 1 0 3 0 0 – 0 3 0
C3-CI 3 3 3 3 0 0 2 – 3 0
C3-GS 1 0 0 1 0 0 0 0 – 0
C3-CO 3 3 3 3 0 0 2 1 3 –

148



Table 6.9: Average F1 performance after applying hard constraints over the entity
resolution, link prediction, and node labeling output of the different models on all
datasets for medium percentage unknown and medium noise for Cora and Cite-
seer. We also compute the overall F1 performance (representing the average over
the entity resolution, link prediction, and node labeling F1 performance) on the
different models. Bold indicates the highest value in a given column.

ER LP NL Average ER LP NL Average
Cora Citeseer

LOCAL 0.649 0.854 0.581 0.695 0.844 0.814 0.724 0.794
INTRA 0.825 0.913 0.624 0.787 0.872 0.919 0.836 0.876
PIPELINE-ELN 0.825 0.922 0.665 0.804 0.872 0.940 0.868 0.893
PIPELINE-ENL 0.825 0.932 0.627 0.795 0.872 0.943 0.837 0.884
PIPELINE-LEN 0.839 0.913 0.664 0.806 0.887 0.919 0.867 0.891
PIPELINE-LNE 0.852 0.914 0.657 0.808 0.896 0.919 0.866 0.894
PIPELINE-NEL 0.827 0.932 0.624 0.794 0.882 0.943 0.836 0.887
PIPELINE-NLE 0.853 0.916 0.625 0.798 0.896 0.932 0.837 0.888
MLN 0.568 0.854 0.384 0.602 0.174 0.742 0.474 0.463
C3 0.853 0.934 0.665 0.817 0.902 0.945 0.870 0.906
C3-EM 0.853 0.925 0.679 0.819 0.902 0.943 0.881 0.909
C3-PS 0.845 0.934 0.664 0.814 0.874 0.944 0.869 0.896
C3-CI 0.849 0.933 0.663 0.815 0.898 0.945 0.867 0.903
C3-GS 0.832 0.933 0.667 0.810 0.876 0.944 0.875 0.898
C3-CO 0.848 0.933 0.663 0.815 0.900 0.945 0.866 0.904

Enron Discourse
LOCAL 0.844 0.610 0.511 0.655 0.547 0.178 0.562 0.429
INTRA 0.909 0.631 0.563 0.701 0.556 0.443 0.565 0.521
PIPELINE-ELN 0.909 0.631 0.622 0.721 0.556 0.575 0.605 0.579
PIPELINE-ENL 0.909 0.639 0.617 0.722 0.556 0.584 0.606 0.582
PIPELINE-LEN 0.906 0.631 0.622 0.720 0.691 0.519 0.605 0.605
PIPELINE-LNE 0.911 0.631 0.563 0.702 0.692 0.520 0.590 0.600
PIPELINE-NEL 0.911 0.639 0.563 0.705 0.556 0.580 0.563 0.566
PIPELINE-NLE 0.911 0.639 0.563 0.705 0.693 0.523 0.564 0.593
MLN 0.195 0.415 0.308 0.306 0.430 0.247 0.324 0.334
C3 0.911 0.639 0.622 0.724 0.699 0.665 0.608 0.657
C3-EM 0.914 0.633 0.646 0.731 0.710 0.682 0.611 0.668
C3-PS 0.807 0.593 0.638 0.679 0.430 0.412 0.565 0.469
C3-CI 0.911 0.639 0.622 0.724 0.694 0.614 0.602 0.637
C3-GS 0.510 0.419 0.520 0.483 0.192 0.196 0.445 0.278
C3-CO 0.911 0.639 0.628 0.726 0.693 0.660 0.592 0.648

149



Table 6.10: Average learning, inference, and overall runtimes (in minutes) for each
model over the experiments on Cora.

Learning Time Inference Time Overall Time
LOCAL 1.8 0.5 2.3
INTRA 4.6 8.4 13.0
PIPELINE-ELN 4.7 7.2 11.9
PIPELINE-ENL 4.7 7.1 11.8
PIPELINE-LEN 4.9 7.2 12.1
PIPELINE-LNE 5.3 8.2 13.5
PIPELINE-NEL 4.9 8.1 13.1
PIPELINE-NLE 5.1 8.3 13.5
MLN 761.7 183.6 945.3
C3 5.2 21.5 26.7
C3-EM 47.9 23.7 71.6
C3-PS 5.2 25.0 30.1
C3-CI 5.2 10.6 15.8
C3-GS 5.2 728.2 733.4

for some of the datasets, its inconsistency and the much greater learning time of

C3-EM suggest that the standard semi-supervised version should be considered first

for most situations.

6.5.4.2 Convergence Results

An important characteristic affecting C3 runtime is the number of iterations

it requires during inference. In our experiments, we allowed C3 to run until the

predictions converge to a single set of assignments or until we detect an oscillation

has occurred (i.e., the predictions exactly match those of an earlier iteration). We

list the number of times each stopping criterion was encountered and the average

number of iterations required for all datasets in Table 6.11. First, all the experi-

ments we conducted with C3 for varying levels of noise, annotations, and datasets

either converged or began oscillating. Of the two stopping criterion, stopping due

to the detection of an oscillation was more common with convergence to a single

150



Table 6.11: Number of times convergence or oscillation was reached in the exper-
iments using C3 for all datasets (a maximum entry of 45 for Cora and Citeseer
and 15 for Enron and Discourse). We also present the average number of iter-
ations performed prior to reaching convergence or oscillation. Note that all our C3

experiments either converged or reached an oscillation point.
# Converge # Oscillate Avg. # of Iterations

Citeseer 0 45 27.8
Cora 0 45 16.4
Enron 14 1 4.2
Discourse 0 15 9.9

value detected only for Enron. Looking at the number of iterations required before

reaching other stopping criteria, we find that C3 typically requires very few itera-

tions. On average, C3 took as few as 4.2 iterations to run with the highest average

number of iterations only 27.8. We are currently exploring theoretical bounds for

the number of iterations required for encountering either stopping criterion. All

current empirical evidence, however, indicate that a fast convergence or oscillation

is typical of algorithms based on pseudolikelihood [15, 101, 123].

6.5.4.3 Parallelization Results

A notable characteristic of the C3 learning and inference algorithms is the

potential for significant portion of the algorithm to be run in parallel. For C3

semi-supervised weight learning shown in Algorithm 2, the weights of the bootstrap

classifiers for each of the three tasks can be learned in parallel. Next, we can apply

these bootstrap classifiers in parallel to initialize the values of the target variables.

The classifiers used iteratively can then be similarly learned in parallel. For C3

inference we exploit the fact that the features rely only on the values of target

variables from the previous iteration. Consequently, we can infer the values of the

151



target variables within a particular iteration in parallel without affecting the results.

We illustrate the parallelizability of C3 by running a portion of the C3 experi-

ments on the Cora dataset with an implementation using Java threads. We present

the learning, inference, and overall run times for C3 varying the numbers of avail-

able threads in Figure 6.2. While the predicted values from these experiments are

identical to those when run as a single process, we note that there is a substantial

improvement in the overall runtime as we increase the number of threads. Increasing

the number of threads to 2, for example leads to an immediate 1.8 time improve-

ment in runtime. Comparing the improvements between the learning and inference

times, we found that most of the improvement is from the faster inference time.

While learning does benefit from more threads for bootstrapping, because our SVM

learning algorithm does not support parallelization runtime improvement is limited

to the number of local or relational classifiers we are learning. We note that there

are approaches for parallelizing weight learning within the classifiers themselves [32].

We do not explore these algorithms in this paper but plan to explore them in future

work. With inference, we find that can consistently see substantial improvement as

we increase the number of threads. Unlike learning, where the number of classifiers

we can learn in parallel is less than the number of available threads, the number of

target variables we can infer in parallel is typically much larger than the number of

available threads.

152



0.0	
  

5.0	
  

10.0	
  

15.0	
  

20.0	
  

25.0	
  

0	
   2	
   4	
   6	
   8	
   10	
   12	
  

Ru
n$

m
e	
  
(in

	
  m
in
ut
es
)	
  

#	
  of	
  Threads	
  

Learning	
  Time	
   Inference	
  Time	
   Overall	
  Time	
  

Figure 6.2: Learning, Inference, and Overall Time on Cora dataset for C3 varying

the numbers of available threads.

6.5.4.4 Scalability Results

We now evaluate the ability of C3 to apply to large datasets. For these exper-

iments, we generated increasingly larger synthetic networks (as described in Section

6.5.1.4) to study the characteristics of C3 runtime performance. We perform ex-

periments with C3 using the same features and experimental settings for medium

amounts of annotation as those used for the experiments on Cora and Citeseer.

We present the learning, inference, and overall runtime of C3 in input networks

ranging in size from 2209 nodes and 15636 edges to networks up to 45522 nodes

and 353228 edges in Figure 6.3. Although our implementation is not specifically

designed for large networks, we can demonstrate that C3 is able to scale well to

such networks. Looking closely at the individual learning and inference times, how-

ever, an important thing to address is the increasing amount of runtime required

for training. The ability of C3 learning to scale is tied directly to the ability of its

153



underlying classifiers to scale. In our experiments, we use the LibSVM implementa-

tion of support vector machines [31] whose learning time is known to be quadratic

to the number of training instances. This significantly limits the ability of our cur-

rent implementation to learn from larger datasets. Fortunately, however, there has

been significant progress in the theory and algorithms behind support vector ma-

chines we can directly apply. Beyond the algorithms for parallel learning of SVM

discussed in Section 6.5.4.3, there are increasingly more efficient learning algorithms

for SVM specifically for large data [27, 29, 151]. We plan on using a variety of these

techniques in a system designed specifically for very large networks in future work.

0	
  

500	
  

1000	
  

1500	
  

2000	
  

2500	
  

3000	
  

3500	
  

4000	
  

4500	
  

5000	
  

0	
   50000	
   100000	
   150000	
   200000	
   250000	
   300000	
   350000	
   400000	
   450000	
  

Ru
n$

m
e	
  
(in

	
  m
in
ut
es
)	
  

Number	
  of	
  Node	
  and	
  Edges	
  

Learning	
  Time	
   Inference	
  Time	
   Overall	
  Time	
  

Figure 6.3: Learning, Inference, and Overall Time on synthetic dataset for C3 as

the number of nodes and edges in the input graph increase.

6.6 Conclusion

Graph identification is an important emerging problem. As more observa-

tional data describing networks becomes available, the need to properly map from

154



the observational data to the “true” underlying social, technical or biologic network

of scientific interest grows in importance. Correctly identifying these networks from

noisy data before they are further analyzed is of huge importance. Not only do

the inferred networks prevent us from drawing erroneous conclusions, they expe-

dite our analysis as they are often orders of magnitude smaller than the observed

ones. The problem is extremely challenging, in terms of propagating information

correctly, training the models appropriately, and evaluating the results. In this work,

we have formulated this problem as a probabilistic inference problem, and shown

how to combine the results of entity resolution, link prediction, and node labeling

in a coherent manner. We developed C3 and its variants which can capture the

intra- and inter-relational dependencies and showed that it can achieve significant

performance gains over existing approaches. There is much room for further explo-

ration; for example applying graph identification to evolving networks, providing

theoretical bounds for convergence and complexity properties, exploring the use of

other algorithms and models for graph identification, and applying the algorithm

to other types of network data. In this paper, we have shown that a simple and

intuitive coupled collective classification approach can be effective in this complex,

highly inter-dependent, prediction problem.

155



Chapter 7

GAIA

A fundamental challenge in exploring network data is the lack of a software

system that allows for the easy application of various data mining algorithms over

the diverse types of network data. This not only makes many previously proposed al-

gorithms inaccessible to analysts interested in using these approaches, it also hinders

progress in algorithm research by making it difficult to compare to and study pre-

vious approaches. We develop the Graph Alignment, Identification, and Analysis

(GAIA) software library (http://linqs.cs.umd.edu/gaia) to address this chal-

lenge. In this chapter, we present the GAIA software library. We discuss the

motivation behind its creation, the goals behind its design and implementation, and

provide an overview of the supported tasks and utilities.

7.1 Introduction

Data from a variety of domains can naturally be represented as networks. In

previous chapters, we showed a variety of problems where improving the quality of

network data can have a significant impact. We have also shown developing algo-

rithms which explicitly exploit both the attributes and relationships in networks,

can significantly improve predictive performance. While there has been significant

progress in studying network data and the algorithms for network data, a funda-

156

http://linqs.cs.umd.edu/gaia


mental challenge still remains hindering the adoption and continued progress of this

research: the lack of a software system that allows for easy representation, study,

and manipulation of the diversity of real-world networks.

The current practice when working with and developing algorithms for net-

work data involve ad-hoc implementations of code to load, represent, and manipulate

networks. Not only does this result in wasted effort in the form of redundant code,

the resulting code is often very specific in the types of networks, I/O formats, and

tasks it can handle. Consequently, it is difficult to apply or compare to proposed

approaches on new datasets. Furthermore, because implementations of algorithms

designed for different tasks are spread across many incompatible systems, it is dif-

ficult to analyze and exploit the interplay between different tasks. In Chapter 6,

we showed how important understanding the interplay between entity resolution,

link prediction, and collective classification is to the problem of graph identification.

Relying purely on implementations specific to only one of these tasks would have

made it extremely difficult to explore this interplay for our problem.

The interactions between tasks go beyond joint inference tasks like graph iden-

tification however. Many tasks on network data rely on the output of algorithms

for other tasks as features to function. Work in active learning in network data,

for example, often relies on the probability distribution from collective classification

models to decide which annotations to acquire [144, 150]. Similarly, the outputs

of clustering models have been used as features in active learning [21, 102], clas-

sification [188], and link prediction models [3]. A system which supports multiple

tasks allows people to apply a wider variety of algorithms to supplement their own

157



algorithms.

Many different tasks also have a common underlying approach. Entity reso-

lution and link prediction can both be solved using a threshold approach based on

various similarity measures [59, 99]. Similarly, relational clustering can be used to

directly label nodes [68], predict edges [187], and predict co-reference [16]. A system

which supports multiple tasks would not only be more efficient due to code reuse, it

would also help us better understand the assumptions and relationships of different

tasks.

In addition to using the output of other tasks during inference, the use of

network task tools can also essential in understanding and evaluating the various

algorithms. By supporting algorithms for network visualization and efficient com-

putation of statistics like betweenness centrality, we can better understand the char-

acteristic of the network we are evaluating. This provides context for understanding

why algorithms work well with some networks and not on others. Output of other

tasks can also be used in evaluating the approaches of others. For example, acquir-

ing real-world networks for evaluation is often difficult or impractical. Consequently,

researchers often use synthetically generated network data to evaluate their algo-

rithms. By having a system which supports network generation algorithms [98],

people can create more realistic networks for their evaluations.

As part of this dissertation, we developed the Graph Alignment, Identification,

and Analysis (GAIA) software library to address this challenge. First, we survey

of other available software packages for use on network data and describing their

strengths and limitations in Section 7.2. In Section 7.3, we describe the GAIA

158



software, discussing the goals in its design and implementation. We also provide

an overview of the available implementations and capabilities of GAIA. We discuss

future work in GAIA and conclude in Section 7.4.

7.2 Related Work

Most previous machine learning and data mining software focus on working

with local attributes of non-relational, independent data. For classification and

ranking, there are libraries like LibSVM [31], SVMlight [82], PyBrain [147], Weka

[69], and Apache Mahout [9]. More recently there has been software developed

specifically for network data. While most implementations are single algorithm im-

plementations used to supplement publications, there have been significant strides

in more general packages. Junto [167] and Netkit [104] were developed for imple-

mentations of multiple label propagation based collective classification algorithms.

Jung [171] and SNAP [172] include algorithms for network generation and for ef-

ficient computations of various network statistics. Pajek [13], Prefuse [71], and

NodeXL [22] have support for various network visualization and layout algorithms.

Of note also are implementations of complex statistical relational learning frame-

works including Alchemy [92], Proximity [91], Factorie [111], and PSL[24]. While

these software have been invaluable, there are significant limitations in using these

software for certain networks and tasks. Many packages focus on specific types of

networks. For example, Jung and Pajek are mainly focused on the network struc-

ture with minimal support for attributes. Netkit and Junto only support networks

159



with a single categorical attribute and no hypergraphs. These software also tend

to focus on specific tasks (classification, visualization, or clustering only) or specific

approaches (Alchemy, Proximity, and PSL only have implementations for Markov

Logic Networks, Relational Dependency Networks, and Probabilistic Soft Logic, re-

spectively) which make it difficult to compare approaches and study and exploit the

interplay between various tasks.

7.3 GAIA Software

To address the limitations of previous software, GAIA is designed and devel-

oped with four main goals. First, GAIA supports a wide range of machine learning

and analysis tasks on networks. Also, GAIA supports a variety of network types,

attributes, and operations. Third, GAIA uses modularity and abstraction to allow

for different parts of GAIA to be developed independently and to allow users to

easily use these parts through simple, general interfaces. Finally, GAIA is designed

to be easy to use for development with the goal of encouraging both adoption and

further development. In the rest of this section, we discuss how our implementation

of GAIA accomplishes these goals. At the same time, we will provide an overview

of the capabilities of GAIA.

7.3.1 Algorithmic and Analysis Support

In the early design of GAIA, we aimed to identify the variety of tasks that

would be applied on network data and ensuring a wide support for them. We did

160



an extensive exploration of network tasks people have explored in the literature.

The survey paper by Getoor and Diehl [63] provide a good survey of these tasks.

We present the lists of tasks they identified below updated with other tasks we

identified. We indicate all the tasks which the current implementation of GAIA has

algorithms for with a star (∗).

1. Object-Related Tasks

(a) Link-Based Object Ranking

(b) Link-Based Object Classification∗

(c) Object Clustering/Group Detection/Relational Clustering∗

(d) Object Identification/Entity Resolution∗

(e) Active Learning and Inference∗

2. Link-Related Tasks

(a) Link Ranking

(b) Link Classification∗

(c) Link Prediction∗

(d) Active Surveying∗

3. Graph-Related Tasks

(a) Graph Identification∗

(b) Subgraph Discovery

161



(c) Graph Classification∗

(d) Generative Models for Graphs∗

(e) Graph Representation and Storage∗

(f) Graph Sampling∗

(g) Graph Analysis and Visualization∗

While algorithms for all these tasks are not currently available, GAIA was

designed to provide a base infrastructure to support all of these. Implementations

for all tasks are part of future work discussed in Section 7.4.

7.3.2 Graph Support

The underlying graph representation of the data is one of the most important

part of any software system for networks. The capabilities of the graph representa-

tion define the data to which the software system can be applied on and what tasks

can be performed. In order to be able to perform all the tasks listed in the previous

section, the GAIA graph was designed to be both general and extensible. Unlike

many software that can only support binary directed networks, GAIA supports hy-

pergraphs with both directed and undirected edges. GAIA can also handle multiple

edge and node types in the same graph to support not only bipartite graphs, but

even more complex network structures. The GAIA graph also has extensive explicit

support for attributes. The nodes, edges, and graphs can have strings, numeric, sin-

gle category, and multi-categorical attributes. Beyond these general types, GAIA

allows for easy addition of additional feature types and supports sparse data.

162



In addition to supporting a very large class of network data, the GAIA graph

representation was also designed with an extensive set of operators to simplify ac-

cessing, transversing, and modifying the graph. For access, nodes, edges, and graphs

can easily be accessed individually using their unique ID or as a group by their type.

The graph can traversed by accessing the incident or adjacent nodes or edges, as well

as by using various “neighbor” functions to identify a more complex set of nodes and

edges. Similarly, beyond basic support for adding and removing nodes and edges,

GAIA has support for more complex operations like adding and modifying features,

removing nodes and edges by structural characteristics, and adding or removing

nodes to hyperedges.

A general graph interface is of no use, however, if it is difficult to load new

network data into GAIA. We developed a simple tab-delimited data format which

supports all the types of graphs and attributes the GAIA graph supports. We

collected a number of real-world datasets in this format for use in research, as well

as to provide examples of this format. In addition, GAIA also supports for many

common network data formats including the adjacency matrix representation, Pajek

format [13], Dotty format [53], and GraphML [23].

7.3.3 Modular Architecture with Abstraction

Two fundamental principles in software engineering are modular design and

abstraction. Modular design allows for the development of complex systems by

breaking the larger problem into smaller modules. This in turn improves code reuse

163



since the modules can typically be used in other parts of the software. Whenever pos-

sible, components of GAIA which are common to multiple tasks are implemented

as utilities. GAIA has an extensive list of utility methods and data structures.

These include efficient implementations of utilities like for counting items, allowing

for keyed access to Java collections (i.e., List, Sets), crawling websites, accessing

databases, and working with probability distributions. We also have implementa-

tions of utilities for specific tasks. Entity resolution, for example, has utilities for

enforcing transitive closure and converting to and from different representations of

the entity resolution predictions. GAIA also has utilities for different ways of block-

ing [59, 110] commonly used in entity resolution, link prediction, and clustering.

The principle of abstraction aims to separate the desired behavior of software

components from the implementation. A major benefit of ensuring proper abstrac-

tion in a system like GAIA is that we improve the usability of the system as a whole.

Defining general interfaces which capture the core functionality needed for specific

tasks allows users to easily understand the input and output of different tasks. Ab-

straction also allows the users to easily try different underlying implementations of

the same abstraction to select the one that is best for their particular tasks. An

example of this is the implementation of the GAIA graph object discussed earlier.

The GAIA graph object is implemented and generally accessed using a Java inter-

face. Users of GAIA develop using this interface and can either choose from one of

the implementations of the graph interface in GAIA or create one that best suites

their task. GAIA currently has two implementations of a graph. The first is an

efficient in-memory graph object recommended for most use. The second is an im-

164



plementation which uses a Derby database to store and manage the graph for use in

large datasets. Another example where this is highlighted in GAIA is for the tasks

of collective classification. GAIA has a general interface for collective classification

models supporting supervised, semi-supervised, and unsupervised models. Because

of this interface, the included tool for running collective classification experiments

can easily be set to use the largest variety of collective classification packages in a

single software system. Aside from dozens of classifiers based on local attributes

such as logistic regression [96], decision tree[136], and support vector machines [31],

GAIA has support for wvRN [103], ICA [123, 100], stacked learning [93], RDN [124],

and label propagation algorithms [167].

Note that an additional benefit of having a modular design with proper ab-

straction is that it is easy to add and modify implementations for different parts

of the code. This includes the ability to add and use implementations from third

party libraries. Whenever available, we tried to make it easy to use implementations

from other software packages. For example, we provide a wrapper for the popular

SimMetrics [175] string similarity library to allow for easy use of its string similarity

measures for various tasks in GAIA. Similarly, we have wrappers for the classifiers

in LibSVM [31] and Weka [69] allowing for ease of use of their classifiers. We even

provide methods for converting to and from graph objects from third party libraries

ranging from a simple adjacency matrix to the Jung [171] and Junto [167] graph

objects.

165



7.3.4 Accessibility and Development

The final goal in the GAIA design and development is to ensure that the code

can be easily used by new users, as well as accessible to future developers. An

active community of users and developers are essential in making sure that GAIA

continues evolving and is able to make an impact in research. Toward this goal, we

developed GAIA using the Java programming language due to the ease of use and

its availability on various platforms. Java is also the preferred language of many

machine learning systems and has extensive support for using software written in

other programming languages. Next, we made extensive use of Javadoc, Java’s API

documentation system, ensuring that all code and packages are well documented

and can easily be used and understood. For implementations of specific algorithms,

we include pointers to the paper which proposed that algorithm.

Another way we used to make GAIA more accessible is to provide example

code and frameworks to run common tasks GAIA might be used for. This includes

support for easily converting between different data formats, computing various

statistics over the properties of a network, generating synthetic data, and perform-

ing various types of collective classification experiments. We also provide support

for common tasks when performing experiments with GAIA including utilities for

acquiring and processing data from outside sources, as well as computing various

evaluation statistics like F-measure, AUC, and confusion matrix. Aside from the

java code, we also provide bash scripts to simplify running and documenting exper-

iments with GAIA, as well as releasing a number of network datasets ready for use

166



in GAIA.

GAIA is released open-source under the Apache License, Version 2.0. The

code, documentation, scripts, and datasets are available via http://linqs.cs.umd.

edu/gaia and as a project in the popular open software service GitHub 1.

7.4 Conclusions and Future Work

In this chapter, we discussed the need for a general software system for rep-

resenting, studying, and manipulating network data. We discuss the benefits of

such a system and discuss how current software packages are not able to realize

those benefits. We then present the GAIA software library and tool and present

the goals used in its design and implementation. While doing so, we provide an

overview of the current capabilities of GAIA. GAIA, however, is still evolving and

still has much unreached potential. To that end, we are working with various groups

to contribute to GAIA. Implementations of many internally developed algorithms

are already available in GAIA and the goal is to continue doing so for many more

algorithms. We are also continuing to improve the documentation for GAIA, raising

awareness of its availability and capabilities, and providing training to get new users

and developers of GAIA.

1Available via https://github.com/linqs/GAIA

167

http://linqs.cs.umd.edu/gaia
http://linqs.cs.umd.edu/gaia


Chapter 8

Conclusion and Future Work

In this dissertation, we discussed the deficiencies common in network data

and presented our work in addressing those deficiencies in the problems of entity

resolution, link prediction, collective classification, and graph identification. Here,

we summarize our contributions and discuss future directions of our research.

8.1 Summary of Contributions

Network data is ubiquitous and its analysis is essential in many domains. The

problem with most gathered network data is that it is too noisy and incomplete to

use directly. In this dissertation, we identified the most common deficiencies in these

networks and describe entity resolution, link prediction, and collective classification

can be used to address the problems. We described our work for each of these

problems in turn, as well as our work in the task of graph identification which

requires the joint application of these three problems.

For entity resolution, we studied the problem of resolving name references in

email communication networks. In this work, we are given name mentions, email

communications around these mentions, and a set of entities. The task is to infer, for

a particular name mention, a ranking over the entities based on the likelihood each

entity is the target of that mention. We developed novel unsupervised approaches

168



using summary statistics on the amount of traffic sent and received to each of the

candidate entities relative to the time of the mention. Evaluating on manually

annotated name references on a corporate dataset, we highlighted the importance

of long term communication patterns to resolving name references and show that

simple traffic models can achieve impressive name reference resolution performance.

For link prediction, we presented our work in the link prediction of social rela-

tionships. In this work, we are interested in a collaborative process between a human

and machine where the goal of our algorithm is to focus the analyst’s attention to

(1) the most relevant communication relationship representing the relationship of

interest and (2) the relevant message traffic that supports that relationship iden-

tification. We developed a novel supervised ranking approach for this task which

minimize the number of rank violations in the ranking of the relationships. We em-

pirically showed its utility on identifying subordinate-manager relationships given

email communications from a major corporation. Using traffic and content-based

features, the ranking method is able to cue the analyst to relevant communication

relationships. We also developed a message ranker using content-based features and

demonstrated its ability to highlight compelling evidence within the message traffic

substantiating the social relationship.

For collective classification, we developed a novel method for active surveying

for query-driven collective classification. While traditional collective classification

aims to infer all missing labels, this work considers the setting in which one is pri-

marily interested in labeling a particular subset of nodes (the query set). Given

that acquiring the labeled instances and network structure used by semi-supervised

169



models are expensive, we applied active surveying to identify the nodes for which we

can acquire labels and ego networks in order to maximize the classification perfor-

mance on the query set. Leveraging common assumptions on feature and structural

smoothness, we proposed a novel adaptive active surveying algorithm, ASQ2C, and

empirically show its superior performance over standard active learning approaches

on four real-world datasets.

These problems typically do not occur in isolation, however, and often all need

to be addressed at the same time. We discussed how inherently inter-dependent

these problems are and motivate the need to apply them jointly in a general prob-

lem we define as graph identification. We presented a novel approach to graph

identification using a collection of Coupled Collective Classifiers, C3, which in ad-

dition to capturing the variety of local features typically used for each task, can

also capture the intra- and inter-dependency required. We discussed variants of C3

using different learning and inference paradigms and show the superior performance

of C3, in terms of both prediction quality and runtime performance, over various

previous approaches.

Finally, we presented the GAIA open-source software library and tool to fill

the infrastructure need in algorithmic and analytical research on network data. We

discussed the limitations of current systems in fulfilling this need and presented the

goals and implementations in GAIA that make it easier not only to study specific

tasks on network data, but also to study how these tasks are related. GAIA is

available for download from http://linqs.cs.umd.edu/gaia.

170

http://linqs.cs.umd.edu/gaia


8.2 Future Directions

In this dissertation, we looked at the tasks of entity resolution, link prediction,

collective classification, and graph identification on network data. We developed

algorithms to address these problems in various domains. There are multiple future

research directions for all of our proposed solutions. We described these at the end

of the corresponding chapters. In this section, we focus on future research directions

beyond those discussed in earlier chapters.

First, our work in graph identification and GAIA made it clear that there

are many research opportunities in studying the commonalities and interactions of

various tasks. Not only has study in the interactions been limited, we have shown,

through the example of graph identification, that considering these tasks together

can yield significant improvement in performance. A specific interaction we would

like to pursue is between the tasks of active learning and graph identification. For

a complex task like graph identification, the amount and type of annotations avail-

able is much more complex than previous work in active learning methods have

considered. Active learning for graph identification would need to balance between

acquiring annotations to optimize the joint learning and inference of the three prob-

lems within graph identification. These annotations are also likely to require more

complex cost structures causing many previous approaches to be inapplicable.

Another aspect we would like to pursue is the application of graph identifica-

tion for large scale data. We showed that C3 is scalable and can be parallelized using

threads. For very large datasets, however, distributed frameworks like MapReduce

171



[43] maybe required. Identifying and resolving the issues involved in applying C3

in a framework like MapReduce is a compelling future research direction. Related

to large scale data, we are also interested in exploring large scale network data ag-

gregated from multiple unknown sources (i.e., the source of the individual nodes

and edges are not observed). Because of variability between different sources, the

quality and amount of attribute and edge information in the data from one source

maybe completely different from the data from another source. Aggregating from

multiple social networks, for example, the nodes from some sources (e.g., LinkedIn,

Facebook) may have more accurate name and age information than nodes from

other sources (e.g., MySpace, Friendster). Similarly, while nodes from some sources

have certain types of relationships, nodes from others may not (e.g., LinkedIn has

“group member” relationships but Friendster does not). This variance in the quality

and amount of information can have a significant impact on how well algorithms

perform on the aggregate network. For example, entity resolution approaches using

name similarity and a single threshold is unlikely to do well given that the optimal

threshold for co-referent pairs between nodes that came from one source maybe dif-

ferent from pairs in another source. Explicitly reasoning about the hidden sources

of the nodes and using that knowledge to vary the threshold for pairs conditioned

on these sources should lead to improved performance.

Although not mentioned in this dissertation, we also did extensive work in

visualizing network data. In addition to the basic visualization available in GAIA,

we also participated in developing the DualNet [122] and G-Pare [155] visualization

tools. The goal in these systems is not only to better understand network data,

172



but also to understand machine learning algorithms applied to them. By visualizing

the output of various algorithms in network data, ideally the use can better see the

biases, strengths, and weaknesses of these algorithms that would not be obvious to

when looking at raw output or data files. In G-Pare, for example, we identified

instances of the phenomenon common to collective classification approaches known

as “flooding” [20]. By directly observing this phenomenon, not only can we see how

sensitive proposed models are to flooding, we can also begin to identify interventions

(through annotations, additional features, parameter changes) we can use resolve

the problem. We plan to continue developing visualizations for analyzing the results

of algorithms, as well as developing visualizations which let you observe and interact

with machine learning algorithms during their application.

8.3 Conclusions

In this dissertation, we studied and developed approaches for the problems of

entity resolution, link prediction, collective classification, and graph identification

on network data. Through this work, we highlight the importance of exploiting

both the relational information in networks and the dependencies between various

tasks in inferring an accurate and complete network. With the growing amount

and variety of network data available due improvement in technology and growth of

services like social networking websites, being able to work and reason about network

data is only going to become more important. This dissertation for improving the

quality and accessibility of these networks hopefully marks a humble but important

step toward being able toward correctly and more easily work with network data.

173



Bibliography

[1] Daniel Abadi. Comparing domain-specific and non-domain-specific anaphora
resolution techniques. Master’s thesis, Cambridge University Masters Disser-
tation, 2003.

[2] James Abello, Adam L. Buchsbaum, and Jeffery R. Westbrook. A functional
approach to external graph algorithms. In Proceedings of the Annual European
Symposium on Algorithms, 1998.

[3] Sisay Fissaha Adafre and Maarten de Rijke. Discovering missing links in
wikipedia. In Proceedings of the SIGKDD Workshop on Link Discovery, 2005.

[4] Shivani Agarwal, Thore Graepel, Ralf Herbrich, Sariel Har-Peled, and Dan
Roth. Generalization bounds for the area under the ROC curve. Journal of
Machine Learning Research, 6:393–425, 2005.

[5] Rka Albert, Bhaskar DasGupta, Riccardo Dondi, Sema Kachalo, Eduardo
Sontag, Alexander Zelikovsky, and Kelly Westbrook. A novel method for
signal transduction network inference from indirect experimental evidence.
Journal of Computational Biology, 14:407–419, 2007.

[6] James Allan. Topic Detection and Tracking. Kluwer Academic Pub, 2002.

[7] Rohit Ananthakrishna, Surajit Chaudhuri, and Venkatesh Ganti. Eliminat-
ing fuzzy duplicates in data warehouses. In Proceedings of the International
Conference on Very Large Databases, 2002.

[8] Periklis Andritsos, Ariel Fuxman, and Renee J. Miller. Clean answers over
dirty databases: A probabilistic approach. In Proceedings of the International
Conference on Data Engineering, 2006.

[9] Apache Software Foundation, Isabel Drost, Ted Dunning, Jeff Eastman, Otis
Gospodnetic, Grant Ingersoll, Jake Mannix, Sean Owen, and Karl Wettin.
Apache mahout, 2010. http://mloss.org/software/view/144/.

[10] S. Asthana, O. D. King, F. D. Gibbons, and F. P. Roth. Predicting protein
complex membership using probabilistic network reliability. Genome Research,
14(6):1170–1175, June 2004.

[11] Albert-L&aacute;szl&oacute; Barabasi and R&eacute;ka Albert. Emergence
of Scaling in Random Networks. Science, 286:509–512, 1999.

[12] Nizar N. Batada, Teresa Reguly, Ashton Breitkreutz, Lorrie Boucher, Bobby-
Joe Breitkreutz, Laurence D. Hurst, and Mike Tyers. Still stratus not al-
tocumulus: Further evidence against the date/party hub distinction. PLoS
Biology, 5(6):e154+, June 2007.

174

http://mloss.org/software/view/144/


[13] Vladimir Batagelj and Andrej Mrvar. Pajek - Analysis and Visualization of
Large Networks, volume 2265. Springer, January 2002.

[14] Nicolas Bertin, Nicolas Simonis, Denis Dupuy, Michael E Cusick, Jing-Dong J
Han, Hunter B Fraser, Frederick P Roth, and Marc Vidal. Confirmation of
organized modularity in the yeast interactome. PLoS Biology, 5(6):e153, 06
2007.

[15] Julian. Besag. Statistical analysis of non-lattice data. The Statistician, 24:179–
195, 1975.

[16] Indrajit Bhattacharya and Lise Getoor. Collective entity resolution in rela-
tional data. ACM Transactions on Knowledge Discovery from Data, 1:1–36,
2007.

[17] Indrajit Bhattacharya, Shantanu Godbole, and Sachindra Joshi. Structured
entity identification and document categorization: Two tasks with one joint
models. In Proceedings of the ACM SIGKDD International Conference On
Knowledge Discovery And Data Mining, 2008.

[18] M Bilenko, R Mooney, W Cohen, and P Ravikumar. Adaptive name matching
in information integration. IEEE Intelligent Systems, 18:16–23, Jan 2003.

[19] Mustafa Bilgic and Lise Getoor. Effective label acquisition for collective clas-
sification. In Proceedings of the ACM SIGKDD International Conference On
Knowledge Discovery And Data Mining, 2008.

[20] Mustafa Bilgic and Lise Getoor. Active inference for collective classification.
In AAAI Conference on Artificial Intelligence, 2010.

[21] Mustafa Bilgic, Lilyana Mihalkova, and Lise Getoor. Active learning for net-
worked data. In Proceedings of the International Conference on Machine
Learning, 2010.

[22] Elizabeth M. Bonsignore, Cody Dunne, Dana Rotman, Marc Smith, Tony
Capone, Derek L. Hansen, and Ben Shneiderman. First steps to netviz nir-
vana: Evaluating social network analysis with nodexl. In Proceedings of the In-
ternational Conference on Computational Science and Engineering, volume 4,
pages 332–339. IEEE Computer Society Press, 2009.

[23] Ulrik Brandes, Markus Eiglsperger, Ivan Herman, Michael Himsolt, and
M Scott Marshall. Graphml progress report, structural layer proposal. In
Proceedings of the International Symposium on Graph Drawing, pages 501–
512, Heidelberg, 2001.

[24] Matthias Broecheler and Lise Getoor. Probabilistic similarity logic. In Proceed-
ings of the International Workshop on Statistical Relational Learning, 2009.

175



[25] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole
Hamilton, and Greg Hullender. Learning to rank using gradient descent. In
Proceedings of the International Conference on Machine Learning, 2005.

[26] Christopher Burges, Robert Ragno, and Quoc Le. Learning to rank with
nonsmooth cost functions. In B. Schölkopf, J. Platt, and T. Hoffman, editors,
Neural Information Processing Systems. MIT Press, 2007.

[27] G. Caruana, Maozhen Li, and Man Qi. A mapreduce based parallel svm for
large scale spam filtering. In Proceedings of the International Conference on
Fuzzy Systems and Knowledge Discovery, volume 4, pages 2659–2662, july
2011.

[28] Vitor R. Carvalho and William W. Cohen. On the collective classification
of email “speech acts”. In Proceedings of the ACM SIGIR Conference on
Research and Development in Information Retrieval, 2005.

[29] Jair Cervantes, Xiaoou Li, Wen Yu, and Kang Li. Support vector machine
classification for large data sets via minimum enclosing ball clustering. Neu-
rocomputing, 71(4–6):611–619, 2008.

[30] Soumen Chakrabarti, Byron Dom, and Piotr Indyk. Enhanced hypertext
categorization using hyperlinks. In Proceedings of the SIGMOD International
Conference on Management of Data, 1998.

[31] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library
for Support Vector Machines, 2001. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[32] Edward Chang, Kaihua Zhu, Hao Wang, Hongjie Bai, Jian Li, Zhihuan Qiu,
and Hang Cui. Parallelizing support vector machines on distributed comput-
ers. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in
Neural Information Processing Systems 20, pages 257–264. MIT Press, Cam-
bridge, MA, 2008.

[33] Anton Chechetka and CarlosErnesto Guestrin. Focused belief propagation for
query-specific inference. In International Conference on Artificial Intelligence
and Statistics, May 2010.

[34] Hon Nian Chua, Wing-Kin Sung, and Limsoon Wong. Exploiting indirect
neighbours and topological weight to predict protein function from protein–
protein interactions. Bioinformatics, 22(13):1623–1630, 2006.

[35] Aaron Clauset, Cristopher Moore, and M. E. J. Newman. Hierarchical struc-
ture and the prediction of missing links in networks. Nature, 453:98, 2008.

[36] William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. A com-
parison of string distance metrics for name-matching tasks. In Proceedings of
the IJCAI Workshop on Information Integration, 2003.

176



[37] A. Corrada-Emmanuel. Enron email dataset research, 2004.
http://ciir.cs.umass.edu/˜corrada/enron.

[38] Corinna Cortes and Mehryar Mohri. AUC optimization versus error rate min-
imization. Advances in Neural Information Processing Systems, 16:313–320,
2004.

[39] Corinna Cortes and Mehryar Mohri. Confidence intervals for the area under
the ROC curve. Advances in Neural Information Processing Systems, 17:305–
312, 2005.

[40] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Trans-
actions on Information Theory, 13(1):21 – 27, jan 1967.

[41] Koby Crammer, Yoram Singer, Nello Cristianini, John Shawe-taylor, and Bob
Williamson. On the algorithmic implementation of multiclass kernel-based
vector machines. Journal of Machine Learning Research, 2:2001, 2001.

[42] Aron Culotta, Michael Wick, Robert Hall, Matthew Marzilli, and Andrew
McCallum. Canonicalization of database records using adaptive similarity
measures. In Proceedings of the ACM SIGKDD International Conference On
Knowledge Discovery And Data Mining, 2007.

[43] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing
on large clusters. In Proceedings of the Symposium on Operating Systems
Design & Implementation, 2004.

[44] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39(1):1–38, 1977.

[45] M. Deng, S. Mehta, F. Sun, and T. Chen. Inferring domain-domain interac-
tions from protein-protein interactions. Genome Research, 12(10):1540–1548,
October 2002.

[46] Giuseppe Di Battista, Thomas Erlebach, Alexander Hall, Maurizio Patrignani,
Maurizio Pizzonia, and Thomas Schank. Computing the types of the relation-
ships between autonomous systems. IEEE/ACM Transactions on Networking,
15:267–280, 2007.

[47] Christopher Diehl, Lise Getoor, and Galileo Mark Namata. Name reference
resolution in organizational email archives. In SIAM Conference on Data
Mining, 2006.

[48] Christopher Diehl, Galileo Mark Namata, and Lise Getoor. Relationship iden-
tification for social network discovery. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2007.

177



[49] Jana Diesner and Kathleen Carley. Exploration of communication networks
from the Enron email corpus. In Proceedings of the ICDM Workshop on Link
Analysis, Counterterrorism and Security, Newport Beach, CA, USA, April
21-23 2005.

[50] Jana Diesner and Kathleen M. Carley. Exploration of communications net-
works from the Enron email corpus. In Proceedings of the SDM Workshop on
Link Analysis, Counterterrorism and Security, pages 3–14, 2005.

[51] Xin Dong, Alon Halevy, and Jayant Madhavan. Reference reconciliation in
complex information spaces. In Proceedings of the SIGMOD International
Conference on Management of Data, 2005.

[52] J.-P. Eckmann, E. Moses, and D. Sergi. Dialog in e-mail traffic. ArXiv Con-
densed Matter E-Prints, April 2003.

[53] John Ellson, Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North,
and Gordon Woodhull. Graphviz – open source graph drawing tools. Graph
Drawing, pages 483–484, 2001.

[54] Tamer Elsayed, Doug Oard, and Galileo Mark Namata. Resolving personal
names in email using context expansion. In Annual Meeting of the Association
of Computational Linguistics, pages 265–268, June 2008.

[55] Paul Erdos and Alfred Renyi. On the evolution of random graphs. Mathematics
Institute Hungarian Academy of Science, 5:17–61, 1960.

[56] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law
relationships of the internet topology. In Proceedings of the Conference on
Applications, Technologies, Architectures, and Protocols for Computer Com-
munication, 1999.

[57] Stephen Farrell, Christopher Campbell, and Suvda Myagmar. Relescope: An
experiment in accelerating relationships. In Extended Abstracts on Human
Factors in Computing Systems, 2005.

[58] Tom Fawcett and Foster J. Provost. Adaptive fraud detection. Data Mining
and Knowledge Discovery, 1:291–316, 1997.

[59] Ivan P. Fellegi and Alan B. Sunter. A theory for record linkage. Journal of
the American Statistical Association, 64(328):1183–1210, 1969.

[60] Yoav Freund, Raj Iyer, Robert Schapire, and Yoram Singer. An efficient
boosting algorithm for combining preferences. Journal of Machine Learning
Research, 4:933–969, 2003.

[61] Alexander Gammerman, Katy S. Azoury, and Vladimir Vapnik. Learning by
transduction. In Proceedings of the Conference on Uncertainty in Artificial
Intelligence, pages 148–155, 1998.

178



[62] Lisa Getoor, Nir Friedman, Daphne Koller, and Benjamin Taskar. Learning
probabilistic models of link structure. Machine Learning, 3:679–707, 2003.

[63] Lise Getoor and Christopher P. Diehl. Link mining: a survey. SIGKDD
Explorations Newsletter, 7:3–12, 2005.

[64] Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer, and Benjamin Taskar.
Probabilistic relational models. In L. Getoor and B. Taskar, editors, An In-
troduction to Statistical Relational Learning. MIT Press, 2007.

[65] Lise Getoor, Eran Segal, Benjamin Taskar, and Daphne Koller. Probabilistic
models of text and link structure for hypertext classification. In Proceedings
of the IJCAI Workshop on Text Learning: Beyond Supervision, 2001.

[66] Walter R. Gilks, Sylvia Richardson, and David Spiegelhalter. Markov chain
Monte Carlo in Practice. Chapman & Hall CRC, 1996.

[67] Vincent Granville, Mirko Krivanek, and Jean-Paul Rasson. Simulated an-
nealing: a proof of convergence. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 16(6):652–656, jun 1994.

[68] Andrew Guillory and Jeff Bilmes. Label selection on graphs. In Neural Infor-
mation Processing Society, Vancouver, Canada, December 2009.

[69] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. The weka data mining software: An update.
SIGKDD Explorations Newsletter, 11:10–18, November 2009.

[70] J. Heer. Exploring Enron: Visualizing ANLP results, 2004.
http://jheer.org/enron/v1/.

[71] Jeffrey Heer, Stuart K. Card, and James A. Landay. Prefuse: A toolkit for
interactive information visualization. In Proceedings of the SIGCHI Confer-
ence on Human factors in Computing Systems, pages 421–430, New York, NY,
USA, 2005.

[72] Geremy Heitz, Stephen Gould, Ashutosh Saxena, and Daphne Koller. Cas-
caded classification models: Combining models for holistic scene understand-
ing. In Advances in Neural Information Processing Systems, 2008.

[73] Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Support vector learn-
ing for ordinal regression. In Proceedings of the International Conference on
Artificial Neural Networks, pages 97–102, 1999.

[74] Mauricio A. Hernández and Salvatore J. Stolfo. The merge/purge problem for
large databases. In Proceedings of the SIGMOD International Conference on
Management of Data, 1995.

179



[75] Ralf Holzer, Bradley Malin, and Latanya Sweeney. Email alias detection using
social network analysis. In Proceedings of the ACM SIGKDD Workshop on
Link Discovery: Issues, Approaches, and Applications, Chicago, Illinois, USA,
August 2005.

[76] Hailiang Huang and Joel S. Bader. Precision and recall estimates for two-
hybrid screens. Bioinformatics, 25(3):372–378, 2009.

[77] Zan Huang, Xin Li, and Hsinchun Chen. Link prediction approach to collab-
orative filtering. In Proceedings of the ACM/IEEE-CS Joint Conference on
Digital Libraries, 2005.

[78] Zan Huang and Dennis K. J. Lin. The Time-Series Link Prediction Prob-
lem with Applications in Communication Surveillance. Informs Journal On
Computing, 21:286–303, 2008.

[79] Tuyen Huynh and Raymond Mooney. Max-margin weight learning for markov
logic networks. In Wray Buntine, Marko Grobelnik, Dunja Mladenic, and
John Shawe-Taylor, editors, Machine Learning and Knowledge Discovery in
Databases, volume 5781 of Lecture Notes in Computer Science, pages 564–579.
Springer Berlin / Heidelberg, 2009.

[80] Paul Jaccard. Étude comparative de la distribution florale dans une portion
des alpes et des jura. Bulletin del la Société Vaudoise des Sciences Naturelles,
37:547–579, 1901.

[81] M. A. Jaro. Probabilistic linkage of large public health data files. Statistics
in Medicine, 14:491–498, 1995.

[82] Thorsten Joachims. Making large-scale svm learning practical. In Bernhard
Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Ad-
vances in Kernel Methods, chapter Making large-scale support vector machine
learning practical, pages 169–184. MIT Press, Cambridge, MA, USA, 1999.

[83] Thorsten Joachims. Optimizing search engines using clickthrough data. In
Proceedings of the ACM SIGKDD International Conference On Knowledge
Discovery And Data Mining, pages 133–142, 2002.

[84] Thorsten Joachims. A support vector method for multivariate performance
measures. In Proceedings of the International Conference on Machine Learn-
ing, pages 377–384, New York, NY, USA, 2005. ACM Press.

[85] Dmitri V. Kalashnikov, Sharad Mehrotra, and Zhaoqi Chen. Exploiting rela-
tionships for domain-independent data cleaning. In Proceedings of the SIAM
International Conference on Data Mining, 2005.

[86] Hisashi Kashima, Tsuyoshi Kato, Yoshihiro Yamanishi, Masashi Sugiyama,
and Koji Tsuda. Link propagation: A fast semi-supervised learning algorithm

180



for link prediction. In Proceedings of the SIAM International Conference on
Data Mining, 2009.

[87] Henry Kautz, Bart Selman, and Mehun Shah. Referral web: Combining social
networks and collaborative filtering. Communications of the ACM, 40(3):63–
65, 1997.

[88] P. Keila and David Skillicorn. Structure in the Enron email dataset. In
Proceedings of the ICDM Workshop on Link Analysis, Security and Countert-
errorism, pages 55–64, 2005.

[89] Bryan Klimt and Yimin Yang. The Enron corpus: a new dataset for email
classification research. In Proceedings of the European Conference on Machine
Learning, Pisa, Italy, September 20-24 2004.

[90] Bryan Klimt and Yiming Yang. Introducing the enron corpus. In Conference
on Email and Anti-Spam, 2004.

[91] Knowledge Discovery Laboratory, University of Massachusetts Amherst. Prox-
imity software. http://kdl.cs.umass.edu/proximity.

[92] Stanley Kok, Marc Sumner, Matthew Richardson, Parag Singla, Hoifung
Poon, and Pedro Domingos. The alchemy system for statistical relational
ai. Technical report, Department of Computer Science and Engineering, Uni-
versity of Washington, Seattle, WA, 2006.

[93] Zhenzhen Kou and William Cohen. Stacked graphical models for efficient
inference in markov random fields. In Proceedings of the SIAM International
Conference on Data Mining, 2007.

[94] Ankit Kuwadekar and Jennifer Neville. Relational active learning for joint
collective classification models. In Proceedings of the International Conference
on Machine Learning, 2011.

[95] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling sequence datasets. In
Proceedings of the International Conference on Machine Learning, 2001.

[96] S. le Cessie and J. van Houwelingen. Ridge estimators in logistic regression.
Applied Statistics, 41:191–201, 1992.

[97] Jure Leskovec, Lars Backstrom, Ravi Kumar, and Andrew Tomkins. Mi-
croscopic evolution of social networks. In Proceedings of the ACM SIGKDD
International Conference On Knowledge Discovery And Data Mining, 2008.

[98] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Den-
sification and shrinking diameters. ACM Transactions on Knowledge Discov-
ery from Data, 1(1):2, 2007.

181



[99] David Liben-Nowell and Jon Kleinberg. The link prediction problem for so-
cial networks. In Proceedings of the ACM Conference on Information and
Knowledge Management, 2003.

[100] Qing Lu and Lise Getoor. Link-based classification. In Proceedings of the
International Conference on Machine Learning, 2003.

[101] Qing Lu and Lise Getoor. Link-based classification using labeled and unlabeled
data. In Proceedings of the ICML Workshop on the Continuum from Labeled
to Unlabeled Data in Machine Learning and Data Mining, 2003.

[102] Sofus A. Macskassy. Using graph-based metrics with empirical risk minimiza-
tion to speed up active learning on networked data. In Proceedings of the
ACM SIGKDD International Conference On Knowledge Discovery And Data
Mining, 2009.

[103] Sofus A. Macskassy and Foster Provost. A simple relational classifier. In
Proceedings of the ACM SIGKDD International Conference On Knowledge
Discovery And Data Mining, 2003.

[104] Sofus A. Macskassy and Foster Provost. Classification in networked data: A
toolkit and a univariate case study. Journal of Machine Learning Research,
8:935–983, 2007.

[105] Bradley Malin. Unsupervised name disambiguation via social network simi-
larity. In Proceedings of the SIAM International Conference on Data Mining,
Newport Beach, CA, USA, April 20-22 2005.

[106] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. An In-
troduction to Information Retrieval. Cambridge University Press, 2008.

[107] Shawn Martin, Diana Roe, and Jean-Loup Faulon. Predicting protein-protein
interactions using signature products. Bioinformatics, 21:218–226, 2005.

[108] Robert McArthur and Peter Bruza. Discovery of implicit and explicit connec-
tions between people using email utterance. In Proceedings of the European
Conference of Computer-supported Cooperative Work, 2003.

[109] Andrew McCallum, Andres Corrada-Emmanuel, and Xuerui Wang. The
author-recipient-topic model for topic and role discovery in social networks:
Experiments with Enron and academic email. Technical Report UM-CS-2004-
096, University of Massachusetts Amherst, December 2004.

[110] Andrew McCallum, Kamal Nigam, and Lyle Ungar. Efficient clustering of
high-dimensional data sets with application to reference matching. In Proceed-
ings of the ACM SIGKDD International Conference On Knowledge Discovery
And Data Mining, 2000.

182



[111] Andrew McCallum, Karl Schultz, and Sameer Singh. Factorie: Probabilistic
programming via imperatively defined factor graphs. In Advances in Neural
Information Processing Systems, 2009.

[112] Andrew McCallum and Ben Wellner. Toward conditional models of identity
uncertainty with application to proper noun coreference. In Proceedings of the
IJCAI Workshop on Information Integration on the Web, 2003.

[113] Andrew Mccallum and Ben Wellner. Conditional models of identity uncer-
tainty with application to noun coreference. In Advances in Neural Informa-
tion Processing Systems, 2004.

[114] Luke McDowell, Kalyan Moy Gupta, and David W. Aha. Cautious inference
in collective classification. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2007.

[115] Luke K. McDowell, Kalyan Moy Gupta, and David W. Aha. Cautious col-
lective classification. Journal of Machine Learning Research, 10:2777–2836,
2009.

[116] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather:
Homophily in social networks. Annual Review of Sociology, 27(1):415–444,
2001.

[117] H. W. Mewes, D. Frishman, U. Güldener, G. Mannhaupt, K. Mayer,
M. Mokrejs, B. Morgenstern, M. Münsterkötter, S. Rudd, and B. Weil. Mips:
a database for genomes and protein sequences. Nucleic acids research, 30:31–
34, 2002.

[118] David Milne and Ian H. Witten. Learning to link with wikipedia. In Proceed-
ings of the ACM Conference on Information and Knowledge Management,
2008.

[119] Elena Nabieva, Kam Jim, Amit Agarwal, Bernard Chazelle, and Mona Singh.
Whole-proteome prediction of protein function via graph-theoretic analysis of
interaction maps. Bioinformatics, 21:302–310, 2005.

[120] Galileo Mark Namata, Stanley Kok, and Lise Getoor. Collective graph identi-
fication. In ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2011.

[121] Galileo Mark Namata, Hossam Sharara, and Lise Getoor. A survey of link min-
ing tasks for analyzing noisy and incomplete networks. In Jiawei Han Philip
S. S. Yu and Christos Faloutsos, editors, Link Mining: Models, Algorithms,
and Applications. Springer, 2010.

[122] Galileo Mark Namata, Brian Staats, Lise Getoor, and Ben Shneiderman. A
dual-view approach to interactive network visualization. In ACM Conference
on Information and Knowledge Management, 2007.

183



[123] J. Neville and D. Jensen. Iterative classification in relational data. In Proceed-
ings of the AAAI Workshop on Learning Statistical Models from Relational
Data, 2000.

[124] Jennifer Neville and David Jensen. Relational dependency networks. Journal
of Machine Learning Research, 8:653–692, 2007.

[125] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P. James. Automatic
linkage of vital records. Science, 130:954–959, October 1959.

[126] Howard B. Newcombe and James M. Kennedy. Record linkage: making max-
imum use of the discriminating power of identifying information. Communi-
cations ACM, 5(11):563–566, 1962.

[127] M. E. J. Newman. Mixing patterns in networks. Physics Review E,
67(2):026126, Feb 2003.

[128] Mark E. J. Newman, Albert L. Barabasi, and Duncan J. Watts. The Structure
and Dynamics of Networks. Princeton University Press, 2006.

[129] Abhijit S. Ogale and Yiannis Aloimonos. Shape and the stereo correspondence
problem. International Journal of Computer Vision, 65(3):147–162, December
2005.

[130] Hiroaki Ogata and Yoneo Yano. Collecting organizational memory based on
social networks in collaborative learning. In Proceedings of World Conference
on the WWW and Internet, pages 822–827, 1999.

[131] Joshua O’Madadhain, Jon Hutchins, and Padhraic Smyth. Prediction and
ranking algorithms for event-based network data. SIGKDD Explorations
Newsletter, 7(2):23–30, 2005.

[132] Joshua O’Madadhain and Padhraic Smyth. EventRank: A framework for
ranking time-varying networks. In Proceedings of the KDD Workshop on Link
Discovery, pages 9–16, 2005.

[133] Hanna Pasula, Bhaskara Marthi, Brian Milch, Stuart Russell, and Ilya Sh-
pitser. Identity uncertainty and citation matching. In Advances in Neural
Information Processing Systems, 2003.

[134] Hoifung Poon and Pedro Domingos. Joint inference in information extraction.
In Proceedings of the AAAI Conference on Artificial Intelligence, 2007.

[135] Alexandrin Popescul and Lyle H. Ungar. Statistical relational learning for
link prediction. In Proceedings of the IJCAI Workshop on Learning Statistical
Models from Relational Data, 2003.

[136] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993.

184



[137] Matthew J. Rattigan and David Jensen. The case for anomalous link discovery.
SIGKDD Explorations Newsletter, 7:41–47, 2005.

[138] Matthew J. Rattigan, Marc Maier, and David Jensen. Exploiting network
structure for active inference in collective classification. Technical report, Uni-
versity of Massachusetts Amherst, 2007.

[139] Matthew J. Rattigan, Marc Maier, David Jensen Bin Wu, Xin Pei, JianBin
Tan, and Yi Wang. Exploiting network structure for active inference in col-
lective classification. In Proceedings of the IEEE International Conference on
Data Mining Workshops, pages 429–434, Washington, DC, USA, 2007. IEEE
Computer Society.

[140] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine
Learning, 62:107–136, 2006.

[141] Dan Roth, Kevin Small, and Ivan Titov. Sequential learning of classifiers for
structured prediction problems. In Proceedings of the Conference on Artificial
Intelligence and Statistics, 2009.

[142] Dan Roth and Wen-Tau Yih. A linear programming formulation for global
inference in natural language tasks. In Proceedings of the Conference on Com-
putational Natural Language, 2004.

[143] Nicholas Roy and Andrew McCallum. Toward optimal active learning through
sampling estimation of error reduction. In Proceedings of the International
Conference on Machine Learning, pages 441–448, San Francisco, CA, USA,
2001. Morgan Kaufmann Publishers Inc.

[144] Maytal Saar-Tsechansky and Foster Provost. Active sampling for class prob-
ability estimation and ranking. Machine Learning, 54(2):153–178, 2004.

[145] Sunita Sarawagi. Information extraction. Foundations and Trends in
Databases, 1(3):261–377, 2008.

[146] Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplication using
active learning. In Proceedings of the ACM SIGKDD International Conference
On Knowledge Discovery And Data Mining, pages 269–278, New York, NY,
USA, 2002.

[147] Tom Schaul, Justin Bayer, Daan Wierstra, Yi Sun, Martin Felder, Frank
Sehnke, Thomas Rückstieß, and Jürgen Schmidhuber. PyBrain. Journal of
Machine Learning Research, 2010.

[148] Michael Schwartz and David Wood. Discovering shared interests among people
using graph analysis of global electronic mail traffic. Communications of the
ACM, 36:78–89, 1992.

185



[149] Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic, Lise Getoor, Brian
Gallagher, and Tina Eliassi-Rad. Collective classification in network data. AI
Magazine, 29(3):93–106, 2008.

[150] Burr Settles. Active learning literature survey. 1648, University of Wisconsin-
Madison, 2009.

[151] Shai Shalev-Shwartz, Yoram Singer, and Nathan Srebro. Pegasos: Primal
estimated sub-gradient solver for svm. In Proceedings of the International
Conference on Machine Learning, pages 807–814, 2007.

[152] Claude Elwood Shannon. A mathematical theory of communication. Bell
System Technical Journal, 27:379–423, 1948.

[153] Roded Sharan, Igor Ulitsky, and Ron Shamir. Network-based prediction of
protein function. Molecular Systems Biology, 3:88, 2007.

[154] Hossam Sharara, Lise Getoor, and Myra Norton. Active surveying: A prob-
abilistic approach for identifying key opinion leaders. In Proceedings of the
International Joint Conference on Artificial Intelligence, 2011.

[155] Hossam Sharara, Awalin Sopan, Galileo Mark Namata, Lise Getoor, and Lisa
Singh. G-pare: A visual analytic tool for comparative analysis of uncertain
graphs. In IEEE Conference on Visual Analytics Science and Technology,
2011.

[156] Rob Sherwood, Adam Bender, and Neil Spring. Discarte: a disjunctive inter-
net cartographer. SIGCOMM Computer Communication Review, 38(4):303–
314, 2008.

[157] Jitesh Shetty and Jafar Adibi. The Enron email dataset: Database schema
and brief statistical report. http://www.isi.edu/˜adibi/Enron/
Enron Dataset Report.pdf.

[158] Rohit Singh, Jinbo Xu, and Bonnie Berger. Struct2net: Integrating structure
into protein-protein interaction prediction. In Pacific Symposium on Biocom-
puting, pages 403–414, 2006.

[159] Parag Singla and Pedro Domingos. Multi-relational record linkage. In Proceed-
ings of the ACM SIGKDD International Conference On Knowledge Discovery
And Data Mining, 2004.

[160] Parag Singla and Pedro Domingos. Entity resolution with markov logic. IEEE
International Conference on Data Mining, 21:572–582, 2006.

[161] David Skillicorn. Detecting unusual and deceptive communication in email. In
Centers for Advanced Studies Conference, Richmond Hill, Ontario, Canada,
October 17-20 2005.

186



[162] Swapna Somasundaran, Galileo Mark Namata, Lise Getoor, and Janyce
Wiebe. Opinion graphs for polarity and discourse classification. In
TextGraphs-4: Graph-based Methods for Natural Language Processing, August
2009.

[163] Xiaodan Song, Ching-Yung Lin, Belle L. Tseng, and Ming-Ting Sun. Modeling
and predicting personal information dissemination behavior. In Proceedings
of the ACM SIGKDD International Conference On Knowledge Discovery And
Data Mining, pages 479–488, 2005.

[164] Neil Spring, Ratul Mahajan, David Wetherall, and Thomas Anderson. Mea-
suring isp topologies with rocketfuel. IEEE/ACM Transactions on Network-
ing, 12(1):2–16, 2004.

[165] Neil Spring, David Wetherall, and Thomas Anderson. Reverse engineering the
internet. SIGCOMM Computer Communication Review, 34(1):3–8, 2004.

[166] Andras Szilagyi, Vera Grimm, Adrian K Arakaki, and Jeffrey Skolnick. Pre-
diction of physical protein-protein interactions. Physical Biology, 2(2):S1–S16,
2005.

[167] Partha Pratim Talukdar and Koby Crammer. New regularized algorithms for
transductive learning. In Proceedings of the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases,
2009.

[168] Ben Taskar, Abbeel Pieter, and Daphne Koller. Discriminative probabilistic
models for relational data. In Proceedings of the Conference on Uncertainty
in Artificial Intelligence, 2002.

[169] Ben Taskar, Ming-Fai Wong, Pieter Abbeel, and Daphne Koller. Link predic-
tion in relational data. In Advances in Neural Information Processing Systems,
2003.

[170] Sheila Tejada, Craig A. Knoblock, and Steven Minton. Learning object identi-
fication rules for information integration. Information Systems, 26:2001, 2001.

[171] The JUNG Framework Development Team. Jung-java universal net-
work/graph framework. http://jung.sourceforge.net.

[172] The SNAP Platform Development Team. Snap: Stanford network analysis
platform. http://snap.stanford.edu.

[173] Henry L. Van Trees. Detection, Estimation, and Modulation Theory. John
Wiley and Sons, 1968.

[174] Joshua R. Tyler, Dennis M. Wilkinson, and Bernardo A. Huberman. Email
as spectroscopy: Automated discovery of community structure within organi-
zations. In Communities and Technologies, pages 81–96. Kluwer, B.V., 2003.

187



[175] UK Sheffield University. SimMetrics - open source similarity measure library.

[176] Jeffrey D. Ullman. Information integration using logical views. In Foto N.
Afrati and Phokion G. Kolaitis, editors, Proceedings of the International Con-
ference on Database Theory, volume 1186 of Lecture Notes in Computer Sci-
ence, pages 19–40. Springer, 1997.

[177] Jue Wang and Pedro Domingos. Hybrid markov logic networks. In Proceedings
of the AAAI Conference on Artificial Intelligence, pages 1106–1111. AAAI
Press, 2008.

[178] Xuerui Wang, Natasha Mohanty, and Andrew McCallum. Group and topic
discovery from relations and text. In Proceedings of the KDD Workshop on
Link Discovery, pages 28–35, 2005.

[179] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks.
Nature, 393(6684):440–442, June 1998.

[180] Steven Euijong Whang, David Menestrina, Georgia Koutrika, Martin
Theobald, and Hector Garcia-Molina. Entity resolution with iterative block-
ing. In Proceedings of the SIGMOD International Conference on Management
of Data, pages 219–232. ACM, 2009.

[181] Michael Wick, Aron Culotta, Khashayar Rohanimanesh, and Andrew McCal-
lum. An entity-based model for coreference resolution. In Proceedings of the
SIAM International Conference on Data Mining, 2009.

[182] Michael L. Wick, Khashayar Rohanimanesh, Karl Schultz, and Andrew Mc-
Callum. A unified approach for schema matching, coreference and canonical-
ization. In Proceedings of the ACM SIGKDD International Conference On
Knowledge Discovery And Data Mining, 2008.

[183] William E. Winkler. The state of record linkage and current research problems.
Technical report, Statistical Research Division, U.S. Census Bureau, 1999.

[184] Ting-Fan Wu, Chih-Jen Lin, and Ruby C. Weng. Probability estimates for
multi-class classification by pairwise coupling. Journal of Machine Learning
Research, 5:975–1005, 2004.

[185] R. Yan and A. G. Hauptmann. Efficient margin-based rank learning algorithms
for information retrieval. In International Conference on Image and Video
Retrieval, 2006.

[186] Haiyuan Yu, Philip M. Kim, Emmett Sprecher, Valery Trifonov, and Mark
Gerstein. The importance of bottlenecks in protein networks: Correlation
with gene essentiality and expression dynamics. PLoS Computational Biology,
3(4):e59+, April 2007.

188



[187] Haiyuan Yu, Alberto Paccanaro, Valery Trifonov, and Mark Gerstein. Predict-
ing interactions in protein networks by completing defective cliques. Bioinfor-
matics, 22(7):823–829, 2006.

[188] Hwanjo Yu, Jiong Yang, and Jiawei Han. Classifying large data sets using svms
with hierarchical clusters. In Proceedings of the ACM SIGKDD International
Conference On Knowledge Discovery And Data Mining, 2003.

[189] Dong Zhang, Daniel Gatica-Perez, Deb Roy, and Samy Bengio. Modeling
interactions from email communications. In IEEE International Conference
on Multimedia and Expo, 2006.

[190] Lan Zhang, Sharyl Wong, Oliver King, and Frederick Roth. Predicting co-
complexed protein pairs using genomic and proteomic data integration. BMC
Bioinformatics, 5:38, 2004.

[191] Elena Zheleva, Lise Getoor, Jennifer Golbeck, and Ugur Kuter. Using friend-
ship ties and family circles for link prediction. In Proceedings of the SIGKDD
Workshop on Social Network Mining and Analysis, Lecture Notes in Computer
Science, 2008.

[192] Ding Zhou, Eren Manavoglu, Jia Li, C. Lee Giles, and Hongyuan Zha. Prob-
abilistic models for discovering e-communities. In Proceedings of the Interna-
tional Conference on World Wide Web, pages 173–182, 2006.

[193] Jianhan Zhu. Mining Web Site Link Structure for Adaptive Web Site Nav-
igation and Search. PhD thesis, University of Ulster at Jordanstown, UK,
2003.

[194] Xiaojin Zhu and Andrew B. Goldberg. Introduction to Semi-Supervised Learn-
ing. Morgan and Claypool Publishers, 2009.

[195] Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. Combining active learn-
ing and semi-supervised learning using gaussian fields and harmonic functions.
In ICML workshop on The Continuum from Labeled to Unlabeled Data in Ma-
chine Learning and Data Mining, pages 58–65, 2003.

189


	List of Tables
	List of Figures
	Introduction
	Motivating Examples
	Social Network Analysis
	Protein Networks
	Internet Topology

	Outline and Contributions

	Related Work
	Entity Resolution
	Link Prediction
	Collective Classification
	Joint Inference

	Entity Resolution of Name References in Email Archives
	Introduction
	Exploiting Context
	Problem Definition
	Name Reference Entity Resolution Process
	Candidate Set Generation
	Candidate Scoring
	Candidate Rejection

	Experiment Design
	Dataset Preparation
	Ground Truth Generation
	Performance Evaluation

	Discussion
	Related Work
	Social Networks
	Enron
	Entity Resolution in Email

	Conclusion

	Link Prediction for Social Network Discovery
	Introduction
	Problem Definition
	Learning to Rank Relationships
	Objective
	Approach
	Lower Bound on the Mean Reciprocal Rank

	Message Ranking
	Manager-Subordinate Relationship Link Prediction
	Traffic-Based Relationship Ranking
	Content-Based Relationship Ranking

	Results
	Traffic-Based Relationship Ranking
	Content-Based Relationship Ranking
	Content-Based Message Ranking

	Related Work
	Conclusions and Future Work

	Active Surveying for Query-driven Collective Classification
	Introduction
	Motivating Examples
	Intelligence Gathering
	Disease Transmission
	Viral Marketing

	Background
	Collective Classification
	Active Learning and Inference
	Active Strategies

	Query-driven Active Surveying
	Problem Definition
	The Smoothness Assumption
	Survey Strategies
	An Adaptive Survey Strategy

	Empirical Evaluation
	Experimental Setup
	Methodology
	Sampled Query Sets
	Targeted Query Sets

	Conclusion

	Collective Graph Identification
	Introduction
	Graph Identification
	Independent Models
	Joint Models

	Background
	Coupled Collective Classifiers
	Features
	Weight Learning
	Inference
	Constructing the Output Graph
	C3 Variants

	Experimental Evaluation
	Datasets
	Evaluation Metrics
	Prediction Quality
	Runtime Performance

	Conclusion

	GAIA
	Introduction
	Related Work
	GAIA Software
	Algorithmic and Analysis Support
	Graph Support
	Modular Architecture with Abstraction
	Accessibility and Development

	Conclusions and Future Work

	Conclusion and Future Work
	Summary of Contributions
	Future Directions
	Conclusions

	Bibliography

