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Data describing networks—such as communication networks, transaction networks, disease transmission
networks, collaboration networks, etc.—is becoming increasingly available. While observational data can
be useful, it often only hints at the actual underlying process that governs interactions and attributes. For
example, an email communication network provides insight into its users and their relationships, but is not
the same as the “real” underlying social network. In this paper, we introduce the problem of graph identifi-
cation, i.e., discovering the latent graph structure underlying an observed network. We cast the problem as
a probabilistic inference task, in which we must infer the nodes, edges, and node labels of a hidden graph,
based on evidence. This entails solving several canonical problems in network analysis: entity resolution
(determining when two observations correspond to the same entity), link prediction (inferring the existence
of links), and node labeling (inferring hidden attributes). While each of these subproblems has been well
studied in isolation, here we consider them as a single, collective task. We present a simple, yet novel, ap-
proach to address all three subproblems simultaneously. Our approach, which we refer to as C3, consists
of a collection of Coupled Collective Classifiers that are applied iteratively to propagate inferred informa-
tion among the subproblems. We consider variants of C3 using different learning and inference techniques
and empirically demonstrate that C3 is superior, both in terms of predictive accuracy and running time, to
state-of-the-art probabilistic approaches on four real problems.
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1. INTRODUCTION
In recent years, there has been a surge of interest in network analysis across a di-
verse set of domains, including social networks, technological networks, biological net-
works and more. In part, this interest is driven by the growing amount of available
network data, such as e-mail, citation databases, epidemiological studies and social
media. Network data contains a wealth of information (e.g., key individuals, commu-
nities and contagion trends) that, when uncovered, can bolster predictive models and
elucidate general network dynamics. However, observed networks are typically noisy
and, while they may provide useful signal for uncovering an underlying sociological or
technological network, it is often very different from the true topology.

We define the process of discovering the latent structure that gives rise to the ob-
served network as the problem of graph identification. Figure 1 illustrates an example
of inferring an organizational network (b) from an email communication network (a).
In this example, the nodes in the observed graph are the email addresses, the edges
indicate a correspondence; both nodes and edges can be annotated with attributes
(not shown), such as word counts, or properties of the sender or receiver. In the la-
tent graph, the nodes are people (i.e., entities), the edges are manager-subordinate
relationships, and a node label indicates a person’s role in the organization. We refer
to the observed network as the input graph, and the hidden network of interest as
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Fig. 1. Input and output of graph identification. (a) Input graph representing an email communication
network in which nodes are email addresses and edges communications. (b) Output graph representing
the organizational network discovered by graph identification. Nodes correspond to people and edges to
manager-subordinate relationships. Nodes are colored according to their organizational roles. (c) Resolutions
from input to output nodes.

the output graph. Graph identification uncovers the latent network by simultaneously
solving three problems:

— Entity resolution: merging nodes in the input that refer to the same entity; e.g.,
“Do nsmith@msn.com and neil@example.com belong to the same person?”

— Link prediction: inferring links between nodes in the output graph, often based
on links in the input graph; e.g., “Does a manager-subordinate relationship exist
between Robert Lee and Mary Jones, given that they have corresponded?”

— Node labeling: labeling nodes in the output graph; e.g., “Is Neil Smith a CEO or
assistant?”

The entity resolution step induces a mapping from the nodes in the input graph to
those in the output graph, as illustrated in Figure 1(c).

Intuitively, each task can inform the others; this is the central hypothesis of graph
identification. By solving these three subproblems collectively (i.e., jointly), reasoning
can propagate among the subproblems, yielding a more accurate global solution. For
example, in a bibliographic domain, predicting whether one paper cites another (i.e.,
link prediction) may allow us to infer that they have the same topic (i.e., node label-
ing), which in turn aids in determining whether they actually are the same paper (i.e.,
entity resolution); this last inference may in turn help to determine the citation links
from these papers to other papers, closing the information propagation loop. While pre-
vious work [Neville and Jensen 2000; Liben-Nowell and Kleinberg 2003; Taskar et al.
2003; Carvalho and Cohen 2005; Singla and Domingos 2006; Bhattacharya and Getoor
2007; Sen et al. 2008] has addressed each of these tasks separately, or in subsets, to
our knowledge, we present the first efficient, scalable solution to all subproblems si-
multaneously.

To address the problem of graph identification, we propose the C3 (Coupled
Collective Classifiers) algorithm. C3 defines a global probabilistic model that captures
the dependencies within and between the three subproblems. While it is conceivable
that standard inference algorithms could jointly solve all three tasks, they do not work
well in practice; due to the inherent complexity of the tasks, exact inference is pro-
hibitively expensive, thus necessitating approximations. As we show in our experi-
ments, these general-purpose approximations cannot match the performance of C3,
which is tailored to the problem of graph identification. C3 uses the following itera-
tive procedure: it begins with a round of bootstrapping, wherein a simple classifier is
applied to each task independently, using only observed information from the input
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graph. Then, it iteratively propagates the solutions among the three tasks, via rela-
tional features that model the various task interactions.

We consider multiple variants of C3, based on different learning and inference
paradigms, and empirically show that by propagating information, C3 improves the
predictive accuracy by as much as 114% on four real networks. In real data mining
tasks, fully labeled training data is scarce and expensive. Recognizing this, we also
present a semi-supervised variant of C3, which is able to exploit training data that
is only partially labeled. Finally, we highlight C3’s scalability and parallelizability on
several large, synthetic network datasets.

The remainder of the paper is organized as follows. We begin with some motivating
examples of the graph identification problem in various network domains in Section 2.
We then discuss the subproblems that comprise graph identification, and review previ-
ous work in these problems in Section 3. Section 4 presents the necessary preliminar-
ies and background, and Section 5 introduces the C3 algorithm. We evaluate several
variants of C3 on a variety of real datasets, detailed in Section 6. We then report the
results of these experiments in Section 7, and provide some discussion and suggestions
for future work in Section 8.

2. MOTIVATING EXAMPLES
In this section, we discuss some motivating examples of graph identification problems.
These were selected to illustrate the need and potential impact of C3 across a diverse
set of domains.

2.1. Organizational Networks
Recall our example from Section 1 of discovering an organizational network from an
observed communications network. Specifically, the task is to identify the entities in
the organization, determine the managerial relationships between these entities, and
identify their roles. For large organizations, it may be difficult, if not impossible, to
collect organizational data directly, yet the email communications may be available as
a matter of public record [Klimt and Yang 2004]. These communications induce a net-
work in which nodes represent email addresses and edges represent correspondences.
Further, nodes and edges may be annotated with attributes, such as frequency of com-
munication and linguistic content.

This observed network, however, may be a noisy proxy for the true network. To illus-
trate this, consider the small example networks shown in Figure 1. The nodes (email
addresses) in the communication network do not accurately reflect the members of the
organization. (For example, mary@example.com and mtaylor@example.com both belong
to Mary Taylor). Moreover, the communication links are not the same as the manage-
rial relationships between individuals. (Notice that robert@example.com corresponded
with mjones@example.com, although Robert Lee and Mary Jones do not have a man-
agerial relationship.) Finally, it may be that the employee roles are missing from the
email data.

Although the observed network is noisy and incomplete, it can be used to infer the la-
tent organizational network. This involves resolving email addresses to entities (these
may be email addresses that have a similar writing style or communication pattern),
infering managerial relationships (which may be strongly correlated with email corre-
spondence), and identifying roles of individuals (reflected in the content of their com-
munications and with whom they communicate).

2.2. Protein Networks
Protein-protein interaction (PPI) networks from high throughput experiments have
become a widely studied source of data for understanding biological processes. These
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networks have been used to explore various protein characteristics, such as their es-
sentiality [Yu et al. 2007; Batada et al. 2007], function [Chua et al. 2006; Nabieva et al.
2005], and how they interact to perform higher level functions [Asthana et al. 2004;
Bertin et al. 2007; Deng et al. 2002]. This line of research requires a complete protein
network, in which the proteins are annotated with their function and mapped to their
complexes, and all interactions are known. Unfortunately, these networks are notori-
ously noisy and incomplete. Comparisons of high-confidence networks involving well
annotated species show as little as 9% overlap [Huang and Bader 2009]. Even well
annotated species like yeast and worm are missing functional [Sharan et al. 2007] or
complex annotations [Mewes et al. 2002]. Further, estimates for the presence of false
and missing links in well studied organisms have been as high as 17% and and 51%,
respectively [Huang and Bader 2009].

In spite of this, one can potentially infer a PPI network that is usable. For instance,
the known annotations of one protein can be used to infer the annotations of another
protein it interacts with [Nabieva et al. 2005; Chua et al. 2006]. Similarly, the auto-
correlation between the function of interacting proteins, as well as attributes like cel-
lular localization, can help determine the true set of interactions [Yu et al. 2006; Singh
et al. 2006]. One can also use the topology of the PPI and the functional enrichment
common in complexes to predict protein complexes [Asthana et al. 2004; Zhang et al.
2004].

2.3. Internet Topology
As Internet usage continues to grow, it is becoming essential that we understand the
structure and design of the Internet, in order to understand its vulnerabilities and
limitations [Spring et al. 2004b]. For example, we would like to have a map that shows
all routers, information about these routers (such as model or geographic location), the
administrative domain each router belongs to (known commonly as an autonomous
system), and the existence and types of relationships between autonomous systems.
The Internet, however, is not owned or managed by a single organization; instead, it is
a collection of networks run by various Internet Server Providers (ISPs), who often do
not publish the details of their networks. Generally, maps of the Internet are created
using tools that provide only a partial view of the full network, and are notoriously
error prone. For example, router level networks created using TTL-limited probes (i.e.,
traceroute) tend to inflate the true number of routers, and incorrectly record the exis-
tence of links between them [Sherwood et al. 2008].

As in the previous examples, while the available network map may be suspect, it
can be used to infer a more reliable view. One can infer which IP addresses belong
to the same router and, similarly, which routers belong to which autonomous system,
using attributes (e.g., geographic location and DNS names) and observed or inferred
connectivity. One can also infer the existence and types of relationships between au-
tonomous systems by examining the attributes and connectivity of their constituent
routers [Di Battista et al. 2007].

3. RELATED WORK
Graph identification consists of three subproblems, corresponding to the three primary
components of the desired latent graph. First, nodes in the observed graph are resolved
to nodes in the latent graph (i.e., entity resolution). Next, edges are inferred between
nodes in the latent graph (i.e., link prediction). Finally, missing attributes or labels
are predicted for nodes in the latent graph (node labeling). (Though we list these in
a specific order, there is no fixed order of execution.) There is significant prior work
on each of these tasks independently, which we review in this section. We also discuss
approaches that solve some of these tasks jointly, by leveraging the interdependencies
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between subproblems. To our knowledge, none of these approaches provide an efficient
means of solving all three subproblems simultaneously.

3.1. Entity Resolution
Examples of entity resolution problems have been explored in many settings under a
number of different names. Early work in entity resolution can be found in the field
of medical record management under the name record linkage [Newcombe et al. 1959;
Newcombe and Kennedy 1962; Fellegi and Sunter 1969; Winkler 1999]. In these early
publications, the goal was to identify which medical records refer to the same indi-
vidual or family. In computer vision, entity resolution was applied to identify which
regions in the same image are part of the same object (referred to as the correspon-
dence problem) [Ogale and Aloimonos 2005]. In natural language processing, there
is interest in determining which noun phrases refer to the same underlying entity
(coreference resolution) [Somasundaran et al. 2009; Mccallum and Wellner 2004]. The
database tasks deduplication [Sarawagi and Bhamidipaty 2002] and data integration
[Ullman 1997]—which determine when two tuples in or across databases refer to the
same entity—are also instances of the general problem of entity resolution.

There are three general categories of approaches to entity resolution: local, rela-
tional, and collective. Local approaches are more traditional, relying solely on the at-
tributes of the nodes. Given two nodes, attribute-based approaches generally make
use of a similarity measure [Jaro 1995; Winkler 1999; Jaccard 1901] or a weighted
combination of multiple similarity measures [Bilenko and Mooney 2003], over the at-
tributes of the nodes. Pairs of nodes whose similarity is above some manually specified
or learned threshold are predicted to resolve to the same entity. More recently, rela-
tional and collective approaches have been proposed which take the edges between
these nodes into consideration. Relational approaches often use the attribute similar-
ity of related nodes [Ananthakrishna et al. 2002; Kalashnikov et al. 2005], wherein
related nodes with many similar attributes are more likely to be co-referent. Collec-
tive relational approaches take this one step further by taking into account that related
nodes themselves may also need to be resolved, and that the entity resolution of a node
needs to be applied jointly with the rest of the network [McCallum and Wellner 2003;
Pasula et al. 2003; Dong et al. 2005; Singla and Domingos 2006; Bhattacharya and
Getoor 2007].

A major issue in entity resolution is that it is a computationally difficult problem
for large networks; a naı̈ve algorithm is O(|V|2) where |V| is the number of nodes in
the network. For many networks, it is infeasible to compare all pairs of nodes for ap-
proaches which use expensive similarity measures. Similarly, for many probabilistic
models, it is infeasible to explicitly represent all the variables required for inference.
Thus, efficiencies have long been a focus of research in entity resolution. One tech-
nique, commonly known as blocking [Hernández and Stolfo 1995; Whang et al. 2009],
adds a preprocessing step in which nodes are grouped into disjoint blocks using a cheap
similarity or index-based computation; a computationally expensive entity resolution
algorithm can then be run within each block, assuming the number of potential pairs
in each block is sufficiently small. A related method, known as canopies [McCallum
et al. 2000], places nodes into possibly overlapping subsets, rather than disjoint blocks.
Potential co-referent pairs are then restricted to pairs of nodes that share at least one
common canopy.

3.2. Link Prediction
Link prediction is a challenging problem that has been studied under various guises
in different domains. For example, in social network analysis, there is work on predict-
ing friendship links [Zheleva et al. 2008], event participation links (i.e., co-authorship
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[O’Madadhain et al. 2005]), communication links (i.e., email [O’Madadhain et al.
2005]), links representing semantic relationships (i.e., advisor-of [Wang et al. 2010],
and management relationships [Diehl et al. 2007]). In bioinformatics, there is interest
in predicting the existence of edges representing physical protein-protein interactions
[Szilagyi et al. 2005; Yu et al. 2006; Huang and Bader 2009], domain-domain interac-
tions [Deng et al. 2002], and regulatory interactions [Réka et al. 2007]. Similarly, in
computer network systems there is work on inferring unobserved connections between
routers, as well as inferring relationships between autonomous systems and service
providers [Spring et al. 2004b]. There is also work on using link prediction to improve
recommender systems [Farrell et al. 2005; Huang et al. 2005], website navigation [Zhu
2003], surveillance [Huang and Lin 2008], and automatic document cross referencing
[Milne and Witten 2008].

There are the two general categories of the current link prediction models:
topology-based approaches and node attribute-based approaches. Topology-based
approaches[Liben-Nowell and Kleinberg 2003; Yu et al. 2006; Clauset et al. 2008] typi-
cally rely on some notion of structural proximity, where nodes which are close are likely
to share an edge (e.g., sharing common neighbors, nodes with a small shortest path
distance between, etc.). Although topology has been shown useful in link prediction,
topology-based approaches ignore an important source of information in networks: the
attributes of nodes. Often there are correlations in the attributes of nodes which share
an edge with each other. For example, individuals with common interests (e.g., sports,
politics) are more likely to be friends than individuals with no interests in common.
Also, in academic settings, an “advisor” edge can only exist between a student and a
faculty node. Node attribute-based approaches [Getoor et al. 2003; Taskar et al. 2003;
O’Madadhain et al. 2005; Richardson and Domingos 2006; Tang et al. 2011] use these
correlations, often along with topology, in making its predictions.

A difficult challenge in link prediction is the large class skew between the number
of edges which exist and the number of edges which do not. To illustrate, consider
a directed graph denoted by G(V,E). While the number of edges |E| is often O(|V |),
the number of edges which do not exist is often O(|V |2) [Rattigan and Jensen 2005].
Consequently, the prior probability of edge existence is very small. This causes many
supervised models, which naı̈vely optimize for accuracy, to learn a trivial model which
always predicts that a link does not exist. A related problem in link prediction is the
large number of edges whose existence must be considered. As with entity resolution,
the number of potential pairs is O(|V|2) where |V| is the number of nodes in the net-
work. Applying complex inference models over such a large number of edges limits the
size of the data sets which can be considered.

In practice, there are general approaches to addressing these issues either prior to or
during the link prediction. With both large class skew and number of edges to contend
with, the general approach is to make assumptions which reduce the number of edges
to consider. One way to do this, similar to blocking in entity resolution, is to partition
the nodes and only consider potential edges between nodes of the same partition; edges
between partitions are not explicitly modeled and are assumed to not exist [Adafre
and de Rijke 2005; Yu et al. 2006]. This is useful in domains where there is a natural
partitioning criterion (e.g., geography in social networks, location of proteins in a cell)
that makes edges across partitions unlikely. Another way is to define some simple,
computationally inexpensive distance measure such that only edges whose nodes are
within some distance are considered [Liben-Nowell and Kleinberg 2003; Diehl et al.
2007].
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3.3. Node Labeling
A traditional problem in machine learning is to classify objects: e.g., given individuals
in an organization classify each according to their roles; given proteins in an interac-
tion network determine its biological function; given routers in a computer network
determine its version; given a sentence, determine the part-of-speech for each word,
etc. In networks, the problem of inferring labels has traditionally been applied to the
nodes of the graph. Initial work in classification makes an independent and identically
distributed (IID) assumption (i.e., the class labels are assumed conditional indepen-
dent given object attributes). However, studies have shown that classifying nodes in a
network can benefit from leveraging correlations between adjacent nodes [Chakrabarti
et al. 1998; Neville and Jensen 2000; Getoor et al. 2001; Lafferty et al. 2001; Taskar
et al. 2002; Lu and Getoor 2003; Macskassy and Provost 2007; Sen et al. 2008].

There are two main categories of collective classification algorithms, which vary
based on their mathematical underpinnings, as well as how they exploit the rela-
tionships between the nodes. The first category, relational classifiers [Macskassy and
Provost 2007], consider the observed attributes of related nodes. For instance, when
classifying authors, we use the words present in their papers and the labels of the au-
thors who they have co-authored with (if known) to arrive at the correct label. Although
relational classifiers have been shown to perform well in some domains, overall, the
results have been mixed. For instance, although there are reports that relational clas-
sification improves accuracy over traditional classification, in certain cases, relational
classification can decrease accuracy [Chakrabarti et al. 1998]. The second category of
algorithms go beyond the former by not only using the known attributes and labels
of related nodes, but also using the predicted labels of other nodes whose labels are
also unobserved [Chakrabarti et al. 1998; Neville and Jensen 2000; Getoor et al. 2001;
Lafferty et al. 2001; Taskar et al. 2002; Lu and Getoor 2003].

3.4. Joint Inference
Most previous work explore these sub-problems of graph identification independently;
yet, it is clear that inference from one task can inform another. Noting this, some
attempts have been made to couple some of these tasks into a unified inference problem
under various general statistical relational learning frameworks. One example is the
work of Getoor et al. [2007] on Probabilistic Relational Models (PRMs). Their work
explored using PRMs when there is both node label and link uncertainty. Similarly,
there is work by Taskar et al. [2003] on Relational Markov Networks (RMNs). Taskar
applied RMNs to the task of jointly inferring the labels and links between websites
noting that certain relationships can only exists between nodes with a given label
(e.g., an advisor relationship can only exist between a faculty and student node). More
recently, Bhattacharya et al. [2008] proposed a generative model which jointly applies
entity resolution and node labeling to movie data and Li et al. [2014] developed a “co-
profiling” framework to predict node label and link type of various social networks.

There is also work in combining multiple inference problems in the computer vision
and natural language processing literature. Roth et al. proposed frameworks for learn-
ing and applying multiple classifiers using a linear programming formulation [Roth
and Yih 2004] and sequential learning [Roth et al. 2009]. Similarly, Heitz et al. [Heitz
et al. 2008] proposed cascaded classification models for scene understanding. To our
knowledge, previous work in joint models has not formulated the complex structured
prediction problem in graph identification as interacting components that collectively
infer the graph via a collection of probabilistic graph transformations.

Graph identification is related to the domain specific problems of information ex-
traction in natural language processing [Poon and Domingos 2007; Sarawagi 2008;
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Wick et al. 2008], network mapping in computer networks [Sherwood et al. 2008;
Spring et al. 2004a,b], and biological network inference in bioinformatics [Martin
et al. 2005]. While many of the underlying inferences are similar, the abstraction
and tasks involved vary from graph identification. Information extraction tradition-
ally infers structured output from unstructured data (e.g., newspaper articles, emails),
while graph identification is specifically focused on inferring structured data (i.e., the
cleaned graph) from other structured data (i.e., the noisy graph, perhaps produced
from an information extraction process). Similarly, network mapping and biological
network inference is mainly concerned with inferring network topology. More recently,
there has been work on identifying latent relationship links between nodes, which can
be used to improve collective classification performance [Tang and Liu 2009; Shi et al.
2011; McDowell and Aha 2013]. The links inferred here are not designed to have a
semantic implementation, however, and are only inferred as an intermediate result
toward the primary goal of improving collective classification. Consequently, work in
these problems can be formulated as instantiations of the more general problem of
graph identification.

This work is an extended version of our work in Namata et al. [2011] where we in-
troduced the problem of graph identification and first proposed a collective approach
to the problem. We incorporate this work into the current paper and further propose
and evaluate four additional collective graph identification methods. We also provide
an extensive evaluation on additional datasets and settings, exploring not only pre-
dictive performance, but also the convergence properties, applying graph construction
procedures, and scalability results.

4. BACKGROUND
In this section, we introduce the notation and statistical tools needed to describe the C3

model. Throughout the paper, we use uppercase symbols to denote random variables
(e.g., Y ) and a lowercase (e.g., y) to represent assignments. Bold indicates a vector or
set of variables (e.g., Y) or values (e.g., y).

A Markov random field (also called a Markov network) encodes a joint distribution
over a set of random variables Y. Let C denote a set of subsets (or cliques) of the ran-
dom variables, where Yc is the set of random variables in subset c. For each c ∈ C, we
have an associated potential function φc(Yc), which is a function mapping the domain
of Yc to a nonnegative real number. A Markov random field defines a distribution,

P (y) =
1

Z

∏
c∈C

φc(yc) (1)

where Z =
∑

y′
∏

c∈C φc(y
′
c) is a normalizing constant. The potential functions are

often defined as a log-linear, weighted combinations of feature functions,

φc(yc) = exp

(∑
i

wifi(yc)

)
= exp (wc · fc(yc)) . (2)

As such, Equation 1 can be equivalently expressed as

P (y) =
1

Z
exp

(∑
c∈C

wc · fc(yc)

)
. (3)

For discriminative tasks, one is often interested in the modeling the conditional dis-
tribution, given an observed subset X (also called the evidence variables). We occa-
sionally refer to the unconditioned variables Y as the target variables. A conditional
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random field models the distribution,

P (y | x) =
1

Z(x)

∏
c∈C

φc(xc,yc), (4)

where the partition function Z(x) =
∑

y′
∏

c∈C φc(xc,y
′
c) now depends on x.

Evaluating the likelihood necessitates computing Z(x), which involves a sum over
all possible assignments to Y. Since this is exponential in the number of variables,
|Y|, this calculation is generally intractable. Because of this, it is common to approxi-
mate the likelihood using the pseudolikelihood [Besag 1975; Neville and Jensen 2007;
Sutton and McCallum 2007],

P ∗(y | x) =
∏
i

P (yi|y\i,x)

=
∏
i

exp
(∑

c∈C:yi∈yc
wc · fc(xc,yc)

)
Z(yc\i,x)

(5)

where y\i = y \ yi, yc\i = yc \ yi and

Z(yc\i,x) =
∑
y′
i

exp

 ∑
c∈C:yi∈yc

wc · fc(xc, {yc\i ∪ y′i})

 . (6)

Note that Z(yc\i,x) only requires a sum over the possible values of Yi; therefore, com-
puting the pseudolikelihood is linear in |Y|.

5. COUPLED COLLECTIVE CLASSIFIERS
Let GI = (V,E) denote an input graph, where V and E are respectively a set of ver-
tices and directed edges.1 Each node v ∈ V represents a reference (i.e., mention) to an
entity, and each edge (vi, vj) ∈ E represents an interaction between references vi and
vj . Every vi in the input graph has its associated attributes Ai; for example, if a node
represents a reference to a publication, the attributes may describe its word distribu-
tion. Edges (vi, vj) may also have associated attributes, denoted Aij ; for instance, Aij

may represent the number of times vi cited vj . We use A = {Ai}vi∈V ∪ {Aij}(vi,vj)∈E to
denote the attributes of all input nodes and edges.

Recall that graph identification involves three tasks: entity resolution, link predic-
tion and node labeling. To model entity resolution, we define binary random vari-
ables R = {Rij}|V|i,j=1, where Rij indicates whether references vi and vj should be re-
solved in the output graph. For link prediction, we define binary random variables
L = {Lij}|V|i,j=1, where Lij indicates whether there is a link from vi to vj in the output
graph.2 For node labeling, we define a random variables N = {Ni}|V|i=1 representing the
labels of each node, where k is the number of labels and Ni takes values in {1, 2, . . . , k}.

We assume that certain subsets of R, L and N are given as training data. We denote
these observed (i.e., evidence) partitions by Ro ⊂ R, Lo ⊂ L and No ⊂ N respectively.
The remaining variables, Rp = R\Ro, Lp = L\Lo and Np = N\No, are to be predicted

1For presentation, we have assumed that G is a simple graph, though C3 easily extends to multimodal
(hyper)graphs with more than one kind of edge.
2In practice, we do not instantiate all |V|2 variables in R and L. Section 6 describes efficient filtering
techniques to only instantiate variables for pairs that have are likely to be resolved/linked.
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Table I. Example Features for a Publication Database

Task Type Feature Description
ER Local · Cosine similarity of observed words over nodes

Intra-Rel. · Jaccard similarity of the set of nodes adjacent via observed edges
· Jaccard similarity of the set of nodes adjacent via observed edges to observed or

predicted co-referent nodes
· Indicator for whether or not a node exists that is observed or predicted co-

referent to both nodes
Inter-Rel. · Jaccard similarity of the set of nodes adjacent via observed and predicted cita-

tion edges
· Jaccard similarity of the set of nodes adjacent via observed and predicted cita-

tion edges to observed and predicted co-referent nodes
· Indicator for whether the observed or predicted labels of the nodes are the same

LP Local · Cosine similarity of observed words over nodes
· Indicator variable of matches of observed words at both nodes

Intra-Rel. · Indicator variable for the existence of nodes adjacent to both nodes via observed
edges
· Indicator variable for the existence of nodes adjacent to both nodes via observed

and predicted citation edges
Inter-Rel. · Indicator for whether the observed or predicted labels of the nodes are the same

· Indicator for whether or not the nodes have observed or predicted co-referent
nodes adjacent via observed or predicted citation edges

NL Local · Observed words of node
Intra-Rel. · For each possible label value, the % of nodes adjacent via observed edges with

this observed and predicted label
Inter-Rel. · For each possible label value, the % of nodes adjacent via observed and pre-

dicted citation edges with this observed and predicted label
· For each possible label value, the % of nodes which are observed and predicted

co-referent with this observed and predicted label

(i.e., the target variables). Recall that all attributes A and edges E in the input graph
are also observed.

Using this representation, we model graph identification using a conditional random
field (Equation 4), wherein: X = Ro∪Lo∪No∪A∪E denotes the observed resolutions,
links, labels, attributes and edges; and Y = Rp ∪ Lp ∪Np denotes the target resolu-
tions, links and labels. Computing the normalizing constant for this model is roughly
exponential in |V|2, making exact likelihood impractical. Thus, we use the conditional
pseudolikelihood (Equation 5) instead, which factorizes neatly over the conditional dis-
tributions of the target variables as

P ∗(y | x) = P ∗ (rp, lp,np | ro, lo,no,A,E)

=

 ∏
rp∈rp

P (rp | {y\rp},x)

∏
lp∈lp

P (lp | {y\lp},x)

 ∏
np∈np

P (np | {y\np},x)

 . (7)

We have partitioned the product to highlight the conditional pseudolikelihood of each
subproblem.

5.1. Features
C3 makes use of two kinds of features: local and relational. Local features cap-
ture the dependencies between a single predicted variable and its associated evi-
dence; for example, if vi is a publication, a local feature f(Ni, Ai) might model how
its topic Ni depends on its word content Ai. Relational features capture interac-
tions between multiple target variables, thus coupling the inferences on local pre-
dictions. We further differentiate between two kinds of relational features: intra-
relational and inter-relational. Intra-relational features model interactions among
variables of the same task, whereas inter-relational features propagate information be-

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article XXXX, Publication date: 2015.



Collective Graph Identification XXXX:11

Table II. Example Features for an Organizational Network

Task Type Feature Description
ER Local · String similarity of observed email addresses

· Cosine similarity of observed word usage
Intra-Rel. · Indicator for whether or not a node exists that is observed or predicted co-

referent to both nodes
· Jaccard similarity of the nodes adjacent via observed communication edges
· Jaccard similarity of the nodes adjacent to observed and predicted co-referent

nodes via observed communication edges
Inter-Rel. · Indicator for whether the observed or predicted labels of the nodes are the same

· Jaccard similarity of the nodes adjacent via observed and predicted managerial
edges
· Jaccard similarity of the nodes adjacent to observed and predicted co-referent

nodes via observed and predicted managerial edges
LP Local · Indicator variable of observed words in shared communications

Intra-Rel. · Indicator variable of observed and predicted managerial edges between nodes
adjacent via observed incoming and/or outgoing communication edges

Inter-Rel. · Indicator for whether the observed or predicted labels of the nodes are the same
· Indicator for whether or not the nodes have observed or predicted co-referent

nodes adjacent via observed or predicted managerial edges
NL Local · Observed words in communications

Intra-Rel. · For each label, the % of nodes adjacent via observed incoming and/or outgoing
communication edges with this observed and predicted label
· For each label, the % of observed communications with nodes adjacent via ob-

served incoming and/or outgoing communication edges with this observed and
predicted label

Inter-Rel. · For each label, the % of nodes adjacent via observed and predicted managerial
edges with this observed and predicted label
· For each possible label value, the % of nodes which are observed and predicted

co-referent with this observed and predicted label

Table III. Example Features for a Discourse Opinion Network

Task Type Feature Description
ER Local · Discourse and dialog continuity features defined in [Somasundaran et al. 2009]

Intra-Rel. · Indicator for whether or not a node exists that is observed or predicted co-
referent to both nodes

Inter-Rel. · Indicator for whether or not the nodes are adjacent via observed and predicted
reinforcing edges
· Indicator for whether or not the nodes have observed or predicted co-referent

nodes adjacent via observed and predicted reinforcing edges
· Indicator for whether the observed or predicted labels of the nodes are the same

LP Local · Discourse and dialog continuity features defined in [Somasundaran et al. 2009]
Intra-Rel. · Indicator for whether or not a node exists that is observed or predicted reinforc-

ing to both nodes
Inter-Rel. · Indicator for whether the observed or predicted labels of the nodes are the same

· Indicator for whether or not the nodes are observed or predicted coreferent
· Indicator for whether or not the nodes have observed or predicted co-referent

nodes adjacent via observed and predicted reinforcing edges
NL Local · Opinion lexicon, dialog information, and unigram features defined in [Soma-

sundaran et al. 2009]
Intra-Rel. · For each possible label value, the % of nodes adjacent via observed co-occurence

edges with this observed and predicted label
Inter-Rel. · For each possible label value, the % of nodes adjacent via observed and pre-

dicted reinforcing edges with this observed and predicted label
· For each possible label value, the % of nodes which are observed and predicted

co-referent with this observed and predicted label
· For each possible label value, the % of nodes which are observed and predicted

co-referent and reinforcing with this observed and predicted label
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tween variables of different tasks. For example, for node labeling, the intra-relational
featuref(Ni, {Nj}∀j:(vi,vj)∈E) might capture the intuition that the label of node Ni de-
pends on the predicted label of its observed neighbors along edges E in the input graph;
similarly, the inter-relational feature f(Ni, {Nj}∀j:Lij=1) might indicate that the la-
bel of node Ni depends on the predicted label of its inferred neighbors along edges L
in the output graph. For entity resolution, we may have an intra-relational feature
f(Rij , {Rik, Rjk}∀k:Rik=Rjk=1) representing the idea that nodes i and j are likely co-
referent if they have a common neighbor k that they have each been resolved to; we
may also have an inter-relational feature f(Rij , Ni, Nj) implying nodes i and j are
likely co-referent if their inferred node labels Ni and Nj are the same.

A broad range of dependencies can be cast in terms of local and relational features.
This is essential for graph identification because it allows us to exploit the diverse
set of dependencies that have been proposed for each of the underlying subproblems.
For example, previous work in entity resolution has proposed a variety of attribute
similarity measures to detect co-referent pairs [Cohen et al. 2003]. Metrics have also
been proposed to quantify the set similarity of node “neighborhoods,” representing the
intuition that co-referent nodes share common neighbors [Bhattacharya and Getoor
2007]. Common definitions of a node’s neighborhood include adjacent nodes, all nodes
within a given graph distance, and all nodes which have an adjacent node in common
(e.g., all papers which cite some common subset of papers). All of these definitions can
be captured in our framework.

Prior work in link prediction also makes use of features based on attribute and
neighborhood similarity. These features capture the assumption that many networks
are assortative; i.e., similar nodes are likely to share a link. Link prediction features
also tend to rely on topology-based characteristics which capture the structural simi-
larity (e.g., degree) or proximity (e.g., existence of paths) between two potentially ad-
jacent nodes [Liben-Nowell and Kleinberg 2003]. In multi-relational networks, link
prediction may rely on features derived from certain attributes of the various types of
links; for example, the attributes of a communication edge between people may imply
something about their social relationship.

Tables I, II and III provide more examples of local and relational features one can use
for C3 in a variety of domains. These represent the features used in our experimental
evaluation in Section 6.1.

5.2. Inference
The goal of graph identification in the C3 model is to maximize the likelihood of the
output graph (target) variables, Y, given the observed graph and attributes, X. This
form of inference is alternately called finding the maximum a posteriori (MAP) state,
or most probable explanation (MPE). Recall that the true likelihood is intractable to
compute; further, it is intractable to maximize. We therefore maximize the pseudolike-
lihood (Equation 7) instead, for which there are efficient algorithms.
C3’s inference procedure (given in Algorithm 1) is essentially block coordinate as-

cent on the pseudolikelihood. It begins by using a local classifier (i.e., one using only
local features), parameterized by weights wloc, to infer the values of Rp,Lp, and Np. At
this point, the variable assignments are based solely on the evidence x. The algorithm
then proceeds to capture the dependencies between the variables; it iteratively evalu-
ates the relational features using the variable values inferred in the previous iteration,
and uses a relational classifier (i.e., one containing local and relational features), with
weights w, to infer new variable values for the current iteration. The algorithm termi-
nates when the variable values either converge, oscillate, or a user-specified maximum
number of iterations is reached. Note that there is no guarantee that Algorithm 1 will
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ALGORITHM 1: C3 Inference
input: Y, target variables

x, evidence
f loc, local features
f , all local and relational features
wloc, weights of features in f loc

w, weights of features in f
MAXITER, maximum number of iterations

output: y, values of target variables
calls: INFER(Y ;x, f ,w), which returns a value for variable Y

given evidence x, features f and weights w.

1: i← 0
2: for each Y ∈ Y
3: yi ← INFER(Y ;x, f loc,wloc)
4: repeat
5: i← i+ 1
6: for each Y ∈ Y
7: yi ← INFER(Y ;x ∪ {yi−1 \ yi−1}, f ,w)
8: until i = MAXITER or y values converge
9: return yi

converge, or if it does converge, that the solution is optimal. In practice, we find that
the algorithm often converges quickly.

From the variational perspective of inference in probabilistic graphical models, Algo-
rithm 1 is analogous to decoding the mean field approximation. Variational marginal
inference (i.e., computing the marginal probabilities of cliques) is sometimes viewed
as an optimization over the marginal polytope (i.e., set of realizable marginals)—
which is convex, though requires an exponential number of constraints to describe.
The mean field approximation replaces the marginal polytope with a tractable, though
non-convex, inner bound, comprised of a polynomial number of local constraints. De-
coding the mean field approximation finds a locally optimal assignment to the random
variables, subject to the constraints. For more details about the mean field approxima-
tion, we refer the reader to Wainwright and Jordan [2008].

Algorithm 1 is also similar to the iterative classification algorithm (ICA) presented
by Neville and Jensen [2000], or the link-based classification work by Lu and Getoor
[2003]. These techniques were developed for the problem of collective classification,
and typically used simple aggregations for relational features. C3 can be considered
a generalization of these approaches, since it couples multiple classifiers to perform
multiple tasks simultaneously, using a richer set of relational features.

Given the predicted assignments to the target variables, we decode these to con-
struct the output graph. First, an entity node is created for each collection of co-
referent references. Because there may be more references (in the input graph) than
entities (in the output graph), the link and label predictions made on the references
must be aggregated for entities. Thus, edges are created between the entities based
on whether the majority of their constituent link variables, L (defined over their con-
stituent references) indicate that the entities are linked. It is possible that the labels
assigned to references of an entity could be inconsistent; i.e., Ni may not equal Nj ,
despite the fact that references i and j are resolved. In these cases, we can define a
procedure to resolve the inconsistencies prior to generating the output graph; one so-
lution is to enforce transitivity over co-referent pairs, add edges between entities whose
references have an edge, and use the majority value of N assigned to the constituent
references.
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ALGORITHM 2: C3 Gibbs Sampling Inference
input: Y, target variables

x, evidence
f loc, local features
f , all local and relational features
wloc, weights of features in f loc

w, weights of features in f
BURNIN, number of iterations for burn-in
NUMSAMPLES, number of iterations for sampling

output: y, values of target variables
calls: SAMPLE(Y ;x, f ,w), which samples a value for variable Y

given evidence x, features f and weights w.

1: i← 0
2: for each Y ∈ Y
3: yi ← SAMPLE(Y ;x, f loc,wloc)
4: Initialize sample counts, c[Y, ·] = 0
5: repeat
6: i← i+ 1
7: for each Y ∈ Y
8: yi ← SAMPLE(Y ;x ∪ {yi−1 \ yi−1}, f ,w)
9: if i > BURNIN
10: c[Y, yi]← c[Y, yi] + 1
11: until i = NUMSAMPLES + BURNIN
12: for each Y ∈ Y
13: yi ← argmaxl c[Y, l]
14: return yi

5.2.1. Using “Soft” Predictions. Thus far, we have assumed that the classifiers used in
Algorithm 1 output a categorical class label. However, some multi-class predictors in-
ternally predict a real-valued score for each label, then output the label with the maxi-
mum score. We can alternately use the scores of the labels as “soft” predictions, instead
of the “hard” decoding. In this subsection, we discuss several variants of Algorithm 1
based on this premise.

We will assume that the multi-class classifier outputs scores on the simplex (i.e., non-
negative, summing to 1), which can be interpreted as a conditional distribution over
labels [e.g., Wu et al. 2004]. Rather than using the highest scoring label (i.e., mode), we
can use the following randomized algorithm: with probability (1−i/MAXITER), where i
is the current round of inference and MAXITER ≥ 1 is a predefined constant, we sample
a label from the inferred label distribution; otherwise, we use the mode. In a variant
we refer to as C3-PS, we use this procedure for each call to INFER in Algorithm 1,
and run for MAXITER iterations, without checking for convergence. By adjusting the
sampling probability at each iteration, we are more likely to use the sampled value
in early iterations (when predictions are more uncertain), and more likely to use the
mode in later iterations.

Our second variant, C3-GS (given in Algorithm 2), is inspired by Gibbs sampling.
Gibbs sampling is a popular and well-studied method of approximating a distribution.
In the interest of space, we refer the reader to Gilks et al. [1996] for an extensive
review of Gibbs sampling theory, algorithms and practical concerns. It will suffice to
say that Gibbs sampling is an iterative procedure that alternately samples from, then
updates, its proposed distribution. In the case of C3, sampling from the proposed distri-
bution amounts to sampling a label for each node from its inferred label distribution,
as output by a classifier conditioned on all other assignments; the distribution is up-
dated when the sampled labels are “fed back” into the conditioned set. This process
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requires a certain number of iterations of burn-in for the distribution to converge to
a reasonably stable state. Therefore, we run the sampler for a predetermined number
of iterations, discarding those from the burn-in phase; we then use the histogram of
collected samples to estimate the label distribution of each target variable, and take
the mode as the predicted label.

The label scores of a multi-class classifier can alternately be interpreted as con-
fidences. Our third variant is based on the idea that collective performance is im-
proved by gradually fixing the predictions based on their confidence. McDowell et al.
[2009] showed that these “cautious” approaches can significantly improve performance
over approaches that fix all of the predictions at once. In our cautious variant of
C3, denoted C3-CI, we modify Algorithm 1 such that each iteration fixes the top
K = (|Yp|/MAXITER) most confident predictions for each task. Clearly, after MAXITER
iterations, all of the variables have been fixed to their predicted labels.

5.3. Weight Learning
In the previous subsection, we assumed that the parameters of the various classi-
fiers are given. In this subsection, we propose an algorithm for learning the model
parameters from training data. We consider two learning scenarios: supervised and
semi-supervised. The latter scenario is more realistic for graph identification, but the
former will be instructive for introducing the learning objective. We therefore begin
with a discussion of supervised learning, then extend this to the semi-supervised set-
ting.

5.3.1. Supervised Learning. For the following, we assume access to a set of labeled ex-
amples, wherein each example consists of a fully observed input and output graph.
This is commonly referred to as supervised learning. Recall that Equation 7 decom-
poses into three terms; one for each subproblem, and its constituent variables, R, L
and N. An inter-relational feature (i.e., defined across tasks) appears in more than one
term with the same weight; e.g., f(R,L,x) appears in both

∏
r∈r P (r | {y\r},x) and∏

l∈l P (l | {y\ l},x). We simplify Equation 7 further by copying these inter-relational
features for each subproblem, thus allowing their associated weights to differ. This
has the effect of decoupling the three learning subproblems, enabling efficient weight
learning within each task. (Note that this does not decouple inference, since the copied
features are deterministically dependent.)

To learn the weights for each subproblem, we propose a max-margin approach.3 Re-
call that the predicted assignments to the target variables will be those that maximize
the pseudolikelihood,

∏
v∈v P (v | {y\v},x), for some V ∈ {R,L,N}. Therefore, to max-

imize predictive accuracy, we wish to find weights that maximize the pseudolikelihood
ratio between the ground truth, ŷ (for the given task, v̂), and any other assignment;
i.e., P (v̂|{ŷ\v̂},x)

P (v|{ŷ\v̂},x) . Taking logarithm of this ratio, we see that we are equivalently maxi-
mizing the margin,

∆f(xf ,ŷf )(v̂, v) =
∑

f∈F :v∈ŷf

wf · (f(xf , {ŷf \v̂}, v̂)− f(xf , {ŷf \v̂}, v)), (8)

3Though we present a max-margin formulation of C3, we would like to emphasize that C3 can easily be
extended to other learning algorithms (e.g., logistic regression, naı̈ve Bayes, etc.).
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for each v̂ ∈ v̂ and v 6= v̂. We can formally state this objective as

max γ (9)

s.t.
∑
f∈F

w2
f ≤ 1,

∀v̂ ∈ v̂, ∀v 6= v̂, ∆f(xf ,ŷf )(v̂, v) ≥ γ

Applying a standard transformation to eliminate γ, and introducing slack variables ξv
to allow some constraints to be violated to accommodate non-linearly-separable data,
we get:

min
1

2

∑
f∈F

w2
f + K

∑
v̂∈v̂

ξv̂ (10)

s.t. ∀v̂ ∈ v̂, ∀v 6= v̂, ∆f(xf ,ŷf )(v̂, v) ≥ 1− ξv̂,

whereK ≥ 0 is a predefined constant. The above corresponds precisely to the optimiza-
tion of a multi-class support vector machine (SVM) [Crammer et al. 2001].4 Therefore,
C3 weight learning reduces to three SVM optimizations, one for each of the subprob-
lems.

5.3.2. Semi-Supervised Learning. The training algorithm given in the previous subsec-
tion assumes access to a set of fully labeled training examples. However, for graph
identification problems in practice, it is more likely that each example is only partially
labeled, since obtaining ground truth is an expensive process. In fact, it is often the
case that one must learn from a single, partially labeled network, then apply infer-
ence to the same network. This learning scenario is commonly referred to as semi-
supervised (alternately, transductive, depending on one’s assumption about how the
data is generated). In this subsection, we propose learning algorithms for the semi-
supervised setting. Our first algorithm is a simple, two-step approach; the second is an
iterative algorithm that combines learning and inference.

The primary difficulty in learning from partially labeled graph identification data
is initializing relational features of unlabeled target variables. Observe that we could
train local (i.e., independent) classifiers for any subproblem using only the observed
data. However, the relational features depend on both observed and inferred target
variables. To solve the initialization problem, we start with a round of bootstrapping,
wherein we train a local classifier for each task using only the observed local features
(denoted floc), then use the resulting classifier to predict the unobserved target vari-
ables. These predictions can then be used to compute the full set of features, which
are needed to learn the weights of the full model. Though this approach is not entirely
principled, it is justified by the mild assumption that the predictions are “close enough”
to the ground truth, and provide some useful signal.

Algorithm 3 provides pseudocode for a two-step learning algorithm, based on the
above method. In the first step, we bootstrap learning using only floc, resulting in the
local weights, wloc. These are used to predict the unobserved target variables, needed
to compute the full feature set, f . We then perform a full training step, using local,
intra-relational and inter-relational features of both observed and predicted variables.

The second semi-supervised learning algorithm, C3-EM (given in Algorithm 4), ex-
tends the first algorithm by performing alternating rounds of inference and weight
optimization. This iteratively refines the predictions used to train the inter-relational
features. At each iteration, the current weights are used to infer the unlabeled target

4We use multi-class SVM because the node-labeling problem is not binary.
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ALGORITHM 3: C3 Semi-supervised Weight Learning
input: Yp, target variables

yo, values of observed variables
x, evidence variables
floc, local features
f , all local and relational features

output: wloc, weights of features in f loc

w, weights of features in f
calls: LEARN(f ;y,x), which returns weights of features f

given labels y and evidence x.
INFER(Y ;x, f ,w), which returns a value for variable Y

given evidence x, features f and weights w.

1: wloc ← LEARN(f loc;yo,x)
2: for each Y ∈ Yp

3: yp ← INFER(Y ;x, f loc,wloc)
4: f ← f loc ∪ f rel

5: w← LEARN(f ;yo,x ∪ yp)
6: return (wloc,w)

variables; then, the inferred values are used to re-optimize the weights. This is analo-
gous to the expectation-maximization (EM) algorithm. The algorithm begins with the
bootstrapping process defined above, to initialize the inter-relational features. It then
iterates until the predictions converge, or a maximum number of iterations is reached.
Since learning is coupled with inference, the output is the final set of weights and
predictions.

ALGORITHM 4: C3-EM Learning and Inference
input: yo, values of observed variables

Yp, target variables
x, evidence variables
f loc, a set of local features
f rel, a set of relational features
MAXITER, maximum number of iterations

output: w, feature weights
y, values of target variables

calls: LEARN(f ;y,x), which returns weights of features f
given labels y and evidence x.

INFER(Y ;x, f ,w), which returns a value for variable Y
given evidence x, features f and weights w.

1: w← LEARN(f loc;yo,x)
2: i← 0
3: repeat
4: i← i+ 1
5: if i = 1, then f ← f loc, else f ← f loc ∪ f rel

6: for each Y ∈ Yp

7: yi ← INFER(Y ;x ∪ yi−1 ∪ yo, f ,w)
8: w← LEARN(f ;yo,x ∪ yi ∪ yo)
9: until i = MAXITER or y values converge
11: for each Y ∈ Yp

12: y ← INFER(Y ;x ∪ yi ∪ yo, f ,w)
13: return w, y
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Table IV. Overview of the Real World Datasets used in our exper-
iments including the number of nodes and edges in the input and
output graphs, as well as the number of labels in the output graph.

Input Graph Output Graph
Dataset Nodes Edges Nodes Edges Labels
CORA 5,915 34,466 2,708 5,428 7
CITESEER 5,664 29,100 3,312 4,732 6
ENRON 211 2,837 146 139 5
DISCOURSE 4,606 22,925 3,920 1,045 3

6. EXPERIMENTAL EVALUATION
In this section, we describe several experiments to evaluate the variants of C3 given
in Section 5. The results of these experiments are given in Section 7.

6.1. Datasets
Graph identification has a number of applications, including (but not limited to) pub-
lication databases, organizational networks and discourse opinion networks.5 In this
subsection, we describe several real datasets that fall into these categories (summa-
rized in Table IV). We also describe a novel data generator to create synthetic net-
works, which we will use to evaluate the scalability of C3.

6.1.1. Publication Database. A publication database maintains records for papers,
which may include their content, topic and which papers they cite. The citations in-
duce a graph, in which records are nodes, citations are (directed) edges and paper
topic is a node label. We consider datasets from two such databases: CORA and CITE-
SEER [Sen et al. 2008]. The CORA dataset contains 2,708 nodes and 5,428 edges. The
CITESEER dataset contains 3,312 nodes and 4,732 edges. The nodes of both networks
also contain, after pruning, 500 binary attributes representing the presence of a word
in a paper. In CORA, each paper is labeled one of 7 categories; in CITESEER, there are
6 categories.

Because these datasets are carefully curated, the observed citation network closely
matches the true network. However, the same cannot be said for the databases from
which they came, since they are typically extracted from multiple noisy, possibly con-
flicting, sources. This motivates the need for graph identification. To simulate a noisy
extraction process, we create noisy versions of CORA and CITESEER.6

We create an observed (i.e., input) network by adding a reference for each citation
edge. For each reference, we copy the words from the corresponding paper entity, but
introduce noise by replacing the observed word with a randomly chosen word that did
not occur in that paper, with probability ηattr. Next, we create edges between references
whose entities have a citation edge, and introduce noise by replacing a random ηedge
proportion of the edges with random edges to previously unconnected references. In
our experiments, we use noise rates 0.2 (low), 0.3 (medium), and 0.4 (high).

For entity resolution and link prediction, because the inferences are made over pairs
of nodes, there are important scalability issues. If done naively, both entity resolution
and link prediction require O(|V |2) predictions. Clearly this will be intractable for all
but the smallest of graphs. In both tasks, as discussed previously in Section 3.1 and
Section 3.2, a filtering step is often applied to limit the potential pairs that are con-
sidered [McCallum et al. 2000; Taskar et al. 2003]. This is crucial for scalability, and

5Additional information about the datasets, features, and settings used for these experiments are available
from http://www.cs.umd.edu/projects/linqs/c3.
6While there are existing noisy versions of these datasets for entity resolution [e.g., Bhattacharya and
Getoor 2007], link prediction [e.g., Liben-Nowell and Kleinberg 2003]) and node labeling [e.g., Sen et al.
2008] available, we are unable to use them directly, since they are over different subsets of the network.
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has also been shown to improve the accuracy of the predictions. Any method that can
quickly identify potential pairs while minimizing false negatives can be used. In our
experiments, we use a blocking criterion for entity resolution that removes pairs that
do not have at least two common neighbors in the input graph. For link prediction, the
blocking criterion removes pairs that do not already have an edge between them in the
input graph (meaning, we limit predicting new clean citation edges only between those
with observed noisy edges). While this substantially reduces the number of potential
pairs, in our experiments, this still left up to 120,000 pairs for entity resolution and
34,000 pairs for link prediction.

6.1.2. Organizational Network. The second type of network we consider is the corporate
organizational and communication network detailed in Section 2.1. For this, we use
the the ENRON dataset [Klimt and Yang 2004]. The communication (i.e., input) graph
consists of 211 email address nodes and 2,837 directed communication edges; the or-
ganizational (i.e., output) graph contains 146 individuals, each with one of 5 job ti-
tle labels, and 139 managerial relationships. For blocking entity resolution, candidate
pairs of email addresses are limited those that are at most a graph distance 3 from
each other in the communication network. For link prediction, candidate managerial
relationships are limited to pairs that are connected in the communication network.

6.1.3. Discourse Opinion Network. We next consider discourse co-occurence and opinion
reinforcement networks. For this, we use an annotated dataset from Somasundaran
et al. [2009]. The input graph consists of a co-occurence network, wherein nodes are
opinions in a discourse and edges exist between opinions that co-occur in the same
portion of the discourse. Node attributes are engineered to capture discourse and di-
alogue continuity, opinion lexicons, dialog information and unigram features from the
text. The output graph consists of opinion and object nodes. An object (e.g., a “remote
control”) is linked to the opinions that refer to it (e.g., the remote control may be linked
with opinions such as “heavy” or “ergonomic”); opinions are linked to other opinions
by reinforcement edges, indicating whether two opinions reinforce each other. Node la-
bels indicate the polarity of each opinion as positive (e.g., “ergonomic”), negative (e.g.,
“heavy”), or neutral (e.g., “curved”). The full network consists of 4,606 opinion nodes,
corresponding to 3,920 objects, with 22,925 co-occurence edges and 1,045 reinforce-
ment edges. Candidate pairs for entity resolution and link prediction are limited to
opinions that co-occur.

6.1.4. Synthetic Networks. To test the scalability of C3, we developed a novel synthetic
data generator that creates a noisy network, with ambiguous references that need to be
merged to entities, missing edges which need to be predicted, and missing labels that
need to be classified. The graphs and attributes created by this generator are modeled
after the problem presented in Section 6.1.1, where the desired output graph is a clean
citation network. Intuitively, the generator works by first creating a synthetic output
graph that mimics the structure and attributes of real networks; then, it creates an
observed graph by perturbing the output graph with various types of noise common to
these networks.

The synthetic data generator begins by creating the structure of the output graph.
A number of network generation models have been proposed for this; we implemented
the widely used forest fire model [Leskovec et al. 2007], which models the heavy tailed
degree distribution, “small world” phenomenon, and densification over time. We used
a forward burn probability of 0.4 and a backward burn probability of 0.2. This creates
the output graph nodes (paper nodes) and output graph edges (citation edges).

After generating the initial network structure, we add three sets of attributes to the
nodes corresponding to the three types of inferences we will perform on the graph. The
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Table V. C3 Learning and Inference Variants

C3 Variant Weight Learning Inference
C3 Base Weight Learning (Algorithm 3) Base Inference (Algorithm 1)
C3-PS Base Weight Learning (Algorithm 3) Probabilistic Sampling Inference (Section 5.2.1)
C3-CI Base Weight Learning (Algorithm 3) Cautious Inference (Section 5.2.1)
C3-GS Base Weight Learning (Algorithm 3) Gibb Sampling (Algorithm 2)
C3-EM EM Learning (Algorithm 4) EM Inference (Algorithm 4)

first set, used for node labeling, includes labels and attributes. We use the generator
described in Rattigan et al. [2007] (5 labels, with 20% of the graph initially labeled
randomly) to create the “topic” label, where “topic” has a high positive autocorrela-
tion (i.e., papers which cite each other are likely to have the same topic). We then
create 20 binary attributes based on those labels using the method described in Bilgic
and Getoor [2008]. The second set of attributes, used for link prediction, consists of
20 attributes, generated according to the method described in Rattigan et al. [2007].
This method models the assortative hypothesis, that nodes with similar attributes are
likely to share an edge. The last set of attributes, used for entity resolution, represent
attributes that imply, non-uniquely, the entity it refers to (e.g., first author names non-
uniquely imply a paper, since multiple papers may have the same first author name).
To generate this attribute, we use the method described in Bhattacharya and Getoor
[2007]. The resulting annotated network is the synthetic output graph.

We create an input graph from the output graph by removing (a subset of) the node
labels and injecting noise, per the method described in Section 6.1.1. For the edge
noise, we fix ηedge = 1/2 in all experiments.

6.2. Experimental Setup
The most natural setting for graph identification is semi-supervised, in which some
of the true output graph is observed (that is, certain parts of the input graph can
be trusted), and the rest must be inferred. We recreate this setting by revealing a
certain proportion of the annotations for a noisy input graph. We experiment with
varying percentages of annotations, depending on the dataset; for CORA, CITESEER
and DISCOURSE, we use 25%, 50% and 75%; for ENRON, we use 20%, 30% and 40%
(i.e., ). We construct five random annotation samples for each setting (and each noise
level, for CORA and CITESEER) using stratified snowball sampling; the results are
averaged over those five samples.

6.2.1. Variants of C3 Tested. We apply the variants of C3 described in Section 5 using
the full set of features in Section 5.1 (i.e., Tables I, II and III). A summary of the vari-
ants, highlighting differences in their learning and inference procedures, is provided
in Table V. In addition, we evaluate some specialized baseline variants to explore the
impact of the inter and intra-dependencies. In the first variant, LOCAL, we use only
features based on the observed node attributes (e.g., word content). These features are
common in local (i.e., non-collective) entity resolution, link prediction, and node label-
ing [Chang and Lin 2001; Cohen et al. 2003], so LOCAL is a proxy for the standard
classifier-based approach to these subproblems. The second variant, INTRA, uses only
intra-relational features; i.e., features that capture dependencies within one task. This
variant lets us study the relative impact of collective reasoning within each subprob-
lem, yet treating each task independently [e.g., Neville and Jensen 2000; Singla and
Domingos 2006; Bhattacharya and Getoor 2007].

6.2.2. Baselines. For comparison to existing methods, we also evaluate two baselines:
PIPELINE and Markov logic networks (MLNs).
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The PIPELINE method is the simplest, but arguably most common, approach used
for problems that involve multiple tasks. In the PIPELINE approach, the graph identi-
fication tasks are performed sequentially, in a fixed order. At each stage of PIPELINE,
collective inference is performed for a single task, using the same features as C3, but
using inter-relational features only from tasks that have already been completed. Con-
sequently, PIPELINE propagates inference within each task, and from earlier stages
to later stages, but not from later stages to earlier stages. Since PIPELINE is sensitive
to ordering, we consider all six permutations of the three subproblems. To differentiate
the results for each permutation, we postfix PIPELINE with an acronym correspond-
ing to the order of tasks; e.g., a PIPELINE with ordering (entity resolution, link predic-
tion, node labeling) is denoted PIPELINE-ELN. For succinctness, we will occasionally
only present the performance of the best possible ordering, denoted PIPELINE∗.

MLNs are a framework for probabilistic inference with first-order logic, proposed
by Richardson and Domingos [2006]. In our experiments, we use an open source im-
plementation of MLNs called Alchemy [Kok et al. 2006].7 Because dependencies in
MLN are defined in first-order logic, we define formulae to mimic features defined in
Tables I–III. We explored various data representations and parameters for Alchemy—
including the option to perform MAP or marginal inference—and present the results
for the “best” (in terms of both running time and accuracy) performing combination.

To measure the accuracy of each subproblem, we use the average F1 score over the
target variables. Due to blocking, there are a large number of pairs which none of
the approaches explicitly predict and are implicitly inferred as not co-referent, or not
linked. Thus, to isolate the differences between the various approaches, we compute
F1 for entity resolution and link prediction only on the explicit predictions. We present
scores for each subproblem and the average of all subproblems, for various levels of
noise and annotation.

7. RESULTS AND DISCUSSIONS
In this section, we discuss the results of our experiments, examining accuracy and
running time.

7.1. Prediction Quality
We begin by analyzing the predictive accuracy of the various graph identification al-
gorithms. To separate inference from decoding, we evaluate accuracy before and after
graph reconstruction (described at the end of Section 5.2). We identify trends in the
overall prediction quality of all approaches, as well as for the individual tasks of entity
resolution, link prediction, and node labeling. We then discuss the impact of applying
the graph construction procedures, which may update some of the predicted values, in
Section 7.1.4.

7.1.1. Accuracy. Table VI presents the overall F1 performance of all algorithms—
reported as the average of the scores for the three subproblems—over multiple levels
of noise, annotation. The best performance for each dataset is indicated in bold. We
also present the relative improvement of each algorithm over the LOCAL baseline in
Table VII. To verify statistical significance, we used a paired t-test with significance
> 95%. Table VIII summarizes the number of times one approach, shown in each row,
significantly outperforms another approach, shown in the columns. We also present a
representative subset of the individual subproblem performance in Table IX.

Looking at Table VIII, we find that C3-EM has the best overall performance. Even
when it is not the best, there are no instances in which it does significantly worse

7We had to modify Alchemy’s code to improve the efficiency of grounding the Markov network.
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than the best algorithm. Among the approaches that exploit varying subsets of the
dependencies within and among tasks, LOCAL has the worst performance, followed
by INTRA, and PIPELINE∗. The trend in performance is directly correlated with the
amount of intra- and inter-relational information used; more relational features leads
to better the overall performance.

Comparing the performance of the two fully relational models, C3 and MLN, we find
that C3 significantly outperforms MLN. Despite multiple attempts to optimize the per-
formance of our MLN baseline, its performance remained relatively poor. One possible
explanation is that there is insufficient training data for MLN weight learning given
the number of dependencies and features involved. We may also need to look at exten-
sions of the basic MLN model [Wang and Domingos 2008; Huynh and Mooney 2009].
Understanding the causes of the poor MLN performance and addressing these issues
is part of our future work. Our experience with MLNs, however, highlights the chal-
lenge in efficiently and successfully modeling all of the complex dependencies involved
in graph identification, and the relative advantages of using a simpler approach, like
C3.

7.1.2. Benefits of Exploiting Dependence. Comparing the INTRA and LOCAL approaches,
we find that making use of the intra-dependencies can, by itself, significantly improve
performance. This is consistent with previous work which explored these tasks in iso-
lation. Similarly, comparing the relative performance INTRA to PIPELINE∗ and C3,
we find that further exploiting the inter-relational dependence yields a comparable,
if not larger, improvement, with little impact on overall running time (exemplified in
Table XIV). This illustrates the importance of these types of dependencies, which have
not been widely studied.

We found the best performing PIPELINE∗ to be a surprisingly competitive baseline.
However, comparing the per task performance (Table IX) and overall performance (Ta-
ble VI) for the various PIPELINE orderings, there is a significant variance in the per-
formance. Generally, the per-task performance of a task in PIPELINE is worst when
occurring early in the ordering, where it is decoupled from the other tasks, and best
when occurring later. Thus, while the best performing PIPELINE∗ may seem have
competitive overall performance, it often does so at the expense of tasks earlier in
the ordering. Furthermore, successful application of the PIPELINE∗ requires the non-
trivial task of identifying which ordering is optimal for the overall performance. In our
experiments, we use the brute-force approach wherein we simply evaluate all possi-
ble orderings; this may be infeasible in practice. On the other hand, the C3 approach
requires no ordering, and still significantly outperforms PIPELINE∗.

7.1.3. Comparison of C3 Variants. We now compare the C3 variants. While the variants
based on sampling, C3-PS and C3-GS occasionally show improvement over regular C3,
there is only one case in which the improvements are significant. In most cases, these
variants actually result in significantly worse performance than C3. The results are
similar for the cautious variant, C3-CI, which shows improvement in few cases, but
generally insignificant. While this may be addressed by running more iterations, par-
ticularly for C3-GS, this would be very costly, and these initial results do not indicate
that it would yield significant improvement over standard C3 inference.

On the other hand, in terms of overall F1 performance, C3-EM generally outper-
forms C3, significantly so in 12 cases. However, the improvement is not consistent
among all datasets. While C3-EM results in significant improvement over C3 on over
half of the cases for CORA and CITESEER, it provides only one case of significant im-
provement in ENRON and none in the DISCOURSE networks. While there are no cases
where C3-EM does significantly worse than C3, the additional overhead of relearning
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Table VI. Overall F1 performance—reported as the average of F1 scores for entity resolution, link prediction and
node labeling—for various levels of annotation and noise. Bold indicates the highest value in a given column.

Citeseer (Vary Noise Level) Cora (Vary Noise Level) Enron Discourse
Low Medium High Low Medium High

L
ow

%
U

nk
no

w
n

LOCAL 0.800 0.736 0.657 0.827 0.756 0.645 0.425 0.361
INTRA 0.843 0.792 0.744 0.900 0.854 0.798 0.516 0.647
PIPELINE* 0.872 0.834 0.793 0.937 0.911 0.878 0.559 0.706
MLN 0.677 0.673 0.663 0.570 0.560 0.591 0.137 0.320
C3 0.882 0.853 0.819 0.950 0.928 0.898 0.550 0.729
C3-EM 0.882 0.855 0.824 0.951 0.927 0.903 0.549 0.730
C3-PS 0.881 0.851 0.817 0.947 0.923 0.891 0.536 0.679
C3-CI 0.883 0.853 0.820 0.951 0.929 0.899 0.550 0.729
C3-GS 0.881 0.852 0.817 0.877 0.830 0.784 0.459 0.624

M
ed

iu
m

%
U

nk
no

w
n

LOCAL 0.786 0.725 0.648 0.821 0.747 0.639 0.363 0.309
INTRA 0.833 0.782 0.730 0.889 0.840 0.778 0.465 0.545
PIPELINE* 0.853 0.816 0.767 0.921 0.888 0.850 0.509 0.604
MLN 0.425 0.534 0.563 0.456 0.519 0.470 0.143 0.217
C3 0.861 0.828 0.782 0.933 0.899 0.862 0.515 0.657
C3-EM 0.865 0.833 0.798 0.935 0.908 0.874 0.509 0.663
C3-PS 0.860 0.827 0.782 0.931 0.896 0.856 0.497 0.477
C3-CI 0.861 0.826 0.783 0.934 0.900 0.862 0.514 0.659
C3-GS 0.858 0.823 0.777 0.845 0.799 0.745 0.383 0.314

H
ig

h
%

U
nk

no
w

n

LOCAL 0.775 0.716 0.633 0.800 0.734 0.626 0.398 0.232
INTRA 0.816 0.769 0.708 0.868 0.816 0.741 0.448 0.350
PIPELINE* 0.831 0.794 0.743 0.895 0.861 0.811 0.479 0.419
MLN 0.216 0.222 0.228 0.190 0.211 0.216 0.096 0.143
C3 0.836 0.800 0.750 0.903 0.869 0.819 0.479 0.483
C3-EM 0.845 0.812 0.770 0.909 0.883 0.841 0.495 0.486
C3-PS 0.836 0.801 0.750 0.902 0.868 0.820 0.437 0.312
C3-CI 0.836 0.801 0.750 0.903 0.871 0.819 0.479 0.484
C3-GS 0.833 0.797 0.744 0.811 0.762 0.692 0.322 0.176

classifiers at every iteration (discussed further in Section 7.2.1) should be taken into
considering before applying this variant.

7.1.4. Applying Graph Construction Procedures. As discussed in Section 5.2, the predicted
co-references, links, and labels may be inconsistent relative to some set of task and
domain-specific hard constraints. Entity resolution, for example, may require transi-
tivity in some cases (i.e., if pairs {A,B} and {B,C} are co-referent, then {A,C} must
also be co-referent). Similarly, for our DISCOURSE dataset, opinions which are pre-
dicted as having a reinforcing edge must, by definition, have the same label. These
inconsistencies must be resolved prior to constructing the graph.

Inconsistencies can arise in all of the approaches we evaluated. In these situations,
we can resolve the inconsistencies prior to generating the output graph. The procedure
one uses to resolve inconsistencies can vary depending on the data. In our experiments,
we use the following procedure for CORA, CITESEER, and ENRON: apply transitive
closure over co-referent pairs, add edges between entities whose references have an
edge, then use the majority label of the labels over its references. For DISCOURSE, we
use a procedure that is specialized to its domain specific constraints: apply transitive
closure over co-referent pairs, remove reinforcing edges between pairs not co-referent,
then use the majority label over the labels of opinions transitively co-referent and
reinforcing. We explore the impact of applying these procedures on the output of C3,
its variants, and our baselines prior to evaluation. The results are provided in Tables
X–XIII.

Compared to not resolving inconsistencies, we see across-the-board improvement
for all algorithms. This is especially true for LOCAL and INTRA, which see improve-
ments of up to 81% and 51%, respectively. While LOCAL and INTRA do not capture
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Table VII. Relative improvement over the overall F1 performance of LOCAL for various levels of annotation and noise. Bold
indicates the highest value in a given column.

Citeseer (Vary Noise Level) Cora (Vary Noise Level) Enron Discourse
Low Medium High Low Medium High

L
ow

%
U

nk
no

w
n

INTRA 5.37% 7.61% 13.24% 8.83% 12.96% 23.72% 21.41% 79.22%
PIPELINE* 9.00% 13.32% 20.70% 13.30% 20.50% 36.12% 31.53% 95.57%
MLN -15.38% -8.56% 0.91% -31.08% -25.93% -8.37% -67.76% -11.36%
C3 10.25% 15.90% 24.66% 14.87% 22.75% 39.22% 29.41% 101.94%
C3-EM 10.25% 16.17% 25.42% 14.99% 22.62% 40.00% 29.18% 102.22%
C3-PS 10.13% 15.63% 24.35% 14.51% 22.09% 38.14% 26.12% 88.09%
C3-CI 10.38% 15.90% 24.81% 14.99% 22.88% 39.38% 29.41% 101.94%
C3-GS 10.13% 15.76% 24.35% 6.05% 9.79% 21.55% 8.00% 72.85%

M
ed

iu
m

%
U

nk
no

w
n

INTRA 5.98% 7.86% 12.65% 8.28% 12.45% 21.75% 28.10% 76.38%
PIPELINE* 8.52% 12.55% 18.36% 12.18% 18.88% 33.02% 40.22% 95.47%
MLN -45.93% -26.34% -13.12% -44.46% -30.52% -26.45% -60.61% -29.77%
C3 9.54% 14.21% 20.68% 13.64% 20.35% 34.90% 41.87% 112.62%
C3-EM 10.05% 14.9% 23.15% 13.89% 21.55% 36.78% 40.22% 114.56%
C3-PS 9.41% 14.07% 20.68% 13.40% 19.95% 33.96% 36.91% 54.37%
C3-CI 9.54% 13.93% 20.83% 13.76% 20.48% 34.90% 41.60% 113.27%
C3-GS 9.16% 13.52% 19.91% 2.92% 6.96% 16.59% 5.51% 1.62%

H
ig

h
%

U
nk
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w

n

INTRA 5.29% 7.40% 11.85% 8.50% 11.17% 18.37% 12.56% 50.86%
PIPELINE* 7.23% 10.89% 17.38% 11.88% 17.30% 29.55% 20.35% 80.60%
MLN -72.13% -68.99% -63.98% -76.25% -71.25% -65.50% -75.88% -38.36%
C3 7.87% 11.73% 18.48% 12.88% 18.39% 30.83% 20.35% 108.19%
C3-EM 9.03% 13.41% 21.64% 13.63% 20.30% 34.35% 24.37% 109.48%
C3-PS 7.87% 11.87% 18.48% 12.75% 18.26% 30.99% 9.80% 34.48%
C3-CI 7.87% 11.87% 18.48% 12.88% 18.66% 30.83% 20.35% 108.62%
C3-GS 7.48% 11.31% 17.54% 1.38% 3.81% 10.54% -19.10% -24.14%

all of the dependencies present in graph identification, the application of these proce-
dures partially does. Even with the improvements, the trends from Tables VI – IX re-
main. Approaches that explicitly leverage intra- and inter-relational dependencies still
significantly outperform those which do not. Furthermore, C3-EM is still the overall
best, for all levels of noise and annotations. While there is one case in which C3-CI
significant outperforms C3-EM , the C3-EM variant still significantly outperforms all
other approaches. The improvements to C3, and its variants, gained by the resolu-
tion procedures does suggest that there may be a benefit in explicitly supporting more
consistency constraints.

7.2. Runtime Performance
7.2.1. Learning and Inference Time. In Table XIV, we list the average learning, infer-

ence, and overall runtimes for the CORA experiments. These were run on identical
servers with dual quad-core Intel Xeon 2.66Ghz processors and 48GB of memory. All
implementations are written in Java, except for Alchemy, which is written in C++. If
we order the results based on the number of intra- and inter-relational features they
capture, we see that there is a computational cost associated with capturing more
dependencies. However, considering the significant improvement in predictive perfor-
mance, the additional runtime required by C3—which is still an order of magnitude
faster than the slowest algorithm—does not seem like a bad trade-off.

Though C3-EM is the best performing variant of C3, it incurs significant overhead,
due to the repeated calls to the SVM learning algorithm. This indicates that, in appli-
cation, a two-step semi-supervised approach may be more practical.

7.2.2. Convergence Results. An important characteristic affecting running time of C3

is the number of iterations required by inference. In our experiments, we allowed C3

to run until the predictions either converged or began to oscillate, or until a maximum
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Table VIII. Each entry indicates the number of times the approach in the given row significantly
outperformed (in terms of average F1, over all levels of annotation and noise) the approach in the
given column. We make 9 pairwise comparisons for the CORA and CITESEER datasets and 3 for
ENRON and DISCOURSE.

LOCAL INTRA PIPELINE∗ MLN* C3 C3-EM C3-PS C3-CI C3-GS
CITESEER

LOCAL – 0 0 8 0 0 0 0 0
INTRA 9 – 0 9 0 0 0 0 0
PIPELINE* 9 9 – 9 0 0 0 0 0
MLN 0 0 0 – 0 0 0 0 0
C3 9 9 9 9 – 0 0 0 6
C3-EM 9 9 9 9 6 – 6 5 7
C3-PS 9 9 9 9 1 0 – 0 5
C3-CI 9 9 9 9 0 0 1 – 5
C3-GS 9 9 6 9 0 0 0 0 –

CORA
LOCAL – 0 0 9 0 0 0 0 0
INTRA 9 – 0 9 0 0 0 0 0
PIPELINE* 9 9 – 9 0 0 0 0 0
MLN 0 0 0 – 0 0 0 0 0
C3 9 9 9 9 – 0 5 0 3
C3-EM 9 9 9 9 5 – 8 5 6
C3-PS 9 9 9 9 0 0 – 0 1
C3-CI 9 9 9 9 2 0 6 – 6
C3-GS 9 9 7 9 0 0 3 0 –

ENRON
LOCAL – 0 0 3 0 0 0 0 0
INTRA 3 – 0 3 0 0 0 0 0
PIPELINE* 3 2 – 3 0 0 0 0 0
MLN 0 0 0 – 0 0 0 0 0
C3 3 1 0 3 – 0 0 0 0
C3-EM 3 2 1 3 1 – 1 1 0
C3-PS 2 1 0 3 0 0 – 0 0
C3-CI 3 1 0 3 0 0 0 – 0
C3-GS 0 0 0 3 0 0 0 0 –

DISCOURSE
LOCAL – 0 0 3 0 0 0 0 1
INTRA 3 – 0 3 0 0 2 0 2
PIPELINE* 3 3 – 3 0 0 2 0 3
MLN 0 0 0 – 0 0 0 0 0
C3 3 3 3 3 – 0 3 0 3
C3-EM 3 3 3 3 0 – 3 0 3
C3-PS 3 1 0 3 0 0 – 0 3
C3-CI 3 3 3 3 0 0 3 – 3
C3-GS 1 0 0 3 0 0 0 0 –

number of iterations was reached. In Table XV, we list the number of times each stop-
ping criterion was encountered and the average number of iterations required for all
datasets.

The first thing we note is that C3 never exhausted the maximum number of itera-
tions; all of the experiments either converged or began oscillating. Of these two stop-
ping criteria, oscillation was more common; convergence was detected only for the EN-
RON dataset. Examining the number of iterations required before reaching a stopping
criterion, we find that C3 typically requires few iterations. On average, C3 ran for as
few as 3.2 iterations, and at most 26.8. One area of future research is to rigorously
prove that C3 will converge, and identify the convergence rate. Since C3 is related to
the mean field approximation, some existing theory may apply. That said, all of the
current empirical evidence indicates that fast convergence or oscillation is typical of
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Table IX. Average F1 performance of entity resolution, link prediction and node labeling, individually.
We also report the average of the three. Bold indicates the highest value in a given column.

ER LP NL Average ER LP NL Average
CITESEER CORA

LOCAL 0.837 0.814 0.523 0.725 0.830 0.823 0.586 0.747
INTRA 0.901 0.860 0.586 0.782 0.892 0.842 0.787 0.840
PIPELINE-ELN 0.901 0.893 0.652 0.816 0.892 0.913 0.860 0.888
PIPELINE-ENL 0.901 0.908 0.616 0.808 0.892 0.916 0.829 0.879
PIPELINE-LEN 0.913 0.860 0.652 0.808 0.905 0.841 0.858 0.868
PIPELINE-LNE 0.916 0.860 0.620 0.799 0.909 0.841 0.827 0.859
PIPELINE-NEL 0.904 0.907 0.586 0.799 0.896 0.917 0.787 0.866
PIPELINE-NLE 0.916 0.890 0.586 0.797 0.911 0.898 0.787 0.865
MLN 0.596 0.743 0.264 0.534 0.403 0.786 0.369 0.519
C3 0.920 0.910 0.654 0.828 0.918 0.918 0.861 0.899
C3-EM 0.919 0.913 0.667 0.833 0.914 0.935 0.875 0.908
C3-PS 0.917 0.911 0.654 0.827 0.908 0.920 0.861 0.896
C3-CI 0.920 0.910 0.649 0.826 0.919 0.919 0.862 0.900
C3-GS 0.917 0.910 0.643 0.823 0.908 0.922 0.864 0.898

ENRON DISCOURSE
LOCAL 0.703 0.077 0.308 0.363 0.164 0.211 0.552 0.309
INTRA 0.891 0.100 0.405 0.465 0.552 0.530 0.553 0.545
PIPELINE-ELN 0.891 0.100 0.528 0.506 0.552 0.646 0.614 0.604
PIPELINE-ENL 0.891 0.124 0.513 0.509 0.552 0.655 0.601 0.603
PIPELINE-LEN 0.888 0.100 0.528 0.505 0.663 0.530 0.613 0.602
PIPELINE-LNE 0.894 0.100 0.404 0.466 0.663 0.530 0.596 0.597
PIPELINE-NEL 0.894 0.124 0.405 0.474 0.551 0.651 0.553 0.585
PIPELINE-NLE 0.894 0.124 0.405 0.474 0.665 0.533 0.553 0.584
MLN 0.187 0.007 0.235 0.143 0.151 0.195 0.306 0.217
C3 0.894 0.124 0.528 0.515 0.684 0.671 0.617 0.657
C3-EM 0.896 0.100 0.530 0.509 0.679 0.689 0.622 0.663
C3-PS 0.826 0.124 0.541 0.497 0.431 0.404 0.594 0.477
C3-CI 0.894 0.124 0.525 0.514 0.684 0.675 0.617 0.659
C3-GS 0.527 0.124 0.499 0.383 0.201 0.194 0.546 0.314

algorithms based on pseudolikelihood [Besag 1975; Lu and Getoor 2003; Neville and
Jensen 2000].

7.2.3. Parallelization Results. One benefit of C3 learning and inference is that a signif-
icant portion of the algorithms can be parallelized. For C3 semi-supervised weight
learning (shown in Algorithm 3), the weights of the bootstrap classifiers can be learned
in parallel; then, the unobserved target variables can be initialized in parallel. The
second-stage classifiers can be similarly parallelized. Each iteration of inference can
also be parallelized. We can exploit the fact that the features rely only on the values of
target variables from the previous iteration; consequently, we can infer the values of
the target variables within a particular iteration simultaneously without affecting the
results.8

We examine the benefits of parallelizing C3 by running a portion the CORA experi-
ments a multithreaded implementation, using Java threads. We present the learning,
inference, and overall run times, with respect to the numbers of available threads, in
Figure 2. While the predicted values from these experiments are identical to those of
the single-threaded implementations, there is a substantial improvement in the over-
all running time as we increase the number of threads. For example, going from 1 to 2
threads yields a x1.9 speed-up, which is almost linear. Comparing the improvements
between the learning and inference times, we find that most of the improvement is due

8Although we focus our parallelization analysis here on C3 for brevity, the learning and inference of all
variants of C3 can be parallelized using the same procedure to improve runtime.
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Table X. Overall F1 performance—reported as the average of F1 scores for entity resolution, link prediction and
node labeling—for various levels of annotation and noise, after applying constraints. Bold indicates the highest
value in a given column.

Citeseer (Vary Noise Level) Cora (Vary Noise Level) Enron Discourse
Low Medium High Low Medium High

L
ow

%
U

nk
no

w
n

LOCAL 0.813 0.766 0.667 0.881 0.826 0.793 0.713 0.523
INTRA 0.862 0.812 0.760 0.933 0.902 0.861 0.743 0.637
PIPELINE* 0.877 0.847 0.798 0.945 0.920 0.891 0.764 0.697
MLN 0.798 0.788 0.723 0.826 0.796 0.783 0.402 0.470
C3 0.884 0.855 0.818 0.952 0.930 0.904 0.762 0.738
C3-EM 0.886 0.856 0.806 0.953 0.930 0.905 0.758 0.744
C3-PS 0.882 0.854 0.809 0.947 0.922 0.892 0.727 0.685
C3-CI 0.885 0.855 0.819 0.953 0.931 0.903 0.762 0.737
C3-GS 0.885 0.857 0.808 0.953 0.931 0.899 0.562 0.623

M
ed

iu
m

%
U

nk
no

w
n

LOCAL 0.780 0.695 0.622 0.853 0.794 0.752 0.655 0.429
INTRA 0.844 0.788 0.711 0.913 0.876 0.829 0.701 0.521
PIPELINE* 0.852 0.808 0.744 0.926 0.894 0.854 0.723 0.605
MLN 0.495 0.602 0.565 0.488 0.463 0.439 0.306 0.334
C3 0.859 0.817 0.756 0.933 0.906 0.866 0.726 0.657
C3-EM 0.863 0.819 0.766 0.936 0.909 0.874 0.727 0.668
C3-PS 0.854 0.815 0.750 0.926 0.896 0.846 0.679 0.468
C3-CI 0.860 0.815 0.758 0.932 0.905 0.866 0.724 0.657
C3-GS 0.851 0.810 0.723 0.928 0.898 0.844 0.483 0.278

H
ig

h
%

U
nk

no
w

n

LOCAL 0.749 0.681 0.592 0.817 0.746 0.678 0.602 0.290
INTRA 0.818 0.758 0.675 0.885 0.842 0.777 0.642 0.326
PIPELINE* 0.827 0.776 0.699 0.896 0.859 0.806 0.660 0.419
MLN 0.363 0.348 0.342 0.310 0.319 0.316 0.211 0.190
C3 0.828 0.782 0.709 0.901 0.865 0.813 0.659 0.485
C3-EM 0.840 0.791 0.724 0.910 0.877 0.832 0.666 0.487
C3-PS 0.829 0.778 0.707 0.895 0.859 0.803 0.596 0.295
C3-CI 0.828 0.778 0.708 0.901 0.867 0.811 0.659 0.487
C3-GS 0.820 0.767 0.668 0.891 0.854 0.781 0.358 0.119

to faster inference. In learning, the number of parallel tasks is far less than the num-
ber of available threads; whereas, during inference, the number of target variables
we can infer in parallel is typically much larger than the number of available threads.
Learning does enjoy a slight benefit from parallelization during bootstrapping, but this
effect is minimal. The implementation of SVM training we used does not itself support
parallelization, though there are approaches for parallelizing weight learning within
the classifiers themselves [Chang et al. 2008; Caruana et al. 2011].

7.2.4. Scalability Results. To work with real graph identification problems, it is impor-
tant that a method be scalable. Accordingly, we investigated the scalability of C3,
shown in our experiments to have the best overall performance in terms of both ac-
curacy and runtime, on large, synthetic datasets. For these experiments, we generated
increasingly larger networks, as described in Section 6.1.4. We used the same features
and settings used for the “medium” annotation levels in the CORA and CITESEER ex-
periments. In Figure 3, we present the learning, inference, and overall runtime of C3

on input networks ranging from 2,209 nodes and 15,636 edges to networks with up to
45,522 nodes and 353,228 edges.

Although our implementation is not specifically designed for large networks, we
demonstrate that C3 is able to scale well to such networks. Examining the individ-
ual learning and inference times, however, we find that the critical bottleneck is in
learning. C3’s scalability is directly tied to the scalability of the underlying classifiers.
In our experiments, we used the LibSVM implementation of SVMs [Chang and Lin
2001]. For this implementation, learning time is quadratic in the number of training
instances. This may severely limit the scalability of our current implementation of C3.
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Table XI. Relative improvement over the overall F1 performance of LOCAL for various levels of annotation and noise, after
applying constraints. Bold indicates the highest value in a given column.

Citeseer (Vary Noise Level) Cora (Vary Noise Level) Enron Discourse
Low Medium High Low Medium High

L
ow

%
U

nk
no

w
n

INTRA 6.03% 6.01% 13.94% 5.90% 9.20% 8.58% 4.21% 21.80%
PIPELINE* 7.87% 10.57% 19.64% 7.26% 11.38% 12.36% 7.15% 33.27%
MLN -1.85% 2.87% 8.40% -6.24% -3.63% -1.26% -43.62% -10.13%
C3 8.73% 11.62% 22.64% 8.06% 12.59% 14.00% 6.87% 41.11%
C3-EM 8.98% 11.75% 20.84% 8.17% 12.59% 14.12% 6.31% 42.26%
C3-PS 8.49% 11.49% 21.29% 7.49% 11.62% 12.48% 1.96% 30.98%
C3-CI 8.86% 11.62% 22.79% 8.17% 12.71% 13.87% 6.87% 40.92%
C3-GS 8.86% 11.88% 21.14% 8.17% 12.71% 13.37% -21.18% 19.12%

M
ed

iu
m

%
U

nk
no

w
n

INTRA 8.21% 13.38% 14.31% 7.03% 10.33% 10.24% 7.02% 21.45%
PIPELINE* 9.23% 16.26% 19.61% 8.56% 12.59% 13.56% 10.38% 41.03%
MLN -36.54% -13.38% -9.16% -42.79% -41.69% -41.62% -53.28% -22.14%
C3 10.13% 17.55% 21.54% 9.38% 14.11% 15.16% 10.84% 53.15%
C3-EM 10.64% 17.84% 23.15% 9.73% 14.48% 16.22% 10.99% 55.71%
C3-PS 9.49% 17.27% 20.58% 8.56% 12.85% 12.50% 3.66% 9.09%
C3-CI 10.26% 17.27% 21.86% 9.26% 13.98% 15.16% 10.53% 53.15%
C3-GS 9.10% 16.55% 16.24% 8.79% 13.10% 12.23% -26.26% -35.20%

H
ig

h
%

U
nk

no
w

n

INTRA 9.21% 11.31% 14.02% 8.32% 12.87% 14.60% 6.64% 12.41%
PIPELINE* 10.41% 13.95% 18.07% 9.67% 15.15% 18.88% 9.63% 44.48%
MLN -51.54% -48.90% -42.23% -62.06% -57.24% -53.39% -64.95% -34.48%
C3 10.55% 14.83% 19.76% 10.28% 15.95% 19.91% 9.47% 67.24%
C3-EM 12.15% 16.15% 22.30% 11.38% 17.56% 22.71% 10.63% 67.93%
C3-PS 10.68% 14.24% 19.43% 9.55% 15.15% 18.44% -1.00% 1.72%
C3-CI 10.55% 14.24% 19.59% 10.28% 16.22% 19.62% 9.47% 67.93%
C3-GS 9.48% 12.63% 12.84% 9.06% 14.48% 15.19% -40.53% -58.97%
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Fig. 2. Average running times (in minutes) for learning, inference and overall on the Cora dataset with
multithreaded C3, using varying numbers of threads.

There has recently been significant progress in the development of scalable SVM algo-
rithms that may help with this. Beyond the parallelizations mentioned in Section 7.2.3,
there are more efficient learning algorithms, such as stochastic subgradient methods
[Shalev-Shwartz et al. 2007] and others [Cervantes et al. 2008].

8. CONCLUSION
Graph identification is an important emerging problem. As network data becomes in-
creasingly available, the need to properly map from the noisy observations to the “true”
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Table XII. Each entry indicates the number of times the approach in the given row significantly
outperformed (in terms of average F1, over all levels of annotation and noise) the approach in
the given column, after applying constraints. We make 9 pairwise comparisons for the CORA and
CITESEER datasets and 3 for ENRON and DISCOURSE.

LOCAL INTRA PIPELINE∗ MLN* C3 C3-EM C3-PS C3-CI C3-GS
CITESEER

LOCAL – 0 0 8 0 0 0 0 0
INTRA 9 – 0 9 0 0 0 0 0
PIPELINE* 9 9 – 9 0 0 1 0 2
MLN 0 0 0 – 0 0 0 0 0
C3 9 9 9 9 – 0 7 0 6
C3-EM 9 9 9 9 4 – 9 4 7
C3-PS 9 9 0 9 0 0 – 0 3
C3-CI 9 9 8 9 1 0 7 – 6
C3-GS 9 7 3 9 0 0 3 0 –

CORA
LOCAL – 0 0 4 0 0 0 0 0
INTRA 9 – 0 8 0 0 0 0 0
PIPELINE* 9 8 – 9 0 0 0 0 0
MLN 2 0 0 – 0 0 0 0 0
C3 9 9 7 9 – 0 0 0 5
C3-EM 9 9 7 9 5 – 4 5 6
C3-PS 9 8 3 9 0 0 – 0 3
C3-CI 9 9 7 9 0 1 0 – 4
C3-GS 9 6 3 9 1 0 0 0 –

ENRON
LOCAL – 0 0 3 0 0 0 0 0
INTRA 1 – 0 3 0 0 0 0 0
PIPELINE* 1 1 – 3 0 0 1 0 0
MLN 0 0 0 – 0 0 0 0 0
C3 1 2 0 3 – 0 1 0 0
C3-EM 2 1 0 3 1 – 2 1 0
C3-PS 0 0 0 3 0 0 – 0 0
C3-CI 1 2 0 3 0 0 1 – 0
C3-GS 0 0 0 0 0 0 0 0 –

DISCOURSE
LOCAL – 0 0 3 0 0 0 0 2
INTRA 3 – 0 3 0 0 1 0 2
PIPELINE* 3 3 – 3 0 0 2 0 3
MLN 0 0 0 – 0 0 0 0 2
C3 3 3 3 3 – 0 3 0 3
C3-EM 3 3 3 3 1 – 3 1 3
C3-PS 2 1 0 3 0 0 – 0 3
C3-CI 3 3 3 3 0 0 3 – 3
C3-GS 1 0 0 1 0 0 0 0 –

underlying network becomes more and more important, especially in social and bio-
logical sciences. Not only do the inferred networks prevent us from drawing erroneous
conclusions, they expedite analysis by reducing the size of the data, possibly by or-
ders of magnitude smaller than the observed data. The graph identification problem is
extremely challenging, in terms of feature engineering, training and prediction.

In this work, we have formulated the problem as learning and inference in a proba-
bilistic graphical model. This combines the problems of entity resolution, link predic-
tion and node labeling in a single, coherent framework. To approximate the resulting
inference problem, we developed C3 and its variants, which capture the intra- and
inter-relational dependencies, while remaining tractable. We empirically showed that
C3 can achieve significant gains in accuracy over existing approaches, over a range of
application domains.
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Table XIII. Average F1 performance of entity resolution, link prediction and node labeling, individually,
after applying constraints. We also report the average of the three. Bold indicates the highest value in
a given column.

ER LP NL Average ER LP NL Average
CORA CITESEER

LOCAL 0.649 0.854 0.581 0.695 0.844 0.814 0.724 0.794
INTRA 0.825 0.913 0.625 0.788 0.872 0.919 0.838 0.876
PIPELINE-ELN 0.825 0.921 0.665 0.804 0.872 0.940 0.867 0.893
PIPELINE-ENL 0.825 0.932 0.627 0.795 0.872 0.943 0.837 0.884
PIPELINE-LEN 0.839 0.913 0.664 0.806 0.888 0.919 0.866 0.891
PIPELINE-LNE 0.852 0.914 0.657 0.808 0.896 0.919 0.866 0.894
PIPELINE-NEL 0.825 0.932 0.625 0.794 0.882 0.943 0.838 0.888
PIPELINE-NLE 0.853 0.916 0.625 0.798 0.896 0.932 0.838 0.889
MLN 0.568 0.854 0.384 0.602 0.174 0.742 0.474 0.463
C3 0.852 0.934 0.666 0.817 0.902 0.945 0.871 0.906
C3-EM 0.852 0.926 0.679 0.819 0.903 0.943 0.881 0.909
C3-PS 0.846 0.934 0.666 0.815 0.876 0.944 0.869 0.896
C3-CI 0.852 0.934 0.659 0.815 0.899 0.945 0.870 0.905
C3-GS 0.832 0.933 0.667 0.810 0.876 0.944 0.875 0.898

ENRON DISCOURSE
LOCAL 0.844 0.610 0.511 0.655 0.547 0.178 0.562 0.429
INTRA 0.909 0.631 0.563 0.701 0.556 0.443 0.565 0.521
PIPELINE-ELN 0.909 0.631 0.628 0.723 0.556 0.575 0.606 0.579
PIPELINE-ENL 0.909 0.639 0.610 0.719 0.556 0.584 0.606 0.582
PIPELINE-LEN 0.906 0.631 0.628 0.722 0.691 0.520 0.604 0.605
PIPELINE-LNE 0.911 0.631 0.563 0.702 0.692 0.520 0.592 0.601
PIPELINE-NEL 0.911 0.639 0.563 0.705 0.556 0.580 0.563 0.566
PIPELINE-NLE 0.911 0.639 0.563 0.705 0.692 0.523 0.564 0.593
MLN 0.195 0.415 0.308 0.306 0.430 0.247 0.324 0.334
C3 0.911 0.639 0.628 0.726 0.699 0.665 0.608 0.657
C3-EM 0.914 0.633 0.634 0.727 0.709 0.680 0.614 0.668
C3-PS 0.807 0.593 0.638 0.679 0.429 0.409 0.564 0.468
C3-CI 0.911 0.639 0.622 0.724 0.699 0.667 0.604 0.657
C3-GS 0.510 0.419 0.520 0.483 0.192 0.196 0.445 0.278

Table XIV. Average running times (in minutes) for learning, inference and over-
all, for the CORA experiments.

Learning Time Inference Time Overall Time
LOCAL 1.8 0.5 2.3
INTRA 4.6 7.5 12.1
PIPELINE-ELN 4.7 6.1 10.8
PIPELINE-ENL 4.7 6.1 10.7
PIPELINE-LEN 4.9 7.0 12.0
PIPELINE-LNE 5.1 7.1 12.3
PIPELINE-NEL 4.8 6.1 11.0
PIPELINE-NLE 5.3 6.9 12.3
MLN 761.6 183.6 945.1
C3 5.2 20.3 25.5
C3-EM 114.9 47.5 162.4
C3-PS 5.2 36.9 42.1
C3-CI 5.2 28.7 33.9
C3-GS 5.2 728.1 733.3
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Table XV. Number of times C3 converged or began to oscillate, for all
datasets. The number of trials for each experiment were: 45 for CORA;
15 for CITESEER; and 15 for ENRON and DISCOURSE. We also report
the average number of iterations performed prior to reaching conver-
gence or oscillation. Observe that all our C3 experiments either con-
verged or reached an oscillation point.

# Converge # Oscillate Avg. # of Iterations
CITESEER 0 45 26.8
CORA 0 45 15.4
ENRON 14 1 3.2
DISCOURSE 0 15 8.9
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Fig. 3. Average running times (in minutes) for learning, inference and overall on a synthetic dataset as the
number of nodes and edges in the input graph increase.

There is much room for further exploration. One research question is how one could
apply graph identification to evolving networks. We have also identified convergence
as an open theoretical problem. Lastly, one could explore other algorithms and models
for graph identification, which may be tailored to specific application domains.
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