
Proceedings of Machine Learning Research vol 284:1–21, 2025 19th Conference on Neurosymbolic Learning and Reasoning

Neural-Symbolic Architectural Axioms of Integration:
A Manifesto

Connor Pryor connor.pryor@capitalone.com

Lise Getoor getoor@ucsc.edu

Editors: Leilani H. Gilpin, Eleonora Giunchiglia, Pascal Hitzler, and Emile van Krieken

Abstract

The integration of neural and symbolic methods has long been viewed as a promising
path toward more general, interpretable, and robust artificial intelligence. The past two
decades have seen a rapid proliferation of neural-symbolic (NeSy) systems, spanning a wide
range of architectures, reasoning strategies, and application domains (Besold et al., 2022;
d’Avila Garcez et al., 2019, 2002; Marra et al., 2024). However, this growth has outpaced
theoretical clarity: many existing approaches conflate the roles of learning, inference, and
representation, leading to a fragmented field lacking principled foundations. In this work,
we address this gap by proposing a set of architectural axioms of integration—formal,
implementation-agnostic principles that define how neural and symbolic components can
be coherently combined. These axioms abstract away from system-specific details and
instead characterize the structural interface between neural perception and symbolic rea-
soning. Rather than introducing a new method, this work offers a foundation to organize,
compare, and reason about the rapidly expanding space of NeSy approaches.

1. Introduction

The promise of integrating neural and symbolic methods to leverage their complemen-
tary strengths has long been a motivating vision in artificial intelligence. Neural-symbolic
(NeSy) AI has emerged from this aspiration, growing steadily over the past two decades
with regular workshops since 2005 (NeSy2005) and culminating in its first dedicated confer-
ence in 2024 (NeSy2024). At its core, NeSy research seeks to develop models and algorithms
that systematically combine the statistical generalization capabilities of neural networks
with the compositional, interpretable, and often discrete structure of symbolic formalisms
(Ahmed et al., 2022a; Badreddine et al., 2022; Cohen et al., 2020; d’Avila Garcez et al.,
2019, 2002, 2009; Manhaeve et al., 2021; Pryor et al., 2023; Xu et al., 2018; Yang et al.,
2020)

The intellectual roots of NeSy AI lie in the long-standing divide between symbolic and
connectionist approaches, which became particularly pronounced during the rise of neural
networks in the 1980s and 1990s. Patrick Winston (1991) captured this dichotomy and the
potential for synthesis in his reflection:

© 2025 C. Pryor & L. Getoor.

Pryor Getoor

“Today, some researchers who seek a simple, compact explanation hope that
systems modeled on neural nets or some other connectionist idea will quickly
overtake more traditional systems based on symbol manipulation. Others be-
lieve that symbol manipulation, with a history that goes back millennia, re-
mains the only viable approach. ... Instead, ... AI must use many approaches.
AI is not like circuit theory and electromagnetism. There is nothing wonder-
fully unifying like Kirchhoff’s laws are to circuit theory or Maxwell’s equations
are to electromagnetism. Instead of looking for a ‘right way,’ the time has
come to build systems out of diverse components, some connectionist and some
symbolic, each with its own diverse justification.”(Minsky, 1991, page 35)

Despite this early recognition, symbolic approaches were largely eclipsed during the deep
learning revolution and only in the past decade has neural-symbolic integration regained
significant attention. This resurgence has led to a proliferation of methods, architectures,
and loss functions (Agrawal et al., 2019; Ahmed et al., 2023a,b, 2022b,a; Amos and Kolter,
2017; Badreddine et al., 2023, 2022; Cingillioglu and Russo, 2019; Cohen et al., 2020;
Cornelio et al., 2023; Cunnington et al., 2024; Dasaratha et al., 2023; Derkinderen et al.,
2024; Diligenti et al., 2017a,b; Dong et al., 2019; Giunchiglia et al., 2022; Hu et al., 2016;
Jung et al., 2024; Maene and Raedt, 2024; Manhaeve et al., 2021; Marra, 2022; Marra and
Kuželka, 2021; Marra et al., 2019, 2020; Martires et al., 2024; Misino et al., 2022; Pan
et al., 2023; Pryor et al., 2023; Rocktäschel and Riedel, 2017; Scarselli et al., 2009; Serafini
and d’Avila Garcez, 2016; Shindo et al., 2023; Sikka et al., 2020; Sourek et al., 2018; Stoian
et al., 2023; Towell and Shavlik, 1994; Tran and d’Avila Garcez, 2018; van Krieken et al.,
2023; Wang et al., 2019; Winters et al., 2022; Xu et al., 2018; Yang et al., 2017, 2020).

However, the field’s rapid expansion has outpaced its theoretical consolidation. Much
of NeSy research from the mid-2010s onward has followed a systems-first approach: extend-
ing or hybridizing existing platforms (e.g., ProbLog, Answer Set Programs, PSL, MLNs,
circuits, etc.) to support neural components. This has led to a conceptual ambiguity
about what constitutes a neural-symbolic system and even how each system differs from
one another. For some, symbolic knowledge must be represented using formalisms with
well-defined syntax and semantics (e.g., logic or probabilistic logic); for others, symbolic
structure may be interpreted more broadly to include natural language, graph structures,
or program traces. As a result, NeSy remains an early-stage, fragmented field with no
universally accepted theoretical grounding.

To address this ambiguity, the community has proposed a range of taxonomies that clas-
sify NeSy systems along multiple dimensions, including representation of symbolic knowl-
edge (Besold et al., 2022; van Krieken, 2024; Marra et al., 2024; van Krieken et al., 2022),
the interaction between neural and symbolic components (Bader and Hitzler, 2005; Besold
et al., 2022; d’Avila Garcez et al., 2019, 2009; Dash et al., 2022; Dickens, 2024; Dickens
et al., 2024b; Marra et al., 2024; van Bekkum et al., 2021), learning and reasoning (d’Avila
Garcez et al., 2019; Dickens, 2024; Dickens et al., 2024a; Marra et al., 2024; van Bekkum

2

Neural-Symbolic Architectural Axioms: A Manifesto

et al., 2021), application domains (Badreddine et al., 2022; Bortolotti et al., 2025; Dick-
ens, 2024; Manhaeve et al., 2021; Marra et al., 2024; Yu et al., 2023), common shortcuts
(Marconato et al., 2023a, 2024, 2023b), and system languages (van Krieken et al., 2024).
They also bridge connections to related fields such as graph neural networks (Lamb et al.,
2020), statistical relational learning (Marra et al., 2024), and knowledge graphs (Zhang
et al., 2021). While these taxonomies provide valuable structure and insight, they address
only the symptoms of a larger underlying challenge: the need for principled foundations
for neural-symbolic AI. Given the decades of separate neural and symbolic research, fun-
damentally, NeSy should begin with how to integrate these two sets of theories, i.e., it
needs axioms of neural-symbolic integration. Such foundations are essential for unifying
the field, fostering communication within and beyond NeSy, and preventing the redundant
reinvention of ideas.

This work is not an empirical comparison, nor does it introduce a new neural-symbolic
method or learning procedure. Instead, it addresses a foundational gap in the field by
proposing a set of architectural axioms of integration. The goal is to abstract away from
specific implementations and task-specific designs, and to focus on the underlying structural
principles that govern integration itself. The proposed axioms are intended to serve as a
theoretical starting point, i.e., a foundation upon which current and future neural-symbolic
architectures, theoretical developments, and practical systems can be systematically un-
derstood, compared, and constructed.

2. Related Work

The question of how information flows, such as knowledge, variables, gradients, values, or
probabilities, between neural and symbolic components lies at the heart of almost every
neural-symbolic system (Agrawal et al., 2019; Ahmed et al., 2023a,b, 2022b,a; Amos and
Kolter, 2017; Badreddine et al., 2023, 2022; Cingillioglu and Russo, 2019; Cohen et al.,
2020; Cornelio et al., 2023; Cunnington et al., 2024; Dasaratha et al., 2023; Derkinderen
et al., 2024; Diligenti et al., 2017a,b; Dong et al., 2019; Giunchiglia et al., 2022; Hu et al.,
2016; Jung et al., 2024; Maene and Raedt, 2024; Manhaeve et al., 2021; Marra, 2022;
Marra and Kuželka, 2021; Marra et al., 2019, 2020; Martires et al., 2024; Misino et al.,
2022; Pan et al., 2023; Pryor et al., 2023; Rocktäschel and Riedel, 2017; Scarselli et al.,
2009; Serafini and d’Avila Garcez, 2016; Shindo et al., 2023; Sikka et al., 2020; Sourek
et al., 2018; Stoian et al., 2023; Towell and Shavlik, 1994; Tran and d’Avila Garcez, 2018;
van Krieken et al., 2023; Wang et al., 2019; Winters et al., 2022; Xu et al., 2018; Yang
et al., 2017, 2020). Although each of these works implicitly or explicitly defines a specific
flow of information between neural and symbolic modules, comparatively little effort has
been devoted to synthesizing these designs into a coherent, unifying theory of integration.

That said, several attempts have been made to categorize or formalize neural-symbolic
systems through taxonomies, design patterns, or architectural diagrams. These efforts often
use visual metaphors such as boxes and arrows to illustrate the interaction between neural

3

Pryor Getoor

and symbolic components (Yu et al., 2023; van Bekkum et al., 2021), or tabulate systems
based on representational or functional criteria (d’Avila Garcez et al., 2019; Marra et al.,
2024). Such work provides valuable insight into the diversity of existing approaches, espe-
cially with respect to knowledge representations, inference types, and application domains.
However, these approaches often conflate integration with inference or learning, focus nar-
rowly on specific knowledge representations (usually tied to traditional symbolic systems),
or remain overly abstract in their discussion of integration, making them less actionable.
As a result, they often serve as patterns or design taxonomies rather than foundational
principles of integration. In contrast, this work takes an orthogonal approach. We aim to
go one level deeper by identifying core principles that describe how neural and symbolic
components may coherently exchange and transform information. These axioms abstract
away from any particular symbolic formalism or neural architecture, instead capturing the
essential connections between the two theories.

3. Architectural Axioms of Integration

To systematically characterize the design space of neural-symbolic systems, we propose
a set of architectural axioms of integration, principled abstractions that define how
neural and symbolic components are structurally combined. These axioms are not tied to
any specific learning or inference paradigm; rather, they describe the possible configurations
and information pathways that enable integration, independent of how systems are trained,
queried, or optimized. We organize the axioms into two broad categories: catalyst (Section
3.1) and interface (Section 3.2).

• Catalyst axioms (Section 3.1) characterize transformations that occur across rep-
resentational boundaries. In these cases, one component, neural or symbolic, serves
as a constructive or deconstructive mechanism for the other. For example, symbolic
knowledge may be used to construct the architecture of a neural network, or con-
versely, trained neural models may be deconstructed to extract symbolic structures.
Catalyst-based integration captures these asymmetrical transformations, where one
modality reshapes or defines the other.

• Interface axioms (Section 3.2) describe mechanisms by which neural and symbolic
components interact within a unified system, enabling the exchange of information
such as variables, parameters, gradients, scores, rewards, etc. Unlike catalyst-based
integration, interface-based does not imply transformation from one representation
to another, but instead emphasizes cooperation across modalities. These interfaces
govern how the two components communicate during execution, whether that be
through differentiable pathways, sampling procedures, or latent representations.

Together, these two categories span the architectural core of neural-symbolic design.
The following subsections articulate each axiom type in detail, together with an illustrative

4

Neural-Symbolic Architectural Axioms: A Manifesto

NeSy system example (for an example of an interface-based NeSy task, see Appendix B).
But first, let us introduce the notation that will be used throughout the rest of the paper.

Notation. Let Xnn = {Xnn
1 , . . . , Xnn

n } denote observed random variables processed by
the neural architecture, with realizations xnn representing known values (e.g., Xnn

i might
represent an image or sensor input). Let Xsy = {Xsy

1 , . . . , Xsy
p } denote observed sym-

bolic variables (e.g., logical facts or structured inputs), with realizations xsy. We denote
Y = {Y1, . . . , Ym} as target random variables to be predicted, and Z = {Z1, . . . , Zk} as
latent random variables representing unobserved structure, with realizations y and z, re-
spectively. We denote symbolic architectures by ϕsy, parameterized by weights wsy, and
neural architectures by gnn, parameterized by weights wnn.

1

3.1. Catalyst Axioms

Catalyst-based integration refers to architectures in which one modality is used to construct
or extract structure from the other. Unlike interface-based integration, which captures the
exchange of information during model execution, catalyst-based methods define a direc-
tional architectural transformation: one component serves as a structural catalyst for the
other. These transformations are structural rather than operational, i.e., they reshape the
space of variables, functions, or model architecture rather than simply passing values or
gradients.

We identify three primary forms of catalyst-based integration. In direct neural con-
struction (Section 3.1.1), symbolic knowledge is directly translated as the architecture of a
neural network. In programmatic neural construction (Section 3.1.2), symbolic structures
are used to algorithmically generate neural models through code or templates. In sym-
bolic extraction (Section 3.1.3), symbolic representations are derived from neural networks,
enabling interpretation, rule induction, or verification.

3.1.1. Direct Neural Construction

Direct neural construction refers to architectures in which symbolic structure is directly
mapped onto the components of a neural model, defining the topology or connectivity of
the network. In this setting, the symbolic knowledge encoded in a model ϕsy serves as
an architectural blueprint for the neural network gnn, such that the symbolic relations
and variables in ϕsy are deterministically instantiated as neurons, edges, or modules within
gnn. The symbolic component does not interact with the neural model during execution; in-
stead, it provides a static, one-time specification of the neural architecture. More formally,
a direct construction procedure defines a neural model gnn(xnn,y;wnn) whose topology is
derived from the symbolic structure of ϕsy. In such constructions, neurons may correspond

1. While many symbolic systems incorporate weights (e.g., probabilistic logic, soft logic), this is not uni-
versally the case. In purely logical or rule-based systems, such as propositional or first-order logic, ϕsy

may have no associated weights, i.e., wsy = ∅.

5

Pryor Getoor

to symbolic random variables (e.g., from Xsy,Y,Z), and connections encode logical or re-
lational dependencies specified by ϕsy. While the neural parameters wnn remain learnable,
the architecture of gnn is fixed at design time by the symbolic model.

Example 1 (Knowledge-Based Artificial Neural Networks) KBANN (Towell and
Shavlik, 1994) exemplifies direct neural construction by translating symbolic knowledge
bases into neural network architectures. In KBANN, a propositional rule base defined over
symbolic variables is compiled into a layered feedforward neural network. The transforma-
tion relies on the following symbolic-to-neural correspondences:

Knowledge Base Element Neural Network Component

Final conclusions (i.e., y) Output units (i.e., y)
Supporting facts (i.e., xsy) Input units (i.e., xnn)
Intermediate conclusions (i.e., z) Hidden units (i.e., z)
Dependencies (e.g., A ∧B ⇒ C) Weighted connections (i.e., wnn)

Each logical rule (e.g., A∧B ⇒ C) is translated into a hidden unit with incoming connec-
tions from neurons corresponding to A and B, and an outgoing connection to C.

Direct neural construction introduces symbolic inductive bias directly into the structure
of the neural network. This promotes modularity and interpretability while constraining
the hypothesis space to reflect domain knowledge. However, the approach is limited by the
expressiveness and completeness of the symbolic model: if ϕsy is sparse, inconsistent, or
ambiguous, the resulting neural network may lack the flexibility required for generalization.

3.1.2. Programmatic Neural Construction

Programmatic neural construction refers to architectures in which symbolic structure is
used to programmatically instantiate a neural model. In contrast to direct neural construc-
tion, which enforces a static mapping between symbolic variables and neural components,
programmatic construction interprets the symbolic model ϕsy as a generative specification
for assembling a neural architecture gnn. This process encodes symbolic inductive bias (i.e.,
assumptions about structure, modularity, or invariances) directly into the network’s topol-
ogy or parameterization. More formally, a compilation process interprets ϕsy to generate a
neural model gnn(xnn,y;wnn), where symbolic constraints determine how components are
selected, arranged, or connected. The resulting architecture reflects the structure of ϕsy,
even though no symbolic inference is performed at runtime.

Example 2 (CNNs as Programmatic Inductive Bias) Convolutional neural networks
(CNNs) can be interpreted as a form of programmatic neural construction. Though com-
monly considered purely neural models, CNNs encode an architectural prior over the input

6

Neural-Symbolic Architectural Axioms: A Manifesto

domain: they assume spatial locality and translation invariance. These assumptions are en-
forced programmatically by restricting connections to spatially adjacent inputs and applying
shared filters across locations.

While this interpretation casts programmatic neural construction as a general mecha-
nism for imposing inductive bias, it also raises an important caveat. Given this generously
broad framing, many neural architectures, such as convolutional, recurrent, and trans-
former models, could be viewed as programmatic neural constructions. In practice, NeSy
systems that fall under programmatic construction typically exhibit a more explicit and
semantically grounded role for symbolic structure. For example, in structured classification
tasks such as MNIST-Addition, symbolic programs are used to assemble neural components
by instantiating and composing digit classifiers in a way that reflects the semantic struc-
ture of the problem—e.g., aligning network modules with digit positions in an arithmetic
expression.

3.1.3. Symbolic Extraction

Symbolic extraction refers to architectures in which symbolic representations are derived
from trained neural models. In contrast to construction-based approaches that embed
symbolic structure into neural architectures, extraction-based catalysts operate in the re-
verse direction: a neural model gnn(xnn,y;wnn) is treated as a trained, potentially opaque
function, and symbolic knowledge is induced by analyzing its learned behavior or internal
representations. The resulting symbolic output may take the form of logical rules, decision
trees, algebraic formulas, or other interpretable structures. More formally, symbolic ex-
traction aims to derive a symbolic model ϕsy that approximates or explains the behavior of
gnn. The symbolic representation may capture global decision boundaries or be restricted
to local input regions of interest. In either case, ϕsy is constructed post hoc and is not
used during training, but instead serves to interpret or verify the neural model’s learned
behavior.

Example 3 (Distilling Neural Networks into Soft Decision Trees) Frosst and Hin-
ton (2017) propose a method for distilling a deep neural network into a soft decision tree.
The soft decision tree is trained to mimic the output distribution of a teacher network gnn
by minimizing the KL divergence between their predictive distributions over y. Internal
nodes in the tree compute soft decisions using logistic functions, and the symbolic structure
emerges as a differentiable tree where each path encodes a symbolic decision rule. The
resulting symbolic model ϕsy approximates gnn while remaining human-interpretable and
analytically tractable.

3.2. Interface Axioms

Interface-based integration refers to architectures in which neural and symbolic components
interact during execution, exchanging information such as variable values, gradients, pa-

7

Pryor Getoor

rameters, or structured representations. Unlike catalyst-based methods, where one modal-
ity constructs or distills the other, interface-based methods emphasize ongoing interaction
between components, often during both inference and learning. These systems maintain a
persistent coupling between the neural network gnn and symbolic module ϕsy.

We identify three primary forms of interface-based integration. In a variable interface
(Section 3.2.2), neural and symbolic components exchange values and gradients/rewards
over shared random variables. In a parameter interface (Section 3.2.3), neural and symbolic
components exchange values and gradients/rewards over shared parameters. In a structure
interface (Section 3.2.4), the symbolic structure itself is dynamically defined by the neural
network.

3.2.1. Gradient-Based vs. Sampling-Based Interfaces

A foundational design choice in interface-based integration is whether the symbolic com-
ponent ϕsy is differentiable with respect to the neural component gnn. In a gradient-based
interface, ϕsy is either inherently differentiable or relaxed into a continuous approxima-
tion that permits gradients to flow from symbolic losses into the neural parameters wnn.
This allows for end-to-end training using standard backpropagation and is commonly em-
ployed in systems using fuzzy logic (Badreddine et al., 2022), soft constraints (Pryor et al.,
2023), or probabilistic relaxations (Manhaeve et al., 2021; Xu et al., 2018). In contrast, a
sampling-based interface is required when ϕsy is non-differentiable, such as in discrete or
combinatorial symbolic models. In these cases, optimization proceeds through sampling-
based methods such as reinforcement learning, rejection sampling, or black-box likelihood
estimation, where neural updates are guided indirectly via rewards or sampled outputs.

3.2.2. Variable Interface

A variable interface refers to architectures in which the neural network gnn and symbolic
model ϕsy are coupled through a shared set of random variables, enabling joint reasoning
over latent, observed, or target quantities. In this formulation, the output of the neural
model defines or conditions variables that are used as inputs to the symbolic model, or
conversely, the output or latent variables of the symbolic model influence the input or
latent states of the neural component. More formally, a variable interface connects gnn
and ϕ through a shared subset of random variables xnn, xsy, y, and z. For example, the
neural model may produce predictions over a subset of variables v ⊆ {xsy, z}, which are
then used as inputs to ϕsy. Alternatively, ϕsy may define constraints or latent dependencies
over variables v′ ⊆ {xnn, z} that are in turn passed to or conditioned upon by gnn.

Example 4 (Neural-Symbolic Fuzzy Logic) A notable implementation of the variable
interface arises in neural-symbolic fuzzy logic systems (Badreddine et al., 2022; Pryor et al.,
2023), where neural models define truth values over a set of variables, and these values are
interpreted within a differentiable fuzzy logic framework. Fuzzy logic generalizes classical

8

Neural-Symbolic Architectural Axioms: A Manifesto

logic by allowing truth values to range continuously in [0, 1], enabling reasoning over partial
truths. Logical operators are replaced with differentiable relaxations—for example, conjunc-
tion ∧ may be interpreted as multiplication, and negation ¬A as 1−A. A fuzzy rule such
as A∧¬B is thus approximated by the function A · (1−B), where A and B are real-valued
outputs from gnn. Further details can be found in Appendix C.1.

3.2.3. Parameter Interface

A parameter interface refers to architectures in which the neural network gnn and symbolic
model ϕsy interact through the exchange of parameters that govern symbolic behavior.
In this formulation, the neural model provides values that are interpreted as symbolic
parameters, such as weights on facts, rules, or potentials, used by ϕsy to define distributions,
loss functions, or structural constraints. Conversely, the symbolic model may also define
parameters that condition neural inference, initialization, or representations. In both cases,
the interface enables one component to modulate the functional behavior of the other via
parameterization. More formally, a parameter interface arises when either (i) wsy is defined
as a function of the neural output, i.e., wsy = gnn(x,y;wnn), or (ii) the symbolic component
generates parameter constraints or priors over wnn.

Example 5 (Neural-Symbolic Probabilistic Logic) A representative implementation
of the parameter interface arises in neural-symbolic probabilistic logic systems (Manhaeve
et al., 2021; Xu et al., 2018; Yang et al., 2020), where a neural network defines the probabil-
ities over facts or rules in a probabilistic logic program. Probabilistic logic extends classical
logic by associating probabilities with logical atoms or implications, thereby enabling rea-
soning under uncertainty. For example, a probabilistic fact such as “Alice smokes” with
probability 0.7 is represented as 0.7 ::Smokes(“Alice”). In the parameter interface setting,
the probability 0.7 is not manually specified but is instead predicted by a neural network
conditioned on observed input xnn. Further details can be found in Appendix C.2.

3.2.4. Structure Interface

A structure interface refers to architectures in which the neural model gnn is responsible for
generating, selecting, or modifying the structure of the symbolic model ϕsy. Unlike vari-
able and parameter interfaces, where the symbolic component is fixed, structure interfaces
allow the symbolic model itself to vary as a function of the neural output. The symbolic
model is instantiated dynamically, often on a per-instance basis, such that each input may
yield a different ϕsy. More formally, the symbolic model ϕsy is generated directly by the
neural model as a structured output: ϕsy ← gnn(xnn,y;wnn). Since symbolic inference is
generally non-differentiable, supervision is typically provided via reward signals or other
forms of feedback rather than gradient-based updates.

Example 6 (Structure Interface in LOGIC-LM) LOGIC-LM (Pan et al., 2023) ex-
emplifies a structure interface by integrating a large language model (LLM) with a symbolic

9

Pryor Getoor

solver to perform faithful logical reasoning. In this system, the LLM gnn(xnn,y;wnn)
receives a natural language prompt xnn and generates a symbolic formalization of the prob-
lem—typically in first-order logic—represented as a symbolic program ϕsy. The resulting
ϕsy is then executed independently by a deterministic symbolic solver to infer conclusions
or verify logical consistency.

4. Conclusion and Limitations

As the world shifts from merely exploring the potential of artificial intelligence to increas-
ingly relying on its real-world applications, the urgency for responsible deployment and
careful interpretation of model outputs has become profoundly evident. Neural-symbolic
AI stands as a field uniquely positioned to address some of the most critical challenges in
this transition, including the provision of interpretability, the enforcement of structured
constraints, and the assurance of consistent and reliable predictions. However, despite its
significant promise, NeSy AI remains a relatively nascent and fragmented field, often char-
acterized by ad-hoc implementations lacking theoretical cohesion and standardization. As
the importance of neural-symbolic methods grows, so too does the need for a principled
and unified foundation to guide their development.

This work contributes toward establishing such a foundation by introducing a set of
axioms for neural-symbolic integration. Rather than focusing on specific methods, learning
procedures, or application domains, the axioms adopt an architectural perspective, iden-
tifying the fundamental design choices that govern how neural and symbolic components
interact. This work categorizes integration into two primary modes: catalyst-based archi-
tectures, where one component influences the construction of the other, and interface-based
architectures, where neural and symbolic modules are coupled through an explicit interface.
By abstracting over particular models and domains, the proposed axioms offer a unifying
lens through which existing systems can be understood, compared, and extended.

While the proposed axioms offer a principled starting point for neural-symbolic research,
several limitations warrant acknowledgment. First, these axioms represent one possible
abstraction among many; alternative perspectives, such as system-level taxonomies, may
provide complementary or more expressive viewpoints. Second, while the framework cap-
tures a wide range of existing methods, it is not exhaustive. Some NeSy approaches may
fall outside these current categories. For example, whether prompting LLMs constitutes a
form of neural-symbolic integration and, if so, what axiom this should be classified as.

Looking ahead, we argue that one of the most pressing direction for future work is
to build consensus around a shared set of foundational principles for neural-symbolic AI.
Whether or not the specific formulation proposed here is adopted, a unifying theoretical
foundation is necessary to reduce the overhead of describing new systems, facilitate collab-
oration across subfields, and foster clearer communication for new researchers entering the
area. Without such a foundation, the field risks continued fragmentation and redundancy.

10

Neural-Symbolic Architectural Axioms: A Manifesto

5. Acknowledgments

This work was supported in part by the National Science Foundation under Grant No.
CCF-2023495. The first author is affiliated with the University of California, Santa Cruz,
and Capital One. We are grateful to the many researchers who have contributed valuable
discussions and insights over the years, including Charles Dickens, Eleonora Giunchiglia,
Emile van Krieken, Jaron Maene, Lennert de Smet, Eriq Augustine, and many others
whose input has helped shape this work.

References

Ashkay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J.
Zico Kolter. Differentiable convex optimization layers. In NeurIPS, 2019.

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, and Antonio Vergari.
Semantic probabilistic layers for neuro-symbolic learning. In NeurIPS, 2022a.

Kareem Ahmed, Eric Wang, Kai-Wei Chang, and Guy Van den Broeck. Neuro-symbolic
entropy regularization. In UAI, 2022b.

Kareem Ahmed, Kai-Wei Chang, and Guy Van den Broeck. Semantic strengthening of
neuro-symbolic learning. In AISTATS, 2023a.

Kareem Ahmed, Kai-Wei Chang, and Guy Van den Broeck. A pseudo-semantic loss for
autoregressive models with logical constraints. In NeurIPS, 2023b.

Brandom Amos and J. Zico Kolter. Optnet: Differentiable optimization as a layer in neural
networks. In ICML, 2017.

Sebastian Bader and Pascal Hitzler. Dimensions of neural-symbolic integration - A struc-
tured survey. arXiv, 2005.

Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael Spranger. Logic
tensor networks. AI, 2022.

Samy Badreddine, Luciano Serafini, and Michael Spranger. logltn: Differentiable fuzzy
logic in the logarithm space. arXiv, 2023.

Tarek R. Besold, Artur S. d’Avila Garcez, Sebastian Bader, Howard Bowman, Pedro M.
Domingos, Pascal Hitzler, Kai-Uwe Kühnberger, Lúıs C. Lamb, Daniel Lowd, Priscila
Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung Poon, and Gerson Za-
verucha. Neural-symbolic learning and reasoning: A survey and interpretation. Neuro-
Symbolic Artificial Intelligence: The State of the Art, 2022.

11

Pryor Getoor

Samuele Bortolotti, Emanuele Marconato, Tommaso Carraro, Paolo Morettin, Emile van
Krieken, Antonio Vergari, Stefano Teso, and Andrea Passerini. A neuro-symbolic bench-
mark suite for concept quality and reasoning shortcuts. In NeurIPS, 2025.

Nuri Cingillioglu and Alessandra Russo. Deeplogic: Towards end-to-end differentiable
logical reasoning. In AAAI-MAKE, 2019.

William W. Cohen, Fan Yang, and Kathryn Mazaitis. Tensorlog: A probabilistic database
implemented using deep-learning infrastructure. JAIR, 2020.

Cristina Cornelio, Jan Stuehmer, Shell Xu Hu, and Timothy Hospedales. Learning where
and when to reason in neuro-symbolic inference. In ICLR, 2023.

Daniel Cunnington, Mark Law, Jorge Lobo, and Alessandra Russo. The role of foundation
models in neuro-symbolic learning and reasoning. arXiv, 2024.

Sridhar Dasaratha, Sai Akhil Puranam, Karmvir Singh Phogat, Sunil Reddy Tiyyagura,
and Nigel P. Duffy. Deeppsl: End-to-end perception and reasoning. In IJCAI, 2023.

Tirtharaj Dash, Sharad Chitlangia, Aditya Ahuja, and Ashwin Srinivasan. A review of
some techniques for inclusion of domain-knowledge into deep neural networks. Scientific
Reports, 2022.

Artur d’Avila Garcez, Marco Gori, Lúıs C. Lamb, Luciano Serafini, Michael Spranger,
and Son N. Tran. Neural-symbolic computing: An effective methodology for principled
integration of machine learning and reasoning. Journal of Applied Logics, 2019.

Artur S. d’Avila Garcez, Krysia Broda, and Dov M. Gabbay. Neural-Symbolic Learning
Systems: Foundations and Applications. Springer, 2002.

Artur S. d’Avila Garcez, Lúıs C. Lamb, and Dov M. Gabbay. Neural-Symbolic Cognitive
Reasoning. Springer, 2009.

Vincent Derkinderen, Robin Manhaeve, Pedro Zuidberg Dos Martires, and Luc De Raedt.
Semirings for probabilistic and neuro-symbolic logic programming. International Journal
of Approximate Reasoning, 2024.

Charles Dickens. A Unifying Mathematical Framework for Neural-Symbolic Systems. PhD
thesis, University of California, Santa Cruz, 2024.

Charles Dickens, Changyu Gao, Connor Pryor, Stephen Wright, and Lise Getoor. Convex
and bilevel optimization for neuro-symbolic inference and learning. In ICML, 2024a.

Charles Dickens, Connor Pryor, and Lise Getoor. Modeling patterns for neural-symbolic
reasoning using energy-based models. In AAAI Spring Symposium on Empowering Ma-
chine Learning and Large Language Models with Domain and Commonsense Knowledge,
2024b.

12

Neural-Symbolic Architectural Axioms: A Manifesto

Michelangelo Diligenti, Marco Gori, and Claudio Saccà. Semantic-based regularization for
learning and inference. Journal of Machine Learning Research, 2017a.

Michelangelo Diligenti, Soumali Roychowdhury, and Marco Gori. Integrating prior knowl-
edge into deep learning. In ICMLA, 2017b.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural
logic machines. In ICLR, 2019.

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data.
JAIR, 2018.

Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft decision tree.
In Proceedings of the NIPS 2017 Workshop on Interpretable Machine Learning, 2017.

Eleonora Giunchiglia, Mihaela Catalina Stoian, and Thomas Lukasiewicz. Deep learning
with logical constraints. In IJCAI, 2022.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing. Harnessing deep
neural networks with logic rules. In ACL, 2016.

Peter Jung, Giuseppe Marra, and Ondřej Kuželka. Quantified neural markov logic net-
works. IJAR, 2024.

Lúıs C. Lamb, Artur d’Avila Garcez, Marco Gori, Marcelo O. R. Prates, Pedro H. C.
Avelar, and Moshe Y. Vardi. Graph neural networks meet neural-symbolic computing:
A survey and perspective. In IJCAI, 2020.

Jaron Maene and Luc De Raedt. Soft-unification in deep probabilistic logic. In NeurIPS,
2024.

Robin Manhaeve, Sebastijan Dumančić, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. Neural probabilistic logic programming in DeepProbLog. AI, 2021.

Emanuele Marconato, Stefano Teso, and Andrea Passerini. Neuro-symbolic reasoning
shortcuts: Mitigation strategies and their limitations. In NeSy Workshop, 2023a.

Emanuele Marconato, Stefano Teso, Antonio Vergari, and Andrea Passerini. Not all neuro-
symbolic concepts are created equal: Analysis and mitigation of reasoning shortcuts. In
NeurIPS, 2023b.

Emanuele Marconato, Samuele Bortolotti, Emile van Krieken, Antonio Vergari, Andrea
Passerini, and Stefano Teso. Bears make neuro-symbolic models aware of their reasoning
shortcuts. In UAI, 2024.

13

Pryor Getoor

Giuseppe Marra. Bridging symbolic and subsymbolic reasoning with minimax entropy
models. IA, 2022.

Giuseppe Marra and Ondřej Kuželka. Neural markov logic networks. In UAI, 2021.

Giuseppe Marra, Francesco Giannini, Michelangelo Diligenti, and Marco Gori. Integrating
learning and reasoning with deep logic models. In ECMLKDD, 2019.

Giuseppe Marra, Michelangelo Diligenti, Francesco Giannini, Marco Gori, and Marco Mag-
gini. Relational neural machines. In ECAI, 2020.

Giuseppe Marra, Sebastijan Dumančić, Robin Manhaeve, and Luc De Raedt. From statis-
tical relational to neurosymbolic artificial intelligence: A survey. AI, 2024.

Pedro Zuidberg Dos Martires, Luc De Raedt, and Angelika Kimmig. Declarative proba-
bilistic logic programming in discrete-continuous domains. AI, 2024.

Marvin Minsky. Logical vs. analogical or symbolic vs. connectionist or neat vs. scruffy. AI
Magazine, 1991.

Eleonora Misino, Giuseppe Marra, and Emanuele Sansone. Vael: Bridging variational
autoencoders and probabilistic logic programming. In NeurIPS, 2022.

NeSy2005. Neural-Symbolic Learning and Reasoning Workshop at IJCAI, 2005.

NeSy2024. International Conference on Neural-Symbolic Learning and Reasoning, 2024.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-lm: Em-
powering large language models with symbolic solvers for faithful logical reasoning. In
EMNLP, 2023.

Connor Pryor, Charles Dickens, Eriq Augustine, Alon Albalak, William Yang Wang, and
Lise Getoor. Neupsl: Neural probabilistic soft logic. In IJCAI, 2023.

Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving. In NeurIPS,
2017.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Mon-
fardini. The graph neural network model. IEEE Transactions on Neural Networks,
2009.

Luciano Serafini and Artur S. d’Avila Garcez. Learning and reasoning with logic tensor
networks. In AI*IA, 2016.

Hikaru Shindo, Viktor Pfanschilling, Devendra Singh Dhami, and Kristian Kersting. α ilp:
Thinking visual scenes as differentiable logic programs. ML, 2023.

14

Neural-Symbolic Architectural Axioms: A Manifesto

Karan Sikka, Andrew Silberfarb, John Byrnes, Indranil Sur, Ed Chow, Ajay Divakaran, and
Richard Rohwer. Deep adaptive semantic logic (dasl): Compiling declarative knowledge
into deep neural networks. Technical report, SRI International, 2020.

Gustav Sourek, Vojtech Aschenbrenner, Filip Zelezny, Steven Schockaert, and Ondrej
Kuzelka. Lifted relational neural networks: Efficient learning of latent relational struc-
tures. JAIR, 2018.

Mihaela Cătălina Stoian, Eleonora Giunchiglia, and Thomas Lukasiewicz. Exploiting t-
norms for deep learning in autonomous driving. In NeSy, 2023.

Geoffrey G. Towell and Jude W. Shavlik. Knowledge-based artificial neural networks. AI,
1994.

Son N. Tran and Artur S. d’Avila Garcez. Deep logic networks: Inserting and extract-
ing knowledge from deep belief networks. IEEE Transactions on Neural Networks and
Learning Systems, 2018.

Michael van Bekkum, Maaike de Boer, Frank van Harmelen, André Meyer-Vitali, and
Annette ten Teije. Modular design patterns for hybrid learning and reasoning systems:
A taxonomy, patterns and use cases. Applied Intelligence, 2021.

Emile van Krieken. Optimisation in Neurosymbolic Learning Systems. PhD thesis, Radboud
University, 2024.

Emile van Krieken, Erman Acar, and Frank van Harmelen. Analyzing differentiable fuzzy
logic operators. Artificial Intelligence (AI), 2022.

Emile van Krieken, Thiviyan Thanapalasingam, Jakub M. Tomczak, Frank van Harme-
len, and Annette ten Teije. A-nesi: A scalable approximate method for probabilistic
neurosymbolic inference. In NeurIPS, 2023.

Emile van Krieken, Samy Badreddine, Robin Manhaeve, and Eleonora Giunchiglia. Uller:
A unified language for learning and reasoning. In NeSy, 2024.

Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter. Satnet: Bridging deep learning
and logical reasoning using a differentiable satisfiability solver. In ICML, 2019.

Thomas Winters, Giuseppe Marra, Robin Manhaeve, and Luc De Raedt. Deepstochlog:
Neural stochastic logic programming. In AAAI, 2022.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic
loss function for deep learning with symbolic knowledge. In ICML, 2018.

Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable learning of logical rules for
knowledge base reasoning. In NeurIPS, 2017.

15

Pryor Getoor

Zhun Yang, Adam Ishay, and Joohyung Lee. Neurasp: Embracing neural networks into
answer set programming. In IJCAI, 2020.

Dongran Yu, Bo Yang, Dayou Liu, Hui Wang, and Shirui Pan. A survey on neural-symbolic
learning systems. NN, 2023.

Jing Zhang, Bo Chen, Lingxi Zhang, Xirui Ke, and Haipeng Ding. Neural, symbolic, and
neural-symbolic reasoning on knowledge graphs. AI Open, 2021.

Appendix A. Introduction

This appendix provides additional technical and illustrative material that complements the
main text. It includes a canonical NeSy example, as well as extended illustrations of a few
of the architectural axioms defined in Section 3. The appendix is organized as follows:

• Task Example (Appendix B): A detailed walkthrough of a representative neural-
symbolic task, illustrating the structure and dynamics of interface-based integration
in NeSy systems.

• Extended Axiom Examples (Appendix C): Extended details on a few of the
architectural axioms introduced in the main text.

Appendix B. NeSy Task Example

This section presents a concrete neural-symbolic task designed to illustrate interface-based
integration (Section 3.2), which has emerged as the central focus of neural-symbolic re-
search in the past half-decade. No example has more clearly defined this direction than
the MNIST-Addition task (Manhaeve et al., 2021), which exemplifies an interface-based
architecture: the output of a neural network is passed as input to a symbolic model.

Example 7 (MNIST-Addition) MNIST-Addition Manhaeve et al. (2021) is a canon-
ical neural-symbolic problem involving the prediction of the sum of two digits, each repre-
sented as an MNIST image. The neural component gnn(xnn,y, z;wnn), parameterized by
weights wnn, serves as a digit classifier. It maps an input image xnn ∈ R28×28 to a distri-
bution over digit labels y ∈ {0, . . . , 9}. The symbolic component ϕsy encodes an arithmetic
constraint representing addition over predicted digits.

Note B.1 The precise formulation of a NeSy system depends on how neural predictions
are integrated into symbolic inference, how the symbolic model ϕsy is defined, and the nature
of the reasoning process.

16

Neural-Symbolic Architectural Axioms: A Manifesto

Suppose the task is to compute the sum + = 8. The two input images are passed
through the neural model to produce predictive distributions:

gnn
()

= {P (0)1 = 0.0, P (1)1 = 0.0, P (2)1 = 0.0, P (3)1 = 0.9, P (4)1 = 0.0,

P (5)1 = 0.0, P (6)1 = 0.0, P (7)1 = 0.0, P (8)1 = 0.1, P (9)1 = 0.0},

gnn
()

= {P (0)2 = 0.0, P (1)2 = 0.0, P (2)2 = 0.0, P (3)2 = 0.0, P (4)2 = 0.0,

P (5)2 = 0.8, P (6)2 = 0.0, P (7)2 = 0.0, P (8)2 = 0.0, P (9)2 = 0.2}.

Assuming symbolic reasoning is performed over the most probable predictions (i.e.,
argmax), the symbolic component enforces the constraint:

ϕsy

(
argmax gnn

()
, argmax gnn

())
= 3 + 5 = 8.

Note B.2 Learning in this system may depend on whether ground-truth digit labels or the
final sum is supervised, whether ϕsy is differentiable, and how symbolic reasoning is coupled
to the neural model. When ϕsy is part of a differentiable system, gradients may flow from
the output sum back into gnn, enabling end-to-end training.

Appendix C. Extended Axiom Examples

This section provides a more detailed elaboration of select architectural axioms, focusing
in particular on the variable interface (Section C.1) and parameter interface (Section C.2).
These two forms of integration are currently among the most widely explored in the neural-
symbolic community, due to their compatibility with differentiable learning frameworks and
their applicability across a wide range of structured reasoning tasks. The extended exam-
ples presented here are intended to clarify the practical implementation of these interfaces,
highlight their architectural significance, and illustrate how symbolic reasoning can be
composed with neural perception in a unified system.

C.1. Neural-Symbolic Fuzzy Logic

A notable example of the variable interface-based (Section 3.2.2) approach is fuzzy neural-
symbolic systems, where neural models define observed variables that are embedded in a
differentiable fuzzy logic framework (Badreddine et al., 2022; Pryor et al., 2023). Fuzzy
logic generalizes classical logic by allowing truth values to range continuously over [0, 1],
enabling reasoning over partial truths. For example, a rule like A∧¬B can be approximated
using differentiable operators as A · (1−B).

Note C.1 NeSy fuzzy logic systems can be instantiated using various continuous-valued
t-norms. Table 1 shows three commonly used in the NeSy literature: Gödel, Product, and

17

Pryor Getoor

Logic ¬x x ∧ y x ∨ y

Gödel 1− x min(x, y) max(x, y)

Product 1− x x · y x+ y − x · y
 Lukasiewicz 1− x max(0, x+ y − 1) min(1, x+ y)

Table 1: Common fuzzy logic operations for negation, conjunction, and disjunction.

 Lukasiewicz. Each satisfies fundamental logical properties such as associativity, commuta-
tivity, monotonicity, and identity (Evans and Grefenstette, 2018). However, each t-norm
induces different gradient behaviors (van Krieken et al., 2023; Evans and Grefenstette,
2018). In Gödel logic, for instance, the conjunction min(x, y) passes no gradient to the
larger input when x > y, which limits optimization dynamics. In Lukasiewicz logic, when
x+ y < 1, the conjunction max(0, x+ y − 1) evaluates to zero and provides no gradient to
either input. In contrast, the Product t-norm (x · y) enables gradient flow to both inputs,
making it more favorable for learning scenarios. Furthermore, fuzzy logic systems allow for
different aggregation operations over constraint dissatisfaction. A common option is the
weighted sum,

∑n
i=1wisi, where si is the dissatisfaction score of constraint i and wi its

relative weight.

Architecture: Let xnn and xsy denote observed neural and symbolic inputs, respec-
tively, and let y be the target variables. The output of a neural model gnn(xnn;wnn) is
passed to a symbolic model ϕsy(y,xsy, gnn(xnn;wnn);wsy) composed of differentiable fuzzy
logic constraints.

Inference: The inference objective is to predict the most likely output y by maximizing
satisfaction of the symbolic model:

y∗ = argmax
y

ϕsy(y,xsy, gnn(xnn;wnn);wsy) = argmax
y

n∑
i=1

wi
syϕsy,i(y,xsy, gnn(xnn;wnn)).

Learning: Learning optimizes both neural and symbolic parameters to minimize con-
straint violation:

w∗
nn,w

∗
sy = argmin

wnn,wsy

L(wnn,wsy;xnn,xsy,y),

where L quantifies symbolic constraint dissatisfaction.

Example 8 Consider the MNIST-Addition task (Appendix B) where the goal is to predict
the sum of two digits presented as MNIST images using Gödel fuzzy logic. In this setup,
the neural model gnn predicts the truth values of random variables representing the digits,
and the Gödel fuzzy logic system enforces constraints regarding their sum.

18

Neural-Symbolic Architectural Axioms: A Manifesto

For instance, given two MNIST images, and , the target sum is 8. A soft logic
constraint representing this addition is:

P (x1)1 ∧ P (x2)2 → Sum(x1, x2, 8),

where P (x1)1 and P (x2)2 represent the truth values of the variables corresponding to the
digits output by the neural network and Sum(x1, x2, 8) is valid if the sum of the two values
sum to eight. Suppose the neural model gnn provides the following outputs:

gnn
()

= {P (0)1 = 0.0, P (1)1 = 0.0, P (2)1 = 0.0, P (3)1 = 0.9, P (4)1 = 0.0,

P (5)1 = 0.0, P (6)1 = 0.0, P (7)1 = 0.0, P (8)1 = 0.1, P (9)1 = 0.0},

gnn
()

= {P (0)2 = 0.0, P (1)2 = 0.0, P (2)2 = 0.0, P (3)2 = 0.0, P (4)2 = 0.0,

P (5)2 = 0.8, P (6)2 = 0.0, P (7)2 = 0.0, P (8)2 = 0.0, P (9)2 = 0.2}.

Gödel fuzzy logic evaluates the satisfaction of the constraint by aggregating the truth values
of all valid digit pairs whose sum equals 8. Using the fuzzy conjunction operator, the overall
satisfaction value is computed as:

ϕsy =
∑

(i,j) : i+j=8

min(P (i)1, P (j)2),

where each pair (i, j) corresponds to digits that sum to 8. Substituting the neural outputs:

ϕsy =min(P (0)1, P (8)2) + min(P (1)1, P (7)2) + min(P (2)1, P (6)2)+

min(P (3)1, P (5)2) + min(P (4)1, P (4)2) + min(P (5)1, P (3)2)+

min(P (6)1, P (2)2) + min(P (7)1, P (1)2) + min(P (8)1, P (0)2)

=min(0.0, 0.0) + min(0.0, 0.0) + min(0.0, 0.0)+

min(0.9, 0.8) + min(0.0, 0.0) + min(0.0, 0.0)+

min(0.0, 0.0) + min(0.0, 0.0) + min(0.1, 0.0)

=0.8.

C.2. Neural-Symbolic Probabilistic Logic

A representative example of the parameter interface (Section 3.2.3) is found in neural-
symbolic probabilistic logic systems, where neural models define the parameters of prob-
abilistic facts (Manhaeve et al., 2021; Xu et al., 2018; Yang et al., 2020). Probabilistic
logic extends classical logic by allowing facts and rules to carry uncertainty in the form
of probabilities. For instance, the statement “Alice smokes” might be represented with a
probability of 0.7, written as 0.7 :: Smokes(Alice). In the NeSy setting, these probabilities
are not fixed but are learned from data and predicted by a neural model.

19

Pryor Getoor

Architecture: Let y denote the target random variables, xsy the observed symbolic
variables, and xnn the neural observations. Let gnn(xnn;wnn) be a neural model parame-
terized by wnn. Its output defines the probabilities of a set of binary facts, which induce
a distribution over possible symbolic worlds w ∈ {0, 1}n:

p(w | gnn(xnn;wnn)) =
n∏

i=1

p(wi | gnn(xnn;wnn)).

This factorization follows from the conditional independence assumption, where each binary
variable wi is modeled independently given the neural input.

The symbolic model ϕsy encodes logical constraints that are used to filter valid worlds.
Each ϕsy(w) ∈ {0, 1} indicates whether world w satisfies the symbolic logic constraints
(i.e., ϕsy(w) = 1 if the world is consistent with the logic, and 0 otherwise).

Inference Scenario: The inference task typically involves computing the probability
that the symbolic constraints are satisfied, which corresponds to the weighted model count :

p(ϕsy = 1 | xnn;wnn) =
∑

w∈{0,1}n
p(w | gnn(xnn;wnn)) · ϕsy(w).

This sums the probability of all possible worlds w where the symbolic model ϕsy(w) returns
true.

Learning Scenario: Learning proceeds by minimizing the negative log-likelihood of
the symbolic constraint being satisfied, leading to the following optimization objective:

L(wnn;xnn) = − log
∑

w∈{0,1}n
p(w | gnn(xnn;wnn)) · ϕsy(w).

This loss encourages the neural model to assign high probability to worlds that satisfy the
symbolic constraints encoded in ϕsy.

Example 9 Consider the MNIST-Addition example discussed above (Example 7), where
the task is to predict the sum of two digits presented as MNIST images. In that example,
the model performs an argmax to choose values deterministically for NeSy inference (i.e.,
predicting the sum). However, if the goal is to train the parameters of the digit classifier
neural model using probabilistic logics, we can use weighted model counting to compute the
probability of the correct sum instead of relying on the non-differentiable argmax.

For instance, given two MNIST images (,), with the correct sum as 8. This means
that the constraint ϕsy is true only when the sum of the digits in world w equals 8. The
images are passed through the neural network gnn, which outputs probability distributions

20

Neural-Symbolic Architectural Axioms: A Manifesto

over the possible digits for each image:

gnn
()

= {P (0)1 = 0.0, P (1)1 = 0.0, P (2)1 = 0.0, P (3)1 = 0.9, P (4)1 = 0.0,

P (5)1 = 0.0, P (6)1 = 0.0, P (7)1 = 0.0, P (8)1 = 0.1, P (9)1 = 0.0},

gnn
()

= {P (0)2 = 0.0, P (1)2 = 0.0, P (2)2 = 0.0, P (3)2 = 0.0, P (4)2 = 0.0,

P (5)2 = 0.8, P (6)2 = 0.0, P (7)2 = 0.0, P (8)2 = 0.0, P (9)2 = 0.2}.

Assuming conditional independence between the digits from each image, the weighted
model count sums the probabilities of pairs of values that satisfy the constraint ϕsy (i.e.,
sum to 8):

p(ϕsy = 1;wnn) =P (0)1 · P (8)2 + P (1)1 · P (7)2 + P (2)1 · P (6)2 + P (3)1 · P (5)2+

P (4)1 · P (4)2 + P (5)1 · P (3)2 + P (6)1 · P (2)2 + P (7)1 · P (1)2+

P (8)1 · P (0)2.

Substituting the probabilities from the neural network outputs:

p(ϕsy = 1;wnn) =(0.0 · 0.0) + (0.0 · 0.0) + (0.0 · 0.0) + (0.9 · 0.8)+
(0.0 · 0.0) + (0.0 · 0.0) + (0.0 · 0.0) + (0.0 · 0.0)+
(0.1 · 0.0)

=0.9 · 0.8 = 0.72.

The loss is then computed as the negative log-likelihood of the constraint being satisfied:

L(wnn) = − log p(ϕsy = 1;wnn)

= − log 0.72 ≈ 0.33.

21

	Introduction
	Related Work
	Architectural Axioms of Integration
	Catalyst Axioms
	Direct Neural Construction
	Programmatic Neural Construction
	Symbolic Extraction

	Interface Axioms
	Gradient-Based vs. Sampling-Based Interfaces
	Variable Interface
	Parameter Interface
	Structure Interface

	Conclusion and Limitations
	Acknowledgments
	Introduction
	NeSy Task Example
	Extended Axiom Examples
	Neural-Symbolic Fuzzy Logic
	Neural-Symbolic Probabilistic Logic

