
UNIVERSITY OF CALIFORNIA

SANTA CRUZ

FOUNDATIONS OF NEURAL-SYMBOLIC AI:
ARCHITECTURE AND DESIGN

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE AND ENGINEERING

by

Connor Pryor

December 2024

The Dissertation of Connor Pryor
is approved:

Professor Lise Getoor, Chair

Professor Leilani Gilpin

Professor Ian Lane

Professor Xin Eric Wang

Professor William Wang

Dean Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Connor Pryor

2024

Table of Contents

List of Figures vii

List of Tables ix

Abstract xi

Dedication xiii

Acknowledgments xiv

1 Introduction 1
1.1 Principled Foundations of Neural-Symbolic AI 3
1.2 Contributions . 4
1.3 Organization . 7

I Neural-Symbolic Axioms of Integration 9

2 Neural Symbolic Architectures with Hard and Soft Constraints 10
2.1 Neural-Symbolic (NeSy) AI . 11
2.2 Hard and Soft Constraints . 13

2.2.1 Random Variables . 14
2.2.2 Hard Constraints . 15
2.2.3 Soft Constraints . 17
2.2.4 Constraint Optimization . 18
2.2.5 Solving Constrained Optimization Problems 20

2.3 NeSy Architectures . 21
2.3.1 Symbolic as Neural Structure . 21
2.3.2 Sampling Neural for Symbolic . 23
2.3.3 Neural as Symbolic Parameter . 26
2.3.4 Neural as Symbolic Variable . 29

iii

II Universal Neural-Symbolic Language 33

3 Unifying NeSy through Energy-Based Models 34
3.1 Neural Symbolic Energy-Based Models as a Unifying Mathematical Frame-

work for NeSy . 35
3.2 NeSy-EBM Modeling Paradigms . 37

3.2.1 Deep Symbolic Variables . 37
3.2.2 Deep Symbolic Parameters . 40
3.2.3 Deep Symbolic Potentials . 41

3.3 Expressing NeSy Approaches via NeSy-EBMs 43
3.3.1 Semantic Loss (SL) . 44
3.3.2 DeepProbLog (DPL) . 47
3.3.3 Logic Tensor Networks (LTNs) . 51

III Neural-Symbolic Design Principles 54

4 Neural Symbolic Inference and Learning 55
4.1 NeSy-EBM Inference . 56
4.2 NeSy Learning Design Principles . 57

4.2.1 Computation Graph vs. Optimization Execution 58
4.2.2 Instance vs. Global Model Construction 60
4.2.3 Decomposed vs. Unified Task Structure 62

4.3 NeSy-EBM Learning . 64
4.3.1 Definition . 64
4.3.2 Learning Losses . 66
4.3.3 Learning Algorithms . 71

4.4 NeSy Learning Design Principles . 75
4.4.1 Distant Supervision Learning . 75
4.4.2 Structure-Informed Learning . 77
4.4.3 Learning with Constraint Loss . 78
4.4.4 Additional Design Guidelines . 80

5 Challenges and Pitfalls of NeSy Modeling Paradigmns, Learning, and
Reasoning 83
5.1 NeSy Modeling Paradigm Pitfalls . 84

5.1.1 Unfixed Deep Symbolic Variables . 84
5.1.2 Deep Symbolic Operations . 86

5.2 NeSy Inference Pitfalls . 87
5.2.1 Reasoning Shortcuts as Unintended Optima 87
5.2.2 Poor Factorization/Decomposition 90

iv

5.2.3 Conditional Independence in NeSy Probabilistic Logics 92
5.3 NeSy Learning Pitfalls . 93

5.3.1 Contextual Label Ambiguity . 93
5.3.2 Energy Loss Degenerate Solutions 95
5.3.3 NeSy Soft Logic Pitfalls . 97

IV A General and Principled Neural-Symbolic Implementation 100

6 Deep Hinge-Loss Markov Random Fields and Neural Probabilistic Soft
Logic 101
6.1 Deep Hinge-Loss Markov Random Fields . 102

6.1.1 Hinge-Loss Markov Random Fields 102
6.1.2 Deep Hinge-Loss Markov Random Fields 103

6.2 Inference and Learning in Deep Hinge-Loss Markov Random Fields 105
6.2.1 MAP Inference . 106
6.2.2 Learning . 109

6.3 Syntax and Semantics of Neural Probabilistic Soft Logic 110
6.4 Defining NeSy-EBM Modeling Paradigms using NeuPSL 119

6.4.1 Deep Variables . 119
6.4.2 Deep Weights . 121
6.4.3 Deep Rules . 121

6.5 NeuPSL System . 123
6.5.1 System-Level Workflow . 123
6.5.2 Shared Memory Mechanism . 125

7 Empirical Analysis 127
7.1 Datasets and Models . 129
7.2 NeSy Inference and Learning . 137

7.2.1 Inference . 137
7.2.2 Learning . 142
7.2.3 Zero-Shot Learning . 147

7.3 Comparing NeSy Approaches . 148
7.3.1 Overview of NeSy Models . 148
7.3.2 MNIST Addition . 150
7.3.3 MNIST Addion: Overlap . 152
7.3.4 Citeseer and Cora . 156
7.3.5 Synthetic Mixture of Symbolic Experts 158

7.4 NeSy Pitfalls and Mitigation Strategies . 162
7.4.1 Reasoning Shortcuts . 163
7.4.2 Contextual Label Ambiguity . 165

v

7.4.3 Energy Loss Degenerate Solutions: 168
7.4.4 Soft Logic Pitfalls in NeuPSL . 169

8 Related Work 171
8.1 Neural-Symbolic Approaches . 171
8.2 Taxonomies of NeSy Approaches . 174
8.3 Energy-Based Models (EBMs) . 177

9 Future Work and Limitations 180
9.1 Neural-Symbolic Axioms of Integration: . 180
9.2 Universal Neural-Symbolic Language . 182
9.3 Neural-Symbolic Design Principles: . 183
9.4 A General Neural-Symbolic Implementation 184

10 Conclusion 186

A Extended Model Details 200
A.1 NeuPSL Symbolic Constraints . 200

A.1.1 MNIST-Add1 . 201
A.1.2 MNIST-Add2 . 202
A.1.3 Visual Sudoku . 205
A.1.4 Pathfinding . 207
A.1.5 Citation Network . 208
A.1.6 RoadR . 209
A.1.7 Zero-Shot Object Navigation . 211
A.1.8 Dialog Structure Induction . 211
A.1.9 Synthetic Mixture of Experts . 215
A.1.10 Logic Deduction . 216

vi

List of Figures

3.1 A neural-symbolic energy-based model. 36
3.2 A deep symbolic variables model for solving a Sudoku board constructed

from handwritten digits. The neural component classifies handwritten digits.
Then, the symbolic component uses the digit classifications and the rules of
Sudoku to fill in the empty cells. 39

3.3 A deep symbolic parameters model for citation network node classifica-
tion. The symbolic component is a mixture of experts model that combines
weighted arithmetic constraints. The neural component uses paper content
to weigh the importance of satisfying an arithmetic constraint. 41

3.4 A deep symbolic potential model for answering questions about a set of
objects’ order described in natural language. The neural component is an
LLM that generates syntax to create a symbolic potential. The symbolic
potential is used to perform deductive reasoning and answer the question.
See Example 3.2.3 for details. 42

4.1 A stochastic NeSy-EBM. The symbolic weights and the neural component
parameterize stochastic policies. A sample from the policies is drawn to
produce arguments of the symbolic component. 74

7.1 Average AMI for MultiWoZ, SGD Synthetic, and SGD Real (Standard Gen-
eralization, Domain Generalization, and Domain Adaptation) on three con-
strained few-shot settings: 1-shot, proportional 1-shot, and 3-shot. 145

7.2 Example of overlapping MNIST images in MNIST-Add1. On the left, dis-
tinct images are used for each zero. On the right, the same image is used
for both zeros. 153

7.3 Average test set accuracy and standard deviation on MNIST-Add datasets
with varying amounts of overlap. 154

7.4 Inference and learning time for MNIST-Add experiments. 155
7.5 Rules, symbolic meaning, and graphical representation used to generate fea-

tures and labels for the synthetic datasets. 159

vii

7.6 Visual Sudoku Puzzle Classification Reasoning Shortcut Models. 164
7.7 Citeseer and Cora learned models with and without parameter simplex con-

straints. 169

A.1 NeuPSL MNIST-Add1 Symbolic Model . 201
A.2 NeuPSL MNIST-Add2 Symbolic Model . 203
A.3 NeuPSL Visual Sudoku Symbolic Model . 206
A.4 NeuPSL Pathfinding Symbolic Model . 207
A.5 NeuPSL Citation Network Symbolic Model 208
A.6 NeuPSL RoadR Object Detection Symbolic Model 209
A.7 NeuPSL Zero Shot Object Navigation Symbolic Model 210
A.8 NeuPSL SGD Dialog Structure Induction Symbolic Model 212
A.9 NeuPSL MultiWoZ Dialog Structure Induction Symbolic Model 213
A.10 NeuPSL Synthetic Mixture of Experts Symbolic Model 216
A.11 NeuPSL Logic Deduction Prompt for Generating Symbolic Model 217

viii

List of Tables

2.1 Fuzzy/Soft Logic Constraints for NEGATION, AND, and OR. 29

7.1 Digit accuracy and constraint satisfaction consistency of the ResNet18 and
NeuPSL models on the MNIST-Add-k and Visual-Sudoku datasets. 139

7.2 Accuracy of finding a minimum cost path (Min. Cost Acc.) and consis-
tency in satisfying continuity constraints (Continuity) of the ResNet18 and
NeuPSL models on the Pathfinding dataset. 139

7.3 Object detection F1 and constraint satisfaction consistency of the DETR
and NeuPSL models on the RoadR dataset. 139

7.4 Node classification accuracy of the SGC and NeuPSL models on the Citeseer
and Cora datasets. 140

7.5 Comparison of accuracy in answering logical deduction questions using two
large language models, GPT-3.5-turbo and GPT-4 [98], across three meth-
ods: Standard, Chain of Thought (CoT), and NeuPSL. 141

7.6 Comparison of success rate (SR) and success rate weighted by inverse path
length (SPL) in zero-shot object navigation on MP3D [22], HM3D [106],
and RoboTHOR [40] benchmarks, across three methods: CLIP on Wheels
(CoW) [54], ZSON [79], and NeuPSL (ESC) [145] 141

7.7 Test set accuracy and standard deviation on MNIST-Add experiments. Re-
sults reported here are run and averaged over ten splits. 143

7.8 Digit accuracy of the ResNet18 models trained with varying levels of super-
vision. 146

7.9 Test set performance on all datasets. All reported results are averaged over
10 splits. The highest-performing methods per dataset and learning setting
are bolded. A random baseline has AMI zero and class-balanced accuracy
equal to inverse class size. 147

7.10 Test set accuracy and standard deviation on MNIST-Add. Results reported
here are averaged over the same ten splits. Best results and those within
one standard deviation of the best are in bold. 150

ix

7.11 Test set accuracy and inference runtime in seconds on two citation network
datasets. 157

7.12 Average categorical accuracy on the highest correlation between features and
labels for OH + OH, G + OH, and G + G data settings. Best-performing
methods are in bold. 160

7.13 Average categorical accuracy on varying covariance matrices used for syn-
thetic data generation in the G + OH and G + G data settings. Higher
covariance results in a lower correlation between features and labels. Best-
performing methods are in bold. 161

7.14 Test set final objective and puzzle and digit accuracy for NeuPSL models
on visual sudoku puzzle classification with and without a reasoning shortcut
mitigation. 165

7.15 Test set digit accuracy predicted by the neural and symbolic components for
NeuPSL models on visual sudoku with and without ambiguous local context. 167

7.16 Test set accuracy for the NeuPSL models with and without the zeroed
weights degenerate solution. 168

7.17 Test set accuracy for the NeuPSL models with and without a pretrained
backbone. 170

x

Abstract

Foundations of Neural-Symbolic AI:

Architecture and Design

by

Connor Pryor

Deep neural networks have become synonymous with artificial intelligence, playing a cru-

cial role across industry, academia, and everyday life. Despite their impressive capabilities,

these models still exhibit fundamental limitations, including perpetuating human bias, a

lack of robust prediction guarantees, and unreliable explanations. In response to these

limitations, the past decade has seen a revival of symbolic approaches integrated with the

data-driven strengths of neural networks, resulting in a broad array of neural-symbolic

(NeSy) methods [16, 32, 33, 87]. While promising, the field of neural-symbolic AI is still in

its early stages, with many current methods conflating the distinct processes of inference,

learning, and architectural design. This lack of separation makes it difficult to compare

and evaluate the effectiveness of different approaches across various tasks. NeSy AI needs

to establish a principled foundation that (1) provides the axioms of neural-symbolic inte-

gration, (2) defines a universal neural-symbolic language, (3) categorizes neural-symbolic

design principles, and (4) collects a set of general and principled implementations. In this

dissertation, I aim to develop a strong foundation for NeSy AI, starting with clear architec-

tural axioms for integrating symbolic and subsymbolic components framed through hard

and soft constraints.

My contributions are fivefold: (1) I address the conflation of inference, learning,

and the neural-symbolic interface by categorizing approaches through key architectural ax-

ioms, providing a clear base for NeSy research. (2) I formalize these architectural choices

through a unifying mathematical framework, enabling the definition and comparison of

most NeSy approaches. (3) Leveraging this formalization, I identify effective learning

strategies and common pitfalls that impact a wide range of NeSy approaches, offering ac-

tionable insights for improving their design and performance. (4) Based on these insights,

I develop a novel, practical NeSy implementation that supports most architectural choices

and learning strategies. (5) I validate this implementation across multiple domains, includ-

ing graph node labeling, image classification, autonomous event detection with safety re-

quirements, complex natural language question answering, and dialog structure induction.

These contributions bring neural-symbolic AI closer to a unified foundation by providing

the terminology, mathematical tools, and design principles necessary to create scalable,

interpretable, and adaptable systems that effectively integrate neural and symbolic reason-

ing.

To my family for their patience,

my friends for their encouragement,

and my colleagues for their support.

xiii

Acknowledgments

The work of a Ph.D. student is shaped, first and foremost, by their advisor, alongside the

support of friends, colleagues, and family. My journey has been no exception. I would like

to begin by expressing my deepest gratitude to my advisor, Lise Getoor, for her unwavering

guidance, support, sacrifices, and her remarkable ability to inspire curiosity in research.

Lise has profoundly influenced both my growth as a researcher and my passion for arti-

ficial intelligence and machine learning. My Ph.D. journey began in her Introduction to

AI course, where my Pac-Man agent won the Capture the Flag competition. While I once

believed this achievement might have played a role in securing a place in her lab, I now

realize that she values passion, dedication, and hard work above all else. Throughout my

Ph.D., Lise has been instrumental in shaping my approach to research. She taught me

how to craft high-quality papers and consistently emphasized the importance of grounding

research in rigorous results and sound theory. Her mentorship extended far beyond tech-

nical guidance, providing a constant source of encouragement, support, and motivation. I

am profoundly grateful for everything she has done to help me succeed, and I am excited

about the opportunities that lie ahead. While I will continue striving to be less pessimistic

about research, I suspect my tendency to ask tough questions—something Lise has always

modeled—will remain a defining trait of both me and my research approach.

Proper research is never done in a vacuum; it thrives through collaboration and

the support of a dedicated community. I am deeply grateful to all the collaborators I have

had the privilege of working with over the years. I was particularly fortunate to work

alongside Eriq Augustine, one of the most brilliant coding researchers I have ever met.

His technical expertise and relentless commitment to excellence had an immeasurable im-

pact on both the lab’s work and my personal development. Reflecting on my time in the

lab, it’s clear how profoundly Eriq influenced my coding style, efficiency, and attention

to detail—especially through his “encouragement” to follow good coding practices via his

advocacy of Git version control. His impact on me extended far beyond technical skills;

Eriq has been an exceptional colleague, a valued mentor, and a dear friend. Alongside

Eriq, I had the privilege of working with Charles Dickens, a brilliant theoretical researcher

whose work has pushed the boundaries of optimization in neural-symbolic systems. Some

xiv

of my most cherished moments during my Ph.D. stem from the countless hours we spent

at the whiteboard, where we “solved” NeSy (at least in theory), deciphered cryptic ap-

proaches in the field, and debated the broader implications of our research. Charles and I

faced the challenges of the Ph.D. journey together, and he has become not only a trusted

collaborator but also a close friend. Some of my fondest memories during my Ph.D. are of

the times I spent with both Eriq and Charles—not necessarily doing active research but

brainstorming ideas over drinks or playing billiards. I would also like to extend special

thanks to Yatong Chen, Varun Embar, and Sriram Srinivasan. While our collaboration

on research was limited, our conversations about life, the future, and myriad other topics

provided invaluable perspective and support throughout this journey. Further, I want to

express my gratitude to the entire LINQS Lab. I feel extraordinarily lucky to have been

part of such a kind, supportive, and intellectually stimulating group of people. The com-

munity fostered within the lab has been instrumental in shaping both my research and

my growth as a person. Finally, I would like to extend my thanks to the many great

researchers I have met throughout my research journey: Alon Albalak, Samantha An-

drzejaczek, Samy Badreddine, Tania Bedrax-Weiss, Shresta B.S., William Cohen, Artur

d’Avila Garcez, Kai-Wei Chang, Johnnie Chang, Wenhu Chen, Alexandra DiGiacomo,

Shobeir Fakhraei, Golnoosh Farnadi, Changyu Gao, Eleonora Giunchiglia, Vihang God-

bole, Frank van Harmelen, Pegah Jandaghi, Dhawal Joharapurkar, Seyed Mehran Kazemi,

Pigi Kouki, Emile van Krieken, Fabrice Kurmann, Caleb Levy, Jeremiah Zhe Liu, Jaron

Maene, Alex Miller, Jay Pujara, Luc de Raedt, Deepak Ramachandran, Rishika Singh,

Lennert de Smet, Dhanya Sridhar, Niharika Srivastav, Andrew Thach, Jason Ting, Sabina

Tomkins, Yi-Lin Tuan, Guy Van den Broeck, Vibin Vijay, Stephen Wright, Quan Yuan,

Elena Zheleva, Kaiwen Zhou, and many others.

While research is never done in a vacuum, it has a way of consuming one’s time,

energy, and mental state. I am endlessly grateful to my incredible fiancée, Maria, my

best friend, Dawson, and my cat, Ashton, for ensuring it didn’t consume me completely.

Their constant patience, encouragement, and support over the past six years have been

the foundation that kept me grounded. Maria, it has been an amazing journey growing

together as a couple while we both build our careers. She may not realize just how much

xv

I notice and appreciate everything she does—not just the big things, like standing by me

through challenging times, but also the countless little things: reminding me to eat when

I would otherwise skip meals, pulling me out of a research-induced haze with a silly joke,

encouraging me to pursue neglected hobbies, and so much more. I am so proud of all

she has accomplished in her career and life, and I am beyond excited for the future we

are building together. And to think—we even tried to get married three days before my

defense! Dawson has been a source of constant encouragement and a great listener, always

willing to hear me ramble about research with genuine interest and thoughtful advice. His

empathy and support have helped me keep my cool, and his insights often encouraged

me to think about the broader impact I want to have on my life and the lives of others.

Watching him complete his graduate studies and secure a job in his field was both inspiring

and reassuring during times when I felt uncertain about my own career. I am so proud

of all he has accomplished and look forward to exploring new hobbies and projects with

him now that I have more time. Outside of my Ph.D., the most meaningful milestones in

my life have been shared with these two—buying and renovating a home, hosting events,

planning weddings, and building our careers. I couldn’t have asked for a better duo to

share this journey with, and I am incredibly grateful for their presence in my life.

Research can never be accomplished without taking breaks and relaxing the mind.

If it had not been for all of my friends and family’s support during the times I wasn’t work-

ing, research would have stagnated. Special thanks to my parents, Anna and Mark, who

have been the kindest and most patient people a Ph.D. student could ask for. The foun-

dation they built—instilling strong morals, a deep curiosity for knowledge, and a sense of

perseverance—has guided me through this Ph.D. Furthermore, their understanding of the

time-consuming nature of a Ph.D., along with their acceptance of my occasional absence,

has been immeasurably important to the success of this journey. Additionally, thanks to

my brother, Austin, he has always had a way of pulling me out of my bubble. Some of

the fondest memories of my Ph.D. come from the time spent with him—whether watching

movies, rocking out at concerts, attending events, or venting about work. Those moments

provided both therapy and joy. Thank you to the rest of my family: Dolores, Christine,

Kevin, Greg, Judy, Taylor, Carly, Dorothy, Lisa, Alessandra, Gianni, and Jim, as well as

xvi

all the members of my extended family. Finally, I want to give special thanks to a few

friends: Jon, Andrew, Huimee, Marc, Justin, Lauren, Connor, Luz, Jonatan, Mary, Shir,

Shay, Reem, Thomas, Sylvester, Zoe, Jay, Mark, Karen, Charlie, and Peter.

Lastly, I would like to extend my gratitude to my dissertation reading committee:

Dr. Lise Getoor, Dr. Leilani Gilpin, Dr. Ian Lane, Dr. Xin Eric Wang, and Dr. William

Wang. Your valuable time, insightful feedback, and thoughtful suggestions have signifi-

cantly enhanced the quality and depth of my dissertation. Thank you for your support

and guidance throughout this process.

Portions of this dissertation were supported by National Science Foundation

grants CCF-2023495; and an unrestricted gift from Google. The U.S. Government is au-

thorized to reproduce and distribute reprints for governmental purposes, notwithstanding

any copyright annotation thereon. Disclaimer: The views and conclusions contained herein

are those of the author and should not be interpreted as necessarily representing the official

policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the U.S.

Government.

xvii

Chapter 1

Introduction

In recent years, in the eyes of mainstream media and many researchers, deep

neural networks have become the cornerstone of artificial intelligence, achieving state-

of-the-art performance across various domains, such as natural language processing and

computer vision. Despite the impressive achievements, researchers have identified several

critical limitations. Neural models typically rely on vast amounts of high-quality train-

ing data, operate opaquely in their decision-making processes, and struggle with spurious

correlations rather than learning accurate generalizations. Additionally, their black-box

nature makes them unsuitable for fields where interpretability and reasoning are crucial,

such as healthcare, autonomous driving, and legal decision-making. These issues raise con-

cerns about the safety, trustworthiness, and ethical implications of deploying these types

of machine learning models in real-world, high-stakes environments.

In an effort to overcome these shortcomings, there has been a growing interest in

methods combining neural models’ pattern recognition capabilities with structured sym-

bolic reasoning approaches, which are well-studied and have a long history in AI. Integrat-

ing neural networks with symbolic reasoning is often referred to as neural-symbolic (NeSy)

AI [16, 32, 33, 55, 87]. It seeks to leverage the strengths of both paradigms: neural net-

works’ adaptability and data-driven learning and symbolic systems’ logical, interpretable

reasoning. This integration holds promise for addressing some of the inherent weaknesses

of purely subsymbolic approaches by ensuring that predictions are not only accurate but

1

also logically sound and interpretable.

The potential benefits of neural-symbolic integration are widely recognized, yet

the field remains nascient. Despite this, it draws upon a rich history of research of separate

symbolic and subsymbolic learning and reasoning, spanning decades. One of the primary

challenges, however, lies in the lack of clarity regarding the “correct” method for integrat-

ing these paradigms. This ambiguity has given rise to a diverse array of NeSy methods,

systems, and loss functions [3, 4, 5, 6, 7, 8, 13, 14, 27, 28, 30, 31, 36, 42, 46, 47, 49, 57,

64, 65, 78, 81, 85, 86, 88, 89, 90, 94, 99, 103, 108, 111, 114, 116, 117, 119, 122, 125, 126,

128, 132, 136, 138, 140, 141]. Further, many of these approaches conflate the distinct pro-

cesses of reasoning, learning, and architectural design within neural-symbolic integration,

leading to a lack of conceptual clarity. As a result, systems are often ad hoc, tailored to

specific problems, and challenging to generalize. Furthermore, approaches rooted in similar

theoretical foundations are frequently presented as novel, differentiated only by syntactic

variations. This fragmentation complicates efforts to compare, evaluate, and synthesize

insights across the field.

To address the ambiguity, conflation, and sheer volume of approaches in neural-

symbolic integration, there has been a concerted effort within the community to develop

taxonomies that group and organize these systems. These taxonomies span various dimen-

sions, including the representation of symbolic knowledge [16, 70, 87, 127], the interaction

between neural and symbolic components [12, 16, 32, 34, 37, 43, 44, 87, 15], learning

and reasoning [32, 43, 45, 87, 15], application domains [14, 17, 43, 81, 87, 142], common

shortcuts [82, 83, 84], and system languages [72]. They also bridge connections to related

fields such as statistical relational learning [87], graph neural networks [73], and knowledge

graphs [143]. While these taxonomies provide valuable structure and insight, they address

only the symptoms of a larger underlying challenge: the need for principled foundations

for neural-symbolic AI. Such foundations are essential for unifying the field, fostering com-

munication within and beyond NeSy, and preventing the redundant reinvention of ideas.

2

1.1 Principled Foundations of Neural-Symbolic AI

Despite the rapid expansion of the NeSy field, a principled foundation for neural-

symbolic AI remains a critical necessity. I propose four key milestones to establish such

a foundation: (1) axioms of neural-symbolic integration, (2) universal neural-symbolic lan-

guage, (3) neural-symbolic design principles, and (4) general and principled implemen-

tations. Each milestone builds upon the previous one, representing a cohesive pathway

toward a robust and unified foundation for neural-symbolic AI that is more accessible to

the broader machine learning community and new members.

Neural-Symbolic Integration Axioms: Neural-symbolic AI must first establish the

foundational axioms of integration. Rather than beginning through the design of neural-

symbolic systems, it is crucial to begin with how neural and symbolic components can

effectively integrate. This step is pivotal because NeSy AI benefits from decades of re-

search in standalone neural and symbolic paradigms, including theory, inference, learning,

systems, and applications. By establishing principled integration axioms, the field can

build on these rich foundations in a systematic and structured way. At its core, NeSy AI

requires a motivating and intuitive starting point, allowing the formalism to evolve from

this foundational base naturally.

Universal Neural-Symbolic Language: Building upon the axioms of NeSy integra-

tion, the next critical milestone is establishing a universal neural-symbolic language capable

of formally representing these axioms. This language would serve as a unifying framework

for articulating integration principles, enhancing clarity and precision within the NeSy

community, and facilitating effective communication across the broader machine-learning

field. Moreover, this addresses a persistent challenge in the field: approaches rooted in sim-

ilar theoretical foundations often appear novel due to differences in syntax. Standardizing

representation mitigates redundancy, minimize the need for papers to repeatedly restate

foundational concepts, and allow researchers to concentrate their efforts on advancing the

field.

3

Neural-Symbolic Design Principles: With a universal language for describing NeSy

AI systems in place, the next step is to define and organize NeSy design principles. These

principles encompass three key areas: (1) losses and algorithms that drive the reasoning

and learning processes, (2) implementation strategies and motivating tasks that inform

practical applications and system design, and (3) common pitfalls and mitigation strategies

to address challenges often encountered in neural-symbolic integration. Together, these

design principles form a practical guideline for effectively designing novel neural-symbolic

approaches and applications.

General and Principled Implementations: The final milestone is the development

of general and expressive NeSy frameworks that build upon the foundations established by

the previous milestones. These frameworks should be grounded in the theoretical represen-

tation and integration axioms, ensuring consistency and coherence across implementations.

Within the NeSy community, reaching a consensus on which principled approaches should

serve as foundational is essential. Future work can then either align with these founda-

tional frameworks, identifying itself as a variation, or demonstrate sufficient distinction to

justify further implementation. This alignment would enable shared design principles, such

as standardized losses and algorithms for learning processes, and facilitate addressing chal-

lenges through common mitigation strategies. Ultimately, principled implementations will

streamline research efforts, enhance comparability, and accelerate progress in advancing

NeSy systems.

1.2 Contributions

The aspects of my research are aligned with the foundational aspect required for

principled neural-symbolic AI. Below, I provide a brief overview of these contributions,

with further specific contributions detailed in subsequent chapters.

Neural-Symbolic Integration Axioms: While neural-symbolic research consistently

utilizes foundational neural-symbolic integration techniques, I argue that the community

4

lacks a cohesive and explicitly defined set of axioms for integration. To address this, mo-

tivated by current work [32, 44, 87], I take a first step in defining four key architectural

axioms that are current cornerstones for NeSy research: (1) Symbolic as Neural Structure:

the neural architecture is defined by a symbolic model’s structure, where the system re-

mains subsymbolic and learns the relationships through data. (2) Sampling Neural for

Symbolic: the neural architecture performs a non-differentiable sampling process that can

represent random variables, parameters, or structures within a symbolic model. (3) Neural

as Symbolic Variable: the neural architecture outputs are treated as differentiable random

variables within a symbolic structure, enabling direct influence over the variables used

in the prediction program. (4) Neural as Symbolic Parameter : the neural architecture

outputs are treated as differentiable parameters within a symbolic structure, allowing the

neural model to exert indirect influence on random variables or interact with other compo-

nents of the symbolic model—such as parameters associated with individual constraints.

In addition to these four key architectural axioms, given the community’s current emphasis

on logic-based NeSy approaches, I provide detailed examples for each architectural axiom

grounded in symbolic logic, offering familiar and tangible scenarios to elucidate these prin-

ciples. Expanding and refining this set of axioms is one of the most critical next steps for

advancing and solidifying the foundations of NeSy research.

Universal Neural-Symbolic Language: With the axioms of integration specified as

architectural choices, the next step is to define a universal language to formalize and

foster communication within and outside the NeSy community. While recent work has fo-

cused on creating universal syntaxes for logic-based systems [72], a universal mathematical

framework is still needed to unify the practical implementations of NeSy approaches. To

facilitate that need, I introduce Neural-Symbolic Energy-Based Models (NeSy-EBMs) [44,

45, 103], as that unifying mathematical framework which combines neural and symbolic

components through energy functions. The neural component can represent a wide range of

neural architecture, from simple multi-layer perceptrons to more complex models, such as

large language models, while the symbolic component can encompass complex optimization

processes. However, a general definition alone is insufficient to formalize the architectural

5

axioms introduced earlier. To bridge this gap, I present three critical neural-symbolic mod-

eling paradigms[44]—deep symbolic variables (DSVar), deep symbolic parameters (DSPar),

and deep symbolic potentials (DSPot)—which serve as the theoretical building blocks for

constructing systems that embody the architectural axioms. Finally, to illustrate the prac-

ticality and unifying power of NeSy-EBMs, I demonstrate how several prominent NeSy

approaches can be naturally expressed within this framework [103]. This not only high-

lights the framework’s flexibility but also reveals deeper connections and insights into the

theoretical and practical formulations of existing methods.

Neural-Symbolic Design Principles: With the establishment of NeSy-EBMs as a uni-

versal mathematical framework, the next step toward a robust foundation for NeSy involves

categorizing and defining a comprehensive set of design principles commonly encountered

in neural-symbolic systems. These principles serve as a structured roadmap for developing

and implementing practical NeSy approaches. For this milestone, I present inference and

learning techniques defined with NeSy-EBMs [45], applicable to systems that align with

this framework and conform to specific assumptions. Through this, I detail five inference

formulations addressing common tasks and outline four learning techniques [45], including

one for separate neural and symbolic learning and three for joint parameter learning. While

much of the formal proofs and theory are contributions of my collaborator Charles, they are

presented here to offer a comprehensive view of NeSy design principles. For further details,

I direct readers to his seminal work [43]. In addition to tasks and techniques, I empha-

size three critical reasoning design decisions: computation graph versus optimization-based

execution, instance versus global model construction, and decomposed versus unified task

structures. Furthermore, on the learning side, I categorize a collection of training design

patterns and guidelines: distant supervision learning, structure-informed learning, learning

with constraint loss, practical NeSy learning tasks, pre-training strategies, and post-training

use-cases. Finally, I present a set of prevalent pitfalls: pitfalls in modeling paradigms,

pitfalls in inference, and pitfalls in learning.

6

General and Principled Implementations: Finally, I advance the development of

general and principled NeSy implementations by introducing Neural Probabilistic Soft

Logic (NeuPSL) [103], a highly expressive and efficient framework for constructing NeSy-

EBMs built on the well-studied probabilistic programming language Probabilistic Soft

Logic [11]. To establish NeuPSL as a principled framework, I begin by extending the

underlying undirected graphical representation of hinge-loss Markov random fields to deep

hinge-loss Markov random fields. Building on this, I define three distinct NeuPSL for-

mulations aligned with the DSVar, DSPar, and DSPot modeling paradigms [44], ensur-

ing alignment with the architectural axioms and theoretical constructs outlined earlier.

To demonstrate NeuPSL’s generality and versatility, I showcase its practical applicability

across nine diverse data settings, tackling real-world challenges such as event detection in

autonomous vehicles, dialog structure induction [104], pathfinding, and logic-driven ques-

tion answering [44].

1.3 Organization

• Part I: Neural-Symbolic Axioms of Integration provides the foundational back-

ground on neural-symbolic methods, defines the concepts of hard and soft constraints,

and introduces the four key architectural axioms (Chapter 2).

• Part II: Universal Neural-Symbolic Language formally defines Neural-Symbolic

Energy-Based Models (NeSy-EBMs), outlines the associated modeling paradigms,

and reformulates prominent NeSy approaches within this language (Chapter 3).

• Part III: Neural-Symbolic Design Principles formalizes NeSy-EBM inference

and learning by detailing algorithms, losses, and strategies (Chapter 4) and catego-

rizes a set of prominent NeSy pitfalls, offering insights into their causes and mitiga-

tions (Chapter 5).

• Part IV: Implementation and Empirical Analysis introduces NeuPSL, a prac-

tical method for implementing a collection of NeSy-EBM modeling paradigms and

architectural axioms (Chapter 6), and presents an extensive empirical evaluation,

7

including a study of design choices, a comparison of NeSy approaches, and demon-

strations of pitfalls and learning strategies (Chapter 7).

• Finally, Chapter 8 presents related work, Chapter 9 discusses limitations and future

directions for neural-symbolic research, and Chapter 10 concludes.

8

Part I

Neural-Symbolic Axioms of

Integration

9

Chapter 2

Neural Symbolic Architectures with Hard

and Soft Constraints

With decades of research dedicated to separate neural and symbolic theories [33,

34, 32], I argue that the foundation of neural-symbolic AI should not begin with the

development of individual syntax or theories. Instead, it should start with axioms of

neural-symbolic integration, i.e., principles that define how neural and symbolic compo-

nents should interact. Establishing these axioms is fundamental, as they provide a solid

base from which NeSy methods can draw on the well-established theories already devel-

oped. For instance, the subsequent chapter (Chapter 3) builds upon the Energy-Based

Model theory [74] to formalize a universal mathematical language for NeSy. Therefore, in

this chapter, I propose a set of architectural axioms, which establish the foundational prin-

ciples for how subsymbolic and symbolic components interface. These axioms are designed

to be general and modular, ensuring they act as the foundation for a plethora of NeSy

approaches and provide the groundwork for future exploration and integration.

The organization of this chapter is as follows: Section 2.1 offers a brief history

of NeSy AI, outlines the expansive scope of the field, and introduces a running example

that will serve as a reference throughout the chapter. Section 2.2 presents the necessary

background and notation, including the formalization of random variables, hard and soft

constraints, and methods for constrained optimization. Building on this foundation, Sec-

10

tion 2.3 introduces the four proposed architectural axioms, complete with detailed examples

rooted in logic-based NeSy approaches, providing a concrete and familiar framework for

practical implementation.

2.1 Neural-Symbolic (NeSy) AI

The promise of integrating neural and symbolic methods to leverage their com-

plementary strengths has been a driving force in artificial intelligence (AI) research for

decades. Neural-symbolic (NeSy) AI, as a field, has emerged from this aspiration, growing

steadily over the past two decades with regular workshops since 2005 [96] and its first

dedicated conference in 2024 [97]. At its core, NeSy research aims to develop algorithms

and architectures that seamlessly combine neural learning and symbolic reasoning [7, 14,

28, 32, 33, 34, 81, 103, 138, 141].

The origins of NeSy AI can be traced back to the resurgence of neural networks

during the 1980s and 1990s, a period marked by debates about the relative merits of

symbolic versus neural approaches to AI. Patrick Winston (1991) captured this dichotomy

and the potential for synthesis in his reflection:

“Today, some researchers who seek a simple, compact explanation hope that
systems modeled on neural nets or some other connectionist idea will quickly
overtake more traditional systems based on symbol manipulation. Others be-
lieve that symbol manipulation, with a history that goes back millennia, re-
mains the only viable approach. ... Instead, ... AI must use many approaches.
AI is not like circuit theory and electromagnetism. There is nothing wonder-
fully unifying like Kirchhoff’s laws are to circuit theory or Maxwell’s equations
are to electromagnetism. Instead of looking for a ‘right way,’ the time has
come to build systems out of diverse components, some connectionist and some
symbolic, each with its own diverse justification.”[93, page 35]

While the NeSy community has made significant strides in recent years, much of the

progress has been fragmented, driven by diverse goals and assumptions rather than a

unified foundation. This lack of cohesion has resulted in a proliferation of methods, many

of which lack clear definitions or shared principles. Consequently, NeSy research today

represents a patchwork of principled approaches, often created from some well-established

11

system such as ProbLog. Furthermore, by deriving NeSy from a systems approach it has

become challenging to formalize what defines a neural-symbolic method. For example,

some argue that a NeSy method must incorporate symbolic knowledge with formal syntax

and semantics akin to logical systems, while others extend the definition to include more

flexible syntaxes, such as natural language. This thesis adopts a broad but structured

perspective on NeSy systems:

A neural-symbolic method incorporates human-designed knowledge into a model’s
architecture, data processing, or predictions.

For instance, even the process of averaging information in a Graph Neural Network (GNN)

[111] can be seen as a symbolic operation at a fundamental level, as it reflects a rule-based

aggregation of information from graph nodes. This view extends to other neural networks,

such as Convolutional Neural Networks (CNNs) [75] and Attention Networks [129], which

incorporate symbolic components through their inductive biases. In CNNs, the inductive

bias assumes spatial locality in data, and attention networks employ an inductive bias that

emphasizes relationships between all input elements. At its core, this suggests that only

pure, one-layer dense networks lack such explicit symbolic structures, relying purely on

data-driven learning without incorporating human-designed biases.

Given this generously broad interpretation, NeSy systems could, in principle,

encompass a significant portion of the neural network literature. However, such a broad

definition risks undermining the concept’s utility by making it overly inclusive. To maintain

clarity and focus, this work narrows its scope to architectural choices that emphasize a

clear separation between subsymbolic and symbolic components, even as the architectural

axioms introduced later in this chapter provide the flexibility to accommodate symbolic

inductive biases within neural methods. With this foundation established, the following

introduces a canonical neural-symbolic task that has become a standard reference within

the community.

Example 2.1.1. MNIST-Addition [81] is a canonical neural-symbolic problem that involves

predicting the sum of two digits, each represented as an MNIST image. In this setup, the

neural component, gwnn, parameterized by wnn ∈ Wnn, serves as a digit classifier. It takes

12

an MNIST image as input and outputs a distribution over possible digits, i.e., {0, · · · , 9}.
The symbolic component is an addition constraint, C(·, ·). Inference/prediction in this

context involves first passing the images through the digit classifier to obtain a distribution,

passing this information to the symbolic component, and then solving the sum.

Note 2.1.1. The definition of the neural-symbolic system depends on how the neural out-

puts are integrated into the symbolic constraint, how the constraint itself is formulated, and

the specific inference process used to solve it.

For example suppose the addition (+ = 8). The images and are

given to the neural model gwnn to produce an output:

gwnn

()
= {P (0)1 = 0.0, P (1)1 = 0.0, P (2)1 = 0.0, P (3)1 = 0.9, P (4)1 = 0.0,

P (5)1 = 0.0, P (6)1 = 0.0, P (7)1 = 0.0, P (8)1 = 0.1, P (9)1 = 0.0},

gwnn

()
= {P (0)2 = 0.0, P (1)2 = 0.0, P (2)2 = 0.0, P (3)2 = 0.0, P (4)2 = 0.0,

P (5)2 = 0.8, P (6)2 = 0.0, P (7)2 = 0.0, P (8)2 = 0.0, P (9)2 = 0.2}.

Then to perform the addition, suppose the argmax is taken such that the addition is in

integer values:

C
(
gwnn

()
, gwnn

())
= arg max

(
gwnn

())
+ arg max

(
gwnn

())
= 3 + 5 = 8

Note 2.1.2. Learning in this setting is influenced by several factors, such as the type

of ground truth data available, the differentiability of the symbolic component, and the

method used to integrate the neural distribution into the symbolic reasoning process. A

common approach involves using the ground truth sum within a differentiable NeSy system,

allowing gradients to propagate from the symbolic component to the subsymbolic component.

Examples of learning processes applied to this scenario will be discussed in Section 2.3.

2.2 Hard and Soft Constraints

This section presents the essential notation used throughout the remainder of

this dissertation, covering the concepts of random variables, hard and soft constraints, and

13

constrained optimization. Readers already familiar with these foundational concepts may

wish to proceed directly to the subsequent section on NeSy architectures (Section 2.3).

2.2.1 Random Variables

This dissertation explores various tasks, problems, and representations that re-

quire reasoning about uncertainty and handling different types of events. In the context of

probabilistic models, these events are represented using random variables, which provide a

formal framework for capturing the uncertainty inherent in various outcomes. This section

will summarize and formalize random variables as presented in Koller and Friedman (2009),

which will be applied consistently throughout the dissertation.

A random variable is a formal way of representing an attribute or property of an

outcome [69]. For example, the random variable Grade may represent a person’s grade

in a class, which could take on values such as {A, B, C, D, or F} for a discrete case, or

a continuous value like 95.5% in a percentage-based grading system. Formally, a random

variable is a measurable function f(·) that maps outcomes from a sample space Ω to a

set of possible values. The set of values that a random variable X can take is denoted

as Val(X). Random variables are typically represented by uppercase Roman letters (e.g.,

X, Y , Z), while lowercase Roman letters (e.g., x, y, z) denote specific values that these

random variables take.

The models described in this dissertation employ three three main categories of

random variables: observed random variables, target random variables, and latent random

variables:

• Observed Random Variables: Observed random variables represent values that

are directly known or measured from empirical data. Let X = {X1, X2, . . . , Xn}
denote the set of observed random variables. Denote x as the value for a specific ob-

served instance, where x ∈ Val(X). For example, Xi might represent an individual’s

height, where the actual measurement (e.g., xi = 180 cm) is known.

• Target Random Variables: Target random variables are the quantities the models

aim to predict or infer. Let Y = {Y1, Y2, . . . , Ym} represent the set of target random

14

variables. Denote y as the value for a specific observed instance, where y ∈ Val(Y).

For instance, in a classification task, Y could represent the predicted label for an

image, such as “cat” or “dog,” and y would denote the specific predicted value.

• Latent Random Variables: Latent random variables represent hidden or unob-

served factors influencing the observed and target variables. Let Z = {Z1, Z2, . . . , Zl}
represent the set of latent random variables. Denote z as the value for a specific ob-

served instance, where z ∈ Val(Z). For example, in a mixture model, Zi might

represent the latent class or cluster to which an observation belongs.

When discussing categorical random variables, denoted x1, x2, . . . , xk for enumer-

ation. For example, the following expression shows that the probabilities sum to 1:

k∑
i=1

P (X = xi) = 1

The explicit notation P (X = x) is typically shorthanded as P (x) when the random

variable is clear from context. Another useful shorthand is
∑

x P (x), which refers to

summing over all values. For example, the previous summation can be written as:∑
x

P (x) = 1.

2.2.2 Hard Constraints

A hard constraint Ch defines a condition over the values of target variables y =

{y1, y2, . . . , ym} and, optionally, observed variables x = {x1, x2, . . . , xn} or latent variables

z = {z1, z2, . . . , zp}.1 The constraint evaluates to 1 if the condition is satisfied and 0

otherwise:

Ch(y) =

1 if the constraint is satisfied,

0 if the constraint is violated.

Hard constraints are crucial in neural-symbolic systems, as they typically ensure that logical

rules and structural relationships between variables are maintained. Depending on the

1All definitions in this section can be straightforwardly extended to include either observed or latent
variables.

15

problem context, these constraints may take different forms: equality, inequality, integer,

and more complex structural constraints.

Equality Constraints: An equality constraint enforces that a function over the values

of the random variables must equal some constant c. Formally, an equality constraint

Cequality is expressed as:

Cequality(y) = I[f(y) = c],

where f(y) is a function of the target values, c is a constant, and I is the indicator function

that returns 1 if the condition is true and 0 otherwise.

Example 2.2.1. In a sports tournament, only one team can win. Let y = {y1, y2, . . . , yn}
represent the values of the target variables, where yi = 1 if team i wins and yi = 0 otherwise.

The equality constraint ensures exactly one team wins:

Cequality(y) = I

[
n∑
i=1

yi = 1

]
.

Inequality Constraints: Inequality constraints enforce that a function over the random

variable values must lie within certain bounds, either as a lower or upper bound. Formally,

an inequality constraint Cinequality is written as:

Cinequality(y) = I[f(y) ≤ c] or I[f(y) ≥ c],

where f(y) is a function of the target values, c is a constant, and I is the indicator function

that returns 1 if the condition is true and 0 otherwise.

Example 2.2.2. Suppose a system is tasked with allocating resources to different depart-

ments, and the total budget must not exceed B. Let y = {y1, y2, . . . , yn} represent the

values of resources allocated to each department. The inequality constraint ensures the

total allocation does not exceed B:

Cinequality(y) = I

[
n∑
i=1

yi ≤ B

]
.

16

Integer Constraints: In some cases, the values of the target variables must be integers

(e.g., the number of tasks assigned to workers). These constraints are essential when only

discrete values are valid. Formally, an integer constraint Cinteger ensures that:

Cinteger(y) = I[yi ∈ Z ∀yi ∈ y].

Example 2.2.3. Consider a system that assigns tasks to workers, where the number of

tasks assigned to each worker must be an integer. Let y = {y1, y2, . . . , yn} represent the

values of the tasks assigned to each worker. The integer constraint ensures that:

Cinteger(y) = I[yi ∈ Z ∀yi ∈ y].

Logical Constraints: Logical constraints encode relationships between the values of dif-

ferent random variables, typically in the form of implications, conjunctions, or disjunctions.

These constraints are crucial in neural-symbolic systems for capturing logical relationships

between variable values, which may represent domain-specific rules, eligibility criteria, or

decision-making logic.

Formally, a logical constraint Clogic is a Boolean function that evaluates whether

a specific logical relationship holds between these values. For example, an implication

between two conditions can be written as:

Clogic(y) = I[(ϕ(y)→ ψ(y))],

Example 2.2.4. Consider a job application system where applicants must have at least

five years of experience and a PhD to be eligible for a job. Let y1 represent the number

of years of experience, y2 represent the level of education, and y3 represent whether the

applicant is eligible. The logical implication constraint can be written as:

Clogic(y1, y2, y3) = I[((y1 ≥ 5) ∧ (y2 = PhD))→ (y3 = 1)].

2.2.3 Soft Constraints

A soft constraint Cs defines a condition over the values of target variables y =

{y1, y2, . . . , ym} and, optionally, observed variables x = {x1, x2, . . . , xn} or latent variables

17

z = {z1, z2, . . . , zp}.2 Unlike hard constraints, soft constraints represent preferences or

flexible conditions that a system aims to satisfy but which do not need to be strictly

enforced. Formally, a soft constraint Cs is defined as a function that measures the degree

of dissatisfaction or violation that returns a value in R≥0:

Cs(y) ≥ 0,

with Cs(y) = 0 when the constraint is fully satisfied.

Example 2.2.5. Consider the task of assigning employees shifts at a company, where each

employee provides a ranked list of preferred shifts. The goal is to assign employees to shifts

in a way that minimizes dissatisfaction with their preferences.

Let xi represent the employee’s ranked list of preferred shifts, and yi represent the

shift they are assigned. Define a soft constraint that assigns a penalty based on how far

the assigned shift yi is from the employee’s top preference in xi. For instance, taking the

difference in rank:

Cs(xi, yi) = |Rank(xi)−Rank(y2)|

where Cs(xi, yi) = 0 if the employee is assigned their top preference.

For instance, if an employee ranks their shifts as {Shift1, Shift3, Shift2}, with

Shift1 being the most preferred, and they are assigned to Shift3, the soft constraint would

evaluate to Cs(Shift1, Shift3) = 1.

2.2.4 Constraint Optimization

In many neural-symbolic systems, the goal is to find an optimal assignment of

target variables y that satisfies hard constraints while optimizing an objective function

and handling soft constraints. This can be expressed as:

arg min
y

L(y) + λ · Cs(y),

2All definitions in this section can be straightforwardly extended to include either observed or latent
variables.

18

subject to:

Ch(y) = 1.

Here, L(y) is the objective function, Ch(y) are the hard constraints, Cs(y) are

the soft constraints, and λ is a weighting value that controls the penalty for violating soft

constraints.

Example 2.2.6. Consider a resource allocation problem where a company must allocate

resources to projects. Let x represent the available resources and y represent the amounts

allocated to each project. The goal is to allocate resources optimally while satisfying both

hard constraints, such as ensuring that no project exceeds its maximum resource limit, and

soft constraints, such as minimizing the deviation from a preferred allocation.

Hard constraint: Each project cannot exceed a maximum resource limit. Let xi be

the available resources for project i and yi be the resources allocated to project i. The hard

constraint is:

Ch(x,y) =

1 if yi ≤ xi for all i,

0 otherwise.

Soft constraint: The company prefers a specific allocation, say yi = 0.5xi, but deviations

are allowed at a penalty. The soft constraint is defined as:

Cs(x,y) =
∑
i

|yi − 0.5xi|.

The objective function might be to maximize the total output of the projects:

L(x,y) = −
∑
i

f(yi),

where f(yi) is the expected output of project i as a function of the resources allocated.

Thus, the system seeks to minimize the combined objective:

arg min
y

(
−
∑
i

f(yi) + λ ·
∑
i

|yi − 0.5xi|

)
,

subject to yi ≤ xi for all i.

19

2.2.5 Solving Constrained Optimization Problems

Constrained optimization problems have been widely studied in optimization the-

ory. The approach to solving these problems depends on the nature of the objective function

and the types of constraints involved.

2.2.5.1 Linear Programming

If both the objective function and the hard constraints are linear, and some hard

constraints are inequalities, the problem is a linear programming problem. These problems

can be solved using methods such as the simplex algorithm or interior-point methods.

Linear programming problems are often solvable in polynomial time, making them efficient

for large-scale optimization tasks.

Formally, a linear programming problem can be written as:

arg min
y

c⊤y,

subject to Ay ≤ b, where c is a vector of coefficients and Ay ≤ b are the linear hard

constraints.

2.2.5.2 Quadratic Programming

When the objective function is quadratic and the constraints are linear, the prob-

lem is called quadratic programming. Quadratic programming is a special case of nonlinear

programming that can still be solved efficiently using methods such as the ellipsoid algo-

rithm if the quadratic function is convex. However, if the objective function is non-convex,

the problem may become NP-hard.

Quadratic programming problems are written as:

arg min
y

1

2
y⊤Qy + c⊤y,

subject to Ay ≤ b, where Q is a symmetric matrix defining the quadratic terms and

Ay ≤ b are the linear hard constraints.

20

2.3 NeSy Architectures

In this section, I propose four foundational architectural axioms that delineate

how neural and symbolic components interact. The section begins with the symbolic as

neural structure axiom (Section 2.3.1), which is a more neural-centric approach. Here, the

structure of the neural network is derived directly from symbolic knowledge, embedding

symbolic relationships and constraints as part of the network architecture. Next, I intro-

duce the sampling neural for symbolic axiom (Section 2.3.2), which adopts a more symbolic

perspective. This method extracts information from neural systems and integrates it into

a non-differentiable symbolic approach. Finally, the focus shifts to architecture axioms

with a holistic desire to maintain differentiability in that of neural as symbolic parameter

(Section 2.3.3) and neural as symbolic variable (Section 2.3.4).

2.3.1 Symbolic as Neural Structure

The symbolic as neural structure architectural approach leverages symbolic knowl-

edge to define the architecture of a neural network. In this paradigm, the neural network’s

topology—including its input, output, hidden units, and the connections between them—is

directly derived from the relationships and constraints inherent in a symbolic system. While

the symbolic framework dictates the network structure, its parameters, representing the

symbolic model’s relationships, are learned through typical neural data-driven training.

Neural-Symbolic Logic Example: A prominent application of the symbolic as neural

structure approach involves translating a knowledge base containing Horn clause logical

rules into a neural network, as exemplified in Knowledge-Based Artificial Neural Networks

(KBANNs) [125]. The symbolic system provides the structural blueprint for the network,

which is subsequently trained to approximate the reasoning encoded within the rules.

Architecture: Formally, let y denote the target random variables, xsy the ob-

served symbolic random variables, and zsy the latent symbolic random variables. A set of

21

grounded propositional logic constraints, C(y,xsy, zsy), is defined such that:

C(y,xsy, zsy) =

1, if the constraints are satisfied,

0, if the constraints are violated.

Based on these constraints, a neural model gsynn is defined with a network topology that

directly corresponds to C(y,xsy, zsy) and the associated random variables:

gsynn : xsy → y,

where the input nodes represent observed symbolic random variables xsy, the hidden nodes

correspond to latent symbolic random variables zsy, and the output nodes map to the target

random variables y. Connections and weights are determined by the interactions encoded

in the constraints C(y,xsy, zsy). A straightforward method to construct such a model is

to exploit the directed nature of Horn clauses. These clauses provide a naturally directed

path, where nodes corresponding to the body of a rule are connected to the nodes in its

head. This structure defines a set of neural weights wnn assigned to each connection.

Example 2.3.1. Consider the following Horn clause with observed random variables xsy =

{xA, xB} and target random variable yC :

xA ∧ xB =⇒ yC .

The resulting neural network gsynn has input units corresponding to the observed random

variables xA and xB and an output unit corresponding to yC . Connections within gsynn form

a dense layer from the inputs to the output, with neural weights wnn = {wAC , wBC}.

The implementation of the symbolic as neural structure approach varies signifi-

cantly with the complexity and dependencies of the underlying knowledge base. For ex-

ample, Knowledge-Based Artificial Neural Networks can extend the basic architecture by

incorporating additional nodes and connections. It is also worth noting that inference

and learning in such networks typically follow standard neural network methodologies,

employing gradient-based optimization and backpropagation. These processes align with

conventional neural training paradigms and are not explored in detail here.

22

2.3.2 Sampling Neural for Symbolic

In the sampling neural for symbolic architectural approach, there is a loose cou-

pling between the neural network and symbolic reasoning. The neural network generates

predictions, which are then subjected to a sampling process to produce symbolic elements,

such as random variables, symbolic parameters, or constraints. This sampling process

bridges the neural outputs and the symbolic reasoning system, enabling the symbolic sys-

tem to operate independently of the neural network while leveraging its predictions as

inputs or initial conditions. However, because the symbolic system is independent and

non-differentiable, more complex training mechanisms for joint neural and symbolic pa-

rameter training, such as sampling-based learning, are required.

Neural-Symbolic Logic Example: A representative implementation of the sampling

neural for symbolic approach is found in NeSy classical logic systems, where neural models

define a probability distribution that samples boolean values for random variables in a

classical logic framework [103]. Classical logic frameworks, such as propositional or first-

order logic, impose hard constraints that enforce strict binary conditions on the system’s

outputs, ensuring logical consistency. Note that the sampling process in this approach

is not exclusive to random variables; for instance, it may be used to estimate symbolic

parameters or even define the structure of the symbolic reasoning framework itself.

Architecture: Formally, let y be the target random variables, xsy be the ob-

served symbolic random variables, xnn be the observed neural inputs, and wsy and wnn be

the symbolic and neural parameters, respectively. Let gnn represent a neural model with

parameters wnn and input xnn. Define a set of random variables q, which are sampled

from the neural network output gnn(xnn,wnn):

q = P(gnn(xnn,wnn)),

where P is the sampling process applied to the neural network’s outputs. These sampled

23

random variables are then incorporated into the symbolic constraints:

C(y,xsy,q) =

1, if the constraint is satisfied,

0, if the constraint is violated.

Inference Scenario: A typical inference scenario for this NeSy logic setting is

to solve a Maximum Satisfiability (MAX-SAT) problem [53]. The objective is to find an

assignment y∗ for the target variables y that maximizes the number of satisfied symbolic

constraints C(y,xsy,q):

y∗ = arg max
y∈Y

∑
Ci∈C

I[Ci(y,xsy,q)],

To solve this MAX-SAT problem, methods such as random walks [101] can be used.

Learning Scenario: A typical learning scenario for this NeSy logic setting is

challenging as the binary nature of C makes it non-differentiable:

∇wnnC(y,xsy,q) is undefined for almost all wnn.

A Monte Carlo optimization method, such as the REINFORCE algorithm, can be used

[124]. Instead of requiring the loss function to be differentiable, these methods optimize

the expected value of a reward function, which, in this case, reflects the satisfaction of the

logical constraints.

Define a reward function R(y,xsy,q), where the reward is positive if the logical

constraints are satisfied and penalize violations:

R(y,xsy,q) = C(y,xsy,q)− λL(y,xsy,q),

where L is a task-specific loss function (such as cross-entropy or mean squared error), and

λ is a weighting factor that balances the satisfaction of the logical constraints and the main

prediction task. The objective becomes maximizing the expected reward:

E[R(y,xsy,q)].

24

Monte Carlo sampling allows us to approximate the gradient of this expected reward with

respect to the network parameters wnn:

∇wnnE[R(y,xsy,q)] ≈ 1

N

N∑
i=1

R(y,xi,qi)∇wnn log pwnn(qi),

where N is the number of samples and pwnn(q) is the probability of the network producing

output q.

Example 2.3.2. Consider the MNIST-Addition example discussed above (Example 2.1.1),

where the task is to predict the sum of two digits presented as MNIST images. In that

example, the model performs an arg max and is only used for NeSy inference (i.e., predicting

the sum). If the goal is instead to train the parameters of the digit classifier neural model,

then instead of using the non-differentiable arg max to select the most likely digits, we can

sample from these probability distributions to obtain candidate digits for addition.

Concretely, given two MNIST images (,) with the target sum 8. The images

are passed through the neural network gnn, yielding probability distributions over the digits:

gnn
()

= q1 = {P (0)1 = 0.0, P (1)1 = 0.0, P (2)1 = 0.0, P (3)1 = 0.9, P (4)1 = 0.0,

P (5)1 = 0.0, P (6)1 = 0.0, P (7)1 = 0.0, P (8)1 = 0.1, P (9)1 = 0.0},

gnn
()

= q2 = {P (0)2 = 0.0, P (1)2 = 0.0, P (2)2 = 0.0, P (3)2 = 0.0, P (4)2 = 0.0,

P (5)2 = 0.8, P (6)2 = 0.0, P (7)2 = 0.0, P (8)2 = 0.0, P (9)2 = 0.2}.

Let q1 ∼ gnn() and q2 ∼ gnn() represent the sampled digits. The sum of

these sampled digits, ysum = q1 + q2, is compared against the target value 8 to compute a

reward and the gradient of the expected reward can be approximated:

R(q1,q2,ysum) =

1, if ysum = 8,

0, otherwise.

While Monte Carlo methods like REINFORCE provide a viable solution to the

non-differentiability issue, they bring their own set of challenges. The inherent stochas-

ticity of sampling often leads to high variance, which can slow convergence and introduce

25

instability during training. While this is a viable solution, much of the literature addresses

this challenge by introducing probabilistic logic interpretations (Section 2.3.3) and/or by

softening with differentiable fuzzy logics (Section 2.3.4).

2.3.3 Neural as Symbolic Parameter

In the neural as symbolic parameter architectural approach, the neural network

predicts parameters—such as probabilities or weights—that influence a differentiable sym-

bolic reasoning framework. Unlike architectures where neural networks directly output

variables for symbolic reasoning, this approach relies on the network to guide the symbolic

model’s behavior through the parameters. This design preserves a level of independence

between the neural and symbolic components while enabling a differentiable structure to

support training.

Neural-Symbolic Logic Example: A representative implementation of the neural as

symbolic parameter approach is found in NeSy probabilistic logic systems, where neural

models define the probabilities over facts [81, 138, 141]. Probabilistic logic extends classical

logic by introducing uncertainty by assigning probabilities to facts or rules. For instance,

a probabilistic fact might state that “Alice smokes” with a probability of 0.7, denoted as

0.7 :: Smokes(“Alice”). In NeSy probabilistic systems, these probabilities are defined by a

neural network.

Architecture: Formally, let y be the target random variables, xsy be the ob-

served symbolic random variables, xnn be the observed neural inputs, and wsy and wnn

be the symbolic and neural parameters, respectively. Let gnn represent a neural model

with parameters wnn and input xnn. The neural network output q is used to define a

distribution pwnn(w|q) over worlds w ∈ {0, 1}n. The symbolic logic constraints, C(w), are

Boolean functions that determine whether a world is considered valid, i.e., C(w) = 1 if the

world satisfies the constraint and C(w) = 0 otherwise.

To simplify learning and inference, many approaches adopt the conditional inde-

pendence assumption, which assumes that the variables wi are conditionally independent

given the neural input xnn. Under this assumption, the joint probability pwnn(w|q) can be

26

factorized as:

pwnn(w|q) =
n∏
i=1

pwnn(wi|q).

Inference Scenario: A typical inference scenario for this NeSy probabilistic

logic setting involves computing the probability that a given constraint C is satisfied, often

referred to as the weighted model count :

pwnn(C = 1|xnn) =
∑

w∈{0,1}n
pwnn(w|q)C(w),

The weighted model count sums the probability over all possible worlds w ∈ {0, 1}n where

the constraint holds.

Learning Scenario: A typical learning scenario for this NeSy probabilistic logic

setting involves minimize the negative logarithm of the weighted model count:

L(wnn; xnn) = − log pwnn(C = 1|xnn).

Example 2.3.3. Consider the MNIST-Addition example discussed above (Example 2.1.1),

where the task is to predict the sum of two digits presented as MNIST images. In that ex-

ample, the model performs an arg max to choose values deterministically for NeSy inference

(i.e., predicting the sum). However, if the goal is to train the parameters of the digit classi-

fier neural model using probabilistic logics, we can use weighted model counting to compute

the probability of the correct sum instead of relying on the non-differentiable arg max.

For instance, given two MNIST images (,), with the correct sum as 8. This

means that the constraint C(w) is true only when the sum of the digits in world w equals

8. The images are passed through the neural network gnn, which outputs probability distri-

butions over the possible digits for each image:

gnn
()

= q1 = {P (0)1 = 0.0, P (1)1 = 0.0, P (2)1 = 0.0, P (3)1 = 0.9, P (4)1 = 0.0,

P (5)1 = 0.0, P (6)1 = 0.0, P (7)1 = 0.0, P (8)1 = 0.1, P (9)1 = 0.0},

gnn
()

= q2 = {P (0)2 = 0.0, P (1)2 = 0.0, P (2)2 = 0.0, P (3)2 = 0.0, P (4)2 = 0.0,

P (5)2 = 0.8, P (6)2 = 0.0, P (7)2 = 0.0, P (8)2 = 0.0, P (9)2 = 0.2}.

27

Assuming conditional independence between the digits from each image, the weighted

model count sums the probabilities of pairs of values that satisfy the constraint C(w) (i.e.,

sum to 8):

pwnn(C(w) = 1|q1,q2) =P (0)1 · P (8)2 + P (1)1 · P (7)2 + P (2)1 · P (6)2 + P (3)1 · P (5)2+

P (4)1 · P (4)2 + P (5)1 · P (3)2 + P (6)1 · P (2)2 + P (7)1 · P (1)2+

P (8)1 · P (0)2.

Substituting the probabilities from the neural network outputs:

pwnn(C(w) = 1|q1,q2) =(0.0 · 0.0) + (0.0 · 0.0) + (0.0 · 0.0) + (0.9 · 0.8)+

(0.0 · 0.0) + (0.0 · 0.0) + (0.0 · 0.0) + (0.0 · 0.0)+

(0.1 · 0.0)

=0.9 · 0.8 = 0.72.

The loss is then computed as the negative log-likelihood of the constraint being

satisfied:

L(wnn; q1,q2) = − log pwnn(C(w) = 1|q1,q2)

= − log 0.72 ≈ 0.33.

By minimizing this loss, the neural network learns to increase the probability of

generating outputs that satisfy the probabilistic logic constraint (i.e., the sum of the digits

equals 8).

While probabilistic logics offer flexibility in handling uncertainty and soft con-

straints, they also introduce computational challenges. Summing over all possible worlds for

probabilistic inference can be computationally expensive, especially as the number of vari-

ables, n, grows large. Exact inference in these settings is generally intractable. However,

knowledge compilation methods transform the problem into an equivalent form that can be

computed in constant time (once compiled). This transformation, which can be performed

in polynomial time, allows for efficient inference even in complex models. Both weighted

28

model counting and the knowledge compilation are differentiable, enabling gradient-based

optimization and backpropagation. Furthermore, the conditional independence assumption

helps reduce the number of parameters and simplifies the inference process. Nevertheless,

this assumption may oversimplify complex dependencies between variables, potentially lim-

iting the expressiveness of the model in capturing rich relationships.

2.3.4 Neural as Symbolic Variable

In the neural as symbolic variable architectural approach, the outputs of a neural

network are treated as random variables within a differentiable symbolic reasoning model.

Unlike the previous architecture, this approach allows the neural model to have a direct

influence on the satisfaction of symbolic constraints. This design achieves a tighter inte-

gration between the neural and symbolic components and can be viewed as an extension

of the neural architecture with a symbolic optimization layer.

Neural-Symbolic Logic Example: A notable implementation of the neural as symbolic

variable approach is seen in NeSy fuzzy logic systems, where neural models define random

variables in a differentiable fuzzy logic framework [14, 103]. Fuzzy logic extends classical

logic by allowing truth values to range continuously between 0 and 1, enabling reasoning

over partial truths. For example, a fuzzy rule like A ∧ ¬B can be approximated by the

differentiable function A · (1−B).

Note 2.3.1. NeSy fuzzy logic systems allow for numerous interpretations of logical opera-

tions and their combinations. Among the various t-norms, three commonly studied within

NeSy are Gödel, Product, and Lukasiewicz Table 2.1. These t-norms adhere to fundamental

properties such as commutativity, associativity, monotonicity, and unit [52]. The choice of

Logic NEGATION (¬x) AND (x ∧ y) OR (x ∨ y)

Minimum/Gödel 1− x min(x, y) max(x, y)

Product 1− x x · y x+ y − x · y
 Lukasiewicz 1− x max(0, x+ y − 1) min(1, x+ y)

Table 2.1: Fuzzy/Soft Logic Constraints for NEGATION, AND, and OR.

29

fuzzy logic operators, particularly for conjunction (AND), is critical for learning and opti-

mization tasks. Studies by van Krieken et al. (2023) and Evans and Grefenstette (2018)

have extensively evaluated the effectiveness of different fuzzy logic operators in diverse ap-

plications. The following observations are noteworthy:

• Gödel t-norm: For x > y, the conjunction min(x, y) passes no gradient to x, as the

operation depends only on the smaller value. This can hinder gradient propagation

during optimization.

• Lukasiewicz t-norm: When x+ y < 1, the conjunction max(0, x+ y− 1) provides no

gradient information to either x or y, limiting the ability to update model parameters

in cases with low input values.

• Product t-norm: The conjunction x · y distributes gradients proportionally between x

and y, ensuring that both inputs contribute to the optimization process. This property

makes the Product t-norm more favorable for gradient-based learning.

Furthermore, NeSy fuzzy logics allow for different aggregation operations:

• Weighted Sum: A linear combination of dissatisfaction, weighted by their relative

importance:

Weighted Sum =
n∑
i=1

wisi,

where wi is the weight of the dissatisfaction si.

• Generalized Mean: Extends the arithmetic mean by allowing control over how strictly

lower values penalize the aggregated score:

Generalized Mean =

(
1

n

n∑
i=1

spi

) 1
p

,

where p determines the penalty imposed by low values, with smaller p penalizing low

values more aggressively.

Architecture: Formally, let y denote the target random variables, xsy the ob-

served symbolic random variables, xnn the observed neural inputs, and wsy and wnn the

30

symbolic and neural parameters, respectively. Let gnn represent a neural model param-

eterized by wnn with input xnn. The neural network output, q, defines a subset of the

random variables:

q = gnn(xnn,wnn),

which are then integrated into symbolic differentiable soft logic constraints C(y,xsy,q).

Inference Scenario: A typical learning scenario for this NeSy fuzzy logic setting

involves finding the Maximum A Posteriori (MAP) estimate of the target variables y.

Assuming a weighted sum aggregation for the soft logic constraints, the inference problem

can be formulated as follows:

y∗ = arg max
y

n∑
i=1

wisyCi(y,x,q),

where wisy are the symbolic weights associated with each constraints Ci.

Learning Scenario: A typical learning scenario for this NeSy fuzzy logic setting

has the neural and symbolic parameters optimized to minimize the dissatisfaction of the

fuzzy constraints. The learning optimization problem is expressed as follows:

w∗
nn,w

∗
sy = arg min

wnn,wsy

L(wnn,wsy; xnn,xsy,y),

where L(wnn,wsy; xnn,xsy,y) is the loss function capturing the degree of constraint dis-

satisfaction.

Example 2.3.4. Consider the MNIST-Addition task, where the goal is to predict the sum

of two digits presented as MNIST images using Gödel fuzzy logic. In this setup, the neural

model gnn predicts the truth values of random variables representing the digits, and the

Gödel fuzzy logic system enforces constraints regarding their sum.

For instance, given two MNIST images, and , the target sum is 8. A soft

logic constraint representing this addition is:

q(x1)1 ∧ q(x2)2 → Sum(x1, x2, 8),

where q(x1)1 and q(x2)2 represent the truth values of the variables corresponding to the

digits output by the neural network and Sum(x1, x2, 8) is valid if the sum of the two values

31

sum to eight. Suppose the neural model gnn provides the following outputs:

gnn
()

= q1 = {q(0)1 = 0.0, q(1)1 = 0.0, q(2)1 = 0.0, q(3)1 = 0.9, q(4)1 = 0.0,

q(5)1 = 0.0, q(6)1 = 0.0, q(7)1 = 0.0, q(8)1 = 0.1, q(9)1 = 0.0},

gnn
()

= q2 = {q(0)2 = 0.0, q(1)2 = 0.0, q(2)2 = 0.0, q(3)2 = 0.0, q(4)2 = 0.0,

q(5)2 = 0.8, q(6)2 = 0.0, q(7)2 = 0.0, q(8)2 = 0.0, q(9)2 = 0.2}.

Gödel fuzzy logic evaluates the satisfaction of the constraint by aggregating the truth values

of all valid digit pairs whose sum equals 8. Using the fuzzy conjunction operator, the overall

satisfaction value is computed as:

C(w) =
∑

(i,j) : i+j=8

min(q(i)1, q(j)2),

where each pair (i, j) corresponds to digits that sum to 8. Substituting the neural outputs:

C(w) = min(q(0)1, q(8)2) + min(q(1)1, q(7)2) + min(q(2)1, q(6)2)+

min(q(3)1, q(5)2) + min(q(4)1, q(4)2) + min(q(5)1, q(3)2)+

min(q(6)1, q(2)2) + min(q(7)1, q(1)2) + min(q(8)1, q(0)2)

= min(0.0, 0.0) + min(0.0, 0.0) + min(0.0, 0.0)+

min(0.9, 0.8) + min(0.0, 0.0) + min(0.0, 0.0)+

min(0.0, 0.0) + min(0.0, 0.0) + min(0.1, 0.0)

=0.8.

It is important to recognize that the previous example involves several key de-

cisions, such as the choice of soft logic representation, the aggregation method, and the

simplification of inference as a direct calculation without latent variables. These decisions

underscore both the inherent complexity and the flexibility of fuzzy NeSy logic, illustrating

why it is challenging to provide a universal, one-size-fits-all framework for such systems.

32

Part II

Universal Neural-Symbolic

Language

33

Chapter 3

Unifying NeSy through Energy-Based

Models

The previous chapter introduced a set of architectural principles that form the

foundation of Neural-Symbolic (NeSy) AI. Building on this, this chapter formalizes these

concepts by presenting a unifying language for NeSy systems. Specifically, I introduce

Neural-Symbolic Energy-Based Models (NeSy-EBMs), a comprehensive mathematical frame-

work that encapsulates the diverse facets of neural-symbolic methods and their applica-

tions. NeSy-EBMs formalize the interaction between neural and symbolic components

as a structured composition of functions, providing a robust and flexible framework for

analyzing, integrating, and extending these paradigms.

This chapter is organized as follows: first, I define Neural-Symbolic Energy-Based

Models (Section 3.1); second, I formalize the modeling paradigms that serve as integration

strategies for the architectural designs introduced in the previous chapter (Section 3.2);

and finally, I provide a formalization of several mainstream NeSy approaches as specific

instantiations of the NeSy-EBM framework (Section 3.3). The theory and notation in-

troduced here will serve as a foundation throughout this thesis, guiding the analysis and

discussion of hard and soft constraints within neural-symbolic systems.

34

3.1 Neural Symbolic Energy-Based Models as a Unifying

Mathematical Framework for NeSy

As the name suggests, NeSy-EBMs build upon the foundations of Energy-Based

Models (EBMs) [74]. In particular, NeSy-EBMs are a family of EBMs that integrate deep

architectures with explicit encodings of symbolic relations via an energy function. EBMs

are a class of models where an energy function is used to evaluate the compatibility between

variables; states with lower energy correspond to higher compatibility. Specifically, in the

context of NeSy-EBMs, a low-energy state indicates high compatibility, meaning that the

variables align well with both domain-specific knowledge and common sense.

As diagrammed in Figure 3.1, a NeSy-EBM energy function composes a neural

component with a symbolic component, represented by the functions gnn and gsy, respec-

tively. The neural component is a deep model (or collection of deep models) parameterized

by weights from a domainWnn, that takes a neural input from a domain Xnn and outputs a

real-valued vector of dimension dnn. The symbolic component encodes domain knowledge

and is parameterized by weights from a domain Wsy. It maps inputs from a domain Xsy,
target (or output) variables from Y, and neural outputs from Range(gnn) to a scalar value.

In other words, the symbolic component measures the compatibility of targets, inputs, and

neural outputs with domain knowledge. We have the following formal definition:

Definition 1. A NeSy-EBM energy function is a mapping parameterized by neural and

symbolic weights from domains Wnn and Wsy, respectively, that quantifies the compatibility

of a target variable from a domain Y and neural and symbolic inputs from the domains

Xnn and Xsy, respectively, with a scalar value:

E : Y × Xsy ×Xnn ×Wsy ×Wnn → R. (3.1)

A NeSy-EBM energy function is a composition of a neural and symbolic com-

ponent. Neural weights parameterize the neural component, which outputs a real-valued

vector of dimension dnn:

gnn : Xnn ×Wnn → Rdnn . (3.2)

35

Figure 3.1: A neural-symbolic energy-based model.

The symbolic component maps the symbolic variables, symbolic parameters, and a real-

valued vector of dimension dnn to a scalar value:

gsy : Y × Xsy ×Wsy × Rdnn → R. (3.3)

The NeSy-EBM energy function is

E : (y,xsy,xnn,wsy,wnn) 7→ gsy(y,xsy,wsy,gnn(xnn,wnn)).

What I have introduced thus far can be understood as the energy function that

defines a NeSy approach, forming the core representation of the system. However, this does

not yet define the reasoning or inference processes that operate within this framework. In

the following chapter (Chapter 4), I will formally introduce the mechanisms for performing

inference and learning in NeSy-EBMs, along with typical methods by which these sys-

tems execute reasoning and learning tasks. The remainder of this chapter is devoted to

the structural construction of a NeSy-EBM, specifically addressing how its architectural

axioms are represented. This includes detailing the interaction between neural and sym-

bolic components, providing the foundation for understanding how these models function

in practice, and preparing for the forthcoming discussions on inference and learning.

36

3.2 NeSy-EBM Modeling Paradigms

Using the NeSy-EBM framework, this subsection introduces a taxonomy of NeSy

modeling paradigms determined by the nature of the neural-symbolic interface. The

paradigms are characterized by the integration of the neural component within the sym-

bolic component to define the prediction program in Equation 4.1. Conceptually, these

categorizations represent standard NeSy architectural designs that describe the interaction

between neural and symbolic components.

To formalize these paradigms, I introduce an additional layer of abstraction,

termed symbolic potentials and denoted by ψ. Furthermore, a collection of symbolic po-

tentials forms what is referred to as symbolic potential sets, denoted by Ψ. These symbolic

potentials categorize the arguments of the symbolic component based on their roles in

shaping the prediction program in Equation 4.1.

Definition 2. A symbolic potential ψ is a function of variables from a domain Vψ and

parameters from a domain Paramsψ, outputting a scalar value:

ψ : Vψ × Paramsψ → R. (3.4)

A symbolic potential set, denoted by Ψ, is a set of potential functions indexed by JΨ.

A modeling paradigm is a specification of the set of symbolic potentials and the

domains of the potentials belonging to the set. This section describes three modeling

paradigms in the following subsections: deep symbolic variables (DSVar), deep symbolic

parameters (DSPar), and deep symbolic potentials (DSPot).

3.2.1 Deep Symbolic Variables

The deep symbolic variables (DSVar) paradigm is a NeSy-EBM approach in which

the neural component predicts the values of target or latent variables used in a symbolic

potential.1 This modeling paradigm defines NeSy-EBMs that can represent the sampling

neural for symbolic architectural axiom (Section 2.3.2) and the neural as symbolic variable

1This section focuses on deep symbolic variables in the context of target variables. Extending to latent
variables is straightforward.

37

architectural axiom (Section 2.3.4). DSVar has a one-to-one mapping between the neural

outputs and the target or latent variables. However, this mapping is not necessarily onto,

meaning there may be target or latent variables that do not correspond to any neural out-

put. Prominent NeSy systems exemplifying this paradigm include Logic Tensor Networks

[14], Learning with Logical Constraints [57], Semantic-Based Regularization [46], and Deep

Logic Models [88].

Definition 3. In the deep symbolic variables (DSVar) modeling paradigm the symbolic

potential set is a singleton Ψ = {ψ} with a trivial index set JΨ = {1} such that Ψ1 = ψ.

Further, the neural prediction is treated as a variable by the symbolic potential; thus Vψ =

Y×Xsy×Rdnn. Then, the symbolic parameters are the symbolic weights, Paramsψ =Wsy.

The neural component controls the NeSy-EBM prediction via this function:

IY(y,gnn(xnn,wnn)) :=

0 yi = [gnn(xnn,wnn)]i , ∀i ∈ {1, · · · , dnn}

∞ o.w.
, (3.5)

where yi and gnn(xnn,wnn)i denote the i’th entry of the variable and neural output vectors,

respectively. Then, the symbolic component expressed via the symbolic potential is:

gsy(y,xsy,wsy,gnn(xnn,wnn)) := ψ([y,xsy,gnn(xnn,wnn)] ,wsy) + IY(y,gnn(xnn,wnn)),

where [·] denotes concatenation.

The DSVar modeling paradigm typically yields the most straightforward predic-

tion program compared to the other modeling paradigms. This is because the neural

model fixes a subset of the decision or latent variables, making the prediction program

smaller. This is achieved by adding the function (Equation 3.5) in the definition above to

the symbolic potential so infinite energy is assigned to variable values that do not match

the neural model’s predictions. While this simplifies the prediction program and can be

used to speed up inference and learning, this may result in a symbolic component having

situations where it is impossible to resolve all constraint violations. Rather, DSVar models

may rely on learning to train a neural component to adhere to constraints. The DSVar

paradigm is demonstrated in the following example.

38

Figure 3.2: A deep symbolic variables model for solving a Sudoku board constructed from

handwritten digits. The neural component classifies handwritten digits. Then, the sym-

bolic component uses the digit classifications and the rules of Sudoku to fill in the empty

cells.

Example 3.2.1. Visual Sudoku [132] puzzle solving is the problem of recognizing hand-

written digits in non-empty puzzle cells and reasoning with the rules of Sudoku (no repeated

digits in any row, column, or box) to fill in empty cells. Figure 3.2 shows a partially com-

plete Sudoku puzzle created with MNIST images [75] and a NeSy-EBM designed for visual

Sudoku solving. The neural component is a digit classifier predicting the label of MNIST

images, and the symbolic component quantifies rule violations.

Formally, the target variables, y, are the categorical labels of both the handwritten

digits and the puzzle’s empty entries. The symbolic inputs, xsy, indicate whether two puzzle

positions are in the same row, column, or box. The neural model, gnn(xnn,wnn), is the

categorical labels of the handwritten digits predicted by the neural component. Then, the

symbolic parameters, wsy, are used to shape the single symbolic potential function, ψ, that

quantifies the total amount of Sudoku rule violations.

The DSVar modeling paradigm is specifically designed to allow the neural com-

ponent to directly influence the random variables within the symbolic model. While this

paradigm allows for direct influence on the predictions of a symbolic model, its scope is

strictly confined to random variables. In scenarios where the neural model must exert indi-

rect influence on variables or interact with other elements of the symbolic model—such as

entire symbolic potentials or parameters associated with individual constraints—a different

39

modeling paradigm becomes necessary. The following subsection introduces a paradigm

that extends the neural component’s influence, enabling connections to other parameters

or constants within the symbolic model, beyond just the random variables.

3.2.2 Deep Symbolic Parameters

The deep symbolic parameters (DSPar) modeling paradigm is a NeSy-EBM in

which the neural component predicts the parameters of random variables or symbolic

potentials. This modeling paradigm defines NeSy-EBMs that can represent the sampling

neural for symbolic architectural axiom (Section 2.3.2) and the neural as symbolic parameter

architectural axiom (Section 2.3.3). Prominent NeSy frameworks supporting this technique

include DeepProbLog [81], Semantic Probabilistic Layers [7], and Semantic Loss [138].

Definition 4. In the deep symbolic parameters (DSPar) modeling paradigm, the sym-

bolic potential set is a singleton Ψ = {ψ} with a trivial index set JΨ = {1} such that

Ψ1 = ψ. Further, the neural prediction is treated as a parameter by the symbolic potential,

thus Paramsψ =Wsy×Rdnn. Then the symbolic variables are the targets and the symbolic

inputs: Vψ = Y ×Xsy. The symbolic component expressed via the single symbolic potential

is:

gsy(y,xsy,wsy,gnn(xnn,wnn)) := ψ([y,xsy] , [wsy,gnn(xnn,wnn)]).

This paradigm is demonstrated in the following example.

Example 3.2.2. Citation network node classification is the task of predicting the topic

of papers in a network where nodes are papers and edges are citations. A model may use

the network structure, content, and topic labels in a paper’s neighborhood for prediction.

Figure 3.3 shows a citation network and a NeSy-EBM designed for node classification.

The symbolic component is a collection of weighted arithmetic constraints. One constraint

represents the heuristic that two papers connected by a citation in the network have the

same topic, and another uses a neural network to predict a topic for each paper using only

its content. If a constraint is violated by a random variable, then a cost proportional to the

weight of the violated constraint will be added to the energy function. The neural component

40

Figure 3.3: A deep symbolic parameters model for citation network node classification.

The symbolic component is a mixture of experts model that combines weighted arithmetic

constraints. The neural component uses paper content to weigh the importance of satisfying

an arithmetic constraint.

predicts the weights of each constraint given the paper content. In other words, the NeSy-

EBM is a mixture of experts. Each arithmetic constraint in the symbolic component is

an expert weighted by the neural component, and experts are combined to formulate a

mathematical program to produce a single output.

Formally, the targets, y, are the paper topics, and the symbolic inputs, xsy, are

citation links. The neural model, gnn(xnn,wnn), predicts the weights of every constraint.

The DSPar modeling paradigm is widely applicable. For instance, the DSPar

modeling paradigm is applied for constraint satisfaction, fine-tuning, few-shot, and semi-

supervised settings in our empirical analysis. Note, however, that DSVar and DSPar models

have only a single fixed symbolic potential. This property makes these paradigms well-

suited for dedicated tasks but less applicable to open-ended settings, where the relevant

domain knowledge depends on context. To address this challenge, the following modeling

paradigm leverages generative modeling to perform in open-ended tasks.

3.2.3 Deep Symbolic Potentials

The deep-symbolic potentials (DSPot) paradigm is a NeSy-EBM approach in

which a deep model predicts what symbolic structure should be used. This modeling

41

paradigm defines NeSy-EBMs that can represent the sampling neural for symbolic archi-

tectural axiom (Section 2.3.2). At a high level, the neural component is a generative

model that samples symbolic potentials from a set to define the symbolic component. The

Logic-LM pipeline proposed by Pan et al. (2023) is an excellent example of this modeling

paradigm.

Definition 5. In the deep symbolic potentials modeling paradigm, the symbolic potential

set Ψ is the set of all potential functions that can be created by a NeSy framework. Ψ is

indexed by the output of the neural component, i.e., JΨ = Range(gnn) and Ψgnn(xnn,wnn) is

the potential function indexed by the neural prediction. The variable and parameter domains

of the sampled symbolic potential are Vψ = Y × Xsy, and Paramsψ = Wsy, respectively.

The symbolic component expressed via the symbolic potential is:

gsy(y,xsy,wsy,gnn(xnn,wnn)) := Ψgnn(xnn,wnn)([y,xsy] ,wsy).

Figure 3.4: A deep symbolic potential model for answering questions about a set of objects’

order described in natural language. The neural component is an LLM that generates

syntax to create a symbolic potential. The symbolic potential is used to perform deductive

reasoning and answer the question. See Example 3.2.3 for details.

This paradigm is demonstrated in the following example.

Example 3.2.3. Question answering is the problem of giving a response to a question

posed in natural language. Figure 3.4 shows a set of word problems asking for the order of

a set of objects given information expressed in natural language and a NeSy-EBM designed

42

for question answering. The neural component is a large language model (LLM) that is

prompted with a word problem and tasked with generating a program within the syntax of

a symbolic framework. The symbolic framework uses the generated program to instantiate

a symbolic component used to perform deductive reasoning.

Formally, the target variables, y, represent object positions, and there is no sym-

bolic input, xsy, in this example. The neural input, xnn, is a natural language prompt that

includes the word problem. The neural model, gnn(xnn,wnn), is an LLM that generates syn-

tax for a declarative symbolic modeling framework that creates the symbolic potential. For

instance, the symbolic potential generated by the neural model Ψgnn(xnn,wnn)([y,xsy] ,wsy)

could be the total amount of violation of arithmetic constraints representing ordering. Fi-

nally, the symbolic parameters, wsy, shape the symbolic potential function.

DSPot NeSy-EBMs are the only applicable paradigms for truly open-ended tasks.

Moreover, DSPot enhances generative models, such as LLMs, with consistent symbolic

reasoning capabilities. DSPot’s limitation is that the neural component must learn to

sample from a large potential set. For instance, in the example, an LLM must reliably

generate syntax to define a symbolic potential for solving the word problem. LLMs require

a substantial amount of computational resources to train and then fine-tune for a specific

NeSy framework. Furthermore, the inference time is dependent on the sampled symbolic

potential. If the neural component samples a complex symbolic potential, inference may

be slow.

3.3 Expressing NeSy Approaches via NeSy-EBMs

As introduced in the previous section, NeSy-EBMs provide a general theoretical

framework for describing neural-symbolic methods. This section highlights three prominent

neural-symbolic approaches, exploring how they integrate neural and symbolic learning and

reasoning through the lens of NeSy-EBMs. At a high level, these approaches differ in how

they incorporate symbolic knowledge, constraints, and their overall modeling approach:

• Semantic Loss (SL) [138]: A probabilistic NeSy approach where neural model pre-

dictions are treated as probabilities over variables or facts within logical constraints.

43

Probabilistic logic constraints are incorporated as a regularization term for the neural

network’s loss. Models are typically formulated as deep symbolic parameter models.

• DeepProbLog (DPL) [81]: A probabilistic NeSy approach where neural model

predictions are treated as probabilities over variables or facts within a probabilistic

logic framework. Probabilistic logic constraints are incorporated as a regularization

term for the neural network’s loss or as a layer on top of the neural network. Models

are typically formulated as deep symbolic parameter models.

• Logic Tensor Networks (LTNs) [14]: A fuzzy NeSy approach where neural models

represent predicates whose outputs are treated as variables within a fuzzy logic. Fuzzy

logic constraints are incorporated as a layer on top of the neural networks. Models are

typically formulated as deep symbolic variable models or deep symbolic parameter

models.

3.3.1 Semantic Loss (SL)

Semantic loss is a probabilistic NeSy approach where neural network predictions

are interpreted as probabilities over propositional variables within logical constraints [138].

It quantifies how well the neural network’s outputs align with the specified constraints,

acting as a regularization term to guide the model toward logically consistent predictions

by penalizing constraint violations. Typically, this approach creates models inherent to the

neural as symbolic parameter architectural axioms (Section 2.3.3).

3.3.1.1 Defintion and Background

Formally, let y = {y1, y2, . . . , yn} be a set of n propositional variables and a world

ω is an instantiation of all variables y, i.e., ω = {y1 = v1, · · · , yn = vn} for vi ∈ {0, 1}.
A world ω satisfies a sentence α, denoted ω |= α, if the sentence evaluates to true in that

world. A sentence α entails another sentence β, denoted α |= β, if all worlds that satisfy

α also satisfy β.

In semantic loss, each propositional variable yi ∈ y is assigned a probability pi that

it is true. These probabilities p = {p1, p2, . . . , pn} are defined from a neural network. The

44

semantic loss, denoted as LSL(α,p), measures how closely the neural network’s predictions

satisfy the sentence α with:

LSL(α,p) ∝ − log

∑
ω|=α

∏
i:ω|=yi

pi
∏

i:ω|=¬yi

(1− pi)


The summation is taken over all worlds ω that satisfy α. The product

∏
i:ω|=yi pi

measures the probability of all variables assigned true in ω and
∏
i:ω|=¬yi(1− pi) measures

the probability of all variables assigned false in ω. The right side of the equation is the well-

known reasoning task weighted model counting [23] that was described earlier in Section

2.3.3.

In practice, semantic loss, weighted by some hyperparameter γ, is applied as a

regularization term that encourages the neural model to produce predictions consistent

with logical constraints. This allows for flexible integration of symbolic reasoning into

neural network training. Formally, this is defined as:

Ltotal = Lexisting + γ · LSL(α,p),

where Lexisting is the original loss function.

With the semantic loss defined, let’s walk through an example of semantic loss as

a mutually exclusive constraint in multi-class classification.

Example 3.3.1. Consider a multi-class classification problem where exactly one of n pos-

sible outcomes should be true. The sentence αexactly one enforces that exactly one of the

variables y1, . . . , yn is true:

αexactly one = (y1 ∧ ¬y2 ∧ · · · ∧ ¬yn) ∨ (¬y1 ∧ y2 ∧ · · · ∧ ¬yn) ∨ · · · ∨ (¬y1 ∧ · · · ∧ yn).

The semantic loss for this multi-class setting is computed as:

LSL(αexactly one,p) ∝ − log

 n∑
i=1

pi

n∏
j=1
j ̸=i

(1− pj)

 ,

where p = {p1, . . . , pn} are the probabilities predicted by the neural network for each class.

45

While, indeed, this shows how more complicated sentences can be incorporated

into the problem, it is essential to note that this requires calculating the weighted model

count [23]. The exact computation of the weighted-model count is #P-hard. To somewhat

circumvent this issue, it is common in the literature to compile logical formulas into a

circuit for many inference queries [25, 68, 81]. It is important to note that while this can

make inference fast, the compilation step is potentially exponential in time and memory,

and there are no guarantees the size of the circuit is not exponential [128]. With all that

said, the following section describes how to represent semantic loss functions as NeSy-EBMs

using constraints.

3.3.1.2 NeSy-EBM Formulation

Semantic loss can be formulated as a DSPar NeSy-EBM where the propositional

variable probabilities are neural network outputs. Since semantic loss does not take as input

any observed random variables, then there are no external parameters, i.e., let xsy ∈ ∅ and

wsy ∈ ∅. Let gnn be a function with parameters wnn ∈ Wnn and inputs xnn ∈ Xnn such

that:

gnn : Wnn ×Xnn 7→ [0, 1]n,

where n is the number of propositional variables involved in the constraints, this function

outputs the predicted probabilities:

gnn(xnn,wnn) = [pi]
n
i=1,

where pi represents the predicted probability for the i-th variable.

Define the logical sentence α as a hard constraint CH(ω) using an indicator func-

tion that represents whether a world ω (an assignment of the propositional variables)

satisfies the sentence α:

CH(ω) = I(ω |= α),

where I(ω |= α) is 1 if the world satisfies the constraint α, and 0 otherwise.

Assuming the weighted model count formulation, the symbolic component of the

46

NeSy-EBM is a DSPar potential function:

gsy(y,xsy,wsy,gnn(xnn,wnn)) = ψSL([y,xsy] , [wsy,gnn(xnn,wnn)])

= − log

 ∑
ω∈{0,1}|y|

CH(ω)

n∏
i=1

pωi
i (1− pi)1−ωi


where ωi is the ith propositional variable value.

Given the symbolic potential and variables defined above, the semantic energy

function is defined as:

ESL(y,xsy,xnn,wsy,wnn) = gsy(y,xsy,wsy, gnn(xnn,wnn)) (3.6)

= − log

 ∑
ω∈{0,1}|y|

CH(ω)
n∏
i=1

pωi
i (1− pi)1−ωi


3.3.2 DeepProbLog (DPL)

DeepProbLog (DPL) [81], like semantic loss, is a probabilistic NeSy approach that

integrates neural network predictions with symbolic reasoning. However, while semantic

loss operates over propositional logic, DeepProbLog utilizes a first-order logic framework,

allowing for more expressive reasoning capabilities. Specifically, DeepProbLog incorporates

neural network outputs as probabilities within the probabilistic programming language

ProbLog [39] using neural predicates. This connection to ProbLog gives DeepProbLog

access to both probabilistic logic programming and program induction, enabling it to handle

more complex symbolic structures and reasoning tasks compared to the propositional-based

semantic loss. Typically, this approach creates models inherent to the neural as symbolic

parameter architectural axioms (Section 2.3.3).

3.3.2.1 Definition and Background

To begin, we review the basics of probabilistic logic programming in ProbLog,

following the presentation from [81] (see [39] for further details).

47

ProbLog: A ProbLog program consists of two main components:

• A set of probabilistic facts F of the form p :: y, where p is the probability that the

binary target random variable y is true (i.e., y ∈ {0, 1}). Note: this can be extended

to include a set of observed facts or evidence p :: xsy.

• A set R of symbolic rules, which describe how different facts relate to each other.

A subset of the probabilistic facts F ⊆ F defines a possible instantiation, or world

ω. This world includes all facts in F and all facts derivable from F using the rules in R:

ω = F ∪ {y | R ∪ F |= y},

where R ∪ F |= y means that the fact y can be derived from the combination of rules R
and facts F . The probability of a world ω is given by the product of the probabilities of

the facts in that world:

P (ω) :=
∏
yi∈F

pi
∏

yi∈F\F

(1− pi),

where pi is the probability assigned to fact yi.

Example 3.3.2. Consider the following ProbLog program, which models the likelihood of

a burglary or earthquake causing an alarm:

Probabilistic Facts:

0.1 :: burglary, 0.2 :: earthquake,

0.5 :: hearsAlarm(mary), 0.4 :: hearsAlarm(john).

Rules:

alarm : − earthquake.

alarm : − burglary.

calls(X) : − alarm, hearsAlarm(X).

48

Now, consider the subset F = {burglary, hearsAlarm(mary)} of probabilistic facts.

The corresponding world ω includes the derived facts:

ω = {burglary, hearsAlarm(mary), alarm, calls(mary)}.

The probability of this world is:

P (ω) = 0.1 · 0.5 · (1− 0.2) · (1− 0.4) = 0.024.

DeepProbLog: A DeepProbLog program extends the syntax and semantics of ProbLog

by introducing neural predicates, allowing the specification of probabilistic facts based

on neural network outputs [81]. Specifically, DeepProbLog introduces neural annotated

disjunctions (nADs), which integrate neural network predictions directly into the logic. A

neural annotated disjunction is specified as:

nn(mgnn ,xnn, u1) :: h(xnn, u1) ; · · · ; nn(mgnn ,xnn, un) :: h(xnn, un) ⊨ b1, · · · , bm,

where xnn is a vector of features accessible to the neural component identified by mgnn .

The terms u1, . . . , un represent the possible outputs of the neural network, and the atoms

b1, . . . , bm are logical conditions. The output of the neural network, nn(mgnn ,xnn, ui), is

interpreted as the probability that the atom h(xnn, ui) is true, and the sum of the neural

model’s outputs must satisfy:

n∑
i=1

nn(mgnn ,xnn, ui) = 1.

The meaning of the nAD is that whenever all the atoms b1, . . . , bm hold true, each

h(xnn, ui) becomes true with probability nn(mgnn ,xnn, ui).

As we have seen, DeepProbLog shares similarities with semantic loss, but it differs

in requiring the neural network’s output to represent a joint probability distribution over

the neural outputs for a single example. During inference and learning, DeepProbLog

often assumes conditional independence between multiple neural variables. The exact

computation of the weighted model count is #P-hard, making inference computationally

expensive. To address this, a common approach in the literature, as with semantic loss, is

49

to compile logical formulas into circuits for more efficient inference across multiple queries

[25, 68, 81]. The following section will explain how DeepProbLog can be represented as

NeSy-EBMs using constraints.

3.3.2.2 NeSy-EBM Formulation

DeepProbLog can be formulated as a DSPar NeSy-EBM where the fact proba-

bilities are defined with both the symbolic parameters and the neural network outputs.

Let xsy be the observed random variables (evidence), y be the target random variables

(facts), and wsy be symbolic parameters over facts not parameterized by a neural network

(probabilities). Let gnn be a function with parameters wnn ∈ Wnn and inputs xnn ∈ Xnn

such that:

gnn : Wnn ×Xnn 7→ [0, 1]n,

where n is the number of propositional variables involved in the constraints. Without loss

of generality the fact probabilities, p, are paritioned into symbolic parameters and these

neural network outputs:

p =

 wsy

g(xnn,wnn)


where pi represents the predicted probability for the i-th variable.

The probability of a world ω, defined by a subset of probabilistic facts F ⊆ F ,

is a function of the fact probabilities p, and therefore a function of wsy and the neural

network outputs g(xnn,wnn):

Pω(wsy,g(xnn,wnn)) =∏
wj

sy∈F

wj
sy

∏
wj

sy∈F\F

(1−wj
sy)

∏
g(xnn,wnn)j∈F

g(xnn,wnn)j
∏

g(xnn,wnn)j∈F\F

(1− g(xnn,wnn)j)

Finally, unlike semantic loss, DeepProbLog typically evaluates probabilities with

respect to queries. A query is a symbolic atom q whose probability we want to compute

based on the probabilistic facts and the neural network outputs. For example, the marginal

probability of a query atom q is computed by summing over the probabilities of all worlds

ω in which q is true.

50

Let CH(ω, q) be the constraint function, which acts as an indicator function re-

turning 1 if the world ω satisfies the condition that the query atom q is true:

CH(ω, q) =

1 if q ∈ ω

0 otherwise.

Assuming the weighted model count formulation, the symbolic component of the

NeSy-EBM is a DSPar potential function for a single query q is defined as:

gsy(y,xsy,wsy,gnn(xnn,wnn)) = ψqDPL([y,xsy] , [wsy,gnn(xnn,wnn)])

= d

q, ∑
ω∈{0,1}|y|

CH(ω, q)Pω(wsy,g(xnn,wnn))


Where d(·, ·) is the distance between the predicted probability of the query and

its true probability. Now, the energy function is defined over a sum of all queries q.

EDPL(y,xsy,xnn,wsy,wnn) =

|q|∑
i=1

ψqiDPL([y,xsy] , [wsy,gnn(xnn,wnn)]).

3.3.3 Logic Tensor Networks (LTNs)

Logic Tensor Networks (LTNs) [14] are a fuzzy Neural-Symbolic Energy-Based

Model (NeSy-EBM) approach, integrating neural network predictions with logic-based rea-

soning. In LTNs, neural networks provide real-valued truth values for predicates, which are

then manipulated using fuzzy logic operations to evaluate logical formulae. The satisfaction

levels of the logical formulae are aggregated through generalized mean semantics, which

form the basis of the energy function. Typically, this approach creates models inherent to

the neural as symbolic variable architectural axioms (Section 2.3.4).

LTNs use product real logic operators to define fuzzy truth values for logical

connectives:

¬(a) := 1− a, ∧(a, b) := a · b, ∨(a, b) := a+ b− a · b, =⇒ (a, b) := a+ b− a · b.

51

Additionally, LTNs use formula aggregators, such as generalized mean semantics, to handle

existential and universal quantifiers over collections of truth values, denoted by a = [ai]
n
i=1:

∃(a) :=

(
1

n

n∑
i=1

api

) 1
p

, ∀(a) := 1−

(
1

n

n∑
i=1

(1− ai)p
) 1

p

,

where p ∈ R+ is a hyperparameter controlling the smoothness of the quantifiers.

In LTNs, neural networks instantiate predicates with values from [0, 1], represent-

ing the degree to which a predicate is satisfied. For example, given two entities u and v, the

predicate P (u, v) can be defined as the output of a neural network gnn(X[u],X[v]; wnn),

which maps the feature vectors X[u] and X[v] to a truth value in [0, 1].

Example 3.3.3. Consider the following logical formula, which expresses that for each

entity u, there exists some entity v such that both predicates P (u, v) and Q(v) hold true:

∃v ∈ V (P (u, v) ∧Q(v)) .

Let XU and XV represent the feature vectors for the sets of entities U and V, re-

spectively. The predicates P (u, v) and Q(v) can be instantiated with neural network outputs:

- P (u, v) is given by the neural network gnn(X[u],X[v]; wnn), - Q(v) could be a constant

truth value or another neural network prediction.

Using the generalized mean semantics for the existential quantifier, we define the

real-valued logic function for the above formula as:

hu(XU ,XV ,xQ; wnn) =

(
1

|V|
∑
v∈V

(gnn(X[u],X[v]; wnn) · xQ[v])p
) 1

p

,

where xQ[v] is the truth value for the predicate Q(v), and gnn(X[u],X[v]; wnn) is the neural

network output for the predicate P (u, v).

The satisfaction level of the formula for all entities u is then aggregated using the

universal quantifier:

G(wnn) = 1−

(
1

|U|
∑
u∈U

(1− hu(XU ,XV ,xQ; wnn))p
) 1

p

.

52

This example illustrates how LTNs leverage neural networks to assign fuzzy truth

values to predicates and apply these values in evaluating logical formulas. The next section

will explain how LTNs can be represented as NeSy-EBMs using symbolic constraints.

3.3.3.1 NeSy-EBM Formulation

LTNs can be formulated as a DSVar NeSy-EBM, where the satisfaction of sym-

bolic constraints is driven by neural network outputs. Let xsy be the observed random

variables (constants), and since the symbolic component does not have trainable param-

eters, define wsy ∈ ∅. Let gnn be a function with parameters wnn ∈ Wnn and inputs

xnn ∈ Xnn such that:

gnn : Wnn ×Xnn 7→ [0, 1]n,

where n is the number of variables involved in the constraints.

Define CAggS (gnn(xnn,wnn),xsy,wsy) as the soft constraint function that takes as

input the output of a set of neural networks gnn(xnn,wnn) and applies the collection of

aggregation functions Agg in some way that maintains differentability (e.g., the generalized

mean or quantifiers).

The symbolic component of the NeSy-EBM is a DSVar potential function:

gsy(y,xsy,wsy,gnn(xnn,wnn)) = ψLTN ([y,xsy,gnn(xnn,wnn)] , [wsy])

= CAggS (gnn(xnn,wnn),xsy,wsy)

Given the symbolic potential and variables defined above, the energy function for

LTNs is defined as:

ELTN (y,xsy,xnn,wsy,wnn) = gsy(y,xsy,wsy,gnn(xnn,wnn))

= CAggS (gnn(xnn,wnn),xsy,wsy).

53

Part III

Neural-Symbolic Design Principles

54

Chapter 4

Neural Symbolic Inference and Learning

The previous two chapters established the foundational components of neural-

symbolic approaches, providing a set of architectural axioms and a universal mathematical

language through neural-symbolic energy-based models. In this chapter, I shift focus to

begin studying principled designed decisions, starting with NeSy inference and learning:

First, I define NeSy inference within the NeSy-EBM framework, outlining typical inference

tasks frequently encountered in machine learning, such as prediction, classification, ranking,

and density estimation. While the formal structure of NeSy-EBM inference provides a

robust theoretical foundation, I categorize three practical strategies: computation graph

vs. optimization execution, instance vs. global model construction, and decomposed vs.

unified task structure. Following this, I introduce the general formulation of NeSy-EBM

learning, which details the mechanisms for jointly training these models. As with inference,

I categorize typical learning approaches and offer insight into their application.

Although this chapter lays out the core design principles of inference and learning,

it is essential to recognize that these formulations do not yet tackle the practical challenges

associated with their implementation. Blindly applying NeSy inference and learning tech-

niques without regard to a task’s specific requirements and nuances can result in suboptimal

performance or unintended outcomes. Therefore, this chapter serves as a foundation for

understanding the intricacies of reasoning and training NeSy approaches, with a deeper

exploration of potential pitfalls and challenges in the following chapter (Chapter 5).

55

4.1 NeSy-EBM Inference

NeSy-EBMs provide a flexible and general framework capable of handling various

inference and reasoning tasks. Formally, given inputs and parameters (xsy,xnn,wsy,wnn) ∈
Xsy × Xnn ×Wsy ×Wnn, the energy function E(y,xsy,xnn,wsy,wnn) serves as the basis

for defining a variety of inference tasks, including but not limited to:

• Prediction, Classification, and Decision Making: These tasks aim to find target

variables that minimize the energy function, corresponding to selecting the most

probable or optimal outcome given the inputs.

ŷ = arg min
ŷ∈Y

E(ŷ,xsy,xnn,wsy,wnn). (4.1)

• Ranking: This task aims to order a set of target variables based on their energy

values, with lower energy indicating a more favorable or probable outcome.

E(yr1 ,xsy,xnn,wsy,wnn) ≤ · · · ≤ E(yrp ,xsy,xnn,wsy,wnn). (4.2)

• Detection: This task aims to determine whether a target variable y satisfies a

predefined energy threshold τ , often used in classification or anomaly detection.

D(y,xsy,xnn,wsy,wnn; τ) =

1 if E(y,xsy,xnn,wsy,wnn) ≤ τ,

0 otherwise.
(4.3)

• Density Estimation: This task involves estimating the conditional probability dis-

tribution of a target variable y, where the energy function defines a probability

density, such as a Gibbs distribution:

P (y|xsy,xnn; wsy,wnn) =
e−βE(y,xsy ,xnn,wsy ,wnn)∫

ŷ∈Y e
−βE(ŷ,xsy ,xnn,wsy ,wnn)

, (4.4)

where β is a positive inverse temperature parameter controlling the sharpness of the

distribution.

56

• Generation: In these tasks, the objective is to sample target variable states from a

probability distribution defined by the energy function:

y ∼ P (y|xsy,xnn; wsy,wnn). (4.5)

The aforementioned tasks represent just a subset of the inference problems that

can be formulated within the NeSy-EBM framework. These examples illustrate how the

energy function can be leveraged for both deterministic and probabilistic reasoning, de-

pending on the specific requirements of the task at hand. In the following section, I will

provide a comprehensive guide to typical inference and reasoning pipelines within the field

of NeSy.

4.2 NeSy Learning Design Principles

While the previous section introduced the general formulation of machine learning

tasks for NeSy-EBMs, the practical implementation of these systems varies significantly

across the field of NeSy. This variability stems from the inherent flexibility and broad scope

of NeSy methods, allowing for a wide range of interpretations and adaptations, particularly

in the symbolic components. While numerous incremental improvements have been made

to various inference settings, in this section, I propose three key inference designs:

• Computation Graph vs. Optimization Execution (Section 4.2.1): Compu-

tation graph execution uses a fixed, directed acyclic graph to propagate reasoning,

similar to neural network layers. Optimization execution, by contrast, iteratively

minimizes or maximizes an energy or loss function, typically adjusting neural and

symbolic variables to satisfy the constraints.

• Instance vs. Global Model Construction (Section 4.2.2): Instance model con-

struction dynamically generates structures for each query or example, tailoring the

inference path to the specific input. Global models, by contrast, rely on a shared,

reusable structure for all examples.

57

• Decomposed vs. Unified Task Structure (Section 4.2.3): Decomposed task

structure breaks down into smaller sub-tasks, where neural models handle lower-

level operations and symbolic models perform higher-level reasoning. Unified task

structures, by contrast, involve neural and symbolic components working together on

the same task, such as using symbolic reasoning to ensure the neural model’s outputs

adhere to constraints.

It is important to emphasize that this discussion centers on the design of NeSy systems. The

specific details of the inference processes—such as techniques for optimization reasoning

or algorithmic constructions of instance-based models—are highly diverse and will not be

covered exhaustively in this dissertation. For more fine-grained categorizations, I defer to

existing taxonomies and approaches that delve deeper into these nuanced distinctions [32,

43, 45, 87].

4.2.1 Computation Graph vs. Optimization Execution

One of the most fundamental distinctions in neural-symbolic systems lies in how

inference is executed, specifically whether reasoning is driven by a computation graph or

an optimization process. Similar distinctions are observed in other fields, such as the

differences between undirected and directed graphical models [69], between proof-based

and model-based logical methods [87], etc. In the context of NeSy-EBMs, this distinction

is reflected in how the system’s energy function is processed during inference.

Computation Graph-Based Execution: In computation graph-based execution, the

reasoning process is represented as a sequence of computations, where each step applies a

transformation to the inputs. This approach draws similarities to the way in which neural

networks perform execution, with each layer applying a specific operation.

Formally, let y be the target random variables, xsy be the observed symbolic

variables, xnn be the observed neural inputs, and wsy and wnn be the symbolic and neural

parameters, respectively. Let gnn represent a neural model with parameters wnn and input

xnn. In computation graph-based execution, the reasoning process can be expressed as a

58

function f , where each step in the computation graph applies a transformation to these

inputs:

E(y,xsy,xnn,wsy,wnn) ≡ f(y,xsy,wsy,gnn(xnn,wnn)),

where f denotes the sequence of transformations applied to the symbolic inputs xsy, neural

outputs gnn(xnn,wnn) and target variables y. This method of execution is particularly

suited for NeSy methods that rely on differentiable proof-based reasoning [87], where sym-

bolic rules or constraints guide the structure of the neural model. For example, differen-

tiable theorem provers and neural logic programming systems commonly leverage compu-

tation graph-based execution, as the structure of the inference process can be naturally

encoded as a graph of operations.

Optimization-Based Execution: In optimization-based execution, the reasoning pro-

cess is framed as an optimization problem where the goal is to find an optimal configuration

of variables that minimizes or maximizes an energy or loss function representing the sys-

tem’s overall state. Unlike computation graph-based execution, which involves a fixed

sequence of transformations, optimization-based execution adjusts the target variables to

satisfy symbolic constraints.

Formally, let y be the target random variables, xsy the observed symbolic in-

puts, and xnn the neural inputs, with parameters wsy for the symbolic model and wnn

for the neural model. Obviously, this depends on the inference task, but for prediction,

classification, and decision-making, this looks like this:

ŷ = arg min
y

E(y,xsy,xnn,wsy,wnn),

where E is the energy function combining the symbolic and neural components of the

model. This type of execution often relies on gradient-based techniques, such as gradient

descent, or more specialized solvers depending on the form of the energy function and con-

straints. Optimization-based execution is commonly employed in neural-symbolic systems

that require constraint satisfaction, probabilistic inference, or structured prediction tasks.

59

4.2.2 Instance vs. Global Model Construction

Another critical design choice in neural-symbolic systems is how the neural-

symbolic model is constructed. Symbolic systems often produce potentially large grounded

models, making it advantageous in some inference problems to ground only a subset of the

graph—the portion relevant to the specific query or problem. This distinction gives rise

to two primary inference approaches: instance model construction and global model con-

struction. For reference, not only is this choice important to NeSy systems, but it is also

prevalent across purely symbolic literature. For example, two of the most prominent frame-

works, ProbLog [39] and PSL [11], exemplify these approaches, with ProbLog typically

employing instance-based model construction and PSL favoring global model construction.

Example 4.2.1 (Instance v.s. Global Model). Consider a purely symbolic propositional

logic scenario with two rules: A → C and B → C. The goal is to predict the value of C

given an input.

In the instance model approach, the system dynamically selects and grounds only

the relevant symbolic rules for each specific input. For example, if the input is A = 1,

the system selects the rule A → C and ignores the rule B → C, as B is irrelevant to this

specific instance. The system then constructs a reasoning process based on the selected rule,

effectively transforming it into a computation graph. By following this reasoning path, it

can directly infer that C must also be true (C = 1).

In contrast, in the global model approach, all rules are considered simultaneously,

forming a universal model for all potential inputs. Given the same input A = 1, the system

treats this scenario as an optimization problem, searching for a configuration of values that

satisfies the entire set of rules. For example, the global model may explore assignments

such as A = 1, B = 0, C = 1 or A = 1, B = 1, C = 1.

While this is a purely symbolic example, it is simple to extend to neural-symbolic

scenarios, such as when the value of A is determined by a neural model. Furthermore,

execution strategies are not strictly tied to the model constructed. For instance, an instance

model construction can involve optimization, while a global model can also be used to build

a computation graph.

60

Instance Model Construction: Instance model construction dynamically generates

symbolic structures tailored to each specific input, allowing the reasoning process to adapt

to the unique characteristics of each example. For instance, in the MNIST-Add example

presented in the architecture chapter (Example 2.1.1), an instance-based model grounds

only the additions corresponding to the most probable digit classes instead of grounding

every possible two-digit addition. This approach reduces the number of possible groundings

from 10 × 10 = 100 to just 1 × 1 = 1. While in practice, the model typically constructs

symbolic structures dynamically during inference, within the framework of NeSy-EBMs,

the energy function must account for all potential symbolic structures.

Formally, let y be the target random variables, xsy the observed symbolic inputs,

and xnn the neural inputs, with parameters wsy for the symbolic model and wnn for the

neural model. Let J denote the finite set of all possible symbolic structures. The energy

function E can then be expressed as a summation of the individual energy contributions,

with structures not relevant to a specific example (xnn and xsy) assigned an energy of zero:

E(y,xsy,xnn,wsy,wnn) =
∑
M∈J

EM(y,xsy,xnn,wsy,wnn),

where EM denotes the energy function associated with a symbolic structure M. Each

instance-specific energy function EM is defined as:

EM(y,xsy,xnn,wsy,wnn) =

M(y,xsy,xnn,wsy,wnn) if M is the valid structure,

0 otherwise.

The definition of a valid symbolic structure depends on the specific context or task being

addressed by the model, allowing the system to adapt its reasoning dynamically to each

instance. For example, in the MNIST-Add task, all additions outside of the most probable

digit classes are “invalid” symbolic structures for that energy value. In practice, a single

symbolic structure is typically generated based on the given input, while all other potential

structures are assumed to contribute zero to the total energy function.

Global Model Construction: In contrast, global model construction utilizes a shared

symbolic structure that applies uniformly across all examples. This approach encapsulates

61

a consistent set of symbolic constraints that remain unchanged regardless of the specific

input instance.

Formally, let y be the target random variables, xsy the observed symbolic in-

puts, and xnn the neural inputs, with parameters wsy for the symbolic model and wnn

for the neural model. In this case, let Mglobal denote the shared symbolic model. The

corresponding energy function is given by:

E(y,xsy,xnn,wsy,wnn) = EMglobal
(y,xsy,xnn,wsy,wnn),

4.2.3 Decomposed vs. Unified Task Structure

The final design decision I highlight revolves around two common structural ap-

proaches for addressing different types of neural-symbolic problems. These approaches are

typically motivated by distinct use cases: (1) amalgamating neural predictions through

symbolic reasoning or (2) refining a neural model’s predictions using symbolic guidance.

This distinction gives rise to an architectural design dichotomy: decomposed task struc-

tures and unified task structures. Again, similar to the other design decisions, this has

been seen throughout many research areas, such as the Statistical Relational Learning

(SRL) community [56].

Decomposed Task Structure In a decomposed task structure, the neural network’s

outputs predict intermediate concepts that are distinct from the target variables, i.e., the

outputs do not directly map to the domain of the target variables. Instead, the neural

network predicts auxiliary concepts that the symbolic model processes to infer the final

target variables. Typically, the neural model is responsible for lower-level tasks, such as

perception or feature extraction, while the symbolic model handles higher-level reasoning

or decision-making tasks based on these neural outputs.

Formally, let y denote the target random variables, xsy the observed symbolic

variables, xnn the observed neural inputs, and wsy and wnn the symbolic and neural

parameters, respectively. Let gnn represent a neural model with parameters wnn and

input xnn. A decomposed task structure is defined such that the concepts, c, predicted by

62

the neural model do not belong to the same domain of the target variables:

gnn(xnn,wnn) = c, c ∈ C and C ̸≡ Y.

Consider the task of MNIST Addition introduced in the architecture chapter

(Example 2.1.1). In this scenario, the neural model predicts the individual digits in the

given addition problem, which are not directly part of the target domain of additions. The

symbolic model then performs an arithmetic sum of these recognized digits to produce the

final target variable. Here, each component addresses a distinct task: the neural model

predicts digit classes, while the symbolic model computes their sum.

Unified Task Structure In contrast, in a unified task structure, the neural and symbolic

components work collaboratively to predict the same target variables, i.e., the outputs

directly map to the domain of the target variables. Typically, the neural model makes

an initial prediction, while the symbolic model adjusts these predictions based on the

problem’s constraints.

Formally, let y denote the target random variables, xsy the observed symbolic

variables, xnn the observed neural inputs, and wsy and wnn the symbolic and neural

parameters, respectively. Let gnn represent a neural model with parameters wnn and

input xnn. A unified task structure is defined such that the concepts c, predicted by the

neural model, belong to the same domain as the target variables:

gnn(xnn,wnn) = c, c ∈ C and C ≡ Y.

Consider the task of visual Sudoku puzzle classification introduced in the modeling

patterns section (Example 3.2.1). In this scenario, the neural model classifies the digits in a

given visual Sudoku board, directly predicting values that belong to the target domain. The

symbolic model then refines these predictions by enforcing Sudoku constraints, ensuring

that no digit is repeated within any row, column, or sub-grid. Here, both the neural and

symbolic components contribute to the same task, predicting digits.

63

4.3 NeSy-EBM Learning

Having identified a range of modeling paradigms and inference paradigms, let’s

now turn our attention to learning. This section formalizes the NeSy-EBM learning prob-

lem, introduces a general loss function, and discusses several algorithms for addressing

these challenges. While I contributed to the high-level conceptualization and helped inte-

grate these ideas into the broader NeSy framework, the detailed technical work and proofs

are largely the contributions of my colleague Charles. For a more comprehensive and de-

tailed discussion, I refer the reader to their work [43]. My role primarily involved helping

to frame these concepts within the larger context of NeSy-EBMs.

At a high level, NeSy-EBM learning involves determining the weights of an energy

function that assigns higher compatibility (lower energy) to targets and neural outputs that

align closely with the true labels from the training data. However, predicting with NeSy-

EBMs requires solving a complex mathematical program, which presents several challenges

for learning. For example, NeSy-EBM predictions may not be differentiable with respect

to the model parameters, making the direct application of automatic differentiation either

impractical or ineffective. Even in cases where predictions are differentiable, the associated

gradients often rely on properties of the energy function at its minimizer, which can be

computationally expensive to compute. This section introduces general and principled

learning frameworks for NeSy-EBMs that address these challenges.

This section is organized as follows: First, Section 4.3.1 will introduce some pre-

liminary notation and the general definition of NeSy-EBM learning. Then, Section 4.3.2

will present four learning losses that define the learning problem. Finally, Section 4.3.3

will categorize four learning algorithms.

4.3.1 Definition

The following notation and general definition of NeSy-EBM learning are used

throughout this dissertation. The training dataset, denoted by S, is comprised of P samples

and indexed by {1, · · · , P}. Each sample, Si where i ∈ {1, · · · , P}, is a tuple of inputs,

labels, and latent variable domains. Sample inputs consist of neural inputs, xinn from Xnn,

64

and symbolic inputs, xisy from Xsy. Similarly, sample labels consist of neural and symbolic

labels, which are truth values corresponding to a subset of the neural predictions and

target variables, respectively. Neural labels, denoted by tinn, are dinn ≤ dnn dimensional

real vectors from a domain T inn, i.e., tinn ∈ T inn ⊆ Rdinn . Target labels, denoted by tiY , are

from a domain T iY that is a dT i
Y
≤ dY subspace of the target domain Y, i.e., tiY ∈ T iY . Lastly,

the neural and symbolic latent variable domains are subspaces of the range of the neural

component and the target domain, respectively, corresponding to the set of unlabeled

variables. The range of the neural component, Rdnn
, is a superset of the Cartesian product

of the neural latent variable domain, denoted by Z inn, and T inn, i.e., Rdnn ⊇ T inn × Z inn.

Similarly, the target domain Y is a superset of the Cartesian product of the latent variable

domain, denoted by Z iY , and T iY , i.e., Y ⊇ T iY × Z iY . With this notation, the training

dataset is expressed as follows:

S := {(t1Y , t1nn,Z1
nn,Z1

Y ,x
1
sy,x

1
nn), · · · , (tPY , tPnn,ZPnn,ZPY ,xPsy,xPnn)}. (4.6)

A learning objective, denoted by L, is a functional that maps an energy function and a

training dataset to a scalar value. Formally, let E be a family of energy functions indexed

by weights from Wsy ×Wnn:

E := {E(·, ·, ·,wsy,wnn) | (wsy,wnn) ∈ Wsy ×Wnn}. (4.7)

Then, a learning objective is the function:

L : E × {S} → R. (4.8)

Learning objectives follow the standard empirical risk minimization framework and are

separable over elements of S as a sum of per-sample loss functionals denoted by Li for

each i ∈ {1, · · · , P}. A loss functional for the sample Si ∈ S is the function:

Li : E × {Si} → R. (4.9)

65

A regularizer, denoted by R : Wsy × Wnn → R, is added to the learning objective and

NeSy-EBM learning is the following minimization problem:

arg min
(wsy ,wnn)∈Wsy×Wnn

L(E(·, ·, ·,wsy,wnn),S) +R(wsy,wnn) (4.10)

= arg min
(wsy ,wnn)∈Wsy×Wnn

1

P

P∑
i=1

Li(E(·, ·, ·,wsy,wnn),Si) +R(wsy,wnn).

4.3.2 Learning Losses

A NeSy-EBM learning loss functional, Li, can be decomposed into three com-

ponents: neural, value-based, and minimizer-based losses. This subsection provides an

intuitive overview of each component. For more details and formal proofs, which are both

primarily contributions of my colleague, I refer the reader to their fantastic work [43].

At a high level, the neural loss measures the quality of the neural component inde-

pendent from the symbolic component. Then, the value-based and minimizer-based losses

measure the quality of the NeSy-EBM as a whole. Moreover, value-based and minimizer-

based losses are functionals mapping a parameterized energy function and a training sample

to a real value and are denoted by LV al : E × S → R and LMin : E × S → R, respectively.

The learning loss components are aggregated via summation:

Li(E(·,·, ·,wsy,wnn),Si) (4.11)

= LNN (gnn(xinn,wnn), tinn) Neural

+ LV al(E(·, ·, ·,wsy,wnn),Si) Value-Based

+ LMin(E(·, ·, ·,wsy,wnn),Si) Minimizer-Based

4.3.2.1 Neural Learning Losses

Neural learning losses are scalar functions of the neural network output and the

neural labels and are denoted by LNN : Range(gnn) × T inn → R. For example, a neural

learning loss may be the familiar binary cross-entropy loss applied in many categorical

prediction settings. Minimizing a neural learning loss with respect to neural component

parameters is achievable via backpropagation and standard gradient-based algorithms.

66

4.3.2.2 Value-Based Learning Losses

Value-based learning losses depend on the model weights strictly via minimizing

values of an objective defined with the energy. More formally, denote an objective function

by f , which maps a compatibility score, target variables, and the training sample to a

scalar value:

f : R× Y × {Si} → R. (4.12)

An optimal value-function, denoted by V , is the value of f composed with the energy

function and minimized over the target variables:

V (wsy,wnn,Si) := min
ŷ∈Y

f
(
E(ŷ,xisy,x

i
nn,wsy,wnn), ŷ,Si

)
:= min

ŷ∈Y
f(gsy(ŷ,x

i
sy,wsy,gnn(xinn,wnn)), ŷ, Si) (4.13)

Value-based learning losses are functions of one or more optimal value functions. This

work considers three instances of optimal value functions: 1) latent, VZ , 2) full, VY , 3)

and convolutional, Vconv. The latent optimal value function is the minimizing value of the

energy over the latent targets. Further, the labeled targets are fixed to their true values

using the following indicator function:

IT i
Y

(y, tiY) :=

0 y = tiY

∞ o.w.
. (4.14)

The full optimal value function is the minimizing value of the energy over all of the targets.

Lastly, the convolutional optimal value function is the infimal convolution of the energy

67

function and a function d : Y × Y → R scaled by a positive real value λ ∈ R. Formally:

VZ(wsy,wnn,Si) := min
ŷ∈Y

E(ŷ,xisy,x
i
nn,wsy,wnn) + IT i

Y
(ŷ, tiY),

= min
ẑ∈Zi

Y

E((tiY , ẑ),xisy,x
i
nn,wsy,wnn), latent

(4.15)

VY(wsy,wnn,Si) := min
ŷ∈Y

E(ŷ,xisy,x
i
nn,wsy,wnn), full

(4.16)

Vconv(wsy,wnn,Si; y, λ) := min
ŷ∈Y

E(ŷ,xisy,x
i
nn,wsy,wnn) + λ · d(ŷ,y). convolutional

(4.17)

Given these optimal value functions, a collection of learning losses can be called

upon from previous EBM literature [74]. For instance consider the following two energy

and structured perceptron:

• Energy Loss: The simplest value-based learning loss is the energy loss, denoted by

LEnergy. The energy loss is the latent optimal value function,

LEnergy(E(·, ·, ·,wsy,wnn),Si) := VZ(wsy,wnn,Si). (4.18)

Minimizing the energy loss encourages the parameters of the energy function to pro-

duce low energies given the observed true values of the input and target variables.

• Structured Perceptron Loss: Another simple value-based learning loss is the

Structured Perceptron loss, denoted by LSP [75, 29]. The structured perception loss

is the difference between the latent and full optimal value functions,

LSP (E(·, ·, ·,wsy,wnn),Si) := VZ(wsy,wnn,Si)− VY(wsy,wnn,Si). (4.19)

The gradients of these losses with respect to both the neural and symbolic weights

are non-trivial to compute. However, Milgrom and Segal (2002) provides a general theorem

for deriving the gradient of optimal value functions with respect to problem parameters,

given their existence. Building on this, Dickens (2024) extends and specializes this result

to optimal value functions in the context of NeSy-EBMs.

68

With that said, performance metrics are not always aligned with value-based losses

and are known to result in degenerate solutions [74, 103]. For example, without a carefully

designed inductive bias, the energy loss in (4.18) may only learn to reduce the energy of

all target variables without improving the predictive performance of the NeSy-EBM. One

fundamental cause of this issue is that value-based losses are not directly functions of the

NeSy-EBM prediction as defined in (4.1), i.e., value-based losses are not functions of an

energy minimizer. The following subsection discusses these sets of losses in greater detail.

4.3.2.3 Minimizer-Based Learning Losses

A minimizer-based loss is a composition of a differentiable loss, such as cross-

entropy or mean squared error, with the energy minimizer. Intuitively, minimizer-based

losses penalize parameters yielding predictions distant from the labeled training data. Dick-

ens (2024) shows that for NeSy-EBMs, three assumptions are required for defining this loss

and for stable gradient decent learning.

Firstly, to ensure that a minimizer-based loss is well-defined, an assumption of

the existence of a unique energy minimizer, denoted by y∗, for every training sample is

made:

Assumption 1. The energy function is minimized over the targets at a single point for

every input and weight and is, therefore, a function:

y∗ : Xsy ×Xnn ×Wsy ×Wnn → Y (4.20)

(xsy,xnn,wsy,wnn) 7→ arg min
ŷ∈Y

E(ŷ,xsy,xnn,wsy,wnn)

Given this assumption, a minimizer-based loss can be defined over a function d

as follows:

LMin(E(·, ·, ·,wsy,wnn),Si) := d(arg min
ŷ∈Y

E(ŷ,xisy,x
i
nn,wsy,wnn), tiY) (4.21)

:= d(y∗(xisy,x
i
nn,wsy,wnn), tiY)

where d : Y × T iY → R,

69

To ensure principled gradient-based learning, an additional assumption must be

made that the minimizer is differentiable.

Assumption 2. The minimizer, y∗, is differentiable with respect to the weights at every

point in Xsy ×Xnn ×Wsy ×Wnn.

Under Assumption 2, the chain rule of differentiation yields the gradient of a

minimizer-based loss with respect to the neural and symbolic weights:

∇wsyLMin(y∗(xisy,x
i
nn,wsy,wnn)), tiY)

= ∇3y
∗(xisy,x

i
nn,wsy,wnn)T∇1d(y∗(xisy,x

i
nn,wsy,wnn), tiY), (4.22)

∇wnnLMin(y∗(xisy,x
i
nn,wsy,wnn)), tiY)

= ∇4y
∗(xisy,x

i
nn,wsy,wnn)T∇1d(y∗(xisy,x

i
nn,wsy,wnn), tiY), (4.23)

where ∇3y
∗(xisy,x

i
nn,wsy,wnn) and ∇4y

∗(xisy,x
i
nn,wsy,wnn) are the Jacobian matrices

of the unique energy minimizer with respect to the third and fourth arguments of y∗,

the symbolic and neural weights, respectively, and ∇1d(y∗(xisy,x
i
nn,wsy,wnn), tiY) is the

gradient of the supervised loss with respect to its first argument.

A primary challenge of minimizer-based learning is computing the Jacobian ma-

trices of partial derivatives, ∇3y
∗(xisy,x

i
nn,wsy,wnn) and ∇4y

∗(xisy,x
i
nn,wsy,wnn). To

derive explicit expressions for them typically demands the following additional assumption

on the continuity properties of the energy function.

Assumption 3. The energy, E, is twice differentiable with respect to the targets at the

minimizer, y∗, and the Hessian matrix of second-order partial derivatives with respect to

the targets, ∇1,1E(y∗(xisy,x
i
nn,wsy,wnn),xisy,x

i
nn,wsy,wnn), is invertible. Further, the

minimizer is the unique target satisfying first-order conditions of optimality, i.e.,

∀y ∈ Y, ∇1E(y,xisy,x
i
nn,wsy,wnn) = 0 ⇐⇒ y = y∗(xisy,x

i
nn,wsy,wnn) (4.24)

Assumption 3 is satisfied by energy functions that are, for instance, smooth and

strongly convex in the targets. Under Assumption 3, the first-order optimality condition

70

establishes the minimizer as an implicit function of the weights, and implicit differentiation

yields the following equalities:

∇1,1E(y∗(xisy,x
i
nn,wsy,wnn),xisy,x

i
nn,wsy,wnn)∇3y

∗(xisy,x
i
nn,wsy,wnn) (4.25)

= −∇1,4E(y∗(xisy,x
i
nn,wsy,wnn),xisy,x

i
nn,wsy,wnn)

∇1,1E(y∗(xisy,x
i
nn,wsy,wnn),xisy,x

i
nn,wsy,wnn)∇4y

∗(xisy,x
i
nn,wsy,wnn) (4.26)

= −∇1,5E(y∗(xisy,x
i
nn,wsy,wnn),xisy,x

i
nn,wsy,wnn)

Solving for the Jacobians of the minimizer:

∇3y
∗(xisy,x

i
nn,wsy,wnn) = −

(
∇1,1E(y∗(xisy,x

i
nn,wsy,wnn),xisy,x

i
nn,wsy,wnn)−1

(4.27)

∇1,4E(y∗(xisy,x
i
nn,wsy,wnn),xisy,x

i
nn,wsy,wnn)

)
,

∇4y
∗(xisy,x

i
nn,wsy,wnn) = −

(
∇1,1E(y∗(xisy,x

i
nn,wsy,wnn),xisy,x

i
nn,wsy,wnn)−1

(4.28)

∇1,5E(y∗(xisy,x
i
nn,wsy,wnn),xisy,x

i
nn,wsy,wnn)

)
.

The Jacobians in (4.27) and (4.28) applied to (4.22) and (4.23), respectively, are referred

to as hypergradients in the machine learning literature and are utilized in hyperparameter

optimization and meta-learning [48, 102, 105]. Often, approximations of the (inverse)

Hessian matrices are made to estimate the hypergradient.

4.3.3 Learning Algorithms

With the complete loss function defined, this section categorizes four principled

techniques for learning the neural and symbolic weights of a NeSy-EBM: (1) Modular

Learning, (2) Gradient Descent, (3) Bilevel Value-Function Optimization, and (4) Stochas-

tic Policy Optimization. This formulation, framed within the context of NeSy-EBMs, is

primarily contributed by my colleague and can be explored in greater detail in [43].

71

4.3.3.1 Modular Learning

The first and most straightforward NeSy-EBM learning technique is to train and

connect the neural and symbolic components as independent modules. This approach has

been extensively studied over decades across multiple domains and communities, such as

the statistical relational learning community (e.g., [120]).

In a typical modular learning setup, the neural component is trained first using

standard methods, such as backpropagation with the Adam optimizer, to minimize a neural

loss based on neural labels. Once the neural weights are optimized, they are frozen, and

the symbolic component is trained independently using an appropriate method to optimize

a value-based or minimizer-based loss. By definition, modular learning algorithms are not

trained end-to-end, meaning the neural and symbolic parameters are not jointly optimized

to minimize the overall learning loss. Due to this separation, modular approaches may

struggle to achieve weight settings that minimize the learning loss as effectively as end-to-

end techniques. Nevertheless, modular learning approaches remain appealing and widely

used due to their simplicity and broad applicability. There are many well-established and

effective modular learning algorithms for both neural and symbolic components. For a

recent taxonomy of symbolic weight learning algorithms, see Srinivasan et al. (2021).

4.3.3.2 Gradient Descent

A conceptually simple yet often challenging technique for end-to-end NeSy-EBM

training is direct gradient descent. This approach directly utilizes the gradients derived in

the previous subsection and from Dickens (2024), applying a gradient-based optimization

algorithm to minimize the NeSy-EBM loss with respect to both the neural and symbolic

weights.

While backpropagation can be applied to train a wide range of NeSy-EBMs, it is

not universally applicable. Scenarios where backpropagation is computationally inexpen-

sive and possible often involve NeSy-EBMs trained with value-based losses. Additionally,

for certain subclasses of NeSy-EBMs, gradients of energy minimizers may also exist and be

efficient to compute. For instance, when the energy minimizer can be determined through

72

a simple closed-form expression, such as in cases where inference involves an unconstrained

strongly convex quadratic program or a finite computation graph.

However, as discussed in Section 4.3.2, the existence of learning loss gradients for

fully expressive NeSy-EBMs depends on specific conditions. Moreover, computing these

gradients often requires expensive second-order information about the energy function at

the minimizer. Consequently, cheap direct gradient descent is restricted to a relatively small

subset of NeSy-EBMs with specialized architectures that enable efficient and principled

gradient computation [43].

4.3.3.3 Bilevel Value-Function Optimization

The third class of NeSy-EBM training algorithms leverages bilevel value-function

optimization to optimize minimizer-based losses using only first-order gradients. This

technique is grounded in the observation that the general definition of NeSy-EBM learning

(4.10) is naturally formulated as a bilevel optimization problem. In essence, the NeSy

learning objective depends on variable values obtained by solving a lower-level inference

problem, which involves symbolic reasoning.

While the details are beyond the scope of this section, my colleague has shown how

to reformulate the minimizer-based loss into a bilevel formulation of the NeSy-EBM learn-

ing problem, providing a foundation for smooth, first-order gradient-based optimization

techniques. Using this formulation, they proposed a NeSy-EBM learning algorithm [43].

The algorithm proceeds by approximately solving instances of a relaxed, smoothed value

function in a bound-constrained optimization framework, iteratively refining solutions in

a sequence governed by a decreasing parameter ι. This results in a graduated approach,

where the problem is addressed through a series of increasingly tighter approximations.

4.3.3.4 Stochastic Policy Optimization

The final approach to NeSy-EBM learning presented here avoids directly comput-

ing the energy minimizer’s gradients with respect to the weights by reformulating NeSy

learning as a stochastic policy optimization problem. This requires adapting the standard

73

Figure 4.1: A stochastic NeSy-EBM. The symbolic weights and the neural component

parameterize stochastic policies. A sample from the policies is drawn to produce arguments

of the symbolic component.

NeSy-EBM framework to create a stochastic NeSy-EBM (Figure 4.1). Details on how to

perform this reformulation can be found in the work of my colleague [43].

Stochastic policy optimization techniques are broadly applicable for end-to-end

training of NeSy-EBMs because they are agnostic to both the neural-symbolic interface

and the symbolic inference process. Furthermore, these techniques can be applied across

all motivating applications and modeling paradigms.

However, the primary tradeoff of the stochastic policy approach is the high vari-

ance in the sample estimates of the policy gradient. This issue is well-documented in the

policy optimization literature and becomes more pronounced as the dimensionality of the

policy output space increases [123]. As a result, learning with stochastic policy optimiza-

tion may require significantly more iterations to converge compared to the other techniques

presented in this section.

74

4.4 NeSy Learning Design Principles

Similarly to the inference principles section, the practical implementation of learn-

ing in NeSy systems varies significantly depending on the method, task, underlying archi-

tecture, and system. While specific NeSy learning algorithms have been developed and

tailored to optimize individual NeSy approaches, this section focuses on a set of NeSy

design principles that have shown promise across various settings. It is important to em-

phasize that this discussion centers on the high-level design of learning systems. Detailed

aspects of the learning process—such as specific optimization techniques, algorithmic im-

plementations, and related nuances—are beyond the scope of this dissertation. I refer

readers to the respective NeSy methods and their specific learning techniques for more

granular categorizations and technical details.

This section is organized into three main parts. First, it introduces two data-

driven NeSy learning design principles: distant supervision learning (Section 4.4.1) and

structure-informed learning (Section 4.4.2). Distant supervision learning involves labels

for the symbolic variables but offers partial or no labels for the neural concepts. In con-

trast, structure-informed learning operates without labels for the symbolic target variables,

while neural components may have full, partial, or no labels. Next, the section discusses

an architecture-driven NeSy learning design principle, learning with constraint loss (Sec-

tion 4.4.3), which focuses on a design principle for accelerating learning by incorporating

constraints directly into the loss function or have the symbolic perform computation graph

execution. Finally, Section 4.4.4 categorizes additional prominent learning design princi-

ples, including tasks, pre-training strategies, and post-training approaches.

4.4.1 Distant Supervision Learning

In the first data-driven NeSy learning design pattern, distant supervision [87]

learning leverages labeled symbolic target variables to indirectly guide the training of the

neural component. In the most typical setup for this setting, the neural component does

not receive direct supervision from labeled neural data. Instead, the symbolic component

provides indirect supervision by propagating information derived from symbolic target

75

labels associated with a different set of variables.

Formally, in completely unsupervised neural distant supervision learning, the

training dataset S does not include neural labels tnn:

S := {(t1Y ,Z1
nn,Z1

Y ,x
1
sy,x

1
nn), · · · , (tPY ,ZPnn,ZPY ,xPsy,xPnn)}.

As a result, the loss function presented in Equation 4.11 simplifies to include only the

value-based and minimizer-based losses:

Li(E(·,·, ·,wsy,wnn),Si)

= LV al(E(·, ·, ·,wsy,wnn),Si) Value-Based

+ LMin(E(·, ·, ·,wsy,wnn),Si) Minimizer-Based

Commonly, distant supervision is applied in decomposed task structure settings

(Section 4.2.3), where the neural component is trained entirely using labels associated with

the symbolic model. For example, in the MNIST-Add scenario introduced in Example 2.1.1,

the neural model’s parameters are optimized based on gradient information propagated

from the symbolic sum label without direct supervision for the individual digit predictions.

This approach is particularly effective when the label associated with the higher-level task

(e.g., the sum in MNIST-Add) provides sufficient signal to train the neural model. Fur-

ther another useful design principle is that once trained, the neural component can be

“unplugged” from the NeSy system and deployed independently in other contexts.

With that all said, distant supervision learning is more general than both the

decomposed task structure setting and scenarios where there are no labels available to

train the neural component. Instead, a hybrid learning strategy can be employed, where the

neural model has direct supervision for some examples while relying on distant supervision

for the remaining ones. Formally, the training dataset S includes partially labeled neural

data (tnn) and fully labeled symbolic data (tY). This hybrid setup is particularly prevalent

in tasks like neural-symbolic semi-supervised distant supervision learning.

76

4.4.2 Structure-Informed Learning

On the opposite end of the data-driven learning spectrum from distant supervision

learning is another common NeSy training design pattern: structure-informed learning. In

this paradigm, the symbolic target variables lack ground truth labels, while the neural

components may have full, partial, or no labels. Instead of relying on explicit supervision,

the neural parameters are trained using structurally informed priors or domain-specific

knowledge, which act as implicit guidance during the learning process.

Formally, in symbolic-informed learning, the training dataset S does not include

symbolic labels tY :

S := {(t1nn,Z1
nn,Z1

Y ,x
1
sy,x

1
nn), · · · , (tPnn,ZPnn,ZPY ,xPsy,xPnn)}.

As a result, the loss function presented in Equation 4.11 simplifies to include only the

neural-based and value-based losses:

Li(E(·,·, ·,wsy,wnn),Si)

= LNN (gnn(xinn,wnn), tinn) Neural

+ LV al(E(·, ·, ·,wsy,wnn),Si) Value-Based

Furthermore, since labels for symbolic target variables are entirely absent, the value-based

learning loss optimal value functions for latent and convolutional are not used and only

use the full optimal value function VY :

VY(wsy,wnn,Si) := min
ŷ∈Y

E(ŷ,xisy,x
i
nn,wsy,wnn), full

Typically a full-energy loss is used:

LfullEnergy(E(·, ·, ·,wsy,wnn),Si) := VY(wsy,wnn,Si),

Unlike distant supervision, structure-informed learning is applicable to both uni-

fied and decomposed task structures (Section 4.2.3), as the symbolic loss serves as a prior

that influences the neural model. For example, in the visual Sudoku puzzle-solving exam-

ple introduced in the deep symbolic variables section of the modeling paradigms chapter

77

(Section 3.2.1), the symbolic model lacks supervision on the target variables. In this de-

composed task setting, the neural component (digit classifier) is trained solely from the

structure of the symbolic model (rules of Sudoku). This approach is particularly effective

when domain knowledge or constraints provide a strong inductive bias or are nearly always

valid. It is a practical method for training models in scenarios where collecting ground

truth labels is challenging or expensive, but the problem can be represented effectively

through a set of constraints.

4.4.3 Learning with Constraint Loss

While the previous two design patterns focus on model design from the perspective

of data availability, another prominent NeSy learning design pattern emphasizes efficient

learning by utilizing the symbolic component as either a constraint loss [138] or a com-

putation graph [14]. This approach, commonly referred to as learning with constraints,

simplifies the underlying inference optimization process by transforming it into a series

of computational steps, analogous to those in a neural network. This design principle is

primarily aimed at improving the scalability of training by reducing the computational

overhead associated with optimization-based inference. In many cases, it is beneficial to

train the neural model on this simplified problem and later transition to a more complex

problem involving optimization during inference. For instance, in the MNIST-Add prob-

lem (2.1.1), the neural model can be trained using a constraint loss to approximate the

addition constraint, while inference employs optimization to ensure that the predictions

strictly adhere to the addition rule.

In a learning with constraints design pattern, the neural component is typically

designed to predict a subset of symbolic latent variables and symbolic target variables while

the remaining variables are resolved trivially through predefined computations. Although

this design impacts all learning losses, most systems typically employ a value-based learning

loss. Therefore, this section will focus on that aspect in the following discussion.

Formally, the optimal value functions introduce indicator functions IZgnn
and IYgnn

,

which ensure that the latent variables ẑ and target variables ŷ and the neural predictions

78

gnn(xnn,wnn) are aligned. 1 Specifically, these indicator functions are defined as:

IZgnn
(ẑ,gnn(xnn,wnn)) =

0 if ẑ = gnn(xnn,wnn)

∞ otherwise

IYgnn
(ŷ,gnn(xnn,wnn)) =

0 if ŷ = gnn(xnn,wnn)

∞ otherwise

This then affects the optimal value functions. For the latent optimal value func-

tion, the indicator function is incorporated to ensure that the latent variables and neural

network outputs are consistent:

VZ(wsy,wnn,Si) = min
ŷ∈Y

E(ŷ,xisy,x
i
nn,wsy,wnn) + IT i

Y
(ŷ, tiY) + IZgnn

(ẑ,gnn(xinn,wnn)),

= E
(
tY ,gnn(xinn,wnn),xisy,wsy

)
. (4.29)

For the full optimal value function, the indicator function is incorporated to ensure

that the target variables and neural network outputs are consistent:

VY(wsy,wnn,Si) = min
ŷ∈Y

E(ŷ,xisy,x
i
nn,wsy,wnn) + IYgnn

(ŷ,gnn(xinn,wnn))

= E
(
gnn(xinn,wnn),xisy,wsy

)
. (4.30)

For the convolutional optimal value function, the indicator function is incorpo-

rated to ensure that the target variables and neural network outputs are consistent:

Vconv(wsy,wnn,Si; y, λ) = min
ŷ∈Y

E(ŷ,xisy,x
i
nn,wsy,wnn) + λ · d(ŷ,y) + IYgnn

(ŷ,gnn(xinn,wnn))

= E
(
gnn(xinn,wnn),xisy,wsy, λ

)
. (4.31)

Simplifying the learning problem offers certain benefits but comes with notable

trade-offs. On the positive side, this approach often leads to a highly efficient training

pipeline, as the inference process becomes computationally trivial. However, this efficiency

comes at the cost of reduced model expressivity. The reliance on a computation graph

1This section assumes that the neural model predicts all latent and target values. Extending this
framework to include partial value assignments is straightforward.

79

limits the ability to represent more complex reasoning, and it increases the likelihood of

constraint violations. Additionally, the burden of satisfying constraints is shifted entirely

to the neural model, which may struggle in scenarios involving noisy or incomplete data.

4.4.4 Additional Design Guidelines

In addition to the primary learning principles discussed earlier, there are several

informal guidelines, tasks, and pipelines that, while not directly modifying the underlying

learning loss or algorithms, play a critical role in shaping the design and implementation

of NeSy systems.

Neural-Symbolic Tasks: Although NeSy systems are versatile and powerful tools, they

are not a universal solution for all problems. Instead, their effectiveness often depends on

the nature of the task and the integration of symbolic reasoning with neural learning.

Below, I highlight a set of key NeSy tasks that have demonstrated success across a variety

of approaches and application domains:

• Knowledge-Informed Supervised Learning: Integrates symbolic constraints

or priors into a fully supervised neural learning setup to guide the model towards

domain-consistent predictions.

• Semi-Supervised Learning: Combines limited labeled data with symbolic reason-

ing or structure to propagate supervision to unlabeled examples, enhancing general-

ization.

• Few-/Zero-Shot Learning: Relies on symbolic reasoning or prior knowledge to

train models that generalize effectively from minimal or no labeled examples.

• Fine-Tuning and Adaptation: Adapts a pre-trained NeSy model to a new domain

or task, often using domain-specific symbolic constraints to guide adaptation.

Pre-training Strategies: While NeSy systems have shown effectiveness in training both

neural and symbolic parameters from scratch, there is a growing recognition of the impor-

tance of adapting pre-training strategies on the neural side before applying a NeSy loss

80

[43]. Pre-training can help avoid degenerate solutions and provide a stronger foundation

for joint neural-symbolic training. Below are three key pre-training strategies:

• Supervised Pretraining: Train the neural model using standard supervised learn-

ing techniques on labeled data before introducing a NeSy training pipeline. Super-

vised pretraining provides the neural component with a robust initial representation,

enabling it to better complement the symbolic component during joint training.

• Self-Supervised Pretraining: Use self-supervised learning techniques to pretrain

the neural model before introducing a NeSy training pipeline. This can range from

simple clustering-based approaches to more advanced methods leveraging data aug-

mentations or contrastive learning [24]. Self-supervised pretraining is particularly

effective in settings with limited labeled data, providing a robust initialization that

can prevent convergence to degenerate solutions or local minima [103]. It is also a

practical strategy in scenarios where labeled data is expensive or difficult to obtain.

• Transfer Learning and Domain Adaptation: Pretraining large-scale models,

such as transformers or foundation models, directly within a NeSy system is often

computationally infeasible and may lead to poor generalization. Instead, fine-tuning

a pre-trained foundation model or a large computer vision model with symbolic con-

straints has emerged as a promising technique.

Post-Training Use-Cases: Training a collection of neural and symbolic parameters in

a NeSy system does not necessarily imply that the entire model will be used after training.

In many cases, NeSy systems are designed to bootstrap the performance of individual

components:

• Symbolic Unplugging: Train the full NeSy system but utilize only the neural model

for inference by “unplugging” the symbolic component. This approach is particularly

beneficial in deployment scenarios where computational efficiency is critical. Here,

the symbolic component primarily acts as a regularizer during training, ensuring that

the neural model adheres to domain-specific constraints.

81

• Neural or Symbolic Model Transfer: Transfer the trained neural or symbolic

component to a different domain or task. This strategy leverages the representations

or reasoning capabilities learned during training to address new challenges. For ex-

ample, a neural model pre-trained within a NeSy system can be adapted for tasks

requiring similar feature representations, or a symbolic component can be reused to

encode domain knowledge in another context.

82

Chapter 5

Challenges and Pitfalls of NeSy Modeling

Paradigmns, Learning, and Reasoning

Throughout the previous two chapters, I have developed and categorized a uni-

versal mathematical framework (Section 3.1), a set of modeling paradigms (Section 3.2),

and a collection of design principles for NeSy inference and learning (Chapter 4). While

these components provide a comprehensive foundation for designing, training, and pre-

dicting NeSy approaches, they do not address the practical challenges often encountered

during implementation and deployment. In particular, blindly applying NeSy inference

and learning techniques without considering the specific requirements and nuances of a

task can lead to suboptimal performance or unintended consequences. To address this

gap, this chapter organizes and examines common pitfalls in neural-symbolic approaches,

categorizing these challenges into three areas: pitfalls in NeSy modeling paradigms, pitfalls

in NeSy inference, and pitfalls in NeSy learning. The first section, pitfalls in NeSy model-

ing paradigms (Section 5.1), explores additional modeling paradigms not covered in Section

3.2, along with the inherent pitfalls associated with their design. These paradigms include

unfixed deep symbolic variables (DSVar) and deep symbolic operations (DSOp). The second

section, pitfalls in NeSy inference (Section 5.2), discusses three inference-specific pitfalls

widely seen in NeSy, including reasoning shortcuts as unintended optima, poor factoriza-

tion/decomposition, and conditional independence in NeSy probabilistic logics. In the final

83

section, pitfalls in NeSy learning (Section 5.3), I examine prevalent learning-related pit-

falls, including contextual label ambiguity, energy-loss degenerate solutions, and NeSy soft

logic pitfalls.

5.1 NeSy Modeling Paradigm Pitfalls

In Chapter 3, I introduced three modeling paradigms for neural-symbolic integra-

tion that are widely studied across the NeSy community. While these paradigms are robust

and versatile, they do not encompass every possible NeSy-EBM design. In fact, combina-

tions of these paradigms offer significant potential and represent an intriguing avenue for

future work. However, not all paradigms are free from inherent challenges. This section

introduces two additional modeling paradigms—Unfixed Deep Symbolic Variables (Section

5.1.1) and Deep Symbolic Operations (Section 5.1.2)—that come with inherent pitfalls, par-

ticularly in the contexts of inference and learning. It is important to note that while these

paradigms present inherent pitfalls, it does not imply that these paradigms are invalid or

without merit. Rather, they highlight specific areas where additional considerations are

required to overcome these limitations.

5.1.1 Unfixed Deep Symbolic Variables

The unfixed deep symbolic variables (Unfixed-DSVar) paradigm is a variant of the

deep symbolic variable modeling paradigm (Section 3.2.1) in which the neural predictions

do not directly control the NeSy-EBM through an indicator function. In an Unfixed-

DSVar model, the neural predictions serve as an initialization for the target and latent

variables, providing a reasonable starting point for the optimization process. However,

once optimization begins, the neural predictions no longer influence the prediction. In this

sense, the neural model ”seeds” the target and latent variables, but the solution is derived

purely through symbolic reasoning. Formally, this modeling paradigm is defined as:

Definition 6. In the unfixed deep symbolic variables (Unfixed-DSVar) modeling paradigm,

the symbolic potential set is defined as a singleton Ψ = {ψ} with a trivial index set

84

JΨ = {1}, such that Ψ1 = ψ. Further, the neural prediction is included as the start-

ing value of the symbolic target variables, so that Vψ = Y × Xsy × Rdnn. Unlike in fixed

DSVar models, these initial neural predictions do not determine the final values of the

target variables y.

The symbolic component, governed by the symbolic potential, is thus:

gsy(y,xsy,wsy,gnn(xnn,wnn)) := ψ([y,xsy,gnn(xnn,wnn)] ,wsy),

where [·] denotes concatenation.

In the Unfixed-DSVar setting, the gradient can no longer be directly computed

with respect to the neural model’s predictions.1 Instead, an additional mechanism is re-

quired to calculate the dissatisfaction of the optimal values assigned after symbolic opti-

mization and the original neural predictions. Effectively, the symbolic model produces a

label that the neural model aims to align with a separate loss function:

d(gnn(xnn,wnn), ŷ)

where d(·, ·) is a loss function, and ŷ represents the optimal values for target and latent

variables:

ŷ = arg min
ŷ∈Y

E(ŷ,xsy,xnn,wsy,wnn)

While this modeling paradigm is less commonly studied, it does offer unique utility

in certain scenarios. Specifically, it is useful when greater control over the loss function

within the neural model is desired, as the incorporation of the distance function d(·, ·)
allows for flexibility in defining the neural loss with respect to the symbolic predictions.

That said, without careful design of both the distance function and the symbolic model,

this approach is prone to significant pitfalls.

Inherent Pitfall The Unfixed-DSVar modeling paradigm introduces the risk that sym-

bolic reasoning may disregard neural predictions altogether if they conflict with the con-

straints. This can lead to symbolic solutions that satisfy constraints independently of the

1Technically, a gradient can be propagated through this variable; however, it will align with the optimal
predictions of the symbolic model rather than the original neural predictions.

85

neural model’s input, potentially undermining the neural component’s intended role. For

instance, in the visual sudoku puzzle classification scenario (Figure 3.2), the neural model’s

initial predictions for each digit will seed the target variables in the symbolic component,

however, symbolic optimization could then completely ignore this prediction. To illus-

trate, consider that any valid solution has the same energy value of zero since there is no

limitation on assigning the symbolic solution close to the neural prediction. In this sce-

nario, optimization can be trivially accomplished by assigning every assignment of neural

variables to a default solution.

5.1.2 Deep Symbolic Operations

The deep symbolic operations (DSOp) paradigm is a specialized class of the deep

symbolic potential modeling paradigm (Section 3.2.3) in which the neural component pre-

dicts the symbolic operations such as logical conjunctions, disjunctions, and negations. In

a DSOp model, the neural model is a generative model that samples symbolic operations

from a set for each grounded potential. This modeling paradigm defines NeSy-EBM’s that

can represent the sampling neural for symbolic architectural axiom Section 2.3.1.

Definition 7. In the deep symbolic operations (DSOp) modeling paradigm, the symbolic

potential set Ψ is the set of all potential functions that can be created from all combinations

of operations in the original provided symbolic model. Given k operations and m values an

operation can take (e.g., ∧ ∨ ¬), Ψ is indexed by the output of the neural component, i.e.,

JΨ = Range(gnn) = {0, 1, · · · , km} and Ψgnn(xnn,wnn) is the potential function indexed

by the neural prediction. The variable and parameter domains of the sampled symbolic

potential are Vψ = Y × Xsy, and Paramsψ = Wsy, respectively. The symbolic component

expressed via the symbolic potential is:

gsy(y,xsy,wsy,gnn(xnn,wnn)) := Ψgnn(xnn,wnn)([y,xsy] ,wsy).

Inherent Pitfalls Unlike the DSPot NeSy-EBM modeling paradigm, the DSOp paradigm

enforces a restriction that the random variables and structure of the problem remain fixed.

While this constraint ensures stability and drastically reduces the search space inherent to

86

the problem, it imposes a significant limitation on the types of tasks the DSOp paradigm

can effectively represent. One of the key advantages of the DSPot paradigm is its appli-

cability to truly open-ended tasks, a flexibility that the DSOp paradigm inherently lacks.

Furthermore, altering the operational values in a DSOp system can disrupt the specialized

optimization processes employed by many existing systems. For instance, the most promi-

nent NeSy logic systems rely heavily on Horn clauses for their efficiency and structure.

Allowing a neural model to modify operations within these systems would compromise

their highly optimized inference and learning techniques.

5.2 NeSy Inference Pitfalls

In the previous section, I examined pitfalls associated with modeling paradigms;

this section shifts the focus to pitfalls that arise during inference. These challenges are dis-

cussed before addressing learning-related issues, as inference often serves as a subprocess

within learning pipelines, and its shortcomings can exacerbate learning-related problems.

Specifically, this section explores problems such as reasoning shortcuts as unintended op-

tima (Section 5.2.1), poor factorization and decomposition (Section 5.2.2), and conditional

independence in NeSy probabilistic logics (Section 5.2.3). Further, within each subsec-

tion I describe each of these pitfalls through NeSy-EBMs, highlighting their causes and

implications for model performance, scalability, and generalization.

5.2.1 Reasoning Shortcuts as Unintended Optima

Reasoning shortcuts in NeSy approaches, originally introduced by Marconato et

al. (2023), occur when models attain high accuracy by leveraging concepts with unintended

semantics. In this section, I introduce reasoning shortcuts as presented by Marconato et

al. (2023) and then generalize it within the NeSy-EBM framework. I refer the reader to

the original work for further technical details and proofs.

Reasoning Shortcuts in NeSy Predictors To introduce reasoning shortcuts, consider

the concept of NeSy predictors. A NeSy predictor infers target variables y ∈ Y by reasoning

87

over a set of k discrete concepts c ∈ C, which are extracted from a sub-symbolic model

based on input data x ∈ X . The objective of reasoning over these concepts is to encourage

the neural model’s predictions to satisfy a logical formula K, represented as c ⊨ K.

Example 5.2.1. In the MNIST-Addition setting, given a pair of MNIST digit images, for

instance, x =
(

,
)

, the neural model infers concepts c = (c1, c2) representing the digit

classes, which are then combined to predict their sum y = 8.

In this setting, a reasoning shortcut arises when the NeSy predictor acquires con-

cepts that satisfy the logical formula K but do not accurately represent the true underlying

concepts. Formally, define reasoning shortcuts as follows:

Definition 8. A reasoning shortcut is a distribution pθ(c|x) that achieves maximal log-

likelihood on the training set S but does not match the ground-truth concept distribution

p∗(Tc|x):

L(pθ,S,K) = max
θ′∈Θ

L(pθ′ ,S,K) and pθ(c|x) ̸≡ p∗(Tc|x), (5.1)

where L(pθ,S,K) denotes the log-likelihood of the model given the training data S and the

logical formula K.

For instance, in the MNIST-Addition example, a reasoning shortcut might assign

= 0 and = 8. Here, the sum y = 8 is correctly predicted, but the concepts do not

reflect the correct digit classes, misrepresenting the true semantic meaning.

Generalizing to NeSy-EBMs Reasoning shortcuts can trivially be generalized to the

NeSy-EBM framework, where energy functions govern the compatibility of predictions with

observed data and constraints. Let xsy denote the observed symbolic inputs, y the target

variables, and wsy symbolic parameters. Define a neural network gnn with parameters

wnn ∈ Wnn and inputs xnn ∈ Xnn such that:

gnn :Wnn ×Xnn → [0, 1]n,

where n is the number of desired concepts c. The probability distribution of the concepts

is defined by the neural network outputs:

pwnn(c|xnn) = gnn(xnn,wnn).

88

Let C(gnn(xnn,wnn),xsy,wsy) represent the set of constraints that encode the

logical formula K. Now define reasoning shortcuts in the NeSy-EBM context as follows:

Definition 9. A reasoning shortcut in NeSy-EBMs is a distribution pwnn(c|xnn) that max-

imizes the NeSy-EBM learning loss function over the training data S, subject to the con-

straints C(gnn(xnn,wnn),xsy,wsy), but deviates from the true concept distribution p∗(Tc|xnn):

L(E(·, ·, ·, ŵsy, ŵnn),S) =

max
(wsy ,wnn)∈Wsy×Wnn

L(E(·, ·, ·,wsy,wnn),S) and pwnn(c|xnn) ̸≡ p∗(Tc|xnn).

Reasoning Shortcuts in Practice This pitfall is broad and encompasses many prac-

tical issues encountered when training these methods. Consider the following common

reasoning shortcut scenarios:

• Minimal Constraint Satisfaction Bias: This shortcut occurs when the model

satisfies the constraints as simply as possible. The NeSy predictor may adopt default

labels or limited concept representations that satisfy the constraints C(·) without

genuinely representing the diversity of concepts. For example, if the label “traffic

lights” appears in the fewest constraints, the model may assign all concepts as “traffic

lights” to meet the logical requirements with minimal complexity.

• Misaligned Concepts: In this shortcut, the model learns concepts that satisfy

the constraints C(·) but fail to align with the correct underlying concepts. This

can lead to multiple valid solutions that do not necessarily reflect the true concept

distribution. For example, in the MNIST-Addition scenario, predicting + = 8

could be satisfied by multiple pairs such as 1 + 7 = 8, 3 + 5 = 8, etc.

• Overfitting to Symbolic Constraints: This shortcut arises when the model over-

fits to the symbolic constraints, focusing solely on satisfying the constraints C(·) in

the training data without learning the underlying task-specific concepts. In this sce-

nario, the model may achieve low training error by perfectly adhering to the symbolic

constraints, but it will generalize poorly, resulting in high test error. Essentially, the

89

neural model becomes a “yes man” to the symbolic component during training, pri-

oritizing constraint satisfaction over the true desired concepts. For instance, consider

a NeSy model trained in an unsupervised structure-informed learning setting (Sec-

tion 4.4.2) with a set of prior constraints that are soft (i.e., not always correct). If

the neural model is trained solely to minimize violations of these constraints, it may

fail to capture the true relationships in the data. This overfitting can result in a

model that aligns well with the symbolic priors during training but performs poorly

in real-world scenarios where the priors are imperfect or incomplete.

5.2.2 Poor Factorization/Decomposition

In directed graphical model machine learning theory, factorization, or decomposi-

tion, involves breaking down a joint probability distribution into a structured representation

that captures the conditional dependencies among variables [69]. The chosen factorization

plays a critical role in determining the efficiency and accuracy of computations. However,

identifying the optimal structure for a given problem can be challenging, especially in com-

plex or computationally intensive scenarios. Building on this concept, poor factorization, as

framed in this thesis, occurs when the structure of the chosen computation graph (Section

4.2.1) results in an inefficient or suboptimal representation. Specifically, the computation

graph must define an order of influence among the observed, target, and latent variables

during its construction. Due to the inherent complexity or the computational cost of solv-

ing the optimization problem directly, the resulting factorization may fail to capture the

problem’s true dependencies effectively. To illustrate this concept, consider the following

example to illustrate poor factorization in a NeSy problem:

Example 5.2.2. Consider the task of determining the order of objects in a line, where

the goal is to rank a set of candidates, {a, b, c}, based on predicted placement costs. Rather

than solving an exhaustive optimization problem, which may be computationally prohibitive,

a computation graph-based approach might simplify this by selecting one specific ordering

structure to approximate a solution. For instance, the ordering could be factored into one

90

of six possible configurations:

a→ b→ c, a→ c→ b, b→ a→ c, b→ c→ a, c→ a→ b, c→ b→ a.

Suppose a neural model predicts placement costs for each object in each position

as follows:

a = {first = 0.5, second = 0.1, third = 0.4},

b = {first = 0.3, second = 0.2, third = 0.7},

c = {first = 0.1, second = 0.0, third = 0.9}.

Given an ordering for the computation graph, such as a→ b→ c, a greedy solution

will select positions in the order [b, a, c], yielding a total cost of 0.1 + 0.3 + 0.9 = 1.3.

However, this is not the optimal cost. For instance, a computation graph that predicts

random variables c→ b→ a will yield an order of [b, c, a], with a total cost of 0.0+0.3+0.4 =

0.7.

Formally, let xsy denote the observed symbolic variables, y the target variables,

and wsy the symbolic parameters. Define the neural network component gnn with param-

eters wnn ∈ Wnn and neural inputs xnn ∈ Xnn:

gnn :Wnn ×Xnn → [0, 1]n,

where n is the number of desired concepts c. Let G represent the computation graph

structure and E(y,xsy,xnn,wsy,wnn) as the energy function. Define poor factorization as

follows:

Definition 10. A poor factorization in NeSy-EBMs occurs when the chosen computation

graph structure G leads to a solution that maximizes the NeSy-EBM learning loss function

over the training data S but results in a suboptimal solution for the task. Formally, let ŷG

denote the optimal solution given factorization G and target configuration:

ŷG = arg min
y
E(y,xsy,xnn,wsy,wnn),

91

where G is the chosen computation graph factorization. A poor factorization occurs if there

exists a different factorization G′ yielding solution ŷG′ such that:

E(ŷG ,xsy,xnn,wsy,wnn) > E(ŷG′ ,xsy,xnn,wsy,wnn).

In the example above, poor factorization arises if the computation graph factor-

ization G selects an ordering, such as a→ b→ c, which does not minimize the true objective

function compared to an alternative factorization. Consequently, while the solution is valid,

it is suboptimal.

5.2.3 Conditional Independence in NeSy Probabilistic Logics

This section follows the original work presented by Krieken et al. (2024). To

simplify parameter estimation and model training, NeSy probabilistic logic (Section 2.3.3)

approaches [138, 81, 128, 7] often assume conditional independence of the target variables

y given the observed variables xnn and xsy. This implies that the probability of a world

w (i.e., an assignment of variables) pθ(w|x) can be simplified to a product of independent

probabilities. As a result, rather than estimating the joint probability for each of the 2n

possible worlds, the neural model only needs to predict n probabilities for each variable

and then calculate the probability of the world as:

pθ(w|x) :=
n∏
i=1

pθ(wi|x).

This assumption reduces computational complexity, speeds up inference, and significantly

reduces the number of trainable parameters, as shown in [138, 81, 128, 7].

Inherent Pitfalls While conditional independence simplifies the learning process, it in-

troduces pitfalls that impact both inference quality and optimization:

• Bias Toward Deterministic Solutions: The conditional independence assump-

tion biases the model toward deterministic solutions, as the independence limits the

model’s ability to represent joint uncertainty across variables. For example, consider

a setup with two binary variables r and g, representing a red and green light, with

92

a constraint ϕ = ¬r ∨ ¬g that prohibits both lights from being on simultaneously.

Under conditional independence, the probability pθ(ϕ = 1) can be maximized by

enforcing pθ(r, g) = 0, leading to a deterministic outcome where either r or g must

be off, even if the real-world distribution allows both to remain uncertain.

• Non-Convex and Disconnected Minima in Semantic Loss: The independence

assumption creates a non-convex and often disconnected landscape in the semantic

loss function, leading to isolated minima. For example, the semantic loss minima can

form disconnected clusters in simple problems like XOR where dependent variables

have two disconnected solution spaces.

5.3 NeSy Learning Pitfalls

In the previous section, I outlined a set of practical challenges commonly encoun-

tered during inference across various NeSy approaches. In this section, I shift the focus to

learning-specific pitfalls. It is important to note that, in many NeSy approaches, inference

operates as a subprocess of learning. Consequently, the inference pitfalls discussed earlier

can compound or confound learning challenges, leading to unintended or suboptimal out-

comes. While these issues could also be categorized as learning pitfalls, this section focuses

specifically on challenges that arise directly from the learning process itself. This section

examines three key pitfalls that impact a wide range of NeSy approaches: contextual label

ambiguity (Section 5.3.1), energy loss degenerate solutions (Section 5.3.2), and NeSy soft

logic pitfalls (Section 5.3.3).

5.3.1 Contextual Label Ambiguity

To begin, I introduce a prevalent data-centric learning pitfall often encountered

by newcomers to the NeSy field: contextual label ambiguity. At its core, this pitfall mani-

fests as a form of training label noise, where contextually ambiguous labels arise because

the neural inputs alone cannot distinguish the underlying target labels. In the context of

NeSy methods, this ambiguity occurs when the symbolic structure provides crucial contex-

93

tual information needed to disambiguate labels, but the neural model lacks access to this

knowledge during input processing. To better illustrate this pitfall, consider the following

example:

Example 5.3.1. Consider the visual Sudoku puzzle-solving task introduced in Section 3.2.1.

The goal is to train a model capable of solving partially filled visual Sudoku boards populated

with MNIST images, ensuring that no digits are repeated in any row, column, or square.

In this scenario, the NeSy method operates within a decomposed task structure (Section

4.2.3), where the neural model predicts individual digits, and the symbolic model enforces

Sudoku rules to solve the puzzle. The learning process assumes no explicit labels for the

MNIST digits; instead, the model relies on a structure-informed learning setting (4.4.2).

In this approach, the system must learn solely from the Sudoku constraints, leveraging the

structure of the problem to guide its neural digit predictions.

In this setting, contextual label ambiguity arises if the neural model is naively

trained using every cell as independent input data, including blank squares. This will result

in a neural component that is unable to distinguish the labels of the blank squares, which in

turn hinders the training performance. To illustrate this pitfall, consider the following 4×4

Sudoku board, where some cells are blank while others are populated with MNIST images:

In this scenario, contextual label ambiguity will occur if the model uses the follow-

ing dataset:

xnn =

{
, , , , , , , ,

, , , , , , ,

}

Formal Definition in NeSy-EBM Framework Let xsy represent the observed sym-

bolic variables (e.g., partial board configurations), y the target variables (e.g., complete

94

Sudoku solution), and wsy the symbolic parameters. Let gnn denote the neural network

component with parameters wnn ∈ Wnn and neural inputs xnn ∈ Xnn:

gnn :Wnn ×Xnn → [0, 1]n,

where n is the number of desired concepts c (e.g., potential digit classifications for each

cell). The distribution of the concepts is defined by the neural network outputs:

dwnn(c|xnn) = gnn(xnn,wnn).

Let C(gnn(xnn,wnn),xsy,wsy) represent the global constraints necessary for ac-

curate predictions in the NeSy-EBM. Define contextual label ambiguity as follows:

Definition 11. Contextual label ambiguity in NeSy-EBMs occurs when, for neural inputs

xAnn and xBnn, the optimal configuration of target variables y under the energy function E

yields distinct values ŷA and ŷB that cannot be differentiated based on local neural inptus:

arg min
y
E(y,xsy,xnn,wsy,wnn) = ŷ

with ŷA ∈ ŷ ̸= ŷB ∈ ŷ and the following always true:

dwnn(cA|xAnn) = dwnn(cB|xBnn).

5.3.2 Energy Loss Degenerate Solutions

While the previous section highlighted a data-centric learning pitfall, this section

discusses degenerate solutions achieved during the learning process. Specifically, this sec-

tion focuses on energy-loss degenerate solutions that can occur during learning. Within the

NeSy-EBM framework, degenerate solutions in energy-based learning occurs when the sym-

bolic parameters lead to an energy configuration that fails to distinguish between different

target variable assignments effectively. This results in what is referred to as a collapsed en-

ergy function. A common form of degenerate solution arises when the symbolic parameters

are set to extreme values, such as all zeros or infinities. In such cases, the energy landscape

becomes uniform across all possible target variable configurations, effectively eliminating

95

the ability of the system to differentiate between valid and invalid assignments. Conse-

quently, inference in this scenario becomes trivial and uninformative, as every assignment

achieves the same minimal energy. To illustrate, consider the energy loss defined in the

previous section:

Lenergy(E(·, ·, ·,wsy,wnn),S) = VZ ,

where the optimal value function VZ is defined as:

VZ(wsy,wnn,S) := min
y∈Y

E(y,xsy,xnn,wsy,wnn) + ITY (y, t),

where ITY (y, t) is an indicator function enforcing constraints on the target configurations.

A collapsed energy function can emerge in many scenarios, for instance when the

symbolic parameters interact multiplicatively with strictly positive symbolic potentials,

Φ(y,xsy,xnn,wnn) > 0:

E(y,xsy,xnn,wsy,wnn) = wT
syΦ(y,xsy,xnn,wnn).

Since Φ(·) is strictly positive across all configurations, the energy can be minimized by

reducing wsy to its smallest feasible values:

• If wsy ∈ Rr+, the degenerate solution is wsy = 0,

• If wsy ∈ Rr, the degenerate solution occurs at wsy → −∞.

In both cases, the degenerate solution results in a collapsed energy function, where

all configurations of y are assigned the same minimal energy. Consequently, the model loses

predictive power, as it cannot differentiate between high and low-energy states, nor infer

meaningful solutions.

Mitigation Strategies To prevent collapsed energy degenerate solutions, several miti-

gation strategies can be employed. For instance, if the symbolic parameters and the sym-

bolic potentials are strictly positive, then some mitigation strategies to avoid the collapsed

energy are:

96

• Simplex Constraint: Introducing a simplex constraint on wsy, i.e., wsy ∈ ∆r :=

{w ∈ Rr+ | ∥w∥1 = 1}, prevents zero-valued solutions, as 0 is not included in the

simplex. This constraint ensures that at least one symbolic parameter is always

active, preserving the ability of the model to differentiate between configurations of

y.

• Negative Logarithmic Regularization: Adding a negative logarithmic penalty

to the objective discourages symbolic parameters from approaching zero by assigning

high energy to solutions with small symbolic parameters. The regularized learning

objective becomes:

Lenergy(wnn,wsy,S)−
r∑
i=1

log(wsy[i]),

which penalizes zero weights, encouraging a distribution over wsy that leverages mul-

tiple symbolic components and enhances model robustness by ensuring that multiple

potential functions contribute to the energy landscape.

5.3.3 NeSy Soft Logic Pitfalls

Soft logic approaches in NeSy methods models aim to provide differentiable al-

ternatives to traditional binary logic, enabling gradients to flow through soft logical op-

erations. While this flexibility is critical for integrating symbolic reasoning with neural

models, soft logic introduces unique challenges that can hinder performance and learning

stability. Below, I detail two key pitfalls associated with NeSy soft logic I have commonly

encountered during learning:

• Non-Binary Satisfaction of Values: Unlike traditional binary logic, which en-

forces strict satisfaction or violation of constraints with values that are either 0 or 1,

soft logic permits intermediate values to fully satisfy constraints. For example, when

observing the disjunction for soft logic relaxation of Lukasiewicz logic (Section 2.1),

the satisfaction of a rule such as A ∨B is defined as:

S(A ∨B) = min(1, A+B),

97

where S represents the satisfaction score. This relaxation introduces a range of input

values that fully satisfy the constraint, for example:

1. If A = 0.5 and B = 0.5, the satisfaction score is:

S(A ∨B) = min(1, 0.5 + 0.5) = min(1, 1) = 1.

2. If A = 0.8 and B = 0.5, the satisfaction score is:

S(A ∨B) = min(1, 0.8 + 0.5) = min(1, 1.3) = 1.

In both cases, the satisfaction score achieves its maximum value of 1, even though

the individual inputs are not at their extreme values of 1. This creates a region of

full satisfaction where the gradient of the satisfaction function with respect to A and

B is zero. Consequently, during gradient-based learning, once the model reaches this

region, it ceases to receive meaningful updates for these variables, halting further

improvements.

This phenomenon allows the model to converge to representations that satisfy all

constraints without pushing variable values to their extremes. While this behavior

can be beneficial in some contexts, it can also lead to suboptimal solutions in tasks

requiring high confidence or strict logical adherence. Similar observations have been

made by van Krieken et al. (2023) and Evans and Grefenstette (2018), among others,

who highlight that soft logic relaxations, while enabling differentiability, can under-

mine interpretability and robustness by tolerating ambiguous intermediate solutions.

• Equal Gradient Across Variables Leading to Averaged Predictions: In cat-

egorical problems where multiple classes satisfy a given constraint, gradients passed

back to the model can become equally distributed among those classes. This results in

predictions that remain evenly weighted across the valid classes rather than favoring

any one solution. This issue arises because the model either lacks additional informa-

tion to differentiate between equally valid solutions or does not employ mechanisms

(e.g., sampling or structured decision-making) to resolve the ambiguity.

98

For example, in an MNIST addition task (Example 2.1.1), suppose the sum of two

digits is constrained to be 2. There are three valid assignments that satisfy this

constraint: (0+2), (1+1), and (2+0). When computing gradients, the model receives

positive gradients for the digits {0, 1, 2} and negative gradients for all other digits

{3, 4, 5, . . . , 9}. This feedback effectively informs the model that all three assignments

are equally valid but provides no mechanism to prioritize one over the others.

As a result, the predictions for {0, 1, 2} remain equally weighted, leaving the model

unable to converge to a stronger, more confident assignment for any of these classes

individually. This issue becomes further compounded when combined with the non-

binary satisfaction of values inherent in soft logic systems, as the model may never

develop sufficient confidence in its predictions. Without additional data, auxiliary

constraints, or structural modifications to guide learning, the model risks producing

overly ambiguous or diluted predictions, particularly in tasks requiring high certainty

or fine-grained distinctions.

99

Part IV

A General and Principled

Neural-Symbolic Implementation

100

Chapter 6

Deep Hinge-Loss Markov Random Fields

and Neural Probabilistic Soft Logic

Throughout the previous four chapters, I have established the foundational com-

ponents necessary for developing a principled neural-symbolic approach. These compo-

nents include a set of architectural axioms (Chapter 2), a universal language and modeling

paradigms to formalize these axioms (Chapter 3), and a comprehensive set of inference

and learning design principles optimization and reasoning (Chapter 4). Together, these

components provide a cohesive theoretical foundation for designing robust, scalable, and

principled NeSy systems.

With this foundational theory in place, I identify a significant gap in the existing

landscape of NeSy systems: the lack of a framework that operates on fuzzy logic seman-

tics, supports multiple architectural axioms, and prioritizes complex optimization-based

inference over computation graph execution (Section 4.2.1). This chapter addresses this

gap by introducing Neural Probabilistic Soft Logic (NeuPSL), a novel NeSy approach that

implements a collection of the design principles, modeling paradigms, and architectural

axioms developed throughout this dissertation. This chapter is structured as follows: first,

I extend hinge-loss Markov random fields to incorporate deep components (Section 6.1)

and discuss inference and learning (Section 6.2). Then, I introduce NeuPSL syntax and

semantics (Section 6.3), followed by an explanation of how NeuPSL can represent all NeSy-

101

EBM modeling paradigms (Section 6.4). Finally, I provide a brief overview of the NeuPSL

system design (Section 6.5).

6.1 Deep Hinge-Loss Markov Random Fields

Much of my contribution builds extensively on Probabilistic Soft Logic (PSL)

[11], a highly scalable probabilistic programming language that simplifies the instantiation

and application of a specialized class of Markov random fields known as hinge-loss Markov

random fields (HL-MRFs). In this section, I begin with a detailed formalization of HL-

MRFs [11] in which I discuss their hinge-loss energy function and the associated probability

density function that facilitates inference. Building on this foundation, I will then introduce

Deep Hinge-Loss Markov Random Fields (Deep HL-MRFs), which extends the standard

HL-MRF definition to allow random variables and parameters to be defined using a neural

network, enabling more expressive and flexible models for handling complex and high-

dimensional data.

6.1.1 Hinge-Loss Markov Random Fields

Hinge-loss Markov random fields (HL-MRFs) are a family of convex probabilistic

models designed for scalable and accurate reasoning over both discrete and continuous data.

These models utilize hinge-loss potentials to capture constraints and dependencies among

variables, enabling flexible probabilistic inference across complex relational structures. In

the following, I will formally define HL-MRFs as presented in Bach et al. (2017) by in-

troducing their hinge-loss energy function and the associated probability density function

that governs their behavior.

Definition 12 (Hinge-Loss Markov Random Field). Let y = (y1, . . . , yn) be a vector of n

continuous random variables, and x = (x1, . . . , xm) be a vector of m observed continuous

variables, with joint domain D = [0, 1]n+m.

Define ϕ = (ϕ1, . . . , ϕm) as a vector of m continuous hinge-loss potentials,

each of the form

ϕj(y,x) = (max{ℓj(y,x), 0})pj , (6.1)

102

where ℓj is a linear function over y and x, and pj ∈ {1, 2}.
Let c = (c1, . . . , cr) represent a vector of r linear constraint functions associated

with index sets for equality constraints E and inequality constraints I. Define the feasible

set as:

D̃ =

(y,x) ∈ D

∣∣∣∣∣∣ ck(y,x) = 0, ∀k ∈ E,

ck(y,x) ≤ 0, ∀k ∈ I

 . (6.2)

For a vector of non-negative weights w = (w1, . . . , wm), define the hinge-loss

energy function as:

E(y,x,w) =
m∑
j=1

wjϕj(y,x). (6.3)

An hinge-loss Markov random field P over variables y conditioned on x is a

probability density defined as follows:

P (y|x; w) =


1

Z(w,x) exp (−E(y,x,w)) if (y,x) ∈ D̃,

0 otherwise,
(6.4)

where the partition function Z(w,x) is given by:

Z(w,x) =

∫
y|(y,x)∈D̃

exp (−E(y,x,w)) dy. (6.5)

A key advantage of hinge-loss Markov random fields is their reliance on convex

linear functions, which yield a convex objective function. This convexity allows for efficient

and rapid inference, making HL-MRFs highly scalable for large and complex datasets.

6.1.2 Deep Hinge-Loss Markov Random Fields

While HL-MRFs provide a powerful framework for modeling complex relational

dependencies with convexity properties that facilitate efficient inference, they are limited

by the assumption that the potential functions and constraints are defined solely through

linear combinations of observed, latent, and target variables defined with a database. To

enhance the expressive capacity of HL-MRFs, I propose Deep Hinge-Loss Markov Random

Fields (Deep HL-MRFs), which extend the traditional HL-MRF framework by allowing

103

random variables and parameters to be specified from a neural network in a way that

allows for differentiable learning.

Definition 13 (Deep Hinge-Loss Markov Random Field). Let y = (y1, . . . , yny) be a vec-

tor of ny continuous random variables, and xsy = (xsy,1, . . . , xsy,nsy) be a vector of nsy

continuous observed symbolic variables, both within the domain D = [0, 1]ny+nsy .

Let xnn = (xnn,1, . . . , xnn,nnn) be a vector of nnn neural input features, and

gnn(xnn,wnn) represent a set of neural networks parameterized by wnn. This set of neural

networks can represent random variables or parameters:

gRVnn (xnn,wnn) : Xnn ×Wnn → [0, 1]n
RV
nn ,

gParamnn (xnn,wnn) : Xnn ×Wnn → [0,∞)n
Param
nn ,

where gRVnn outputs nRVnn continuous random variables within the interval [0, 1], and gParamnn

provides nParamnn non-negative parameters for the potentials.

Define ϕ = (ϕ1, . . . , ϕm) as a vector of m continuous deep hinge-loss poten-

tials, each of the form

ϕj(y,xsy,g
RV
nn (xnn,wnn)) =

(
max{ℓj(y,xsy,gRVnn (xnn,wnn)), 0}

)pj
, (6.6)

where ℓj is a linear function over y, xsy, and gRVnn (xnn,wnn), with pj ∈ {1, 2}. Let c =

(c1, . . . , cr) represent a vector of r linear constraint functions, each dependent on y, xsy,

and gnn(xnn,wnn), associated with index sets for equality constraints E and inequality

constraints I. Define the feasible set as:

D̃ =

(y,xsy,xnn) ∈ D

∣∣∣∣∣∣ ck(y,xsy,gnn(xnn,wnn)) = 0, ∀k ∈ E,

ck(y,xsy,gnn(xnn,wnn)) ≤ 0, ∀k ∈ I

 . (6.7)

Let w = {w1, . . . , wm} be a vector of m non-negative weights, comprising symbolic param-

eters and symbolic parameters specified by a neural network. Without loss of generality,

assume the deep hinge-loss potentials are ordered such that the first msy potentials corre-

spond to symbolic parameters, and the remaining mnn potentials correspond to symbolic

parameters specified by a neural network, where m = msy +mnn. The weight vector can be

expressed as:

w = [wsy,g
Param
nn (xnn,wnn)], (6.8)

104

Define the deep hinge-loss energy function E as:

E(y,xsy,xnn,wsy,wnn) =
m∑
j=1

wjϕj(y,xsy,g
RV
nn (xnn,wnn)). (6.9)

A deep hinge-loss Markov random field P over variables y, conditioned on

symbolic inputs xsy and neural inputs xnn, is a probability density defined as follow:

P (y|xsy,xnn) =


1

Z(w,xsy ,xnn)
exp (−E(y,xsy,xnn,wsy,wnn)) , (y,xsy,xnn) ∈ D̃,

0, otherwise,

(6.10)

where the partition function Z(w,xsy,xnn) is:

Z(w,xsy,xnn) =

∫
y|(y,xsy ,xnn)∈D̃

exp (−E(y,xsy,xnn,wsy,wnn)) dy. (6.11)

Deep HL-MRFs naturally subsume traditional HL-MRFs. When neural networks gnn are

not utilized to define parameters or random variables, the framework simplifies to the stan-

dard HL-MRF formulation. By incorporating neural networks, Deep HL-MRFs enhance

the ability to model complex, non-linear dependencies beyond the scope of traditional lin-

ear potentials. Despite this added expressiveness, the inference objective remains convex

with respect to the neural network predictions, ensuring efficient and scalable optimiza-

tion. This makes Deep HL-MRFs a powerful tool for probabilistic reasoning in complex,

high-dimensional domains. In the next section, I will introduce inference and learning over

deep HL-MRFs, and in the subsequent chapter, I will introduce Neural Probabilistic Soft

Logic, an extension of the Probabilistic Soft Logic framework, which provides a flexible

way to define these distributions.

6.2 Inference and Learning in Deep Hinge-Loss Markov Ran-

dom Fields

With the extension of traditional HL-MRFs to Deep HL-MRFs now established,

this section formalizes the integration of Deep HL-MRFs into the NeSy-EBM framework,

enabling the use of inference and learning methods introduced in the previous chapter.

105

This formulation depends on the underlying inference process, and for this work, I study

the Maximum a posteriori (MAP) inference over an extended-value Deep HL-MRF energy

function. MAP inference is the most common inference task in HL-MRF theory and

remains central in Deep HL-MRFs, as it is required for parameter updates during the

learning process. A direction for future research would be to formulate Deep HL-MRFs

into the NeSy-EBM framework by studying from the perspective of marginal inference.

This section proceeds as follows: it first provides a formal definition of the MAP inference

problem, followed by a smooth reformulation to enable the full range of NeSy-EBM learning

techniques and accommodate integer constraints on target variables. Finally, it presents a

formal definition of the learning process for Deep HL-MRFs, framed within the NeSy-EBM

learning framework.

6.2.1 MAP Inference

The primary inference task in both traditional HL-MRFs and Deep HL-MRFs is

Maximum a Posteriori (MAP) inference. In Deep HL-MRFs, MAP inference seeks to find

the most probable assignment to the free variables y, given the observed symbolic inputs

xsy and neural outputs gnn(xnn,wnn). This MAP formulation plays a central role in Deep

HL-MRFs, supporting prediction tasks and acting as a key component in the iterative

updates required for learning.

Deep HL-MRF energy functions can be interpreted as NeSy-EBMs by transform-

ing them into extended-value energy functions that enforce the constraints defining the

feasible set. Specifically, the energy function assigns infinite energy to configurations that

fall outside the Deep HL-MRF feasible set and finite energy within this set, as follows:

E(y,xsy,xnn,wsy,wnn) =


∑m

j=1wjϕj(y,xsy,g
RV
nn (xnn,wnn)) if (y,xsy,xnn) ∈ D̃,

∞ otherwise,

where D̃ denotes the feasible set, defined by the model’s constraints. The weight vector

w = {w1, . . . , wm} is composed of both symbolic weights wsy and neural-defined symbolic

106

weights gParamnn (xnn,wnn):

w = [wsy,g
Param
nn (xnn,wnn)].

In the context of Deep HL-MRFs, MAP inference can be understood as the process

of finding the MAP state of the conditional distribution defined by the deep HL-MRF

model. Since the partition function Z(w,x) remains constant over the target variables,

the MAP objective simplifies to minimizing the negative log probability of the Deep HL-

MRF joint distribution. Consequently, MAP inference reduces to minimizing the Deep

HL-MRF energy function over the feasible set. This can be formulated as follows:

arg max
y∈Rny

P (y|xsy,xnn) ≡ arg min
y∈Rny

E(y,xsy,xnn,wsy,wnn)

≡ arg min
y∈Rny

m∑
j=1

wjϕj(y,xsy,g
RV
nn (xnn,wnn))

s.t. (y,xsy,xnn) ∈ D̃.

In this formulation, the non-smooth, convex nature of Deep HL-MRF potentials

results in a non-smooth convex optimization problem as it is a sum of convex functions.

Further, the feasible set D̃ is a convex polyhedron making MAP inference a linearly con-

strained, non-smooth convex program. To enable the full range of learning techniques

discussed in Section 4.3 and to naturally accommodate integer constraints on target vari-

ables—a feature often used in discrete problems to enforce hard logic semantics—a re-

formulation of the problem is necessary. While adding integer constraints disrupts the

convexity of MAP inference, modern solvers can often find global solutions or high-quality

approximations even at large scales. Thus, both the inclusion of integer constraints and

the application of advanced learning techniques require a reformulation of MAP inference

as a linearly constrained quadratic program (LCQP).

Smooth Formulation For completeness, I introduce the smooth formulation, but this

work is primarily contributed by my colleague in [43]. This formulation is instrumental in

establishing continuity and curvature properties of the energy minimizer and the optimal

value function but will not be discussed here. In this reformulation, m slack variables

107

with lower bounds are introduced, along with 2 · ny + m linear constraints to represent

both target variable bounds and deep hinge-loss potentials. These constraints, along with

variable bounds, deep hinge-loss potentials, and any additional constraints (q ≥ 0), are

assembled into a matrix A of dimension (2 ·ny + q+ 2 ·m)× (ny +m) and an affine vector

b(xsy,gnn(xnn,wnn)) with 2 · ny + q + 2 ·m elements. The vector b(xsy,gnn(xnn,wnn))

captures the influence of neural predictions and symbolic inputs. Further, a positive semi-

definite diagonal matrix D(wsy) of size (ny+m)×(ny+m) and a vector c(wsy) with ny+m

elements are defined using the symbolic weights to construct a quadratic objective. The

original target variables and slack variables are then combined into a vector ν ∈ Rny+m,

resulting in the following regularized convex LCQP for MAP inference in Deep HL-MRFs:

V (wsy,b(xsy,gnn(xnn,wnn))) := min
ν∈Rny+m

νT (D(wsy) + ϵI)ν + c(wsy)
T ν (6.12)

s.t. Aν + b(xsy,gnn(xnn,wnn)) ≤ 0,

where ϵ ≥ 0 is a regularization parameter added to ensure strong convexity. The function

V (wsy,b(xsy,gnn(xnn,wnn))) in (6.12) represents the optimal value of the LCQP-based

MAP inference problem for Deep HL-MRFs.

By Slater’s condition, strong duality holds when a feasible solution to (6.12) exists

[18]. Thus, solving the dual problem provides an optimal solution to the primal problem.

The dual problem of (6.12) is given by:

min
µ∈R2·(ny+m)+q

≥0

h(µ; wsy,b(xsy,gnn(xnn,wnn))) (6.13)

:=
1

4
µTA(D(wsy) + ϵI)−1ATµ+

1

2
(A(D(wsy) + ϵI)−1c(wsy)− 2b(xsy,gnn(xnn,wnn)))Tµ,

where µ denotes the dual variables, and h(µ; wsy,b(xsy,gnn(xnn,wnn))) is the dual objec-

tive. Given the diagonal nature of D(wsy) + ϵI, inverting it is computationally efficient,

making it practical to solve in the dual space and convert back to the primal solution.

The dual-to-primal variable mapping is:

ν ← −1

2
(D(wsy) + ϵI)−1(ATµ+ c(wsy)). (6.14)

In contrast, mapping from primal to dual requires computing a pseudo-inverse of A, which

is more computationally intensive.

108

Solvers When using the original formulation without integer constraints, standard op-

timization solvers for HL-MRFs, such as the Alternating Direction Method of Multipli-

ers (ADMM) or direct gradient descent methods [11], can be effectively applied to Deep

HL-MRFs. Furthermore, for cases where Deep HL-MRFs are reformulated as LCQPs,

off-the-shelf solvers, such as Gurobi, provide efficient solutions and also support additional

practical constraints, including integer constraints.

6.2.2 Learning

With the MAP inference objective established in the previous subsection, the

learning algorithms introduced in the previous chapter can be readily applied to Deep HL-

MRFs within the NeSy-EBM framework. This subsection formalizes the learning objective

for Deep HL-MRFs using an energy-based loss function that integrates symbolic and neural

components.

Given a training dataset S, which consists of P samples, each containing observed

symbolic and neural data as well as target values, we define the dataset as follows:

S := {(t1Y , t1nn,Z1
nn,Z1

Y ,x
1
sy,x

1
nn), · · · , (tPY , tPnn,ZPnn,ZPY ,xPsy,xPnn)},

The learning loss for Deep HL-MRFs can then be defined as a combination of neural,

value-based, and minimizer-based losses:

Li(E(y,xsy,xnn,wsy,wnn),Si) (6.15)

= LNN (gnn(xinn,wnn), tinn) Neural

+ LV al(E(y,xsy,xnn,wsy,wnn),Si) Value-Based

+ LMin(E(y,xsy,xnn,wsy,wnn),Si) Minimizer-Based

where E(y,xsy,xnn,wsy,wnn) is defined as the extended-value energy function:

E(y,xsy,xnn,wsy,wnn) =


∑m

j=1wjϕj(y,xsy,g
RV
nn (xnn,wnn)) if (y,xsy,xnn) ∈ D̃,

∞ otherwise,

109

with D̃ representing the feasible set defined by the model’s constraints, ensuring finite

energy values only within the feasible set. The complete learning problem for Deep HL-

MRFs is then just:

arg min
(wsy ,wnn)∈Wsy×Wnn

L(E(y,xsy,xnn,wsy,wnn)) +R(wsy,wnn)

= arg min
(wsy ,wnn)∈Wsy×Wnn

1

P

P∑
i=1

Li(E(y,xsy,xnn,wsy,wnn),Si) +R(wsy,wnn)

Optimization The optimization of this learning objective can be approached through

several methods, broadly discussed in the previous chapter’s learning section. These ap-

proaches fall into four primary categories: modular optimization, gradient descent, bilevel

value-function optimization, and stochastic policy optimization. A detailed examination

of the algorithms that implement these strategies was a significant contribution by my col-

league Dickens (2024), expanding on foundational HL-MRF learning theory as presented

by [11].

6.3 Syntax and Semantics of Neural Probabilistic Soft Logic

Neural Probabilistic Soft Logic is a declarative language designed to construct

deep hinge-loss markov random fields within the neural-symbolic energy-based model frame-

work. Like its predecessor, Probabilistic Soft Logic (PSL), NeuPSL defines core function-

alities that should be supported by all implementations while maintaining the flexibility

to accommodate future extensions. The syntax presented here is capable of representing

a broad class of Deep HL-MRFs and NeSy modeling paradigmns, however, as new chal-

lenges and domains arise, additional syntax may be introduced to simplify or extend the

construction of various Deep HL-MRF models.

This section builds upon the foundational work of Bach et al. (2017) in defining

PSL, extending it to include deep neural components for both parameters and random

variables. Since NeuPSL generalizes PSL by encompassing neural components, a separate

discussion of PSL is unnecessary; PSL can be seen as a special case of NeuPSL where the

neural components are omitted. It is important to note, as many components will be the

110

same as PSL, I refer readers interested in the foundational PSL program to [11] for further

details.

Preliminaries Before diving into the formal syntax and semantics of NeuPSL, I provide

a high-level definition:

Definition 14 (Neural Probabilistic Soft Logic Program). A NeuPSL program is a set

of rules that serve as templates for defining deep hinge-loss potentials or deep hard

constraints within a Deep HL-MRF. These rules, when instantiated over a base of ground

atoms (from a database) and deep ground atoms (from a neural networks’ output), induce

a Deep HL-MRF conditioned on specified observations. The parameters of these instanti-

ated rules are defined with either a symbolic parameter or through neural network-derived

symbolic parameter.

Informally, a NeuPSL program is grounded or instantiated over data and neural

model outputs, so the universe over which to ground must be defined. A NeuPSL program

is grounded using elements in a domain of discourse known as a constant. Constants can

be entities or attributes, such as the constant “cat1” can denote a cat, “Ashton” can

denote a cat’s name, and “13” can denote a cat’s age. When defining a NeuPSL program,

instead of specifying constants everywhere, a placeholder or variable can be defined that

will be replaced with constants during grounding. For instance a placeholder variable for

all cats in a database could be “cats”. A term (either a constant or variable) are connected

together with a predicate. For example, a SeniorCat is a binary predicate, i.e., taking in

two arguments, which represents whether a cat given its age is a senior. Finally, predicates

and terms combined make an atom and NeuPSL extends this also to include deep atoms

or atoms defined by a deep model. Formally,

Definition 15 (Atom, Deep Atom, Ground Atom). Let C be the set of constants, repre-

senting fixed entities or values within the domain of discourse, and V be the set of variables,

which serve as placeholders that can be substituted by constants during grounding. A term

t is an element of either C or V.

111

A predicate P is defined by a unique identifier and an arity k ∈ N, representing

a relation over k terms:

P : (C ∪ V)k → [0, 1],

where P maps a sequence of k terms (t1, . . . , tk), with ti ∈ C ∪ V, to a continuous truth

value in [0, 1].

An atom A is a predicate applied to a specific sequence of terms:

A = P (t1, . . . , tk).

A deep atom Ad extends the standard atom by incorporating parameters from a

neural network:

Ad = P (t1, . . . , tk; wnn),

where wnn are the neural network weights influencing the predicate.

A ground atom Ag is an atom where all terms are constants:

Ag = P (c1, . . . , ck), ci ∈ C for all i.

A NeuPSL program is then defined as a set of templated rules that are relations

or operations over atoms.

Definition 16 (Rules). A rule in a NeuPSL program is a function r that maps a set of

atoms, ground atoms, or deep atoms to the interval [0, 1]. Formally:

r : {A1, A2, . . . , An} → [0, 1],

where each Ai is an atom, ground atom, or deep atom.

Rules in NeuPSL can be either soft or hard. A soft rule has a finite weight

w ∈ [0,∞), while a hard rule, on the other hand, is a strict constraint with an infinite

weight, meaning it must always be satisfied. Furthermore, rules can either be logical or

arithmetic:

112

1. Logical Rules: These express probabilistic dependencies in the form:

r : w

 k∧
i=1

Li →
m∨
j=1

Lj

 ,

where:

• w is the weight of the rule.

• Li and Lj are literals (either atoms or negated atoms).

•
∧

denotes a conjunction (AND), and
∨

denotes a disjunction (OR).

2. Arithmetic Rules: These relate linear combinations of atoms via an inequality or

equality. Formally, an arithmetic rule is of the form:

r : w

 a∑
i=1

αiAi △
b∑

j=1

βjBj

 ,

where:

• w is the weight of the rule.

• αi, βj are coefficients.

• Ai, Bj are atoms.

• △ represents either = (equality) or ≤ (inequality).

Note 6.3.1. NeuPSL employs Lukasiewicz logic for its logical rules to maintain a convex

function that is also differentiable. The Lukasiewicz t-norm and t-co-norm are ∧ and ∨
operators that correspond to the Boolean logic operators for integer inputs (along with the

negation operator ¬):

A ∧B = max(0, A+B − 1),

A ∨B = min(1, A+B),

¬A = 1−A,

where A and B are truth values of atoms or expressions over atoms.

113

Grounding, or instantiation, is the process by which abstract rules, defined in

terms of predicates and variables, are translated into concrete constraints or potentials

over specific entities in the domain. While a comprehensive explanation of grounding is

beyond the scope of this section, readers seeking a detailed formal description are referred

to [11]. It is, however, important to distinguish how grounding is affected by the integration

of neural networks. In brief, the grounding process with the inclusion of neural predictions

operates as follows:

1. Instantiation: Variables in the NeuPSL rules are substituted with constants from

the domain, generating all possible ground atoms and instances for each rule. During

this step, a ground rule is converted into deep hinge-loss potential. For example,

logical rules are translated using Lukasiewicz logic.

2. Ground Atom Association: After instantiation, each ground atom is linked to

either a value from a database or an output from a neural network. For neural

outputs, a specialized mapping is created to associate terms in the ground atoms

with the corresponding neural features.

3. Variable Assignment:

• Observed Variables (xsy): Ground atoms with values specified in the database

are assigned as observed variables.

• Free Variables (y): Ground atoms not specified in the database are initialized

as free variables with default or random values.

• Neural Assignment: For deep atoms and parameters, input features are pro-

cessed through the corresponding neural networks gnn. The neural network

outputs are then assigned to these atoms or parameters.

A detailed description of the system design, including how the assignment of

terms to neural features is handled, will be provided in the following section. Consider the

following example of a NeuPSL program, along with the grounding process:

114

Example 6.3.1 (Species Classification in NeuPSL). Consider a NeuPSL program designed

for species classification, which leverages additional knowledge about whether two images

depict the same underlying entity. This integration allows for refining predictions, espe-

cially when an image is of lower quality, by utilizing information from associated images

of the same entity.

NeuPSL Program: A NeuPSL program is a declarative framework that generates a Deep

HL-MRF by grounding symbolic templated rules and neural network architectures with a

symbolic database and mappings from atoms to neural features.

Symbolic Rules:

w :Neural(Img1, Species) ∧ SameEntity(Img1, Img2)

→ Class(Img2, Species)

Class(Img, Species+) = 1.

Neural Architectures:

gCNN : Xnn → [0, 1]3

Input: Image

Output: Classification scores for {Cat, Dog, Frog}

Atom to Neural Feature Mapping:

Neural(ImgA, Cat) =

Neural(ImgA, Dog) =

Neural(ImgA, Frog) =

115

Neural(ImgB, Cat) =

Neural(ImgB, Dog) =

Neural(ImgB, Frog) =

Symbolic Database:

SameEntity(ImgA, ImgB) = 1

SameEntity(ImgB, ImgA) = 1

Neural(ImgA, Cat)

Neural(ImgA, Dog)

Neural(ImgA, Frog)

Neural(ImgB, Cat)

Neural(ImgB, Dog)

Neural(ImgB, Frog)

Class(ImgA, Cat)

Class(ImgA, Dog)

Class(ImgA, Frog)

Class(ImgB, Cat)

Class(ImgB, Dog)

Class(ImgB, Frog)

Note 6.3.2. In practice, a closed-world assumption is applied, meaning that any predicate

not explicitly defined in the symbolic database is assumed to have a value of zero. This as-

sumption significantly accelerates the rule instantiation process, as it allows many potential

116

grounded rules to be trivially evaluated and ignored. Furthermore, the atom-to-neural fea-

ture mapping can be simplified by assuming that the final term in the atom corresponds to

the neural network’s output. This reduces the mapping complexity, enabling a more concise

representation such as: Neural(ImgA, Species) = and Neural(ImgB, Species) =

.

Given the above data, templated rules, and neural architecture, the instantiation

or grounding process begins by substituting every valid combination of constants into the

rules. This generates the following ground rules:

Neural(ImgA, Cat) ∧ SameEntity(ImgA, ImgB)→ Class(ImgB, Cat)

Neural(ImgA, Dog) ∧ SameEntity(ImgA, ImgB)→ Class(ImgB, Dog)

Neural(ImgA, Frog) ∧ SameEntity(ImgA, ImgB)→ Class(ImgB, Frog)

Neural(ImgB, Cat) ∧ SameEntity(ImgB, ImgA)→ Class(ImgA, Cat)

Neural(ImgB, Dog) ∧ SameEntity(ImgB, ImgA)→ Class(ImgA, Dog)

Neural(ImgB, Frog) ∧ SameEntity(ImgB, ImgA)→ Class(ImgA, Frog)

Class(ImgA, Cat) + Class(ImgA, Dog) + Class(ImgA, Frog) = 1

Class(ImgB, Cat) + Class(ImgB, Dog) + Class(ImgB, Frog) = 1

Notice that invalid substitutions, such as:

Neural(ImgA, Cat) ∧ SameEntity(ImgA, ImgB)→ Class(ImgB, Dog),

Neural(ImgA, Cat) ∧ SameEntity(ImgA, ImgB)→ Class(ImgB, Frog),

are not created. This is because variable substitution is consistently applied across all in-

stances of the same variable within the rule, ensuring logical consistency. For example,

the variable Species is consistently substituted with the same constant across the rule.

Grounding in NeuPSL involves significant computational optimization, which allows effi-

cient instantiation of rules over large datasets. For a detailed discussion on optimizing this

process, refer to [11]. The next step in instantiation is to transform each ground rule into

117

its corresponding hinge-loss potential and converted into a weighted sum.

w ∗max{0,Neural(ImgA, Cat) + SameEntity(ImgA, ImgB)− 1−Class(ImgB, Cat)}+

w ∗max{0,Neural(ImgA, Dog) + SameEntity(ImgA, ImgB)− 1−Class(ImgB, Dog)}+

w ∗max{0,Neural(ImgA, Frog) + SameEntity(ImgA, ImgB)− 1−Class(ImgB, Frog)}+

w ∗max{0,Neural(ImgB, Cat) + SameEntity(ImgB, ImgA)− 1−Class(ImgA, Cat)}+

w ∗max{0,Neural(ImgB, Dog) + SameEntity(ImgB, ImgA)− 1−Class(ImgA, Dog)}+

w ∗max{0,Neural(ImgB, Frog) + SameEntity(ImgB, ImgA)− 1−Class(ImgA, Frog)}

The feasible set is determined by the instantiated unweighted rules, ensuring that the clas-

sification probabilities for each image sum to one:

max{0,Class(ImgA, Cat) + Class(ImgA, Dog) + Class(ImgA, Frog)− 1},

max{0,−Class(ImgA, Cat)−Class(ImgA, Dog)−Class(ImgA, Frog) + 1},

max{0,Class(ImgB, Cat) + Class(ImgB, Dog) + Class(ImgB, Frog)− 1},

max{0,−Class(ImgB, Cat)−Class(ImgB, Dog)−Class(ImgB, Frog) + 1}.

Each ground atom is linked to either a value from the symbolic database or the output of

a neural model. This requires a forward pass through the neural network to obtain initial

predictions. Suppose the neural model outputs the following values for each image:

Neural(ImgA, Cat) = 0.7,

Neural(ImgA, Dog) = 0.2,

Neural(ImgA, Frog) = 0.1,

Neural(ImgB, Cat) = 0.6,

Neural(ImgB, Dog) = 0.3,

Neural(ImgB, Frog) = 0.1.

All unobserved variables, referred to as open variables, are initially assigned a value (e.g.,

118

0.5):

Class(ImgA, Cat) = 0.5,

Class(ImgA, Dog) = 0.5,

Class(ImgA, Frog) = 0.5,

Class(ImgB, Cat) = 0.5,

Class(ImgB, Dog) = 0.5,

Class(ImgB, Frog) = 0.5.

With the deep HL-MRF now fully grounded, where each ground atom has an

associated random variable and value assignment, the system is prepared for inference or

learning.

6.4 Defining NeSy-EBMModeling Paradigms using NeuPSL

With the foundational syntax and semantics of NeuPSL established in the previ-

ous section, this section will explore how NeuPSL enables the construction of the three core

modeling paradigms, as introduced in Section 3.2. These paradigms, which include deep

variables, deep parameters, and deep potentials, can be systematically expressed within

NeuPSL, demonstrating the framework’s flexibility in defining complex NeSy-EBM mod-

els. Importantly, while NeuPSL can support a broader range of NeSy-EBM paradigms,

this section highlights the simplicity and adaptability with which it can define them.

6.4.1 Deep Variables

The first NeuPSL modeling paradigm, termed deep variables, represents a deep

symbolic variable (Section 3.2.1) NeSy-EBM modeling approach. In this paradigm, Ne-

uPSL incorporates deep atoms—atoms parameterized by neural network outputs—while

retaining symbolic weights for each rule. The key characteristic of this setup is that the

neural-predicted variables are “fixed” or directly linked to a latent or target variable within

the Deep HL-MRF energy function.

119

Formally, in the deep variables paradigm, the symbolic potential set is a sin-

gleton, denoted by Ψ = {ψ}, with an index set JΨ = {1} such that Ψ1 = ψ. This

paradigm enforces consistency between the free variables y and the neural network out-

puts gnn(xnn,wnn) through an indicator function IY defined as:

IY(y,gnn(xnn,wnn)) :=

0 yi =
[
gRVnn (xnn,wnn)

]
i
, ∀i ∈ {1, . . . , dnn},

∞ otherwise,
(6.16)

where yi and [gnn(xnn,wnn)]i represent the i-th component of the variable vector y and

the neural output vector gnn(xnn,wnn), respectively.

The symbolic component of the NeSy-EBM model is then formulated as:

gsy(y,xsy,wsy,gnn(xnn,wnn)) :=

m∑
j=1

wsy,jϕj(y,xsy,g
RV
nn (xnn)) + IY(y,gnn(xnn,wnn)),

(6.17)

where each wsy,j is a purely symbolic weight, independent of the neural predictions.

The extended-value energy function E(y,xsy,xnn,wsy,wnn) for the deep vari-

ables paradigm is defined as:

E(y,xsy,xnn,wsy,wnn) =

gsy(y,xsy,wsy,gnn(xnn,wnn)) if (y,xsy,xnn) ∈ D̃,

∞ otherwise,

where wsy represents the symbolic weights, i.e., w = [wsy].

Note 6.4.1. An alternative formulation would incorporate the indicator function IY as a

hard constraint, effectively expanding the feasible set D̃ to:

D̂ =

(y,xsy,xnn) ∈ D

∣∣∣∣∣∣∣∣∣
ck(y,xsy,gnn(xnn,wnn)) = 0, ∀k ∈ E,

ck(y,xsy,gnn(xnn,wnn)) ≤ 0, ∀k ∈ I,

yi − gRVnn (xnn,wnn)i = 0, ∀i ∈ {1, . . . , dnn}.

 . (6.18)

In practice, this modeling paradigm is implemented by treating the neural model’s predic-

tions as observed variables during MAP optimization.

120

6.4.2 Deep Weights

The second NeuPSL modeling paradigm, termed deep weights, defines a deep sym-

bolic parameter (Section 3.2.2) NeSy-EBM modeling approach. In this approach, NeuPSL

incorporates neural network outputs directly as weights within symbolic rules without the

inclusion of deep atoms. A key distinction in this paradigm is that neural-derived weights

are assigned on a per-grounded-rule basis, unlike traditional NeuPSL, where weights are

shared across all groundings of a templated rule. This per-grounded-rule weighting en-

hances expressivity by enabling context-sensitive weighting of rules, albeit at the cost of

increased model complexity and parameter count.

Formally, in this paradigm, the symbolic potential set is a singleton, denoted

Ψ = {ψ}, with a trivial index set JΨ = {1} such that Ψ1 = ψ. The weights for each

potential are defined either by neural network outputs, gParamnn (xnn,wnn), or by symbolic

weights, wsy, yielding:

w := [wsy,g
Param
nn (xnn,wnn)]. (6.19)

The symbolic component of the NeSy-EBM model under the deep weights paradigm

is expressed as:

gsy(y,xsy,wsy,gnn(xnn,wnn)) :=
m∑
j=1

wjϕj(y,xsy), (6.20)

where wj represents the neural or symbolic weights assigned to each potential ϕj .

The corresponding extended-value energy function E(y,xsy,xnn,wsy,wnn) is then

defined as:

E(y,xsy,xnn,wsy,wnn) =

gsy(y,xsy,wsy,gnn(xnn,wnn)) if (y,xsy,xnn) ∈ D̃,

∞ otherwise.

6.4.3 Deep Rules

The final NeuPSL modeling paradigm, termed deep rules, aligns with the deep

symbolic potentials (Section 3.2.3) NeSy-EBM modeling approach. In this paradigm, the

121

neural model dynamically selects a subset of potential functions (rules) that will be used

to answer a specific query. Unlike the previous paradigms, deep rules do not involve deep

atoms or neural-derived weights; instead, they focus on adapting the symbolic rule set based

on neural predictions, allowing the model to adjust its reasoning structure in response to

the neural model’s interpretation.

Formally, in the deep rules paradigm, the symbolic potential set Ψ represents the

complete set of all potential functions that NeuPSL can instantiate. The index set for these

potentials is driven by the neural component’s output, denoted as JΨ = Range(gnn). Each

specific neural output gnn(xnn,wnn) selects a subset of potential functions Ψgnn(xnn,wnn),

defining a rule set conditioned on the neural model’s interpretation of the input.

The variable and parameter domains of each selected symbolic potential are given

by Vψ = Y × Xsy and Paramsψ =Wsy, respectively. Thus, the symbolic component gsy of

the NeSy-EBM model in the deep rules paradigm can be expressed as:

gsy(y,xsy,wsy,gnn(xnn,wnn)) :=

|Ψgnn(xnn,wnn)|∑
j=1

wj Ψgnn(xnn,wnn),j(y,xsy),

where each Ψgnn(xnn,wnn),j represents a potential function chosen based on the neural out-

put, and wj denotes the symbolic weight associated with each selected potential.

The extended-value energy function E(y,xsy,xnn,wsy,wnn) incorporates this se-

lection mechanism as follows:

E(y,xsy,xnn,wsy,wnn) =


∑

gsy(·)∈Ψ gsy(·) · δj,gnn(xnn,wnn) if (y,xsy,xnn) ∈ D̃,

∞ otherwise,

where δj,gnn(xnn,wnn) is an indicator function that takes the value 1 if the neural model

selects the potential ϕj and 0 otherwise. This setup ensures that only the selected potentials

contribute to the energy function, while unselected potentials have no effect.

Note 6.4.2. In practice, calculating the full potential set Ψ is computationally infeasible

due to its scale. To approximate the deep rules paradigm, a generative approach is often

employed, where a large language model (LLM) is queried to dynamically generate a sym-

bolic program based on the neural model’s interpretation. This approach aligns the potential

122

set with the neural model’s predictions in real time, creating a flexible and context-sensitive

symbolic rule set.

6.5 NeuPSL System

As described in the previous sections, NeuPSL is a probabilistic programming

framework designed to define and reason over Deep HL-MRFs. However, its practical im-

plementation involves significant complexity due to the integration of symbolic and neural

systems. This complexity arises particularly from combining PSL, implemented in Java

[59], with neural frameworks typically based in Python [109], such as PyTorch [100], Ten-

sorFlow [1], and JAX [19]. This section delves into the system-level details of NeuPSL,

focusing on its architecture, shared memory communication, and the operations necessary

for seamless integration between symbolic and neural components. First, I provide a high-

level overview of the system workflow (Section 6.5.1). Then, I describe the shared memory

mechanism and its associated functions (Section 6.5.2). For additional details on the imple-

mentation, I encourage the reader to look at the codebase: https://github.com/linqs/psl.

6.5.1 System-Level Workflow

NeuPSL’s workflow integrates neural and symbolic reasoning components through

initialization, inference and learning, and finalization:

1. Initialization: The initialization phase begins with the symbolic component. Ne-

uPSL initializes a shared memory structure that facilitates communication between

the neural and symbolic components during both inference and learning. Next, the

NeuPSL system is configured to locate the neural model implementation through a

provided Python wrapper class. NeuPSL creates a Python instance, which initializes

the neural models required for the specific task and connects them to the shared

memory. The Python neural model then maps symbolic atoms from the NeuPSL

program to their corresponding data sources. It performs an initial prediction pass,

generating preliminary values for the symbolic model. These values are written to

123

the shared memory, and the Python model signals the Java-based symbolic compo-

nent that it is ready to proceed. The symbolic model subsequently completes its

grounding process. It reads the initial predictions from the neural model and assigns

these values to the appropriate ground atoms within the symbolic program. At this

stage, the neural-symbolic system is fully initialized and ready to perform inference

or learning.

2. Inference and Learning: Inference and learning in NeuPSL are designed as it-

erative processes, alternating between the neural model generating predictions and

fitting and the symbolic model performing optimization. For inference, once the

neural model has made its predictions (either during initialization or the previous

batched gradient step), the symbolic model performs standard Maximum A Posteri-

ori (MAP) optimization over its target and latent variables. After the optimization is

complete, the results are either written in an output file or stored in shared memory

for subsequent steps (if the system is in the learning phase).

In learning, inference acts as a subprocess, iterating through repeated steps of sym-

bolic optimization. After the symbolic model completes its optimization, gradients

for the neural variables are computed and written to the shared memory. The Python

(neural) instance is then signaled to perform a fitting step, which updates the neural

model parameters based on the received symbolic gradients. During this step, the

symbolic gradient is combined with the neural model’s loss, weighted by a parameter

α that balances the influence of each gradient source. For example, α = 0.5 equally

weights the neural and symbolic gradients, whereas other values can prioritize one

over the other. After completing the fitting step, the neural model generates updated

predictions by performing another forward pass. It writes the new predictions to the

shared memory, enabling the symbolic model to begin a new round of optimization.

This iterative loop continues until a convergence criterion or stopping condition is

met.

The system also incorporates support for stochastic gradient descent (SGD) and

batching to handle larger datasets effectively. While details of batch processing are

124

not fully described here, the design accounts for challenges such as synchronizing

epochs between the neural and symbolic components, managing shared gradients, and

ensuring efficient memory usage across iterations. These features ensure that NeuPSL

can scale to practical, large-scale applications while maintaining tight integration

between neural and symbolic reasoning.

3. Finalization: Upon completing the training or inference process, the system saves

the final model parameters, clears or reinitializes the shared memory, and prepares

for subsequent tasks, if needed.

6.5.2 Shared Memory Mechanism

Integrating the Java-based PSL codebase with Python-based neural frameworks

presents inherent complexities. To address this, NeuPSL employs a shared memory mech-

anism that facilitates seamless communication between symbolic and neural systems. This

design eliminates the need to rewrite the PSL system entirely in Python, preserving its

established codebase while enabling efficient data exchange between the two frameworks.

The shared memory buffer is segmented, with the first segment allocated for

metadata. This metadata contains essential details, such as the number of bytes to be read

or written. Both the symbolic and neural components are aware of the memory layout,

including specific byte offsets corresponding to particular ground atoms.

6.5.2.1 Python Side: Neural Interface

• init: Initializes the shared memory and loads the neural architecture.

• write data: Writes neural outputs, such as predictions or observed variable values,

to shared memory.

• read data: Reads symbolic gradients or label information from shared memory to

inform neural parameter updates.

125

6.5.2.2 Java Side: Symbolic Interface

• init: Initializes shared memory and establishes communication with the Python-

based neural module.

• write data: Writes symbolic outputs, such as gradients or label information, to

shared memory for use by the neural module.

• read data: Reads neural predictions or random variable values from shared memory

to incorporate into symbolic reasoning tasks.

126

Chapter 7

Empirical Analysis

Throughout this dissertation, I have laid the foundational framework for princi-

pled neural-symbolic AI by introducing a cohesive set of architectural axioms (Chapter 2),

a universal mathematical language (Section 3), and a comprehensive collection of design

principles (Chapter 4 and Chapter 5). Building upon this foundation, in the previous

chapter (Chapter 6), I proposed Neural Probabilistic Soft Logic a novel and general NeSy

system capable of handling a wide range of these foundational components. This chapter

now seeks to empirically evaluate NeuPSL’s capabilities, demonstrate its alignment with

the proposed foundations, showcase its distinctions from other prominent NeSy systems,

and explore common pitfalls in NeSy inference and learning, along with mitigation strate-

gies.

To achieve these objectives, the first portion of this experimental evaluation fo-

cuses on NeuPSL’s performance across various neural-symbolic inference and learning set-

tings. This aims to demonstrate not only the versatility and generality NeuPSL provides as

a framework of NeuPSL but also to highlight the use cases for NeSy approaches. The second

portion of this section evaluates how NeuPSL compares to other prominent NeSy systems

on canonical tasks, providing insights into where and when these systems are most effec-

tive. Finally, the last portion of this chapter intentionally highlights pitfalls encountered

in NeSy inference and learning, along with corresponding mitigation strategies, offering a

roadmap for addressing these challenges and advancing the field. Through this empirical

127

analysis, I aim to validate NeuPSL as a robust and scalable NeSy approach while drawing

broader insights into the strengths, limitations, and future directions of neural-symbolic

integration. In short, this experimental evaluation aims to answer the following research

questions:

• RQ1: Can NeSy methods improve the accuracy and reasoning capabilities of deep

learning models, particularly within the inference and learning pipelines?

• RQ2: Under what conditions do principled NeSy approaches, especially NeuPSL,

demonstrate optimal performance?

• RQ3: How effective are the proposed mitigation strategies in addressing specific

pitfalls that arise during NeSy inference and learning?

• RQ4: How does the introduction of symbolic prior knowledge through NeuPSL affect

the internal representations of a deep learning model?

• RQ5: How does the fine-tuning of subsymbolic methods with symbolic information

influence their generalization to unseen data?

The empirical analysis is organized into four main sections: First, Section 7.1

introduces the datasets used in the experiments and provides an overview of the neural-

symbolic models employed throughout the evaluation. Next, Section 7.2 examines the

application of NeuPSL across a variety of critical NeSy tasks. This section is divided into

inference tasks, including constraint satisfaction, joint reasoning, and few-shot reasoning,

as well as learning tasks, such as decomposed task learning, semi-supervised learning, and

zero-shot learning. Following this, Section 7.3 presents a comparative analysis of NeuPSL

alongside four prominent NeSy frameworks. Finally, Section 7.4 investigates a selection

of the most prominent NeSy pitfalls, with a particular focus on challenges specific to the

NeuPSL formulation.

Note 7.0.1. Some of the experiments presented here were primarily conducted by my

colleagues. My role included editing the paper, discussing potential improvements, and

offering insights into problem-solving and drawing conclusions. These experiments include

128

all pathfinding results [43], zero-shot object navigation results [145], and semi-supervised

learning experiments [43]. While my direct contributions to these specific results were more

limited, including them here provides a more comprehensive and complete perspective on the

overall findings. I encourage readers interested in a deeper exploration of these experiments

are encouraged to consult the original papers.

7.1 Datasets and Models

This subsection introduces the NeSy datasets and models, which will be utilized

throughout the empirical analysis. Moreover, any modifications made to answer specific

research questions will be described in the following subsections. Additional details about

the NeuPSL models can be found in the appendix (Appendix A).

• MNIST-Add-k Dataset: MNIST-Add-k is a canonical NeSy dataset introduced

by Manhaeve et al. (2021) where models must determine the sum of each pair of

digits from two lists of MNIST images. An MNIST-Addk equation consists of two

lists of k > 0 MNIST images. For instance,
[]

+
[]

= 8 is an MNIST-Add1

equation, and
[

,
]

+
[

,
]

= 41 is an MNIST-Add2 equation.

Evaluation: For all experiments, we evaluate models over 5 splits of the low-data

setting proposed by Manhaeve et al. (2021) with 600 total images for training and

1, 000 images each for validation and test. Prediction performance in this setting is

measured by the accuracy of the image classifications and the inferred sums. Con-

straint satisfaction consistency in this setting is the proportion of predictions that

satisfy the semantics of addition.

Baseline Model: The baseline neural model for all MNIST-Addk datasets is a

ResNet18 convolutional neural network backbone [62] with a 2-layer multi-layer per-

ceptron (MLP) prediction head. The baseline is trained and applied as a digit clas-

sifier. Further, to allow the baseline to leverage the unlabeled training data in the

semi-supervised settings, the digit classifier backbone is pre-trained using the Sim-

CLR self-supervised learning framework [24]. Augmentations are used to obtain

129

positive pairs for the contrastive pre-training process.

NeuPSL Model: The NeuPSL model is a composition of the baseline digit classifier

and a symbolic component created with NeuPSL that encodes the semantics of ad-

dition. In all settings, the NeuPSL models create DSVar NeSy-EBMs (Section 3.2.1)

that use a decomposed task structure (Section 4.2.3), with the neural component

predicting digits and the symbolic component predicting additions.

• Visual-Sudoku Dataset: Visual-Sudoku, first introduced by Wang et al. (2019),

is a dataset containing a collection of 9× 9 Sudoku puzzles constructed from MNIST

images. In each puzzle, 30 cells are filled with MNIST images and are referred to as

clues. The remaining cells are empty. The task is to correctly classify all clues and

fill in the empty cells with digits that satisfy the rules of Sudoku: no repeated digits

in any row, column, or box.

Evaluation: For all experiments, results are reported across 5 splits with 20 puzzles

for training and 100 puzzles each for validation and test. There is an equal number

of MNIST images (600) in the training datasets for Visual-Sudoku and MNIST-Add-

k. Prediction performance in this setting is measured by the accuracy of the image

classifications. Constraint satisfaction consistency in this setting is the proportion of

predictions that satisfy the rules of Sudoku.

Baseline Model: The baseline neural model for Visual-Sudoku is the same as that

of the MNIST-Addk.

NeuPSL Model: The NeuPSL model is a composition of the baseline digit classifier

and a symbolic component created with NeuPSL that encodes the rules of Sudoku.

In all settings, the NeuPSL models create DSVar NeSy-EBMs (Section 3.2.1) that use

a decomposed task structure (Section 4.2.3), with the neural component predicting

digits and the symbolic component predicting the label for both squares with and

without MNIST images.

• Pathfinding Dataset: Pathfinding is a NeSy dataset introduced by Vlastelica et

al. (2020) consisting of 12000 randomly generated images of terrain maps from the

130

Warcraft II tileset. The images are partitioned into 12× 12 grids where each vertex

represents a terrain with a cost. The task is to find the lowest cost path from the

top left to the bottom right corner of each image.

Evaluation: For all experiments, results are reported over 5 splits generated by

partitioning the images into sets of 10, 000 for training, 1, 000 for validation, and 1, 000

for testing. Prediction performance in this setting is measured by the proportion of

valid predicted paths, i.e., continuous, and that have a minimum cost. Constraint

satisfaction continuity in this setting is measured by the proportion of predictions

with a continuous predicted path.

Baseline Model: The baseline neural model for the Pathfinding dataset is a ResNet18

convolutional neural network. The input of the ResNet18 path-finder baseline is the

full Warcraft II map, and the output is the predicted shortest path. The model is

trained using the labeled paths from the training data set.

NeuPSL Model: The NeuPSL model is a composition of the baseline path-finder

and a symbolic component created with NeuPSL that encodes end-points and conti-

nuity constraints, i.e., the path from the top left corner of the map to the bottom right

corner must be continuous. In all settings, the NeuPSL models create DSVar NeSy-

EBMs (Section 3.2.1) that use a decomposed task structure (Section 4.2.3), with the

neural component predicting the cost of each square and the symbolic component

predicting shortest valid path.

• Citeseer and Cora Dataset: Citeseer and Cora are two widely studied citation

network node classification datasets first introduced by Sen et al. (2008). Citeseer

consists of 3, 327 scientific publications classified into one of 6 topics, while Cora

contains 2, 708 scientific publications classified into one of 7 topics.

Evaluation: For all experiments, we evaluate models over 5 randomly sampled

splits using 20 examples of each topic for training, 200 of the nodes for validation,

and 1000 nodes for testing. Prediction performance in this setting is measured by

the categorical accuracy of a paper label.

131

Baseline Model: The baseline neural model for the Citation network settings is a

Simple Graph Convolutional Network (SGC) [137]. SGCs are graph convolutional

networks with linear activations in the hidden layers to reduce computational com-

plexity. The SGC neural baseline uses bag-of-words feature vectors associated with

each paper as node features and citations as bi-directional edges. Then, a MLP is

trained to predict the topic label given the SGC-transformed features.

NeuPSL Model: The NeuPSL model is a composition of the baseline SGC and a

symbolic component created with NeuPSL that encodes the homophilic structure of

the citation network, i.e., two papers connected in the network are more likely to

have the same label. In all settings, the NeuPSL models create DSVar NeSy-EBMs

(Section 3.2.1) that use a unified task structure (Section 4.2.3), with both the neural

and symbolic components predicting the category a node belongs to.

Target variables indicate the degree to which a paper has a particular topic. The

neural classification is used as a prior for the labels of the nodes, and the symbolic

component propagates this knowledge to its neighbors.

• RoadR Dataset: RoadR is an extension of the ROAD (Road event Awareness

Dataset) dataset, initially introduced by Singh et al. (2021). The ROAD dataset was

developed to evaluate the situational awareness of autonomous vehicles in various

road environments, weather conditions, and times of day. It contains 22 videos, 122k

labeled frames, 560k bounding boxes, and a total of 1.7M labels, which include 560k

agents, 640k actions, and 499k locations. RoadR builds upon this by adding 243

logical requirements that must be satisfied, further enhancing its utility for testing

autonomous vehicles. For instance, a traffic light should never be simultaneously

predicted as red and green.

Evaluation: For all experiments, we evaluate models with 15 videos for training

and 3 videos for testing. Prediction performance in this setting is measured by the

matching boxes using Intersection over Union (IoU) and then multi-class f1. Con-

straint satisfaction consistency in this setting is the proportion of frame predictions

with no constraint violations.

132

Baseline Model: The baseline neural model for the RoadR dataset is a DEtection

TRansformer (DETR) model with a ResNet50 backbone [21]. The baseline is trained

and applied to detect objects in a frame, along with a multi-label classification for

its class labels (e.g., car, red, traffic light, etc.).

NeuPSL Model: The NeuPSL model is a composition of the baseline object detec-

tor and classifier and a symbolic component created with NeuPSL that encodes the

logical requirements. In all settings, the NeuPSL models create DSVar NeSy-EBMs

(Section 3.2.1) that use a unified task structure (Section 4.2.3), with both the neural

and symbolic components predicting the multi-class labels a bounding box belongs

to.

• Logical-Deduction is a multiple-choice question-answering dataset introduced by

[121]. These questions require deducing the order of a sequence of objects given a

natural language description and then answering a multiple-choice question about

that ordering.

Evaluation: We report results for a single test set of 300 deduction problems, with a

prompt containing two examples. Prediction performance in this setting is measured

by the accuracy of the predicted multiple-choice answer.

Baseline Model: The baseline neural model for the Logical-Deduction dataset is

the models presented in Pan et al. (2023) on GPT-3.5-turbo and GPT-4 [98]. Each

model is run using Standard and Chain-of-Thought (CoT) [133] prompting.

NeuPSL Model: The NeuPSL model is a composition of the baseline LLM that

is being prompted to create the constraints within the symbolic program. In all

settings, the NeuPSL models create DSPot NeSy-EBMs (Section 3.2.3) in which the

neural component creates a symbolic component about the order of objects. The

symbolic component then performs constraint satisfaction.

• Zero-Shot Object Navigation Datasets: Are datasets in which an embodied

agent must navigate to a specific goal object within an unknown environment. For

this work, three zero-shot object navigation datasets are considered: MP3D [22],

133

HM3D [106], and RoboTHOR [40]. MP3D is used in Habitat ObjectNav challenges,

containing 2195 validation episodes on 11 validation environments with 21 goal ob-

ject categories. HM3D is used in the Habitat 2022 ObjectNav challenge, containing

2000 validation episodes on 20 validation environments with 6 goal object categories.

RoboTHOR is used in the RoboTHOR 2020 and 2021 ObjectNav challenge, con-

taining 1800 validation episodes on 15 validation environments with 12 goal object

categories.

Evaluation: For all experiments, the number of maximum navigation steps is 500.

Prediction performance in this setting is measured by the success rate (SR) and the

success rate weighted by inverse path length (SPL) [9].

Baseline Model: The baseline neural model for object navigation datasets are

CLIP on Wheels (CoW) [54] and ZSON [79]. ZSON uses a CLIP encoder to project

the object and image goal into the same embedding space and feed the object goal

embedding into an image goal navigation [91] network. CoW uses a gradient-based

visualization technique (Grad-CAM [112]) on CLIP to localize goal objects in an

egocentric view and a frontier-based exploration technique [139].

NeuPSL Model: The NeuPSL model integrates three core components to guide

object navigation: a scene understanding model, a large language model, and a sym-

bolic reasoning layer with NeuPSL rules. The scene understanding model constructs

a detailed semantic map, identifying room layouts, objects, and potential frontiers.

This map is then passed to the LLM, which infers probable locations for the goal

object based on commonsense and context-specific knowledge. Finally, NeuPSL’s

symbolic component uses predefined rules to evaluate and select the optimal frontier

for navigation, where the target variables represent the specific frontier to approach

next. In all settings, the NeuPSL models create DSVar NeSy-EBMs (Section 3.2.1)

that use a decomposed task structure (Section 4.2.3), with the neural component pre-

dicting values about commonsense knowledge and symbolic component predicting the

frontier it should take.

• Dialog Structure Induction Datasets: The dialog structure induction datasets

134

consist of unlabeled dialog corpora with a latent dialog structure graph representing

dialog states and their transition probabilities. Three datasets are used: Multi-

WoZ 2.1 synthetic [20] and two variations of the Schema-Guided Dialog (SGD) [107]

dataset. The SGD datasets include SGD-synthetic (with template-generated dialog

utterances) and SGD-real (in which template-generated utterances are replaced with

human paraphrased counterparts). For the SGD-real dataset, three experimental

settings are evaluated: standard generalization (training and testing within the same

domain), domain generalization (training and testing across different domains), and

domain adaptation (training on labeled data from the training domain and unlabeled

data from the target domain, with evaluation on target domain data).

Evaluation: The evaluation measures two main aspects: the correctness of the

learned latent dialog structure and the quality of the learned hidden representations.

Prediction performance is assessed using Adjusted Mutual Information (AMI) [130],

while the quality of the hidden representation is evaluated through linear probing,

a standard technique for assessing the effectiveness of unsupervised representation

learning.

Baseline Model: The baseline neural model for dialog structure induction is the

direct discrete variational recurrent neural network (DD-VRNN) [115]. The DD-

VRNN builds on the Variational Recurrent Neural Network (VRNN) [26] framework,

where a sequence of VAEs [66] is associated with RNN states to model the dialog

flow. A key difference with the DD-VRNN is that it directly models the influence of

zt−1 on zt, effectively capturing transitions between different latent (dialog) states.

NeuPSL Model: The NeuPSL model is a composition of the baseline DD-VRNN

with a symbolic component encoded in NeuPSL, which incorporates a set of dialog

constraints. In all settings, the NeuPSL models create DSVar NeSy-EBMs (Section

3.2.1) that use a unified task structure (Section 4.2.3), with both the neural and sym-

bolic components predicting state an utterance is likely to belong to. In the synthetic

MultiWoZ setting, 11 structural, domain-agnostic dialog rules are introduced to cap-

ture general dialog behaviors, showcasing how even a small set of expert-designed

135

rules can significantly improve generalization. For the SGD settings, a single dialog

rule is added to capture the correlation between dialog acts and utterances contain-

ing certain keywords (e.g., utterances with ”hello” are likely to belong to the ”greet”

state). This single rule demonstrates the potential performance gains achievable with

minimal prior domain-specific information.

• Synthetic Mixture of Symbolic Experts Dataset: The synthetic Mixture of

Symbolic Experts dataset is designed to test a model’s ability to reason with both

local node features and overarching structural patterns. This dataset consists of

disjoint, fully connected vertex and edge subgraphs, with each subgraph conforming

to one of two types: 1) nodes with random labels but consistent features, or 2)

nodes with a shared label but random features. Experiments are conducted in three

inductive settings, where new nodes are added to pre-existing subgraphs, with the

following information concatenated to the node features:

– OH +OH: One-hot encoding of the label combined with a one-hot encoding of

the subgraph ID.

– G+OH: A Gaussian sample conditioned on the label, combined with a one-hot

encoding of the subgraph ID.

– G+G: Gaussian samples conditioned on both the label and the subgraph ID.

Evaluation: The dataset consists of 25 subgraphs, with each subgraph containing

between 10 and 15 nodes. The node label space includes four unique labels, and an

equal number of subgraphs are generated from each symbolic structure type, with

each subgraph containing at least two nodes in the training set. Each experiment

is conducted on five random splits using a 60/30/10 train-validation-test partition.

Prediction performance is measured by categorical accuracy on node labels.

Baseline Model: The baseline neural models for this dataset are a Multi-Layer Per-

ceptron (MLP) and a Graph Neural Network (GNN). The MLP consists of an input

layer, a single hidden layer, and an output layer. The GNN follows the GraphSAGE

framework proposed by [61].

136

NeuPSL Model: The NeuPSL model integrates the baseline MLP with a symbolic

component implemented using NeuPSL, encoding constraints for label propagation,

and local feature consistency. In all settings, the NeuPSL models create DSPar

NeSy-EBMs (Section 3.3) that use a decomposed task structure (Section 4.2.3), with

both the neural component predicting the weight of each constraint and the symbolic

component predicting class a node belongs to.

7.2 NeSy Inference and Learning

This section begins the empirical evaluation by investigating NeuPSL’s generality

and versatility as a NeSy system, showcasing its applicability across a wide range of real-

world problems and illustrating when NeSy systems provide significant benefits. Rather

than directly comparing NeuPSL to other NeSy approaches, the analysis emphasizes the

distinct advantages that NeuPSL—and by extension, NeSy-EBMs (Section 3.1)—offer over

purely neural or purely symbolic methods in specific tasks. These experiments primarily

address RQ1, which explores how effectively NeSy methods can enhance model accuracy

and reasoning capabilities. Additionally, this section contributes to RQ4 by examining

how symbolic prior knowledge influences neural representations and to RQ5 by assess-

ing the impact of fine-tuning subsymbolic methods with symbolic information to improve

generalization.

7.2.1 Inference

Let’s begin the experimental evaluation by investigating the benefits of employing

NeSy methods for inference tasks, specifically focusing on constraint satisfaction, joint rea-

soning, and few/zero-shot reasoning. In all experiments within this subsection, a modular

training approach (Section 4.3.3.1) is applied to independently train the neural and sym-

bolic components, ensuring that inference operates within a well-defined solution space.

In this setup, neural components are fully supervised and trained on the entire training

dataset, while symbolic weights are optimized through random grid search. For instance,

in tasks like MNIST-Add and Visual Sudoku, the neural models are pre-trained on MNIST

137

digit labels. In the subsequent subsection of learning experiments (Section 7.2.1), super-

vision will be restricted to the overall task, e.g., only providing labels over for the addi-

tion sum. Following this modular training phase, NeuPSL inference is employed to make

sure the neural component predictions are consistent with domain knowledge and logical

constraints. For these inference tasks, a DSVar modeling paradigm (Section 3.2.1), rep-

resenting the neural as symbolic variable architectural axiom (Section 2.3.4), is applied to

datasets such as MNIST-Add-k, Visual Sudoku, Pathfinding, RoadR, Citeseer, and Cora.

Additionally, a DSPot modeling paradigm, representing the sampling neural for symbolic

architectural axiom (Section 2.3.2), is employed for tasks like Logical Deduction.

Constraint Satisfaction: To study constraint satisfaction, the dataset configurations

outlined in Section 7.1 for Visual-Sudoku, Pathfinding, and RoadR. Additionally, consider

the following variant of the MNIST-Add-k dataset:

• MNIST-Addk: The k = 1, 2, 4 MNIST-Addk datasets with the sums of the MNIST-

Add-k equations available as observations during inference. Prediction performance

is measured by the accuracy of the image classifications.

The MNIST-Add-k variant incorporates the known sum during inference, allowing the

model to adjust the predictions from the neural component based on logical consistency.

For instance, consider an MNIST-Add-1 example with the equation
[]

+
[]

= 8. If

the neural component misclassifies the first MNIST digit, , as an 8 with low confidence,

but correctly classifies the second MNIST digit, , as a 5 with high confidence, the model

can use the observed sum, 8, to guide the correction of the first digit label.

In Table 7.1, Table 7.2, and Table 7.3, the prediction performance and constraint

satisfaction consistency of a neural baseline model and the NeuPSL model are reported

across the MNIST-Addk, Visual-Sudoku, Pathfinding, and RoadR datasets. Across all

experimental settings, the baseline neural models frequently violate constraints within the

test datasets, particularly as the complexity of the constraints increases. This pattern

is most pronounced in the MNIST-Addk datasets, where the consistency of constraint

satisfaction decreases significantly as the number of digits, k, increases. The primary

138

Table 7.1: Digit accuracy and constraint satisfaction consistency of the ResNet18 and

NeuPSL models on the MNIST-Add-k and Visual-Sudoku datasets.

ResNet18 NeuPSL
Digit Acc. Consistency Digit Acc. Consistency

MNIST-Add1

97.60± 0.55

93.04± 1.33 99.80± 0.14 100.0± 0.00
MNIST-Add2 86.56± 2.72 99.68± 0.22 100.0± 0.00
MNIST-Add4 75.04± 4.81 99.72± 0.29 100.0± 0.00
Visual-Sudoku 70.20± 2.17 99.37± 0.11 100.0± 0.00

Table 7.2: Accuracy of finding a minimum cost path (Min. Cost Acc.) and consistency in

satisfying continuity constraints (Continuity) of the ResNet18 and NeuPSL models on the

Pathfinding dataset.

ResNet18 NeuPSL
Min. Cost Acc. Continuity Min. Cost Acc. Continuity

Pathfinding 80.12± 22.44 84.80± 17.11 90.02± 11.70 100.0± 0.00

Table 7.3: Object detection F1 and constraint satisfaction consistency of the DETR and

NeuPSL models on the RoadR dataset.

DETR NeuPSL
F1 Consistency F1 Consistency

RoadR 0.457 27.5 0.461 100.0

reason for this decline is that the baseline ResNet18 model treats each digit prediction

independently. Similarly, in the RoadR dataset, the DETR baseline adheres to road event

constraints only 27.5% of the time, illustrating a clear limitation in handling structured

dependencies in real-world scenarios.

In contrast, the NeuPSL models consistently satisfy all constraints across all

datasets, achieving 100% consistency (RQ1). In short, these models use an optimiza-

tion process to guarantee that all constraints are satisfied, with the trade-off of changing

the neural predictions and runtime costs. Prediction performance gains from constraint

139

satisfaction are possible when the neural component accurately quantifies its confidence.

The symbolic component uses the confidence of the neural component and the constraints

together to correct the neural model’s erroneous predictions. For example, if the neural

model misclassifies a digit in the MNIST-Addk dataset but assigns a low confidence score

to this prediction, NeuPSL can use the sum constraint to adjust the prediction in the hope

that the confident prediction is correct.

Joint Reasoning: Unlike MNIST-Addk, Visual-Sudoku, Pathfinding, and RoadR, which

involve enforcing hard constraints on the target variables, the citation network datasets—Citeseer

and Cora—demonstrate the ability of NeSy methods to handle joint reasoning with soft

constraints on a supervised dataset. For these citation networks, NeuPSL enhances predic-

tion accuracy by leveraging the homophilic structure, where linked papers are more likely

to share topic labels. Moreover, the symbolic relations can be defined over a general and

potentially large number of nodes in the network, i.e., a node can be connected to any

number of neighbors.

Table 7.4: Node classification accuracy of the SGC and NeuPSL models on the Citeseer

and Cora datasets.

SGC NeuPSL

Citeseer 65.14± 2.96 66.52± 3.26
Cora 80.90± 1.54 81.82± 1.73

Table 7.4 presents the prediction performance for the baseline neural model and

the NeuPSL model on the citation network node classification tasks. In both Citeseer

and Cora, NeuPSL consistently outperforms the baseline, with statistically significant im-

provements confirmed by a paired t-test (p-values < 0.05) (RQ1). It is crucial to highlight

that NeuPSL achieved these gains without additional learning; instead, after each node’s

label was predicted, an optimization process was applied to smooth predictions based on

neighboring nodes (RQ5).

140

Few/Zero-Shot Reasoning: The final set of inference experiments explores NeuPSL’s

joint reasoning capabilities in scenarios where the neural model has been provided with

zero-shot or few-shot information for reasoning. In the zero-shot object navigation setting,

a large language model (LLM) is queried to supply commonsense knowledge, which is then

integrated into NeuPSL’s constraints to influence the frontier selection process. At a high

level, this approach aims to prioritize frontiers closer to objects where the goal object is

likely to be found or in rooms where the goal object is expected to be located. Similarly,

in the logical deduction question-answering task, NeuPSL leverages an LLM to generate

symbolic rules based on dependencies inferred from natural language.

Table 7.5: Comparison of accuracy in answering logical deduction questions using two large

language models, GPT-3.5-turbo and GPT-4 [98], across three methods: Standard, Chain

of Thought (CoT), and NeuPSL.

LLM Standard CoT NeuPSL

Logical Deduction
GPT-3.5-turbo 40.00 42.33 70.33

GPT-4 71.33 75.25 90.67

Table 7.5 and Table 7.6 present the prediction performance of baseline mod-

els compared to NeuPSL on the logical deduction and zero-shot object navigation tasks,

respectively. In the logical deduction task, NeuPSL demonstrates a substantial 15% im-

Table 7.6: Comparison of success rate (SR) and success rate weighted by inverse path length

(SPL) in zero-shot object navigation on MP3D [22], HM3D [106], and RoboTHOR [40]

benchmarks, across three methods: CLIP on Wheels (CoW) [54], ZSON [79], and NeuPSL

(ESC) [145]

ZSON CoW NeuPSL (ESC)
SPL↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑

MP3D 4.8 15.3 6.3 11.1 17.7 36.1
HM3D 12.6 25.5 - - 25.2 44.0
RoboTHOR - - 10.0 16.3 22.2 38.1

141

provement over the LLM alone (RQ1). This improvement is particularly notable given

the occasional generation of syntactically invalid or logically infeasible constraints by the

LLM. Specifically, the LLM successfully produced valid rules 89.0% of the time with GPT-

3.5-turbo and 98.7% with GPT-4. Future work could enhance this setup by incorporating

self-refinement techniques, similar to those proposed in [99], to improve the feasibility and

accuracy of rule generation, further boosting NeuPSL’s reasoning capabilities. In the ob-

ject navigation task, NeuPSL achieves the highest performance across both SR and SPL

metrics (RQ1). Notably, on the MP3D dataset, NeuPSL outperforms CoW with a 269%

improvement in SPL and a 225% improvement in SR. Additionally, NeuPSL shows strong

robustness across multiple datasets without requiring extensive pre-training, unlike ZSON,

which is specifically trained on HM3D for image-goal navigation but suffers from perfor-

mance degradation when applied to new environments like MP3D. NeuPSL’s consistent

results across all datasets underscore its generalizability and resilience to domain shifts,

highlighting its potential for broad application in varied environments (RQ5).

7.2.2 Learning

Having explored the advantages of NeuPSL and NeSy methods in inference tasks,

this section shifts focus to investigate their effectiveness in learning scenarios. Unlike the

modular training approach utilized earlier, all experiments in this subsection adopt a joint

training strategy, where both neural and symbolic parameters are optimized concurrently.

For further details on the specific learning techniques employed, please refer to the work

of Dickens (2024). The experiments are conducted across three distinct learning settings:

• Distant Supervision Learning: This setting uses a decomposed task structure

(Section 4.2.3) for distant supervision learning (Section 4.4.1) with full supervision

provided for the higher-level task, while the lower-level task receives no direct super-

vision.

• Semi-Supervised Learning: This experiment presents two semi-supervised set-

tings: (1) Distant supervision (Section 4.2.3) semi-supervised learning where the

NeSy method is designed with decomposed task structure (Section 4.2.3). (2) Structure-

142

informed semi-supervised learning where the NeSy method is designed with a unified

task structure (Section 4.2.3).

• Zero-Shot Learning: In this setting, no direct supervision is provided at any level.

The model relies entirely on structure-informed learning (Section 4.4.2) to guide its

predictions.

For all experiments in these learning settings, the DSVar modeling paradigm (Section

3.2.1) is employed across the dataset settings. This paradigm aligns with the neural as

symbolic variable architectural axiom (Section 2.3.4), enabling the integration of neural

and symbolic reasoning for collaborative learning.

Distant Supervision Learning: Let’s begin by examining the decomposed task distant

supervision learning experiments. In these experiments, the neural component will be

provided with no labels, and instead, the representation for the lower tasks must be learned

through the gradient passed back from the symbolic component. For example, in MNIST-

Add, the individual MNIST images do not have labels but instead have the resulting sum

of two MNIST numbers as a label. This setup is explored across different sample sizes,

with MNIST-Add1 evaluated on 300, 3,000, and 25,000 examples, and MNIST-Add2 on

150, 1,500, and 12,500 examples. A direct gradient decent learning algorithm (Section

4.3.3.2) is applied to train each setting.

Table 7.7: Test set accuracy and standard deviation on MNIST-Add experiments. Results

reported here are run and averaged over ten splits.

Method
MNIST-Add1 MNIST-Add2

Number of Additions
300 3,000 25,000 150 1,500 12,500

CNN 17.16 ± 00.62 78.99 ± 01.14 96.30 ± 00.30 01.31 ± 00.23 01.69 ± 00.27 23.88 ± 04.32
NeuPSL 82.58 ± 02.56 93.66 ± 00.32 97.34 ± 00.26 56.94 ± 06.33 87.05 ± 01.48 93.91 ± 00.37

Table 7.7 presents the prediction performance of baseline models compared to Ne-

uPSL on the MNIST-Add1 and MNIST-Add2 data settings. In all cases, NeuPSL achieves

a substantial boost in performance over the baseline neural CNN (RQ1). This experiment

143

underscores a key advantage of NeSy methods: they effectively reduce the complexity of the

problem. In a purely neural setting, the model must learn both digit recognition and the

concept of addition, requiring a wide variety of digit combinations to generalize correctly.

In contrast, NeuPSL enables a decomposed task structure (Section 4.2.3) approach such

that the neural component only needs to learn digit representations, drastically reducing

the amount of data to generalize (RQ5). Furthermore, after training, the NeSy approach

ensures the correct addition of the recognized digits, a significant advantage over the purely

neural method. While a CNN might learn accurate digit representations, it could still fail

to combine these predictions correctly to produce an accurate sum.

Semi-Supervised Learning: This subsection explores semi-supervised experiments, where

either the lower-level or higher-level task receives partial supervision through labeled data.

Specifically, it compares the prediction performance of a neural baseline trained exclusively

with a supervised neural loss against a NeuPSL model’s neural component (using the same

architecture) trained end-to-end with a NeSy-EBM loss. In both cases, only a subset of

the training set labels is provided to the neural component. The experiments examine two

distinct semi-supervised settings:

1. Distant Supervision Semi-Supervised Learning: In this setting, the NeSy

method is designed with a decomposed task structure (Section 4.2.3) for distant

supervision learning (Section 4.4.1) where the neural component is partially super-

vised, and the symbolic component is fully supervised. This setup is used in the

MNIST-Addk and visual sudoku dataset experiments.

2. Structure Informed Semi-Supervised Learning: In this setting, the NeSy

method is designed with a unified task structure (Section 4.2.3) for structure-informed

learning (Section 4.4.2) where both the neural and symbolic components are partially

supervised, sharing the same labeled data. Furthermore, this setting studies learn-

ing with a constraint loss (Section 4.4.3) approach on the dialog structure induction

experiments.

For additional semi-supervised experiments on Pathfinding, Citeseer, and Cora datasets,

144

I direct readers to my colleague’s work [43]. The experiments are conducted using the

following dataset variants:

• MNIST-Addk: The experiments are conducted on MNIST-Addk datasets for k =

1, 2, with the proportion of image class labels in the training data varying over

{1.0, 0.5, 0.1, 0.05}. Prediction performance is evaluated based on the accuracy of

the image classifications.

• Visual-Sudoku: The Visual-Sudoku dataset explores the semi-supervised setting

where the proportion of image class labels in the training data also varies over

{1.0, 0.5, 0.1, 0.05}.

• Dialog Structure Induction Three constrained few-shot settings are examined:

1-shot, proportional 1-shot, and 3-shot. In the 1-shot and 3-shot settings, one and

three labels per class are provided, respectively. In the proportional 1-shot setting,

the number of labels matches the 1-shot setting but is distributed proportionally to

class sizes (with no labels provided for classes comprising less than 1% of the data).

A bilevel learning algorithm (Section 4.3.3.3) is applied to train the MNIST-Addk, Citeseer,

and Cora datasets. A direct gradient decent learning algorithm (Section 4.3.3.2) is applied

to train the dialog structure induction dataset.

Figure 7.1: Average AMI for MultiWoZ, SGD Synthetic, and SGD Real (Standard Gener-

alization, Domain Generalization, and Domain Adaptation) on three constrained few-shot

settings: 1-shot, proportional 1-shot, and 3-shot.

145

Table 7.8: Digit accuracy of the ResNet18 models trained with varying levels of supervision.

ResNet18

Supervised
NeuPSL

Labeled Semi-Supervised

MNIST-Add1

1.00 97.84± 0.23 97.40± 0.51
0.50 97.42± 0.30 97.02± 0.65
0.10 93.05± 0.69 96.78± 0.80
0.05 75.35± 0.33 96.82± 0.72

MNIST-Add2

1.00 97.84± 0.23 97.22± 0.19
0.50 97.42± 0.30 96.84± 0.42
0.10 93.05± 0.69 95.14± 1.21
0.05 75.35± 0.33 95.90± 0.43

Visual-Sudoku

1.00 97.84± 0.23 97.89± 0.15
0.50 97.42± 0.30 97.26± 0.70
0.10 93.05± 0.69 96.82± 0.32
0.05 75.35± 0.33 96.49± 0.67

Table 7.8 and Figure 7.1 report the average and standard deviation of the pre-

diction performance for a supervised baseline and a semi-supervised neural component on

the MNIST-Addk, Visual-Sudoku, and Dialog Structure Induction datasets. Across these

datasets, as the proportion of unlabeled data increases, the semi-supervised NeuPSL neu-

ral component consistently outperforms the purely supervised baseline (RQ1). This trend

highlights the ability of neural components to leverage either a decomposed task structure

or a structure-informed setting within a NeSy system. The benefit of utilizing symbolic

knowledge is most pronounced in the lowest supervision settings. For instance, the Ne-

uPSL semi-supervised ResNet18 model achieves over a 20-percentage-point improvement

when only 5% of the training labels are available in the MNIST-Addk and Visual-Sudoku

datasets. This substantial gain suggests that, in low-supervision scenarios, integrating

symbolic domain knowledge into the learning process can significantly enhance model per-

formance. In the Dialog Structure Induction dataset setting, it is clear that the prior

knowledge, which, unlike MNIST-Add and Visual Sudoku, is not always correct, and as

the number of clean labels increases, the model overfits the symbolic constraints (RQ5).

146

Therefore, an interesting direction for future work would be enabling models to perform

weight learning consistently, where the model adaptively weights the importance of sym-

bolic rules as stronger evidence is introduced.

7.2.3 Zero-Shot Learning

This final learning experiment focuses on zero-shot learning, where neither the

neural nor the symbolic components receive any direct supervision. Specifically, this section

compares the prediction performance of a neural baseline, trained exclusively with an

unsupervised neural loss, against a NeuPSL model’s neural component (using the same

architecture) trained end-to-end in a learning with constraint loss setting (Section 4.4.3). In

this zero-shot scenario, the NeSy method employs a structure-informed learning approach

(Section 4.4.2) within a unified task structure (Section 4.2.3). The experiments in this

subsection study the dialog structure induction data settings.

Dataset Setting Method
Hidden Representation Learning

Structure Induction
Full Few-Shot

(Class-Balanced Accuracy) (Class-Balanced Accuracy) (AMI)

MultiWoZ Standard Generalization
DD-VRNN 0.804 ± 0.037 0.643 ± 0.038 0.451 ± 0.042

NeuPSL 0.806 ± 0.051 0.689 ± 0.038 0.618 ± 0.028

SGD Synthetic Standard Generalization
DD-VRNN 0.949 ± 0.005 0.598 ± 0.019 0.553 ± 0.017

NeuPSL 0.941 ± 0.009 0.765 ± 0.012 0.826 ± 0.006

SGD Real

Standard Generalization
DD-VRNN 0.661 ± 0.015 0.357 ± 0.015 0.448 ± 0.019

NeuPSL 0.663 ± 0.015 0.517 ± 0.021 0.539 ± 0.048

Domain Generalization
DD-VRNN 0.268 ± 0.012 0.320 ± 0.029 0.476 ± 0.029

NeuPSL 0.299 ± 0.009 0.528 ± 0.026 0.541 ± 0.036

Domain Adaptation
DD-VRNN 0.308 ± 0.011 0.505 ± 0.015 0.514 ± 0.028

NeuPSL 0.297 ± 0.025 0.541 ± 0.023 0.559 ± 0.045

Table 7.9: Test set performance on all datasets. All reported results are averaged over 10

splits. The highest-performing methods per dataset and learning setting are bolded. A

random baseline has AMI zero and class-balanced accuracy equal to inverse class size.

Table 7.9 presents the results of NeuPSL and the purely data-driven DD-VRNN

in strictly unsupervised settings. NeuPSL outperforms the DD-VRNN on AMI by 4%-27%,

depending on the specific dataset and experimental setting, and achieves this improvement

while maintaining or even enhancing the quality of the hidden representation (RQ1). This

indicates that the symbolic constraints not only improve prediction performance but also

147

lead to more robust and structured internal representations (RQ4). An interesting obser-

vation arises from comparing AMI performance on the SGD-real dataset across different

generalization settings (standard generalization versus domain generalization/adaptation).

NeuPSL consistently outperforms DD-VRNN in each setting, though the advantage is

slightly reduced in the more challenging domain generalization and adaptation cases. This

highlights the potential of NeSy methods as a practical solution when labeled data is

scarce or costly to obtain. Such unsupervised training can lay a solid foundation, creating

a structured representation that can be further refined if labeled data becomes available

(RQ5).

7.3 Comparing NeSy Approaches

In this second collection of experiments, let’s turn our focus the study of prominent

neural-symbolic methods. Unlike the previous section, which focused on the advantages

of NeSy approaches over purely neural or symbolic methods, this section aims to under-

stand under which scenarios do mainstream NeSy approaches perform optimally (RQ2).

The section begins with an overview of the selected NeSy methods, highlighting their dis-

tinct modeling paradigms, theoretical foundations, and practical implementations. This

introduction is followed by a series of subsections that evaluate each approach within the

context of specific datasets, shedding light on their respective strengths and limitations.

7.3.1 Overview of NeSy Models

This subsection offers a concise overview of the NeSy models (outside of Ne-

uPSL) examined in this section. Although the number of approaches studied is limited,

these methods represent some of the most mainstream, well-established, and principled

approaches in the NeSy field. The NeSy approaches explored in this section, along with

their key publications and source code repositories, are summarized below:

DeepProbLog (DPL) [81]: DeepProbLog is a probabilistic neural-symbolic approach

incorporating neural predictions as probabilistic distributions over facts within a

148

probabilistic logic framework. Typical models in DPL are formulated as deep symbolic

parameter modeling paradigms (Section 3.2.2) using the neural as symbolic parameter

architectural type (Section 2.3.3). All DPL results presented here use the model from

[81] with default hyperparameters. Code was obtained from https://github.com/

ML-KULeuven/deepproblog.

DeepStochLog (DSL) [136]: Similar to DeepProbLog, DeepStochLog treats neural

predictions as probabilistic distributions over variables or facts within a probabilis-

tic logic framework. However, DSL is based on stochastic definite clause grammars,

a form of stochastic logic programming that defines a probability distribution over

derivations, allowing for probabilistic reasoning through rule-based structures. Typ-

ical models in DSL are formulated as deep symbolic parameter modeling paradigms

(Section 3.2.2) using the neural as symbolic parameter architectural type (Section

2.3.3). All DSL results use the model from [136] with default hyperparameters.

Code was obtained from https://github.com/ML-KULeuven/deepstochlog.

Logic Tensor Networks (LTNs) [14]: Logic Tensor Networks are computation graph

(Section 4.2.1) fuzzy logic NeSy approaches that incorporate neural predictions in a

real-valued soft logic approximation. Typical models in LTNs are formulated as deep

symbolic variable modeling paradigms (Section 3.2.1) using the neural as symbolic

variable architectural type (Section 2.3.4). All LTN results presented here use the

model from [14] with default hyperparameters. Code was obtained from https:

//github.com/logictensornetworks/logictensornetworks.

Graph Neural Network (GNN) [61]: Finally, I argue that a Graph Neural Network

is considered a NeSy approach, where each node represents the neural network’s

predictions, and the symbolic component is the aggregation functions of its neighbors.

GNNs are formulated as deep symbolic variable modeling paradigms (Section 3.2.1)

using the neural as symbolic variable architectural type (Section 2.3.4). All GNN

results use an augmented version of GraphSAGE from [61].

Licenses for NeuPSL, DeepProbLog, and DeepStochLog are under Apache License

149

https://github.com/ML-KULeuven/deepproblog
https://github.com/ML-KULeuven/deepproblog
https://github.com/ML-KULeuven/deepstochlog
https://github.com/logictensornetworks/logictensornetworks
https://github.com/logictensornetworks/logictensornetworks

2.0, and Logic Tensor Networks are under MIT License.

7.3.2 MNIST Addition

This section evaluates and compares the performance of NeuPSL, DeepProbLog,

Logic Tensor Networks, and a neural baseline (CNN) on the MNIST-Add task. The pri-

mary objective of this experiment is to assess the predictive performance and inherent

strengths of three prominent, general-purpose NeSy approaches on a canonical dataset,

which employs distant supervision learning (Section 4.4.1) within a decomposed task struc-

ture (Section 4.2.3). By analyzing this setting, I aim to highlight the trade-offs between

different NeSy approaches and the neural baseline, offering insights into their respective

advantages and limitations. To further examine these trade-offs, the subsequent subsection

explores a variant of the MNIST-Add dataset tailored for collective classification, evalu-

ating performance and runtime for inference and learning. For this experiment, ten train

splits were generated by randomly selecting, without replacement, n ∈ {600, 6000, 50000}
unique MNIST images from the original MNIST train split. Validation and test splits

were created similarly, with test splits pulled exclusively from the original MNIST test set

(n = 10000) to prevent data leakage.

Table 7.10: Test set accuracy and standard deviation on MNIST-Add. Results reported

here are averaged over the same ten splits. Best results and those within one standard

deviation of the best are in bold.

Method
MNIST-Add1 MNIST-Add2

Number of Additions
300 3,000 25,000 150 1,500 12,500

CNN 17.16 ± 00.62 78.99 ± 01.14 96.30 ± 00.30 01.31 ± 00.23 01.69 ± 00.27 23.88 ± 04.32
LTN 69.23 ± 15.68 93.90 ± 00.51 80.54 ± 23.33 02.02 ± 00.97 71.79 ± 27.76 77.54 ± 35.55
DPL 85.61 ± 01.28 92.59 ± 01.40 -2 71.37 ± 03.90 87.44 ± 02.15 -2

NeuPSL 82.58 ± 02.56 93.66 ± 00.32 97.34 ± 00.26 56.94 ± 06.33 87.05 ± 01.48 93.91 ± 00.37

150

Performance Results: Table 7.10 presents the average accuracy and standard deviation

for MNIST-Add1 and MNIST-Add2.1 The highest average accuracy and results within

one standard deviation of the best are highlighted in bold. Several key insights emerge

from these results. First and foremost, it is important to highlight that similarly to the

inference and learning experiments of NeuPSL, most NeSy methods consistently outperform

the baseline across the various data sizes, regardless of their underlying architectural,

inference, or learning strategies. While DeepProbLog encountered errors in one setting,

it generally shows performance improvements as the number of additions increases. Prior

studies have demonstrated that probabilistic logic approaches, such as DeepProbLog, can

achieve competitive or better results to NeuPSL in the standard MNIST-Add setting when

the full dataset is utilized.

A key difference in performance between the NeSy methods can be traced to how

random variables are represented and the underlying inference process. When observing

the representation, DeepProbLog has binary random variables, whereas NeuPSL and LTNs

adopt a continuous random variables. Notice that in low-data scenarios, such as MNIST-

Add1 with 300 additions or MNIST-Add2 with 150 additions, DeepProbLog significantly

outperforms both LTN and NeuPSL. Upon further analysis, this is in large part due to

a soft logic pitfall (Section 5.3.3): models predicting target variable values around the

average. For example, consider the equation
[]

+
[]

= 8. Instead of assigning binary

representations—e.g., = 3 with probability 1.0 and = 5 with probability 1.0—fuzzy

logic might assign a softer prediction, such as = 5 with a low confidence variable

assignment, e.g., 0.1. This tendency can be mitigated by introducing more additions into

the training dataset (as seen in higher addition settings in Table 7.10) or incorporating a

pretraining step (Section 7.4.4) (RQ3).

When comparing the predictive performance of NeuPSL and DeepProbLog (DPL),

both optimization-based inference approaches, against Logic Tensor Networks (LTN), a

computation graph-based inference approach, a clear disparity emerges: the computation

graph-based approach underperforms.2 This difference is largely attributable to the ex-

1In the largest data setting, DeepProbLog produced results that appeared to be random due to an error.
Rather than report potentially misleadingly low results, these are indicated with ‘-’.

2Technically, DeepProbLog constructs an SDD [35] which is a computation graph, but this process is

151

plicit reasoning performed by optimization-based methods, which are designed to find the

most optimal solution. In contrast, computation graph-based approaches delegate the rea-

soning process to the neural network, which can result in solution spaces that are harder to

optimize, leading to longer convergence times or becoming trapped in local minima. This

is particularly evident in the largest MNIST-Add1 setting.

Additionally, optimization-based methods that employ continuous-valued vari-

ables and fuzzy logic representations, such as NeuPSL, tend to exhibit lower variance in

their results. This behavior stems from the smoothing effect of continuous-valued optimiza-

tion, which drives predictions toward averaged values. While this can introduce challenges

in highly discrete settings, it often leads to more stable and consistent performance across

varied data conditions.

Key Takeaways:

1. For discrete problems that can be efficiently reasoned with probabilistic logics, meth-

ods like DeepProbLog are advantageous.

2. Fuzzy logic-based approaches, such as NeuPSL and LTNs, achieve similar perfor-

mance given sufficient data or computational time.

3. Optimization-based methods tend to outperform computation graph-based methods

in scenarios requiring complex reasoning, though they may incur higher computa-

tional costs, a trade-off explored in subsequent experiments.

7.3.3 MNIST Addion: Overlap

This section extends the comparison of NeuPSL, DeepProbLog, and Logic Ten-

sor Networks through a variation of the MNIST-Add task. The purpose of the following

data setting is to explore the collective reasoning capabilities of each NeSy approach and

to understand how each approach’s inference and learning times are effected. In short,

the variation introduced to the MNIST-Add task involves reusing digits across multiple

addition examples, thereby introducing overlap. Figure 7.2 illustrates the process of in-

done in an instance-based approach, which is akin to reasoning in this setting (Section 4.2.2).

152

Figure 7.2: Example of overlapping MNIST images in MNIST-Add1. On the left, distinct

images are used for each zero. On the right, the same image is used for both zeros.

troducing overlap and how joint reasoning models narrow the potential label space when

MNIST images are reused. For instance, in the scenario depicted in Figure 7.2, the same

MNIST image of a zero is used in two separate addition problems. To satisfy both addi-

tion constraints, the potential label space for this image is restricted, excluding values such

as two or three, as they would violate one of the addition rules. In contrast, models per-

forming independent reasoning lack the capacity to enforce such cross-example constraints,

resulting in less consistent predictions.

For this analysis, the focus is placed on low-data settings to evaluate whether the

joint reasoning capabilities of NeSy systems can effectively leverage additional structural

information to compensate for limited data availability. To introduce overlap, a set of n

unique MNIST images is sampled and reused to create (n+m)/2 MNIST-Add1 additions

and (n + m)/4 MNIST-Add2 additions. The degree of overlap is varied by adjusting

m ∈ {0, n/2, n}, while performance is compared across datasets with n ∈ {40, 60, 80}.
Results are evaluated over ten test sets, each comprising 1,000 MNIST images, with the

degree of overlap proportional to the respective training set.

Performance Results: Figure 7.3 summarizes the average performance across varying

overlap settings. Each panel evaluates a fixed number of unique MNIST images while

varying the number of additions. For instance, the upper-left panel illustrates results for

MNIST-Add1 using 40 unique images to generate 20, 30, and 40 additions. Initially, in

scenarios with no overlap, the symbolic inference lacks sufficient structure to accurately

identify the correct digit labels for training the neural models. However, as the number of

additions increases while keeping the number of unique MNIST images fixed, both DPL

153

Figure 7.3: Average test set accuracy and standard deviation on MNIST-Add datasets

with varying amounts of overlap.

and NeuPSL demonstrate significant improvements in prediction performance by effectively

leveraging the additional joint information (RQ1). This underscores the strength of NeSy

methods in utilizing structural constraints to enhance learning.

A key insight emerges when comparing optimization-based approaches (NeuPSL

and DeepProbLog) with computation graph-based methods like LTN. Both optimization-

based approaches capitalize on the structural overlap, converging toward stable solutions.

Conversely, LTNs fail to benefit from the additional structure introduced by overlap, as

they are not designed for collective reasoning across multiple constraints. Among the

optimization-based methods, NeuPSL consistently outperforms DeepProbLog due to its

ability to solve all equations collectively. While DeepProbLog can theoretically perform

similar collective reasoning, its reliance on exact probabilistic computations leads to sig-

nificant scalability challenges as the structural size grows. Achieving comparable collective

reasoning in DeepProbLog would require extensive modifications to its underlying frame-

work, making it less practical for this large-scale problems.

154

Figure 7.4: Inference and learning time for MNIST-Add experiments.

Inference and Learning Runtime Results: To gain further insight into the per-

formance trade-offs of these approaches, Figure 7.4 presents the inference and learning

runtimes associated with the overlap experiments. The results reveal distinct differences in

how each method balances computational efficiency with performance. For NeSy methods

involving complex symbolic inference (DPL and NeuPSL), a trade-off becomes evident.

NeuPSL performs inference approximately an order of magnitude faster than DPL but re-

quires longer training times due to its approach of taking full gradient steps over the entire

155

training dataset (RQ2). In contrast, DPL employs batched stochastic gradient steps over a

handful of additions, which reduce training time but result in slower inference. As such, if

DeepProbLog were to perform collective inference over all equations, the learning runtime

would be slower by orders of magnitude. In the following data setting, it will become

apparent that this exact computational cost will be impractical in larger settings. Finally,

for the methods that do not involve a complex symbolic inference (CNN and LTNs), the

inference and learning times are all considerably faster, unsurprisingly.

Key Takeaways:

1. Collective reasoning can overcome data scarcity with the addition of a more beneficial

structure (RQ1).

2. DeepProbLog can leverage the collective structure, but due to the inherent compu-

tational cost in the subprocess of inference, it will limit its applicability (RQ2).

3. NeuPSL can most effectively handle collective reasoning due in part to its ability to

perform fast exact MAP inference over a relaxed problem (RQ2).

7.3.4 Citeseer and Cora

This section extends the comparison between NeuPSL and DeepProbLog to pro-

vide a deeper understanding of the computational trade-offs between these two methods

by implementing them on two well-studied graph datasets: Citeseer and Cora. Addition-

ally, the experiments evaluate two NeSy approaches that are particularly suited for larger

graph-based problems: DeepStochLog [136] and Graph Convolutional Networks (GCN)

[67].3 Furthermore, two baselines are included in the evaluation to isolate the contribu-

tions of the distinct neural and symbolic components used in the NeuPSL model: LPPSL,

which represents a purely symbolic reasoning approach, and NeuralPSL, which focuses

solely on neural reasoning without symbolic integration. The experiments are conducted

3There is some debate as to whether GCNs qualify as NeSy systems. Fundamentally, their symbolic
component can be viewed as an aggregation function over neighboring nodes. This aligns closely with the
Symbolic as Neural architectural choice.

156

using ten randomly sampled splits, with 5% of the nodes designated for training, 5% for

validation, and 1,000 nodes for testing. Results are averaged across these splits to pro-

vide a robust evaluation of performance, allowing for a comprehensive comparison of how

different NeSy approaches handle the computational and structural challenges inherent in

graph-based reasoning tasks.

Table 7.11: Test set accuracy and inference runtime in seconds on two citation network

datasets.

Method
Citeseer Cora

(Accuracy) (Seconds) (Accuracy) (Seconds)

NeuralPSL 57.76 ± 1.71 - 57.12 ± 2.13 -
LPPSL 50.88 ± 1.18 - 73.32 ± 2.39 -

DeepProbLog timeout timeout timeout timeout
DeepStochLog 61.30 ± 1.44 34.42 ± 0.87 69.96 ± 1.47 165.28 ± 4.49

GCN 67.50 ± 0.57 3.10 ± 0.04 79.52 ± 1.13 1.31 ± 0.01
NeuPSL 68.48 ± 1.22 4.23 ± 0.05 81.22 ± 0.79 4.07 ± 0.14

Performance Results: Table 7.11 summarizes the average prediction performance on

the Citeseer and Cora datasets. Consistent with previous experiments, all NeSy approaches

demonstrate significant improvements in prediction performance by effectively leveraging

joint structural information (RQ1). Among the methods that did not timeout, both GCN

and NeuPSL show superior performance compared to the probabilistic logic approaches,

DeepStochLog and DeepProbLog (RQ2).

Notably, NeuPSL outperforms GCN despite its slightly lower representational

capacity. This result can be attributed to how NeuPSL constructs its underlying symbolic

component. Specifically, NeuPSL ties the parameter associated with each soft constraint

to the original templated rule, enforcing universal weights for all connections. While this

approach simplifies the parameterization and allows for efficient reasoning, it limits the

model’s ability to capture heterogeneous propagation behaviors within portions of a class.

In contrast, GCN’s architecture can represent these variations more flexibly. This structure

will be further examined in the next experiment, which explicitly studies the effects of

157

parameter sharing.

Inference and Learning Runtime Results: In addition to predictive performance,

Table 7.11 reports the inference and learning runtimes for the graph datasets. Similar to

the MNIST-Overlap experiments, NeuPSL’s scalable collective inference enables runtimes

comparable to those of a feed-forward neural model. In contrast, DeepProbLog was un-

able to complete the experiment within the allotted time, while its scalable counterpart,

DeepStochLog, required significantly longer runtimes than both GCN and NeuPSL. Ne-

uPSL’s ability to efficiently scale its joint inference process becomes evident in this setting,

achieving higher accuracy while maintaining substantial runtime advantages. Specifically,

NeuPSL achieves an 8x and 40x speed-up over DeepStochLog on the Citeseer and Cora

datasets, respectively (RQ2). These results highlight NeuPSL’s strength in handling large-

scale inference problems through its ability to perform fast, exact MAP inference over

relaxed symbolic representations.

Key Takeaways:

1. Probabilistic logic-based NeSy approaches are capable of exact inference on discrete

problems; however, they face significant runtime trade-offs, which constrain their

scalability for large-scale reasoning tasks. Alternatively, these methods can opt for

inexact inference [80] to improve efficiency, but this comes at the cost of increased

variance and reduced predictive performance.

2. NeuPSL demonstrates its scalability and efficiency by leveraging relaxed MAP infer-

ence, enabling it to handle larger inference problems while maintaining a compact

parameter space and delivering competitive performance (RQ2).

7.3.5 Synthetic Mixture of Symbolic Experts

This section extends the comparison between NeuPSL and Graph Convolutional

Networks (GCNs) to provide a deeper understanding of the trade-offs associated with pa-

rameter sharing and the ability of these methods to handle noisy data. The evaluation

158

is conducted on a synthetic mixture of symbolic experts dataset, designed to challenge

systems to reason effectively with both local features and global structure. Two varia-

tions of NeuPSL are introduced for this experiment: NeuPSLshared, which uses globally

shared parameters learned through a symbolic learning algorithm (e.g., gradient descent),

and NeuPSLindividual, which employs a neural network to predict the weights of individ-

ual grounded rules. This distinction highlights scenarios where parameter sharing might

struggle to capture diverse or noisy structures, making NeuPSLindividual a more flexible

alternative.

Figure 7.5: Rules, symbolic meaning, and graphical representation used to generate features

and labels for the synthetic datasets.

Name Symbolic Meaning

RuleFeatures Features(Node, Class)→ Label(Node, Class)
RuleCommunity Community(Node, ID) ∧CommunityLabel(ID, Class)→ Label(Node, Class)

In short, the synthetic dataset is defined as a set of disjoint vertex and edge

communities that are fully connected. Each community adheres to an underlying rule

governing its node’s labels and features. Figure 7.5 summarizes the underlying rules,

their symbolic interpretations, and a graphical example of each. Communities generated

according to RuleFeatures will have random node labels but features directly correlating

to these labels. On the other hand, communities generated based on RuleCommunity will

have a single common label, but node features are not correlated with the community

label. In all experiments the number of communities is k = 25, and the node label space is

L = {0, 1, 2, 3}. The minimum and maximum community sizes were set to amin = 10 and

159

amax = 15, respectively. It was ensured that an equal number of communities generated

from RuleFeatures and RuleCommunity were present. Each experiment was performed on 5

splits using 60/30/10 train-test-valid partitions of the inductive setting. Every community

was generated to contain at least two nodes within the train set.

Performance Results (Parameter Sharing): To begin, let’s assess the ability of each

model to reason about the problem when the features for communities generated from

RuleFeatures directly represent the underlying labels. This direct representation is evalu-

ated using the OH +OH setting and the G+OH and G+G settings when the covariance

identity matrix is multiplied by a small scalar value of 0.1. In this setting, most node labels

are identifiable from the features and graph structure.

Table 7.12: Average categorical accuracy on the highest correlation between features and

labels for OH +OH, G+OH, and G+G data settings. Best-performing methods are in

bold.

Method OH +OH G+OH G+G

MLP 99.09 ± 1.82 88.10 ± 5.69 89.04 ± 2.72
GNN 98.43 ± 1.94 94.56 ± 1.98 81.75 ± 2.65
NeuPSLshared 81.07 ± 5.14 87.06 ± 5.61 86.71 ± 5.46
NeuPSLindividual 100.00 ± 0.00 100.00 ± 0.00 93.35 ± 2.23

Table 7.12 presents the average categorical accuracy and standard deviation for

each model in the first experimental setting. Across all cases, NeuPSLindividual consis-

tently outperforms the other approaches, with only a minor drop in performance on the

most challenging features (G + G). Interestingly, NeuPSLshared struggles to simultane-

ously model the symbolic structure of the two distinct node community types, highlight-

ing the limitation of shared parameters for structure. This difference underscores the

flexibility of NeuPSLindividual, which allows the neural model to adaptively predict rule

weights, enabling it to handle heterogeneous community structures more effectively. Fur-

thermore, while GNNs demonstrate generalization capabilities, they lack explicit rule en-

codings and consequently make errors that NeuPSLindividual can avoid (RQ2). In essence,

160

NeuPSLindividual leverages constraints to guarantee predictions and relies on the neural

model to determine the most applicable constraints. This stands in contrast to GCNs,

which lack such guarantees, as they rely solely on feature aggregation without explicit

structural reasoning.

Performance Results (Noise): Now, let’s shift our focus to evaluating how each

model performs as the correlation between the features of communities generated under

RuleFeatures and their node labels diminishes. In essence, this introduces increasing levels

of noise into the problem, simulating real-world scenarios where feature-label relationships

are imperfect or noisy. This degradation in correlation is modeled by progressively increas-

ing the covariance of the features for the (G+OH) and G + G settings. The covariance

values used in this experiment are drawn from the range {0.1, 1.0, 10.0, 50.0, 100.0}, with

higher covariance values representing greater variability and less structured alignment be-

tween features and labels.

Table 7.13: Average categorical accuracy on varying covariance matrices used for synthetic

data generation in the G + OH and G + G data settings. Higher covariance results in a

lower correlation between features and labels. Best-performing methods are in bold.

Features Covariance MLP GNN NeuPSLshared NeuPSLindividual

G+OH

0.1 88.10 ± 5.69 94.56 ± 1.98 87.06 ± 5.61 100.00 ± 0.00
1.0 88.59 ± 5.87 95.91 ± 2.35 87.06 ± 5.61 100.00 ± 0.00
10.0 81.71 ± 7.31 90.91 ± 4.38 85.23 ± 5.25 96.35 ± 2.23
50.0 76.92 ± 5.63 71.30 ± 7.96 76.11 ± 3.21 78.85 ± 6.27
100.0 69.70 ± 3.22 60.53 ± 8.58 69.47 ± 5.06 62.44 ± 5.70

G+G

0.1 89.04 ± 2.72 81.75 ± 2.65 86.71 ± 5.46 93.36 ± 5.06
1.0 89.27 ± 2.44 82.42 ± 6.40 86.71 ± 5.46 92.48 ± 3.99
10.0 78.84 ± 1.71 80.15 ± 3.17 84.44 ± 4.69 91.36 ± 2.61
50.0 53.00 ± 4.08 58.30 ± 3.37 74.18 ± 4.91 72.57 ± 6.58
100.0 42.10 ± 4.63 54.14 ± 6.19 69.39 ± 5.09 51.66 ± 6.89

Table 7.13 presents the average and standard deviation of categorical accuracy

achieved by each model across varying levels of noise in the data. As expected, increas-

ing covariance, which reduces the representativeness of features relative to the underlying

161

labels, negatively impacts the performance of all models. Notably, the underlying graph

structure, including edges and observed node labels, remains consistent across all set-

tings. This consistency allows methods that leverage symbolic label propagation, such as

NeuPSLshared and NeuPSLindividual, to maintain relatively accurate predictions for ap-

proximately half of the nodes. This is because half of the communities are generated from

RuleCommunity, where the labels are entirely governed by symbolic relationships rather

than noisy features. A particularly noteworthy result is the consistent performance of

NeuPSLindividual, which either outperforms other models or achieves accuracy within the

standard deviation of the best models across most covariance settings (RQ2). Interestingly,

as the noise becomes extreme, with covariance values of 50.0 or 100.0, NeuPSLshared sur-

passesNeuPSLindividual and GNN in predictive performance. This observation underscores

the potential advantages of parameter sharing in scenarios where the features provide little

to no informative signal, highlighting a specific use case where shared parameters can act

as a stabilizing factor in noisy environments.

Key Takeaways:

1. There is a trade-off between shared and individual parameters over structure: with

lower noise, individual parameters can outperform due to their specificity, while

higher noise benefits from the smoothing effect provided by shared parameters. This

highlights the inherent advantage of methods like NeuPSL, which can flexibly repre-

sent both paradigms.

2. Methods leveraging architectural choices with guaranteed structural reasoning (Ne-

uPSL), rather than relying solely on subsymbolic representations (GNN), demon-

strate superior performance when the constraints accurately represent the underlying

problem.

7.4 NeSy Pitfalls and Mitigation Strategies

In this final collection of experiments, let’s turn our focus to common pitfalls in

neural-symbolic systems and the strategies used to mitigate them. Unlike the previous sec-

162

tions, which primarily compared NeSy approaches against one another or evaluated their

performance relative to purely symbolic or subsymbolic baselines, this section investigates

challenges that arise specifically during NeSy inference and learning. The aim here is intro-

spective: to examine NeSy methods in isolation and assess how mitigation strategies can

address their inherent shortcomings. Rather than attempting to showcase every potential

pitfall, the experiments in this section highlight a representative set of challenges commonly

encountered in NeuPSL, offering practical insights into their resolution. The hope is that

this collection provides a useful framework for understanding how mitigation strategies can

be applied across a range of issues (RQ3). The pitfalls discussed in this section include

reasoning shortcuts (Section 5.2.1), contextual label ambiguity (Section 5.3.1), energy loss

degenerate solutions (Section 5.3.2), and soft logic challenges (Section 5.3.3).

7.4.1 Reasoning Shortcuts

Reasoning shortcuts (Section 5.2.1) represent a pervasive and often subtle chal-

lenge within NeSy methods, arising when a model finds unintended ways to solve a task

without fully capturing or learning the underlying concepts. This experiment highlights

the issue through a straightforward scenario, providing insights into how reasoning short-

cuts emerge and how they can be effectively mitigated. This experiment is over a variation

to the Visual Sudoku problem introduced by Augustine et al. (2022) called Visual Sudoku

Puzzle Classification. In this task, 4 × 4 Sudoku puzzles are constructed using unlabeled

MNIST images, and the model must determine whether a given puzzle is valid—specifically,

whether it contains any duplicate digits in any row, column, or square. While the task

may seem simple, it introduces significant risks of reasoning shortcuts, as identifying that

there are no duplicate digits in any row, column, or square does not mean the model will

accurately classify the underlying digits themselves. For this experiment, five random splits

of 16/25/50 (train/test/valid) 4× 4 Sudoku puzzles were generated. Half of the puzzles in

each set are valid, i.e., adhering to Sudoku rules, while the other half includes at least one

violation.

Figure 7.6 illustrates the two symbolic models employed to study reasoning short-

cuts in the visual sudoku puzzle classification task. Both models follow a DSVar modeling

163

Figure 7.6: Visual Sudoku Puzzle Classification Reasoning Shortcut Models.

Visual Sudoku Puzzle Classification Model Without Mitigation (NeuPSLshortcut)

Row, Column, and Box Constraints

1.0 : ImageDigit(Puzzle,+X, Y, Number) = 1

1.0 : ImageDigit(Puzzle, X,+Y, Number) = 1

1.0 : ImageDigit(Puzzle, X1, Y1, Number)∧SameBox(X1, Y1, X2, Y2) → !ImageDigit(Puzzle, X2, Y2, , Number)

Visual Sudoku Puzzle Classification Model With Structural Mitigation (NeuPSLmitigation)

Row, Column, and Box Constraints

1.0 : ImageDigit(Puzzle,+X, Y, Number) = 1

1.0 : ImageDigit(Puzzle, X,+Y, Number) = 1

1.0 : ImageDigit(Puzzle, X1, Y1, Number)∧SameBox(X1, Y1, X2, Y2) → !ImageDigit(Puzzle, X2, Y2, , Number)

Structural Mitigation - Pin First Row of First Puzzle

1000.0 : FirstPuzzle(Puzzle, X, “0”) = ImageDigit(Puzzle, X, “0”)

paradigm (Section 3.2.1) and utilize a constraint loss (Section 4.4.3) distant supervision

(Section 4.4.1) learning approach. The first model, NeuPSLshortcut, includes only the stan-

dard Sudoku constraints, ensuring no duplicate digits in any row, column, or box. However,

this model suffers from a critical issue: there is no enforced correlation between the neu-

ral model’s predicted concepts and the true underlying concepts, i.e., digit labels. As

a result, while the model may classify puzzles correctly based on surface-level patterns,

it fails to learn accurate representations of individual digits. To address this issue, the

NeuPSLmitigation model introduces a structural mitigation strategy designed to align pre-

dicted concepts with ground truth labels. Specifically, this mitigation involves adding a

“pin first-row” rule, which enforces alignment between the predicted digit labels and the

actual labels in the first row of the first puzzle. This additional rule provides a structural

anchor that helps the model associate the neural predictions with the true concepts. Both

models share the same underlying neural architecture.

Table 7.14 presents the average prediction performance for the 4×4 visual sudoku

puzzle classification task. The results reveal a clear reasoning shortcut in the NeuPSLshortcut

model. While its objective value is effectively zero—indicating that the Sudoku constraints

are satisfied—its digit and puzzle accuracies are significantly lower than those achieved by

NeuPSLmitigation. This highlights that NeuPSLshortcut satisfies the constraints without

learning the correct digit representations. In contrast, NeuPSLmitigation achieves substan-

164

Table 7.14: Test set final objective and puzzle and digit accuracy for NeuPSL models on

visual sudoku puzzle classification with and without a reasoning shortcut mitigation.

Method
Accuracy (%)

Final Objective
Puzzle Digit

NeuPSLshortcut 50.00 ± 0.00 23.80 ± 5.74 2.76 · 10−4 ± 1.88 · 10−4

NeuPSLmitigation 69.20 ± 2.77 94.90 ± 0.55 42.63 ± 3.43

tially better performance, with a digit classification accuracy of approximately 95%. This

improvement comes at the cost of anchoring concepts to known predictions. While struc-

tural mitigation is used here, alternative strategies, such as data mitigation (e.g., pretrain-

ing the neural model with a few labeled examples), could achieve similar results.

Although this experiment is a simplified example designed to illustrate the oc-

currence and resolution of reasoning shortcuts, such scenarios are often more complex in

real-world applications. For instance, in the ROAD-R dataset, introducing a collective rule

such as:

1.0 :Object(Frame, Box1, “Traffic Light”) ∧Object(Frame, Box1, “Red”)∧

Object(Frame, Box2, “Traffic Light”)→ Object(Frame, Box2, “Red”)

can inadvertently create a reasoning shortcut. This rule aims to incorporate the concept

“if two objects are traffic lights, then they must both be red”. While this can achieve the

desired result, the model could satisfy this rule by avoiding predicting the “Traffic Light”

class entirely. Identifying such shortcuts in complex datasets can be challenging, but recent

work [83] has focused on methods for detecting and addressing these issues.

7.4.2 Contextual Label Ambiguity

Contextual label ambiguity (Section 5.3.1) is one of the most common pitfalls

encountered when beginning in NeSy. This issue arises when a NeSy model trains a de-

composed structure (Section 4.2.3) neural-symbolic model, but the gradient or label passed

from the symbolic component to the neural model lacks sufficient context to be inter-

pretable. For example, in the visual Sudoku problem, a neural model typically processes

165

only the pixels of an individual square. If a symbolic rule determines that a “blank” square

should take on a specific value based on the full Sudoku board, the gradient passed back

to the neural model will lack the contextual information necessary to resolve this ambi-

guity. To explore the implications of this pitfall and potential mitigation strategies, this

section examines a modified version of the visual Sudoku problem. For this experiment,

9 × 9 partially solved Sudoku puzzles were constructed using unlabeled MNIST images,

with the objective being to solve the entire board. To address the reasoning shortcut dis-

cussed in the previous subsection, a few-shot variant was introduced. In this setting, five

labeled examples from each of the nine possible classes were made available for training.

The remaining training images remained unlabeled, requiring the model to rely heavily on

the Sudoku rules for learning. Five random splits of 20/100/100 (train/validation/test)

Sudoku puzzles were generated for evaluation.

This experiment employs the same underlying NeSy NeuPSL model but varies

the training data to study its effects. The NeuPSL model is a decomposed DSVar NeSy

model, where the neural component predicts digit labels and the symbolic component

solves the sudoku rules. To distinguish these models, define them as NeuPSLambiguous

and NeuPSLmitigation. The NeuPSLambiguous model is trained on data that introduces

contextual label ambiguity, while NeuPSLmitigation incorporates a mitigation strategy to

address this pitfall. To illustrate the differences between these models—stemming primarily

from their respective training sets—consider the following 4 × 4 partially solved Sudoku

puzzles constructed using the classes {0, 3, 5, 8} and corresponding training datasets.

166

NeuPSLambiguous =

{
, , , , , , , ,

, , , , , , ,

}

NeuPSLmitigation =

{
, , , , , , ,

}

In the above example, the NeuPSLambiguous receives inconsistent gradients for the same

neural input, i.e., each blank square is assigned a different gradient. This ambiguity

arises because the symbolic gradient leverages the full structure of the problem, while the

neural model’s local input lacks the necessary context to distinguish between squares. Con-

sequently, the neural model struggles to converge on a consistent representation, effectively

hindering training as it incorporates noise from these conflicting updates.

Table 7.15: Test set digit accuracy predicted by the neural and symbolic components for

NeuPSL models on visual sudoku with and without ambiguous local context.

Method
Prediction Accuracy (%)

Neural Digit Symbolic Digit

NeuPSLambiguous 41.06 ± 5.83 46.66 ± 8.36
NeuPSLmitigation 97.19 ± 0.37 98.07 ± 0.41

As shown in Table 7.15, the average prediction performance for the 9×9 visual su-

doku task highlights the challenges posed by contextual label ambiguity. Both neural digit

accuracy and symbolic digit accuracy are presented after solving the Sudoku board. The

NeuPSLambiguous model suffers from a significant drop in neural digit accuracy, approxi-

mately 51 percentage points, compared to NeuPSLmitigation. This decline arises because

the NeuPSLambiguous model passes gradients to the blank squares, introducing ambiguity

and making it difficult for the neural model to distinguish between classes. As a result, the

neural model struggles to learn meaningful representations, ultimately hurting its overall

performance.

167

While this is a simplified example to illustrate the pitfall and its mitigation strat-

egy, such issues in real-world applications can be more complex and harder to identify.

For instance, in dialog structure induction tasks, incorporating external knowledge about

the sequential order of utterances in a conversation can lead to similar contextual label

ambiguity. This occurs if the neural model does not have access to the full dialog as input.

7.4.3 Energy Loss Degenerate Solutions:

This experiment investigates a common degenerate solution of energy learning

(Section 5.3.2), which is the most typical value-based learning loss. In particular, the one

being studied here arises when the symbolic parameters create an energy configuration that

cannot differentiate between target assignments, leading to what is known as a collapsed

energy function. A common instance of this issue in NeuPSL occurs when all symbolic

parameters are set to zero, i.e., wsy = 0. This scenario results in a collapsed energy

function because the symbolic potentials, which rely on their interaction with the symbolic

parameters, fail to contribute meaningful structure or gradients to the learning process.

Consequently, the learning mechanism cannot effectively optimize or encode the problem’s

constraints. To illustrate this phenomenon, the experiment evaluates its impact using

citation network datasets. Two NeuPSL architectures are compared: NeuPSLdegenerate,

which lacks a simplex constraint on the symbolic weights, and NeuPSLmitigation, which

incorporates a simplex constraint.

Table 7.16: Test set accuracy for the NeuPSL models with and without the zeroed weights

degenerate solution.

Method
Citeseer Cora

(Accuracy) (Accuracy)

NeuPSLdegenerate 16.74 ± 0.70 14.24 ± 1.46
NeuPSLmitigation 68.48 ± 1.22 81.22 ± 0.79

Figure 7.7 provides the final symbolic parameters learned by NeuPSLdegenerate

and NeuPSLmitigation. The comparison clearly demonstrates that without the weight sim-

168

Figure 7.7: Citeseer and Cora learned models with and without parameter simplex con-

straints.

Citeseer Learned Parameters With Weight Simplex (NeuPSLmitigation)

1.00 : Neural(Paper, Label) = Category(Paper, Label)

0.44 : Link(Paper1, Paper2) ∧ Category(Paper1, Label) → Category(Paper2, Label)

Category(Paper,+Label) = 1.

Citeseer Learned Parameters Without Weight Simplex (NeuPSLdegenerate)

0.00 : Neural(Paper, Label) = Category(Paper, Label)

0.00 : Link(Paper1, Paper2) ∧ Category(Paper1, Label) → Category(Paper2, Label)

Category(Paper,+Label) = 1.

Cora Learned Parameters With Weight Simplex (NeuPSLmitigation)

1.00 : Neural(Paper, Label) = Category(Paper, Label)

0.46 : Link(Paper1, Paper2) ∧ Category(Paper1, Label) → Category(Paper2, Label)

Category(Paper,+Label) = 1.

Cora Learned Parameters Without Weight Simplex (NeuPSLdegenerate)

0.00 : Neural(Paper, Label) = Category(Paper, Label)

0.00 : Link(Paper1, Paper2) ∧ Category(Paper1, Label) → Category(Paper2, Label)

Category(Paper,+Label) = 1.

plex constraint, NeuPSLdegenerate produces an uninformative model where all MAP states

are indistinguishable. Table 7.16 summarizes the predictive performance of the models

depicted in Figure 7.7. The NeuPSLdegenerate model, having zero weights and thus failing

to distinguish between MAP states, results in inference that is trivial. The final predictions

correspond directly to the initial variable assignments, which, in this case, were random.

As a result, the NeuPSLdegenerate model exhibits performance that is effectively random,

highlighting the critical role of the weight simplex constraint in preventing this degenerate

solution and enabling the model to make meaningful predictions.

7.4.4 Soft Logic Pitfalls in NeuPSL

This final pitfall experiment delves into common challenges in soft logic-based

NeSy inference and learning (Section 5.3.3), with a specific focus on NeuPSL-related is-

sues. These challenges stem from the soft logic relaxation employed in NeuPSL, Lukasiewicz

logic. This relaxation introduces a “satisfaction hinge,” where rules can be satisfied at any

value between 0.7 and 1 rather than strictly at the maximum value of 1. This hinge creates

169

flat gradient regions. The issue is further compounded in decomposed tasks, where the

neural component relies exclusively on symbolic structure for learning. Without sufficient

labeled data, gradients often converge around the average, leading to poor generalization

and suboptimal neural representations. To illustrate this pitfall, the experiment focuses

on the MNIST-Addk problem using the same decomposed DSVar NeuPSLdefault model

introduced earlier for this dataset. To address or mitigate this issue, a second model,

NeuPSLmitigation, is introduced, where the digit classifier is pretrained using common self-

supervision techniques from neural network literature. Specifically, the digit classifier back-

bone is pretrained using the SimCLR self-supervised learning framework [24]. Positive pairs

for contrastive pretraining are generated through augmentations such as cropping, rotation,

and color jittering. Both models are evaluated on five random splits.

Table 7.17: Test set accuracy for the NeuPSL models with and without a pretrained

backbone.

Method
MNIST-Add1 MNIST-Add2

(Accuracy) (Accuracy)

NeuPSLdefault 82.58 ± 02.56 56.94 ± 06.33
NeuPSLmitigation 93.80 ± 1.12 87.92 ± 1.63

Table 7.17 presents the results for the MNIST-Addk experiments, comparing

NeuPSLdefault and NeuPSLmitigation. While NeuPSLdefault demonstrates reasonable per-

formance, the addition of the pretraining step in NeuPSLmitigation leads to a significant

improvement. This enhanced performance surpasses the results achieved by the binarized

approach of DeepProbLog (Table 7.10). It is worth noting that this mitigation strat-

egy—employing a pretraining step—is not exclusive to NeuPSL. Similar strategies could

likely yield performance improvements for other NeSy systems, including DeepProbLog.

The key insight here is that the pretraining step effectively mitigates NeuPSL’s averag-

ing and soft logic relaxation pitfalls, enabling it to perform comparably to NeSy systems

specifically designed for this type of task.

170

Chapter 8

Related Work

The integration of symbolic knowledge and reasoning with neural networks has a

rich and extensive history, with recent interest particularly over the past decade. This dis-

sertation establishes a foundation for NeSy AI, offering a formal language and conceptual

framework for developing, analyzing, and communicating NeSy approaches. In doing so,

it discusses or touches upon three critical areas: the diversity of existing NeSy approaches,

the taxonomies and organizational principles developed within NeSy AI, and the integra-

tion of energy-based models as a unifying framework for modeling neural and symbolic

interactions. This chapter reviews the literature within these domains, touching on key

aspects retentive to this dissertation.

8.1 Neural-Symbolic Approaches

While this dissertation establishes a foundational framework for NeSy AI, it fo-

cuses primarily on systems aligned with the neural as symbolic parameter and neural as

symbolic variable architectural axioms. Since this dissertation introduces a novel NeSy

approach designed for end-to-end differentiable learning, the discussion will concentrate

on systems that similarly emphasize differentiable integration of neural and symbolic com-

ponents. Accordingly, this section highlights and examines prominent approaches that

exemplify these paradigms.

171

8.1.0.1 Neural as Symbolic Parameter

The neural as symbolic parameter paradigm leverages neural networks to pa-

rameterize symbolic components in which the neural model has indirect control over the

symbolic programs’ prediction. Xu et al. (2018) introduced a loss function derived from

probabilistic logic semantics to encode domain knowledge directly into the learning process

Similarly, Yang, Ishay, and Lee (2020) and Manhaeve et al. (2021) proposed NeurASP and

DeepProbLog, respectively, which compile tractable probabilistic logic programs into differ-

entiable functions. These frameworks allow symbolic reasoning to guide neural predictions

while maintaining compatibility with probabilistic logic semantics. More recently, Maene

and Raedt (2024) introduced DeepSoftLog, an extension of ProbLog that incorporates em-

bedded terms, transitioning from fuzzy to probabilistic semantics. Ahmed et al. (2022)

proposed Semantic Probabilistic Layers (SPLs), which compile knowledge and logic into

differentiable functions using the semantics of probabilistic circuits (PCs) [25]. Cohen,

Yang, and Mazaitis (2020) proposes TensorLog, a probabilistic first-order logic framework

that compiles tractable probabilistic logic programs into differentiable layers, allowing for

efficient learning and inference. As Cohen, Yang, and Mazaitis (2020) observed, querying

many probabilistic logic frameworks involves solving the weighted model counting (WMC)

problem, which is #P-complete, or addressing the MAXSAT problem, which is NP-hard

[132]. Since deep neural networks operate in polynomial time relative to their size, gen-

eral logic queries or MAXSAT solving cannot be implemented in polynomial time unless

#P=P or NP=P. To address these computational challenges, researchers have developed

more efficient differentiable reasoning systems by limiting logic to tractable families [28, 7,

77] or employing approximate inference techniques [132, 80, 128].

8.1.0.2 Neural as Symbolic Variable

The neural as symbolic variable paradigm leverages neural networks to parame-

terize symbolic components in which the neural model has direct control over the symbolic

programs’ prediction. Demeester, Rocktäschel, and Riedel (2016) incorporates domain

knowledge and common sense into natural language and knowledge base representations by

172

encouraging partial orderings over embeddings through regularization of the learning loss.

Similarly, Rocktäschel and Riedel (2017) leverages knowledge encoded as a differentiable

loss derived from logical rules to train a matrix factorization model for relation extraction.

Diligenti, Roychowdhury, and Gori (2017) employs fuzzy logic to quantify violations of

constraints in the model’s output, which is minimized during the learning process. Wang

et al. (2019) integrates logical reasoning with deep learning by introducing a differentiable

smoothed approximation to a maximum satisfiability (MAXSAT) solver, enabling logical

reasoning within neural models. The Logic Tensor Network (LTN) framework introduced

by Badreddine et al. (2022) uses neural network predictions to parameterize functions that

represent symbolic relations with real-valued or fuzzy logic semantics. These logic functions

are aggregated to define a satisfaction level, and predictions are derived by evaluating the

truth value of all possible outputs and selecting the highest-valued configuration. Badred-

dine, Serafini, and Spranger (2023) extends LTNs by introducing fuzzy operators grounded

in logarithmic space, providing more efficient and effective formulations for end-to-end

training. Amos and Kolter (2017) integrates linearly constrained quadratic programming

(LCQP) problems into neural networks via the OptNet framework, demonstrating that

LCQP solutions are differentiable with respect to program parameters. Building on this

work, Agrawal et al. (2019) applies domain-specific languages (DSLs) to define LCQP pro-

gram layers, simplifying the specification of knowledge and constraints for optimization.

Vlastelica et al. (2020) proposes a method for computing gradients of mixed-integer linear

programs by introducing a continuous interpolation of the program’s objective, supporting

integer constraints and approximating gradients for program outputs. In contrast, Cornelio

et al. (2023) takes a reinforcement learning approach to mathematical programming, inter-

preting neural model predictions as states in a Markov decision process. Actions are taken

to identify and address constraint violations, and the REINFORCE algorithm [135] is used

to train the system end-to-end without requiring backpropagation through the solver. Re-

cent advancements in this area include Giunchiglia et al. (2023), who introduced a dataset

for autonomous event detection with embedded logical requirements, demonstrating that

such requirements improve generalization. Stoian, Giunchiglia, and Lukasiewicz (2023)

further validates this approach by showing enhanced model performance when logical re-

173

quirements are incorporated into training.

8.2 Taxonomies of NeSy Approaches

The field of neural-symbolic AI encompasses a diverse range of approaches devel-

oped over the past two decades to integrate neural networks with symbolic reasoning. In

the previous section, I discussed this wide range of approaches, showcasing their generality

and versatility from the perspective of the axioms of integration (Section 2). Recently,

in the last couple of years, the NeSy community has shifted toward organizing these ap-

proaches and developing more comprehensive theoretical frameworks. This effort has led

to the emergence of several taxonomies that span various dimensions, including the repre-

sentation of symbolic knowledge, the interaction between neural and symbolic components,

learning and reasoning mechanisms, pitfalls, system libraries, and connections to related

fields. These taxonomies are particularly relevant to this dissertation, which aims to es-

tablish a foundational framework for NeSy AI. This work provides the groundwork from

which these taxonomies can further develop and evolve. In essence, the approach taken

here is orthogonal to the existing taxonomies, complementing and supporting them rather

than competing with or replacing them. In fact, the majority of the foundational principles

introduced in this dissertation are designed to accommodate and reinforce a wide range

of these taxonomies, ensuring their continued relevance and applicability within the NeSy

field.

1. Representation of Symbolic Knowledge: A key dimension of NeSy taxonomies

is the representational type and expressiveness of symbolic knowledge within hybrid

NeSy approaches. Marra et al. (2024) provides a comprehensive survey that high-

lights the role of principled symbolic knowledge representations, drawing connections

between NeSy AI and the closely related field of statistical relational learning (SRL)

[56]. This includes widely used SRL symbolic symantics such as probabilistic logics

(ProbLog [39]) and soft logic relaxations such as Lukasiewicz logic (Probabilistic Soft

Logic (PSL) [11]). Beyond SRL, other works focus on specific aspects of symbolic

logics, particularly their differentiability and the challenges arising in hybrid systems.

174

For example, Krieken (2024) and van Krieken, Acar, and van Harmelen (2022) inves-

tigate fuzzy and probabilistic symbolic logics, analyzing their integration into neural

models and the associated trade-offs. Evans and Grefenstette (2018) further explores

probabilistic symbolic reasoning.

2. Neural-Symbolic Integration Patterns: Another key dimension of NeSy tax-

onomies focuses on the common integration patterns between neural and symbolic

components. These patterns describe how a neural network and symbolic systems

are combined at a high level. It is important to distinguish these works from the

architectural axioms introduced in Chapter 2. While these taxonomies focus on de-

scribing common integration patterns, they do not address the detailed interactions

between neural and symbolic components, such as the flow of values or gradients

across these components. Bekkum et al. (2021) and Mossakowski (2022) introduce

neural-symbolic design patterns that articulate these integration strategies through

modular building blocks, including instances, models, processes, and actors. Their

work provides a structured framework and visual tools to represent and analyze the

architecture of neural-symbolic systems, facilitating a clearer understanding and com-

munication of their design. Additionally, Yu et al. (2023) and Marra et al. (2024)

propose taxonomies that investigate neural-symbolic integration from the perspective

of inference and learning processes.

3. Learning and Reasoning Mechanisms: Several taxonomies delve into the learn-

ing and reasoning mechanisms that underpin NeSy systems. d’Avila Garcez et

al. (2019) and Dickens et al. (2024) investigate probabilistic and bilevel optimiza-

tion techniques, proposing unified frameworks that integrate learning and reason-

ing processes. Krieken (2024) offers a detailed exploration of optimization methods

specifically tailored for neuro-symbolic learning systems, with a particular focus on

probabilistic logics and their practical applications. Additionally, Marra et al. (2024)

examines learning and reasoning by drawing parallels to statistical relational learn-

ing (SRL) [56], highlighting shared principles and techniques between these closely

related fields.

175

4. Pitfalls in NeSy: Although formal taxonomies for NeSy pitfalls have not yet been

established, this dissertation represents an initial effort to organize and analyze the

challenges faced within these systems. Among these challenges, reasoning short-

cuts—a specific subcategory of pitfalls—have recently garnered attention in the NeSy

research community. Marconato et al. (2023) characterizes common reasoning short-

cuts in NeSy systems. Building on this, Marconato, Teso, and Passerini (2023) and

Marconato et al. (2024) propose strategies for mitigating these shortcuts, including

techniques to make model aware of there reasoning shortcuts. Furthermore, Bor-

tolotti et al. (2025) introduces a benchmark suite for evaluating concept quality and

reasoning shortcuts, providing a practical framework to study and refine NeSy sys-

tems. Together, these efforts mark an important step toward the development of

structured pitfall taxonomies in NeSy, laying the groundwork for future research in

this area.

5. NeSy Libraries: Recent efforts have focused on standardizing mainstream NeSy

systems through the development of a universal library. Krieken et al. (2024) intro-

duced ULLER, a unified language specifically designed to represent and formalize

major NeSy systems. ULLER aims to provide a standardized framework that en-

ables consistent, modular, and interoperable implementations of NeSy approaches.

Its long-term goal is to foster the development of a shared Python library, facili-

tating collaboration, reproducibility, and the seamless integration of diverse NeSy

methodologies into practical applications.

6. Connections to Related Fields: Given the broad scope of NeSy AI, it inter-

sects with numerous theoretical fields, either fully or partially encompassing their

methodologies and concepts. As a result, there has been a concerted effort to estab-

lish connections with these related fields and engage with their respective research

communities. Marra et al. (2024) explores the relationship between NeSy systems

and statistical relational learning (SRL), drawing parallels between popular SRL ap-

proaches and NeSy methodologies. Similarly, Zhang et al. (2021) investigates the

connections between NeSy systems and knowledge graphs, while Lamb et al. (2020)

176

examines their relationship with graph neural networks (GNNs). These studies show-

case the potential for NeSy AI to bridge gaps across disciplines and leverage advances

in these related fields.

8.3 Energy-Based Models (EBMs)

Throughout this dissertation, I leverage Energy-Based Models (EBMs) [74] as the

foundation for the universal NeSy Langauge introduced in Chapter 3 (NeSy-EBMs). EBMs

define a scalar-valued energy function, E : Y ×X → R, which quantifies the compatibility

between observed (input) variables x ∈ X and target (output) variables y ∈ Y. States with

lower energy values represent higher compatibility. One of the key strengths of EBMs is

their generality, as they can model complex dependencies and perform density estimation

by defining conditional, joint, and marginal Gibbs distributions over the energy function:

P (y|x) :=
e−βE(y,x)∫

ŷ∈Y e
−βE(ŷ,x)

, (8.1)

P (y,x) :=
e−βE(y,x)∫

ŷ∈Y,x̂∈X e
−βE(ŷ,x̂)

, (8.2)

P (x) :=

∫
ŷ∈Y e

−βE(y,x)∫
ŷ∈Y,x̂∈X e

−βE(ŷ,x̂)
. (8.3)

The universality of Gibbs distributions is a primary motivation for adopting the EBM

framework. Any density function can, in principle, be expressed using an appropriate

energy function E. This universality positions EBMs as a unifying framework, bridging

probabilistic and non-probabilistic approaches, and supporting a wide range of tasks in

both generative and discriminative modeling.

Energy-Based Models (EBMs) have been widely applied across machine learning

to model complex data distributions and make predictions. Some of the earliest and most

influential examples include the Boltzmann machine [2, 110] and the Helmholtz machine

[38], both of which laid the groundwork for the development of modern EBMs. In a seminal

contribution, Hinton (2002) demonstrated the utility of EBMs in constructing mixture-of-

expert models. This approach combines multiple simpler distributions to approximate

177

a single, complex distribution by multiplying the individual distributions and applying

renormalization. These early works highlighted the flexibility and power of EBMs for

representing and learning complex dependencies in high-dimensional data, establishing

their relevance for a wide range of machine learning applications.

In recent years, EBMs have proven effective in discriminative tasks [60, 76].

Grathwohl et al. (2020) introduced the Joint Energy-Based Model (JEM), which reinter-

prets discriminative classifiers as EBMs and uses a likelihood-based loss to train on both

labeled and unlabeled data. This approach improves accuracy, robustness, calibration, and

out-of-distribution detection while unifying generative and discriminative learning under

the EBM framework. Expanding on this, Liu et al. (2020) developed an EBM specifically

for out-of-distribution detection. Their approach employs a purely discriminative training

objective and uses unnormalized energy scores to effectively identify out-of-distribution

examples. This method achieves state-of-the-art performance and further highlights the

practical advantages of EBMs in tasks requiring robustness and uncertainty estimation.

Beyond discriminative modeling, the EBM framework has become a powerful

tool in generative modeling, offering an alternative to traditional approaches [144, 50,

51]. Zhao, Mathieu, and LeCun (2017) introduced Energy-Based Generative Adversarial

Networks (EBGANs), which reinterpret the GAN discriminator as an energy function as-

signing low energy to points near the data manifold. This approach addresses instability

issues in GAN training and enables more robust learning across diverse architectures and

loss functions. Building on this, Du and Mordatch (2019) demonstrated the direct use of

EBMs for generative modeling, highlighting their simplicity, stability, and flexibility. They

showed that EBMs achieve performance comparable to modern GANs while excelling in

tasks such as out-of-distribution detection and adversarially robust classification. Their

work also emphasized the compositionality of EBMs, enabling modular and interpretable

generative processes. More recently, Du et al. (2023) extended EBMs to diffusion models,

proposing an energy-based parameterization that enhances flexibility and expressiveness

in compositional generation.

These examples underscore the generality and broad applicability of NeSy-EBMs

across diverse tasks and domains. While the primary focus of this dissertation is not on

178

the specific methods for training and learning these models, it is important to note that

a wide range of probabilistic and non-probabilistic approaches have been developed for

this purpose [63, 134, 50, 60]. For a comprehensive review of related work on training

methodologies for these systems, I direct the reader to the detailed discussion provided by

Dickens (2024).

179

Chapter 9

Future Work and Limitations

In this chapter, I reflect on the work presented in this dissertation, acknowledging

the inherent limitations of my contributions to the foundational aspects of NeSy AI while

highlighting a collection of promising directions for future research. This discussion is

organized around the key foundational elements introduced: the axioms of integration

(Part I), the universal language (Part II), the design principles (Part III), and the general

implementations (Part IV). The goal of this chapter is to provide a clear roadmap for steps

to address these limitations and a guide to expand upon the foundational work presented

here, paving the way for further advancements in the field of NeSy AI.

9.1 Neural-Symbolic Axioms of Integration:

As emphasized in the introduction, while neural-symbolic research consistently

employs foundational integration techniques, the field still lacks a cohesive and explicitly

defined set of axioms to unify and guide these efforts. In response, in Chapter 2, I proposed

four key architectural axioms that serve as the current cornerstones for NeSy research.

While these axioms provide a unified perspective on integration, I acknowledge that:

1. Alternative Perspectives: The architectural axioms represent a single perspective

on neural-symbolic integration, and alternative formulations may offer clearer or more

concise frameworks.

180

2. Incomplete Coverage: Even within the architectural axioms presented, not all

forms of neural-symbolic approaches are currently represented.

Regarding the first point, a set of alternative viewpoints could prove valuable

for further developing the theory. For instance, defining and describing the axioms of

integration from the perspective of systems could offer new insights and broaden scope

of the community. Moreover, alternative organizations to the current set of architectural

axioms could provide a more succinct categorization. For instance, the categories neural as

symbolic variables (Section 2.3.4) and neural as symbolic parameters (Section 2.3.3) could

be merged into a broader and more inclusive category, such as neural as differentiable

symbolic systems. Regardless of the specific form these axioms take, I argue that developing,

formalizing, and teaching such axioms represents a critical next step for advancing the NeSy

field. Moreover, the foundational principles and organizational structure of NeSy research

must be presented in a concise, accessible, and generalizable manner to support future

researchers, including those from outside the immediate NeSy community. This will ensure

the continued growth and adoption of NeSy methodologies across diverse domains.

Regarding the second point, the proposed architectures were deliberately aligned

with the universal language presented in Chapter 3. This alignment was intentional, de-

signed to create a cohesive narrative from architectural foundations to universal language,

principles, and general implementation. However, it is important to recognize that ad-

ditional integration strategies exist within the NeSy field that may not easily fit within

the presented axioms. For instance, three potential axioms not explicitly addressed in

this thesis are extracting symbolic knowledge from neural models, neural as symbolic struc-

ture, and symbolic as neural input. The first potential additional axiom could represents

a well-established research direction aimed at extracting symbolic representations from

the black-box nature of neural networks. This process enhances interpretability, trans-

parency, and knowledge transfer, serving as a critical bridge between neural and symbolic

systems. The second axiom, neural as symbolic structure, introduces a missing dimension

to the framework by capturing scenarios where neural models define symbolic structures

in differentiable spaces. This approach complements the existing trio of differentiable

neural-symbolic categories (neural as differentiable variables Section 2.3.4 and neural as

181

differentiable parameters Section 2.3.3). The final axiom, symbolic as neural input, formal-

izes the reverse direction of integration, where the NeSy method involves the composition

of symbolic outputs being used as inputs to the neural component.

9.2 Universal Neural-Symbolic Language

The universal neural-symbolic language presented in this dissertation is closely

tied to the axioms of integration, meaning it should be flexible enough to support any

collection of integration axioms. While NeSy-EBMs and the associated modeling paradigms

introduced in Chapter 2 encompass many of the architectural axioms, it is important to

note that if the axioms are expanded or modified, the universal language must evolve to

accommodate these changes. As such, I acknowledge the following limitations and areas

for future research:

1. Recursive NeSy-EBMs: The NeSy-EBM framework introduced was designed as a

direct composition of neural and symbolic components. However, systems that incor-

porate iterative or recursive interactions between neural and symbolic components

would require an expanded definition.

2. Missing Modeling Paradigms: As presented in Section 5.1, the modeling paradigms

presented in Section 3.2 are not exhaustive.

3. Incomplete Translation of NeSy Approaches: This dissertation only translates

three prominent NeSy approaches into the NeSy-EBM formulations (Section 3.3). A

more concerted effort is needed to categorize and formalize the current plethora of

NeSy methods within this framework.

Regarding the first point, expanding the theoretical framework of NeSy-EBMs to

support recursive interactions—where neural outputs feed into symbolic systems, which in

turn influence subsequent neural components, and so on—is a highly promising direction for

future work. Such iterative integration holds the potential to model more complex, dynamic

systems that require deeper interaction between neural and symbolic components. Recent

182

efforts by [15] have begun to categorize patterns of neural-symbolic integration, primarily

from the perspective of inference and learning. While valuable, these efforts highlight the

need for a more formal and comprehensive framework to accommodate recursive interac-

tions. Achieving this will require significant theoretical advancements, including extending

existing proofs in inference and learning theory to address the complexities introduced by

iterative integration.

Regarding the second point, as the set of architectural axioms and theoretical

foundations of NeSy expands, the corresponding set of modeling paradigms must also grow

and be rigorously studied. For example, Section 5.1 introduced two alternative NeSy-EBM

modeling paradigms: unfixed deep symbolic variables (Section 5.1.1) and deep symbolic

operations (Section 5.1.2). Furthermore, exploring combinations of existing NeSy-EBM

modeling paradigms will be critical for building fully integrated neural-symbolic AI sys-

tems. For instance, integrating deep symbolic variables (Section 3.2.1) with deep symbolic

parameters (Section 3.2.2) could enable the development of more sophisticated and multi-

modal NeSy learning systems.

Regarding the third point, the systems formulated in this dissertation were se-

lected as they represent mainstream approaches within the NeSy community. While these

serve as valuable examples, there remains a need to extend this effort to incorporate a

broader range of NeSy approaches. Expanding the framework to include a more compre-

hensive set of methods will not only help organize the field but also clarify distinctions

between systems that share similar theoretical foundations. Such efforts would promote

greater understanding, reduce ambiguity, and foster further advancements in the develop-

ment and application of NeSy systems.

9.3 Neural-Symbolic Design Principles:

Similarly to the previous section, the expansion of the axioms of integration and

the universal neural-symbolic language will inevitably lead to new dimensions for the set

of design principles. However, unlike the previous sections, I argue that the primary

limitation of the neural-symbolic design principles lies in their current incompleteness.

183

In this dissertation, I have presented a selection of the most fundamental principles and

pitfalls encountered throughout my research and reading. While these principles provide

a solid foundation, they are by no means exhaustive. For future research, these design

principles should be expanded to study:

1. Universal Design Principles: Developing a more comprehensive set of general

design principles applicable across a wide range of NeSy approaches that can be used

for a general researcher within and outside of NeSy.

2. Domain-Specific Design Principles: Creating collections of design principles tai-

lored to specific subsets of NeSy approaches, such as fuzzy logic pitfalls or probabilis-

tic logic inference techniques.

In general, developing a comprehensive taxonomy of universal and domain-specific

design principles will not only accelerate research progress but also lower the barrier to

entry for newcomers to the NeSy field. Furthermore, it will provide a valuable resource for

experienced NeSy researchers, enabling them to identify connections and commonalities

across different NeSy theories. This, in turn, will foster greater collaboration and drive

innovation within the broader NeSy research community.

9.4 A General Neural-Symbolic Implementation

In this work, I introduced a novel and practical NeSy implementation, Neural

Probabilistic Soft Logic (NeuPSL), and provided a comprehensive set of experimental eval-

uations. While this method supports a broad range of architectural axioms, NeSy-EBM

modeling paradigms, and design principles, and has been applied to a wide range of tasks,

I acknowledge the following limitations:

1. Inability to Represent Every NeSy-EBM: NeuPSL cannot represent every

NeSy-EBM due to its design focus and specific functionalities.

2. Need for Additional Real-World Experiments: NeuPSL has demonstrated its

capabilities across various tasks, but further real-world experiments are necessary to

184

validate practical impact in diverse domains.

In regards to the first point, as reiterated in Section 6.3, NeuPSL defines a set of

core functionalities that should be supported by NeSy implementations while maintaining

flexibility for future extensions. However, this design inherently limits its ability to rep-

resent all NeSy-EBMs. NeuPSL currently defines weighted sums of potentials based on

arithmetic, logic, and Lukasiewicz real-logic semantics, which provide a solid foundation

but are not exhaustive. Future work could explore the integration of alternative soft logic

formulations to expand the range of representable NeSy-EBMs. Additionally, NeuPSL is

primarily designed for non-probabilistic inference tasks, such as prediction, ranking, and

detection, due to the computational challenges of marginal distributions and the Gibbs par-

tition function. Expanding NeuPSL to support marginal inference instead of maximum a

posteriori (MAP) inference represents an exciting direction for future research, potentially

enabling applications in more probabilistic and uncertainty-aware domains.

While NeuPSL has been tested in controlled experimental settings, further vali-

dation through real-world applications is essential to fully assess its scalability, robustness,

and practical utility. Deploying NeuPSL in domains such as healthcare, autonomous sys-

tems, or natural language processing could provide valuable insights into its strengths and

limitations in complex, real-world scenarios. Furthermore, a more detailed exploration of

the trade-offs between the major NeSy systems to better understand when and where to

use these approaches is another direction for future work.

185

Chapter 10

Conclusion

As the world shifts from merely exploring the potential of AI to increasingly rely-

ing on its applications, the urgency for responsible deployment and careful interpretation of

these models outputs has become profoundly evident. Neural-symbolic AI stands as a field

uniquely equipped to tackle some of the most pressing challenges, including the promise

of interpretability, the enforcement of constraints, and the assurance of consistent, reliable

predictions. Yet, despite its immense promise, NeSy AI remains a relatively nascent and

fragmented field, often defined by ad-hoc implementations that lack cohesion and stan-

dardization. As its development continues to grow, so too does the need for a principled

foundation.

In this dissertation, I propose and contribute to a formalized foundation for

neural-symbolic AI research through four key milestones: axioms of integration, universal

neural-symbolic language, design principles, and general and principled implementations.

Together, these milestones establish a cohesive roadmap for unifying the theoretical and

practical underpinnings of NeSy AI. To address the fragmentation within the field, I take a

first step in defining four foundational architectural axioms that serve as cornerstones for

current NeSy research: symbolic as neural structure, sampling neural for symbolic, neural as

symbolic variable, and neural as symbolic parameter. Recognizing the community’s empha-

sis on logic-based NeSy approaches, I provide detailed examples for each axiom, grounded

in symbolic logic, to offer familiar and tangible scenarios that elucidate these principles. To

186

formalize these integration strategies, I introduce Neural-Symbolic Energy-Based Models

(NeSy-EBMs) as a unifying mathematical framework. Within this framework, I develop

three essential modeling paradigms—deep symbolic variables, deep symbolic parameters,

and deep symbolic potentials—that enable the practical implementation of the architec-

tural axioms. Building on this foundation, I categorize and define a comprehensive set

of NeSy design principles, encompassing inference and learning techniques, strategies, and

pitfalls. Finally, I introduce Neural Probabilistic Soft Logic (NeuPSL), a novel and scal-

able framework that implements a collection of the design principles, modeling paradigmns,

and architectural axioms. NeuPSL demonstrates its versatility and effectiveness across di-

verse real-world applications, including event detection, dialog structure induction, and

logic-based question answering. Additionally, I provide a detailed comparative analysis of

NeuPSL alongside four prominent NeSy approaches, emphasizing their respective strengths

and limitations. This comparison not only highlights the unique benefits of NeuPSL but

also illuminates broader insights into the practical challenges and opportunities within

NeSy systems. Finally, I illustrate how NeuPSL addresses a collection of common NeSy

pitfalls, offering actionable strategies for their mitigation.

Looking to the future, the integration of symbolic reasoning will be indispensable

as AI increasingly influences every aspect of daily life. Neural models alone, despite their

remarkable adaptability and learning capabilities, are insufficient for addressing the trans-

parency, robustness, and ethical safeguards required in sensitive and high-stakes domains

such as healthcare, autonomous systems, and legal decision-making. Reflecting on Patrick

Winston’s words from the start of this dissertation: “Instead of looking for a ‘right way,’

the time has come to build systems out of diverse components, some connectionist and

some symbolic.” While perhaps ahead of its time, this vision has grown into an urgent im-

perative. I contend that the future of AI lies in hybrid approaches—combining the nuanced

pattern recognition and learning power of neural models with the rigor, interpretability,

and logical consistency of symbolic reasoning. By merging these paradigms, we can create

AI systems that are not only powerful but also transparent, explainable, and safe, setting

a new standard for trustworthy and ethical artificial intelligence for years to come.

187

Bibliography

[1] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Systems. https://www.tensorflow.org/. 2015.

[2] David Ackley, Geoffrey Hinton, and Terrence Sejnowski. “A Learning Algorithm for

Boltzmann Machines”. In: Cognitive Science 9.1 (1985), pp. 147–169.

[3] Ashkay Agrawal et al. “Differentiable Convex Optimization Layers”. In: NeurIPS.

2019.

[4] Kareem Ahmed, Kai-Wei Chang, and Guy Van den Broeck. “Semantic Strengthen-

ing of Neuro-Symbolic Learning”. In: AISTATS. 2023.

[5] Kareem Ahmed, Kai-Wei Chang, and Guy Van den Broeck. “A Pseudo-Semantic

Loss for Autoregressive Models with Logical Constraints”. In: NeurIPS. 2023.

[6] Kareem Ahmed et al. “Neuro-Symbolic Entropy Regularization”. In: UAI. 2022.

[7] Kareem Ahmed et al. “Semantic Probabilistic Layers for Neuro-Symbolic Learning”.

In: NeurIPS. 2022.

[8] Brandom Amos and J. Zico Kolter. “OptNet: Differentiable Optimization as a Layer

in Neural Networks”. In: ICML. 2017.

[9] Peter Anderson et al. “On Evaluation of Embodied Navigation Agents”. In: CoRR

abs/1807.06757 (2018).

[10] Eriq Augustine et al. “Visual Sudoku Puzzle Classification: A Suite of Collective

Neuro-Symbolic Tasks”. In: International Workshop on Neural-Symbolic Learning

and Reasoning (NeSy). 2022.

188

https://www.tensorflow.org/

[11] Stephen Bach et al. “Hinge-Loss Markov Random Fields and Probabilistic Soft

Logic”. In: Journal of Machine Learning Research (JMLR) 18.1 (2017), pp. 1–67.

[12] Sebastian Bader and Pascal Hitzler. “Dimensions of Neural-symbolic Integration -

A Structured Survey”. In: arXiv (2005).

[13] Samy Badreddine, Luciano Serafini, and Michael Spranger. “logLTN: Differentiable

Fuzzy Logic in the Logarithm Space”. In: arXiv (2023).

[14] Samy Badreddine et al. “Logic Tensor Networks”. In: AI 303.4 (2022), p. 103649.

[15] Michael van Bekkum et al. “Modular Design Patterns for Hybrid Learning and

Reasoning Systems: A Taxonomy, Patterns and Use Cases”. In: Applied Intelligence

51.9 (2021), pp. 6528–6546.

[16] Tarek R. Besold et al. “Neural-Symbolic Learning and Reasoning: A Survey and In-

terpretation”. In: Neuro-Symbolic Artificial Intelligence: The State of the Art (2022).

[17] Samuele Bortolotti et al. “A Neuro-Symbolic Benchmark Suite for Concept Quality

and Reasoning Shortcuts”. In: NeurIPS. 2025.

[18] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univer-

sity Press, 2004.

[19] James Bradbury et al. JAX: Autograd and XLA. https://github.com/google/

jax. 2018.

[20] Giovanni Campagna et al. “Zero-Shot Transfer Learning with Synthesized Data for

Multi-Domain Dialogue State Tracking”. In: ACL. 2020.

[21] Nicolas Carion et al. “End-to-end Object Detection with Transformers”. In: ECCV.

2020.

[22] Angel Chang et al. “Matterport3D: Learning from RGB-D Data in Indoor Environ-

ments”. In: 3DV. 2017.

[23] Mark Chavira and Adnan Darwiche. “On Probabilistic Inference by Weighted Model

Counting”. In: Artificial Intelligence 172.6-7 (2008), pp. 772–799.

189

https://github.com/google/jax
https://github.com/google/jax

[24] Ting Chen et al. “A Simple Framework for Contrastive Learning of Visual Repre-

sentations”. In: ICML. 2020.

[25] Yoojung Choi, Antonio Vergari, and Guy Van den Broeck. “Probabilistic Circuits:

A Unifying Framework for Tractable Probabilistic Modeling”. UCLA. 2020.

[26] Junyoung Chung et al. “A Recurrent Latent Variable Model for Sequential Data”.

In: NeurIPS. 2015.

[27] Nuri Cingillioglu and Alessandra Russo. “DeepLogic: Towards End-to-End Differ-

entiable Logical Reasoning”. In: AAAI-MAKE. 2019.

[28] William W. Cohen, Fan Yang, and Kathryn Mazaitis. “TensorLog: A Probabilistic

Database Implemented Using Deep-Learning Infrastructure”. In: JAIR 67 (2020),

pp. 285–325.

[29] Michael Collins. “Discriminative Training Methods for Hidden Markov Models: The-

ory and Experiments with Perceptron Algorithms”. In: EMNLP. 2002.

[30] Cristina Cornelio et al. “Learning Where and When to Reason In Neuro-Symbolic

Inference”. In: ICLR. 2023.

[31] Daniel Cunnington et al. “The Role of Foundation Models in Neuro-Symbolic Learn-

ing and Reasoning”. In: arXiv (2024).

[32] Artur d’Avila Garcez et al. “Neural-Symbolic Computing: An Effective Methodol-

ogy for Principled Integration of Machine Learning and Reasoning”. In: Journal of

Applied Logics 6.4 (2019), pp. 611–632.

[33] Artur S. d’Avila Garcez, Krysia Broda, and Dov M. Gabbay. Neural-Symbolic Learn-

ing Systems: Foundations and Applications. Springer, 2002.

[34] Artur S. d’Avila Garcez, Lúıs C. Lamb, and Dov M. Gabbay. Neural-Symbolic Cog-

nitive Reasoning. Springer, 2009.

[35] Adnan Darwiche. “SDDs: A New Canonical Representation of Propositional Knowl-

edge Bases”. In: ICDT. 2011.

[36] Sridhar Dasaratha et al. “DeepPSL: End-to-End Perception and Reasoning”. In:

IJCAI. 2023.

190

[37] Tirtharaj Dash et al. “A Review of Some Techniques for Inclusion of Domain-

Knowledge into Deep Neural Networks”. In: Scientific Reports 12.1 (2022), p. 1040.

[38] Peter Dayan et al. “The Helmholtz Machine”. In: Neural Computation 7.5 (1995),

pp. 889–904.

[39] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. “ProbLog: A Probabilistic

Prolog and Its Application in Link Discovery”. In: IJCAI. 2007.

[40] Matt Deitke et al. “RoboTHOR: An Open Simulation-to-Real Embodied AI Plat-

form”. In: CVPR. 2020.

[41] Thomas Demeester, Tim Rocktäschel, and Sebastian Riedel. “Lifted Rule Injection

for Relation Embeddings”. In: EMNLP. 2016.

[42] Vincent Derkinderen et al. “Semirings for Probabilistic and Neuro-Symbolic Logic

Programming”. In: International Journal of Approximate Reasoning (2024), p. 109130.

[43] Charles Dickens. “A Unifying Mathematical Framework for Neural-Symbolic Sys-

tems”. PhD thesis. University of California, Santa Cruz, 2024.

[44] Charles Dickens, Connor Pryor, and Lise Getoor. “Modeling Patterns for Neural-

Symbolic Reasoning using Energy-Based Models”. In: AAAI Spring Symposium

on Empowering Machine Learning and Large Language Models with Domain and

Commonsense Knowledge. 2024.

[45] Charles Dickens et al. “Convex and Bilevel Optimization for Neuro-Symbolic Infer-

ence and Learning”. In: ICML. 2024.

[46] Michelangelo Diligenti, Marco Gori, and Claudio Saccà. “Semantic-Based Regular-

ization for Learning and Inference”. In: Journal of Machine Learning Research 18

(2017), pp. 1–45.

[47] Michelangelo Diligenti, Soumali Roychowdhury, and Marco Gori. “Integrating Prior

Knowledge into Deep Learning”. In: ICMLA. 2017.

[48] Chuong Do, Chuan-Sheng Foo, and Andrew Ng. “Efficient Multiple Hyperparameter

Learning for Log-Linear Models”. In: NeurIPS. 2007.

191

[49] Honghua Dong et al. “Neural Logic Machines”. In: ICLR. 2019.

[50] Yilun Du and Igor Mordatch. “Implicit Generation and Modeling with Energy-based

Models”. In: NeurIPS. 2019.

[51] Yilun Du et al. “Reduce, Reuse, Recycle: Compositional Generation with Energy-

based Diffusion Models and MCMC”. In: ICML. 2023.

[52] Richard Evans and Edward Grefenstette. “Learning Explanatory Rules from Noisy

Data”. In: JAIR 61 (2018), pp. 1–64.

[53] Christodoulos A. Floudas and Panos M. Pardalos. Encyclopedia of Optimization.

Springer Science & Business Media, 2008.

[54] Samir Yitzhak Gadre et al. “Cows on Pasture: Baselines and Benchmarks for Language-

Driven Zero-Shot Object Navigation”. In: CVPR. 2023.

[55] Artur d’Avila Garcez and Luis C. Lamb. “Neurosymbolic AI: The 3rd Wave”. In:

AI Review 56.11 (2023), pp. 12387–12406.

[56] Lise Getoor and Ben Taskar. Introduction to Statistical Relational Learning. MIT

Press, 2007.

[57] Eleonora Giunchiglia, Mihaela Catalina Stoian, and Thomas Lukasiewicz. “Deep

Learning with Logical Constraints”. In: IJCAI. 2022.

[58] Eleonora Giunchiglia et al. “ROAD-R: The Autonomous Driving Dataset with Log-

ical Requirements”. In: Machine Learning 112.1 (2023), pp. 3261–3291.

[59] James Gosling, Mike Sheridan, and Patrick Naughton. The JavaTM Programming

Language. https://www.oracle.com/java/. 1995.

[60] Will Grathwohl et al. “Your Classifier is Secretly an Energy-based Model and You

Should Treat it Like One”. In: ICLR. 2020.

[61] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive Representation Learning

on Large Graphs”. In: NeurIPS. 2017.

[62] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: CVPR.

2016.

192

https://www.oracle.com/java/

[63] Geoffrey Hinton. “Training Products of Experts by Minimizing Contrastive Diver-

gence”. In: Neural Computation 14.8 (2002), pp. 1771–1800.

[64] Zhiting Hu et al. “Harnessing Deep Neural Networks with Logic Rules”. In: ACL.

2016.

[65] Peter Jung, Giuseppe Marra, and Ondřej Kuželka. “Quantified Neural Markov Logic

Networks”. In: IJAR 171 (2024), p. 109172.

[66] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In:

ICLR. 2014.

[67] Thomas Kipf and Max Welling. “Semi-Supervised Classification with Graph Con-

volutional Networks”. In: ICLR. 2017.

[68] Doga Kisa et al. “Probabilistic Sentential Decision Diagrams”. In: KR. 2014.

[69] Daphne Koller and Nir Friedman. Probabilistic Graphical Models. The MIT Press,

2009.

[70] Emile van Krieken. “Optimisation in Neurosymbolic Learning Systems”. PhD thesis.

Radboud University, 2024.

[71] Emile van Krieken et al. “On the Independence Assumption in Neurosymbolic

Learning”. In: ICML. 2024.

[72] Emile van Krieken et al. “ULLER: A Unified Language for Learning and Reasoning”.

In: NeSy. 2024.

[73] Lúıs C. Lamb et al. “Graph Neural Networks Meet Neural-Symbolic Computing: A

Survey and Perspective”. In: IJCAI. 2020.

[74] Yann LeCun et al. “A Tutorial on Energy-Based Learning”. In: Predicting Structured

Data 1.0 (2006).

[75] Yann LeCun et al. “Gradient-Based Learning Applied to Document Recognition”.

In: IEEE 86.11 (1998), pp. 2278–2324.

[76] Weitang Liu et al. “Energy-based Out-of-distribution Detection”. In: NeurIPS. 2020.

193

[77] Jaron Maene, Vincent Derkinderen, and Luc De Raedt. “On the Hardness of Prob-

abilistic Neurosymbolic Learning”. In: arXiv (2024).

[78] Jaron Maene and Luc De Raedt. “Soft-Unification in Deep Probabilistic Logic”. In:

NeurIPS. 2024.

[79] Arjun Majumdar et al. “ZSON: Zero-Shot Object-Goal Navigation Using Multi-

modal Goal Embeddings”. In: NeurIPS. 2022.

[80] Robin Manhaeve, Giuseppe Marra, and Luc De Raedt. “Approximate Inference for

Neural Probabilistic Logic Programming”. In: ICPKRR. 2021.

[81] Robin Manhaeve et al. “Neural Probabilistic Logic Programming in DeepProbLog”.

In: AI 298 (2021), p. 103504.

[82] Emanuele Marconato, Stefano Teso, and Andrea Passerini. “Neuro-Symbolic Rea-

soning Shortcuts: Mitigation Strategies and Their Limitations”. In: NeSy Workshop.

2023.

[83] Emanuele Marconato et al. “BEARS Make Neuro-Symbolic Models Aware of Their

Reasoning Shortcuts”. In: UAI. 2024.

[84] Emanuele Marconato et al. “Not All Neuro-Symbolic Concepts Are Created Equal:

Analysis and Mitigation of Reasoning Shortcuts”. In: NeurIPS. 2023.

[85] Giuseppe Marra. “Bridging Symbolic and Subsymbolic Reasoning with Minimax

Entropy Models”. In: IA 15.2 (2022), pp. 71–90.

[86] Giuseppe Marra and Ondřej Kuželka. “Neural Markov Logic Networks”. In: UAI.

2021.

[87] Giuseppe Marra et al. “From Statistical Relational to Neurosymbolic Artificial In-

telligence: A Survey”. In: AI 328 (2024), p. 104062.

[88] Giuseppe Marra et al. “Integrating Learning and Reasoning with Deep Logic Mod-

els”. In: ECMLKDD. 2019.

[89] Giuseppe Marra et al. “Relational Neural Machines”. In: ECAI. 2020.

194

[90] Pedro Zuidberg Dos Martires, Luc De Raedt, and Angelika Kimmig. “Declara-

tive Probabilistic Logic Programming in Discrete-Continuous Domains”. In: AI 337

(2024), p. 104227.

[91] Lina Mezghani et al. “Memory-Augmented Reinforcement Learning for Image-Goal

Navigation”. In: IROS. 2022.

[92] Paul Milgrom and Ilya Segal. “Envelope Theorems for Arbitrary Choice Sets”. In:

Econometrica 70.2 (2002), pp. 583–601.

[93] Marvin Minsky. “Logical vs. Analogical or Symbolic vs. Connectionist or Neat vs.

Scruffy”. In: AI Magazine 12.2 (1991), pp. 34–51.

[94] Eleonora Misino, Giuseppe Marra, and Emanuele Sansone. “VAEL: Bridging Vari-

ational Autoencoders and Probabilistic Logic Programming”. In: NeurIPS. 2022.

[95] Till Mossakowski. “Modular Design Patterns for Neural-Symbolic Integration: Re-

finement and Combination”. In: NeSy Workshop (2022).

[96] Neural-Symbolic Learning and Reasoning Workshop at IJCAI. 2005.

[97] International Conference on Neural-Symbolic Learning and Reasoning. 2024.

[98] OpenAI. GPT-4 Technical Report. Tech. rep. OpenAI, 2024.

[99] Liangming Pan et al. “Logic-LM: Empowering Large Language Models with Sym-

bolic Solvers for Faithful Logical Reasoning”. In: EMNLP. 2023.

[100] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learn-

ing Library”. In: NeurIPS. 2019.

[101] Karl Pearson. “The Problem of the Random Walk”. In: Nature 72.1867 (1905),

pp. 342–342.

[102] Fabian Pedregosa. “Hyperparameter Optimization with Approximate Gradient”. In:

ICML. 2016.

[103] Connor Pryor et al. “NeuPSL: Neural Probabilistic Soft Logic”. In: IJCAI. 2023.

195

[104] Connor Pryor et al. “Using Domain Knowledge to Guide Dialog Structure Induction

via Neural Probabilistic Soft Logic”. In: Annual Meeting of the Association for

Computational Linguistics (ACL). Toronto, Canada, 2023.

[105] Aravind Rajeswaran et al. “Meta-Learning with Implicit Gradients”. In: NeurIPS.

2019.

[106] Santhosh Kumar Ramakrishnan et al. “Habitat-Matterport 3D Dataset (HM3D):

1000 Large-scale 3D Environments for Embodied AI”. In: NeurIPS. 2021.

[107] Abhinav Rastogi et al. “Towards Scalable Multi-Domain Conversational Agents:

The Schema-Guided Dialogue Dataset”. In: AAAI. 2020.

[108] Tim Rocktäschel and Sebastian Riedel. “End-to-end Differentiable Proving”. In:

NeurIPS. 2017.

[109] Guido van Rossum and Python Software Foundation. Python Programming Lan-

guage. https://www.python.org/. 1991.

[110] Ruslan Salakhutdinov and Hugo Larochelle. “Efficient Learning of Deep Boltzmann

Machines”. In: AISTATS. 2010.

[111] Franco Scarselli et al. “The Graph Neural Network Model”. In: IEEE Transactions

on Neural Networks 20.1 (2009), pp. 61–80.

[112] Ramprasaath R. Selvaraju et al. “Grad-CAM: Visual Explanations from Deep Net-

works via Gradient-Based Localization”. In: ICCV. 2017.

[113] Prithviraj Sen et al. “Collective Classification in Network Data”. In: AI Magazine

29.3 (2008), pp. 93–106.

[114] Luciano Serafini and Artur S. d’Avila Garcez. “Learning and Reasoning with Logic

Tensor Networks”. In: AI*IA. 2016.

[115] Weiyan Shi, Tiancheng Zhao, and Zhou Yu. “Unsupervised Dialog Structure Learn-

ing”. In: ACL. 2019.

[116] Hikaru Shindo et al. “α ILP: Thinking Visual Scenes as Differentiable Logic Pro-

grams”. In: ML 112.5 (2023), pp. 1465–1497.

196

https://www.python.org/

[117] Karan Sikka et al. Deep Adaptive Semantic Logic (DASL): Compiling Declarative

Knowledge into Deep Neural Networks. Tech. rep. SRI International, 2020.

[118] Gurkirt Singh et al. “ROAD: The Road Event Awareness Dataset for Autonomous

Driving”. In: IEEE TPAMI 45 (2021), pp. 1036–1054.

[119] Gustav Sourek et al. “Lifted Relational Neural Networks: Efficient Learning of La-

tent Relational Structures”. In: JAIR 62 (2018), pp. 69–100.

[120] Sriram Srinivasan et al. “A Taxonomy of Weight Learning Methods for Statistical

Relational Learning”. In: Machine Learning (2021).

[121] Aarohi Srivastava et al. “Beyond the Imitation Game: Quantifying and extrapolat-

ing the capabilities of language models”. In: arXiv (2022).

[122] Mihaela Cătălina Stoian, Eleonora Giunchiglia, and Thomas Lukasiewicz. “Exploit-

ing T-norms for Deep Learning in Autonomous Driving”. In: NeSy. 2023.

[123] Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. MIT

Press, 2018.

[124] Richard Sutton et al. “Policy Gradient Methods for Reinforcement Learning with

Function Approximation”. In: NeurIPS. 1999.

[125] Geoffrey G. Towell and Jude W. Shavlik. “Knowledge-Based Artificial Neural Net-

works”. In: AI 70.1-2 (1994), pp. 119–165.

[126] Son N. Tran and Artur S. d’Avila Garcez. “Deep Logic Networks: Inserting and Ex-

tracting Knowledge From Deep Belief Networks”. In: IEEE Transactions on Neural

Networks and Learning Systems 29.2 (2018), pp. 246–258.

[127] Emile van Krieken, Erman Acar, and Frank van Harmelen. “Analyzing Differentiable

Fuzzy Logic Operators”. In: Artificial Intelligence (AI) 302 (2022), p. 103602.

[128] Emile van Krieken et al. “A-NeSI: A Scalable Approximate Method for Probabilistic

Neurosymbolic Inference”. In: NeurIPS. 2023.

[129] Ashish Vaswani et al. In: Attention Is All You Need. Vol. 30. NIPS, 2017, pp. 5998–

6008.

197

[130] Nguyen Xuan Vinh, Julien Epps, and James Bailey. “Information Theoretic Mea-

sures for Clusterings Comparison: Variants, Properties, Normalization and Correc-

tion for Chance”. In: Journal of Machine Learning Research 11 (2010), pp. 2837–

2854.

[131] Marin Vlastelica et al. “Differentiation of Blackbox Combinatorial Solvers”. In:

ICLR. 2020.

[132] Po-Wei Wang et al. “Satnet: Bridging Deep Learning and Logical Reasoning Using

a Differentiable Satisfiability Solver”. In: ICML. 2019.

[133] Jason Wei et al. “Chain-of-thought prompting elicits reasoning in large language

models”. In: NeurIPS. 2022.

[134] Max Welling and Yee W Teh. “Bayesian Learning via Stochastic Gradient Langevin

Dynamics”. In: ICML. 2011.

[135] Ronald Williams. “Simple Statistical Gradient-Following Algorithms for Connec-

tionist Reinforcement Learning”. In: Machine Learning 8 (1992), pp. 229–256.

[136] Thomas Winters et al. “DeepStochLog: Neural Stochastic Logic Programming”. In:

AAAI. 2022.

[137] Felix Wu et al. “Simplifying Graph Convolutional Networks”. In: ICML. 2019.

[138] Jingyi Xu et al. “A Semantic Loss Function for Deep Learning with Symbolic Knowl-

edge”. In: ICML. 2018.

[139] B. Yamauchi. “A Frontier-Based Approach for Autonomous Exploration”. In: CIRA.

1997.

[140] Fan Yang, Zhilin Yang, and William W. Cohen. “Differentiable Learning of Logical

Rules for Knowledge Base Reasoning”. In: NeurIPS. 2017.

[141] Zhun Yang, Adam Ishay, and Joohyung Lee. “NeurASP: Embracing Neural Net-

works into Answer Set Programming”. In: IJCAI. 2020.

[142] Dongran Yu et al. “A Survey on Neural-Symbolic Learning Systems”. In: NN 166

(2023), pp. 105–126.

198

[143] Jing Zhang et al. “Neural, Symbolic, and Neural-Symbolic Reasoning on Knowledge

Graphs”. In: AI Open 2 (2021), pp. 14–35.

[144] Junbo Zhao, Michael Mathieu, and Yann LeCun. “Energy-based Generative Adver-

sarial Networks”. In: ICLR. 2017.

[145] Kaiwen Zhou et al. “Esc: Exploration with Soft Commonsense Constraints for Zero-

Shot Object Navigation”. In: ICML. 2023.

199

Appendix A

Extended Model Details

This appendix serves to provide additional details and supplementary information

supporting the experimental evaluation and methodologies presented in this dissertation.

The appendix is organized as follows:

• NeuPSL Symbolic Constraints (Appendix A.1): This section provides the base

set of NeuPSL symbolic constraints used across each dataset featured in the experi-

mental evaluation (Section 7.1).

A.1 NeuPSL Symbolic Constraints

This section provides a foundational overview of the NeuPSL symbolic constraints

employed across the datasets used in the experimental evaluation (Section 7.1). The focus

here is on presenting the base constraints in the NeuPSL models for each experimental set-

ting. While this overview outlines the core structure of the models, variations introduced in

specific empirical scenarios (Chapter 7) or fine-grained details regarding the exact NeuPSL

syntax are excluded. The primary aim of this section is to offer a clear understanding of the

baseline rule sets utilized for each dataset, serving as a reference point for the experiments

conducted throughout the dissertation. This section is organized as follows: MNIST-Add1

(Section A.1.1), MNIST-Add2 (Section A.1.2), Visual Sudoku (Section A.1.3), Pathfind-

ing (Section A.1.4), Citation Network (Section A.1.5), RoadR (Section A.1.6), Zero-Shot

200

Object Navigation (Section A.1.7), Dialog Structure Induction (Section A.1.8), Synthetic

Mixture of Experts (Section A.1.9), and Logic Deduction (Section A.1.10).

Figure A.1: NeuPSL MNIST-Add1 Symbolic Model

Digit Sums

w1 : Neural(Img1, X) ∧Neural(Img2, Y) ∧DigitSum(X, Y, Z) → Sum(Img1, Img2, Z)

w2 : ¬Neural(Img1, X) ∧Neural(Img2, Y) ∧DigitSum(X, Y, Z) → ¬Sum(Img1, Img2, Z)

w3 : Neural(Img1, X) ∧ ¬Neural(Img2, Y) ∧DigitSum(X, Y, Z) → ¬Sum(Img1, Img2, Z)

Digit Constraints

w4 : Neural(Img1,+X) >= Sum(Img1, Img2, Z){X : PossibleDigits(X, Z)}

w5 : Neural(Img2,+X) >= Sum(Img1, Img2, Z){X : PossibleDigits(X, Z)}

Simplex Constraints

Sum(Img1, Img2,+Z) = 1.

A.1.1 MNIST-Add1

The NeuPSL model for the MNIST-Add1 experiments incorporates symbolic con-

straints depicted in Figure A.1. The symbolic model includes the following predicates:

• Neural(Img, X) The Neural predicate is the class probability for each image as

inferred by the neural network. Img is MNIST image identifier and X is a digit class

that the image may represent.

• DigitSum(X, Y, Z) The DigitSum predicate determines if two digits (X and Y) sum

to a number (Z). For example, DigitSum(4, 5, 9) would return 1 as 4 added to 5 is

9. Conversely, DigitSum(2, 2, 5) would return 0 as 2 added to 2 is not 5.

• Sum(Img1, Img2, Z) The Sum predicate is the probability that the digits represented

in the images identified by arguments Img1 and Img2 add up to the number identified

by the argument Z. This predicate instantiates decision variables, i.e., variables from

201

this predicate are not fixed during inference and learning as described in the NeSy

EBM, NeuPSL, and Inference and Learning sections.

• PossibleDigits(X, Z) The PossibleDigits predicate determines if a digit (X) can

be included in a sum that equals a number (Z). For example, PossibleDigits(9, 0)

would return 0 as no positive digit when added to 9 will equal 0. Conversely,

PossibleDigits(9, 17) would return 1 as 8 added to 9 equals 17.

The Digit Sums constraints represents the summation of the two images Img1

and Img2, i.e., if the neural model labels the image id Img1 as digit X and Img2 as Y and

the digits X and Y sum to Z then the sum of the images must be Z.

The Digit Constraints constraints restrict the possible values of the Sum predicate

based on the neural model’s prediction. For instance, if the neural model predicts that the

digit label for image Img1 is 1, then the sum that Img1 is involved in cannot be any less

than 1 or greater than 10.

A.1.2 MNIST-Add2

The NeuPSL model for the MNIST-Add2 experiment incorporates symbolic con-

straints depicted in Figure A.2. The symbolic model includes the following predicates:

• Neural(Img, X) The Neural predicate is the class probability for each image as

inferred by the neural network. Img is MNIST image identifier and X is a digit class

that the image may represent.

• DigitSum(X, Y, Z) The DigitSum predicate determines if two digits (X and Y) sum

to a number (Z). For example, DigitSum(4, 5, 9) would return 1 as 4 added to 5 is

9. Conversely, DigitSum(2, 2, 5) would return 0 as 2 added to 2 is not 5.

• Sum(Img1, Img2, Img3, Img4, Z) The Sum predicate is the probability that the num-

bers represented in the images identified by arguments (Img1, Img2) and (Img3, Img4)

add up to the number identified by the argument Z. This predicate instantiates de-

cision variables, i.e., variables from this predicate are not fixed during inference and

202

Figure A.2: NeuPSL MNIST-Add2 Symbolic Model

Tens Digit Sums

w1 : Neural(Img1, X) ∧Neural(Img3, Y) ∧DigitSum(X, Y, Z) → ImageDigitSum(Img1, Img3, Z)

w2 : ¬Neural(Img1, X) ∧Neural(Img3, Y) ∧DigitSum(X, Y, Z) → ¬ImageDigitSum(Img1, Img3, Z)

w3 : Neural(Img1, X) ∧ ¬Neural(Img3, Y) ∧DigitSum(X, Y, Z) → ¬ImageDigitSum(Img1, Img3, Z)

Ones Digit Sums

w4 : Neural(Img2, X) ∧Neural(Img4, Y) ∧DigitSum(X, Y, Z) → ImageDigitSum(Img2, Img4, Z)

w5 : ¬Neural(Img2, X) ∧Neural(Img4, Y) ∧DigitSum(X, Y, Z) → ¬ImageDigitSum(Img2, Img4, Z)

w6 : Neural(Img2, X) ∧ ¬Neural(Img4, Y) ∧DigitSum(X, Y, Z) → ¬ImageDigitSum(Img2, Img4, Z)

Place Digit Sums

ImageDigitSum(Img1, Img3, Z10) ∧ ImageDigitSum(Img2, Img4, Z1) ∧ PlaceNumberSum(Z10, Z1, Z)

→ Sum(Img1, Img2, Img3, Img4, Z)

¬ImageDigitSum(Img1, Img3, Z10) ∧ ImageDigitSum(Img2, Img4, Z1) ∧ PlaceNumberSum(Z10, Z1, Z)

→ ¬Sum(Img1, Img2, Img3, Img4, Z)

ImageDigitSum(Img1, Img3, Z10) ∧ ¬ImageDigitSum(Img2, Img4, Z1) ∧ PlaceNumberSum(Z10, Z1, Z)

→ ¬Sum(Img1, Img2, Img3, Img4, Z)

Tens Digit Constraints

w7 : Neural(Img1,+X) >= Sum(Img1, Img2, Img3, Img4, Z){X : PossibleTensDigits(X, Z)}

w8 : Neural(Img3,+X) >= Sum(Img1, Img2, Img3, Img4, Z){X : PossibleTensDigits(X, Z)}

Ones Digit Constraints

w9 : Neural(Img2,+X) >= Sum(Img1, Img2, Img3, Img4, Z){X : PossibleOnesDigits(X, Z)}

w10 : Neural(Img4,+X) >= Sum(Img1, Img2, Img3, Img4, Z){X : PossibleOnesDigits(X, Z)}

Digit Sum Constraints

w11 : Neural(Img1,+X) >= ImageDigitSum(Img1, Img3, Z){X : PossibleDigits(X, Z)}

w12 : Neural(Img3,+X) >= ImageDigitSum(Img1, Img3, Z){X : PossibleDigits(X, Z)}

w13 : Neural(Img2,+X) >= ImageDigitSum(Img2, Img4, Z){X : PossibleDigits(X, Z)}

w14 : Neural(Img4,+X) >= ImageDigitSum(Img2, Img4, Z){X : PossibleDigits(X, Z)}

Number Sum Constraints

ImageDigitSum(Img1, Img3,+X) >= Sum(Img1, Img2, Img3, Img4, Z){X : PossibleTensSums(X, Z)}

ImageDigitSum(Img2, Img4,+X) >= Sum(Img1, Img2, Img3, Img4, Z){X : PossibleOnesSums(X, Z)}

Simplex Constraints

Sum(Img1, Img2, Img3, Img4,+X) = 1.

ImageDigitSum(Img1, Img2,+X) = 1.

203

learning as described in the NeSy EBM, NeuPSL, and Inference and Learning sec-

tions.

• PossibleTenDigits(X, Z) PossibleTenDigits takes a 0 or 1 value representing

whether the digit identified by the argument X is possible when it is in the tens place

of a number involved in a sum that totals to the number identified by the argument Z.

For instance PossibleTenDigits(9, 70) = 0 as no positive number added to a num-

ber with a 9 in the tens place, e.g., 92, equals 70, while PossibleTenDigits(9, 170) =

1 as 78 added to 92 is 170.

• PossibleOnesDigits(X, Z)PossibleOnesDigits takes a 0 or 1 value representing

whether the digit identified by the argument X is possible when it is in the ones place

of a number involved in a sum that totals to the number identified by the argument Z.

For instance PossibleOnesDigits(9, 7) = 0 as no positive number added to a num-

ber with a 9 in the ones place, e.g., 9, equals 7 while PossibleOnesDigits(9, 170) =

1 as 71 added to 99 is 170.

• ImageDigitSum(Img1, Img2, Z) The ImageDigitSum predicate is the probability

that the digits represented in the images specified by Img1 and Img2 will sum up to

the number indicated by the argument Z. These variables are considered latent in

the NeuPSL model as there are no truth labels for sums of images in the ones or tens

places.

• PlaceNumberSum(Z10, Z1, Z) The PlaceNumberSum predicate takes a 0 or 1

value representing whether the sum of the numbers Z10 and Z1, where Z10 is the

sum of digits in the tens place and Z1 is the sum of digits in the one place, adds up

to the number Z. For instance PlaceNumberSum(1, 15, 25) is 1 as 1 · 10 + 15 = 25.

The Tens Digit Sums and Ones Digit Sums constraints compute the sum of two

images in the same manner as the Digit Sums constraints in the MNIST-Add1 model.

The sum of the digits is captured by the latent variables instantiated by the predicate

ImageDigitSum.

204

The Place Digit Sums constraints use the value of the ImageDigitSum variables

to infer the sum of the images. More specifically, if the ImageDigitSum of the images

in the tens place, Img1 and Img3), is Z10, and the ImageDigitSum of the images in the

ones place, Img2 and Img4) is Z1, and if according to PlaceNumberSum the sum of the

numbers Z10 and Z1 is Z, then the Sum of the images must be Z. Notice that these

constraints are hard constraints as it is always possible and desirable to find values of the

ImageDigitSum and Sum variables that satisfy these relations.

The Tens Digit Constraint constraints restrict the possible values of the Sum

predicate based on the neural model’s prediction for the digit in the tens place of a number.

For instance, if the neural model predicts that the digit label for the image Img1 is 1 and

Img1 is in the tens place of a number, then the sum that Img1 is involved in cannot be any

less than 10 or greater than 118.

The Ones Digit Constraint constraints restrict the possible values of the Sum

predicate based on the neural model’s prediction for the digit in the ones place of a number.

For instance, if the neural model predicts that the digit label for the image Img2 is 5 and

Img2 is in the one place of a number, then the sum that Img2 is involved in cannot be any

less than 5 or greater than 194.

The Number Sum Constraint constraints limit the values that ImageDigitSum

and Sum can take using constraints representing the possible sums in the tens and ones

place. For instance, if the ImageDigitSum of two images, Img1 and Img3, both in the tens

place of two numbers being added, is 17, then the Sum cannot be less than 170 or greater

than 188. Furthermore, if the ImageDigitSum of two images, Img2 and Img4, both in

the tens place of two numbers being added, is 17, then the Sum cannot be less than 17 or

greater than 197, and must have a 7 in the ones place.

A.1.3 Visual Sudoku

The NeuPSL model for the visual sudoku experiments incorporates symbolic con-

straints depicted in Figure A.3. The symbolic model includes the following predicates:

• Neural(Puzzle, X, Y, Number) The Neural predicate contains the output class prob-

205

Figure A.3: NeuPSL Visual Sudoku Symbolic Model

Row Constraint

Neural(Puzzle,+X, Y, Number) = 1.

Column Constraint

Neural(Puzzle, X,+Y, Number) = 1.

Block Constraint

Neural(Puzzle, “0”, “0”, Number) +Neural(Puzzle, “0”, “1”, Number)

+Neural(Puzzle, “1”, “0”, Number) +Neural(Puzzle, “1”, “1”, Number) = 1.

Neural(Puzzle, “2”, “0”, Number) +Neural(Puzzle, “2”, “1”, Number)

+Neural(Puzzle, “3”, “0”, Number) +Neural(Puzzle, “3”, “1”, Number) = 1.

Neural(Puzzle, “0”, “2”, Number) +Neural(Puzzle, “0”, “3”, Number)

+Neural(Puzzle, “1”, “2”, Number) +Neural(Puzzle, “1”, “3”, Number) = 1.

Neural(Puzzle, “2”, “2”, Number) +Neural(Puzzle, “2”, “3”, Number)

+Neural(Puzzle, “3”, “2”, Number) +Neural(Puzzle, “3”, “3”, Number) = 1.

Pin First Column

w2 : FirstPuzzle(Puzzle, X, Y)−Neural(Puzzle, X, Y) = 0.0

ability for each digit image inferred by the neural network. Puzzle is sudoku puzzle’s

identifier, X and Y represent the location of image in the puzzle, and Number is a digit

that image may represent.

• Digit(Puzzle, X, Y, Number) The Digit predicate has the same arguments as the

Neural predicate, representing PSL’s digit prediction on the image.

• FirstPuzzle, X, Y(Puzzle) The FirstPuzzle predicate pins the values for the first

row of the first puzzle to an arbitrary assignment. This is used to force the neural

model to learn the correct label representation for easier evaluation.

The Row Constraint, Column Constraint, and Block Constraint constraints en-

code the standard Sudoku constraints into constraints. These constraints restrict multiple

instances of a digit from appearing in a row, column, or block, respectively.

206

The Pin First Column constraints are used to assign arbitrary classes to the first

row of a Sudoku puzzle. The first row of the first correct puzzle from the training set is used

to determine this arbitrary label assignment. By assigning the first row to arbitrary classes,

the neural model is provided a starting point for differentiating between the different classes

and makes the final evaluation easier.

Figure A.4: NeuPSL Pathfinding Symbolic Model

Neural Cost

w1 : Cost(X, Y) = Path(X, Y, X1, Y1)

Sink and Source Nodes

Start(X, Y) → Path(”− 1”, ”− 1”, X, Y).

End(X, Y) → Path(X, Y, ”− 1”, ”− 1”,).

Path Flow Constraints

Path(X, Y,+OutX,+OutY) <= 1.

Path(+InX,+InY, X, Y) <= 1.

A.1.4 Pathfinding

The NeuPSL model for the pathfinding experiments incorporates symbolic con-

straints depicted in Figure A.4. The symbolic model includes the following predicates:

• Path(X1, Y1, X2, Y2) The Path predicate represents the existence of a path between

two nodes. X1 and Y1 denote the source node coordinates, while X2 and Y2 denote

the destination node coordinates. This predicate is true if a valid path exists between

the nodes.

• Cost(X, Y) The Cost predicate captures the traversal cost from the node at (X, Y).

This cost is inferred from the neural network’s predictions and integrated into the

symbolic reasoning process for optimization.

207

• Start(X, Y) The Start predicate identifies the starting node in the pathfinding prob-

lem. It is true if the node at (X, Y) is the source of the path.

• End(X, Y) The End predicate identifies the destination node. It is true if the node

at (X, Y) is the target or sink for the path.

The Neural Cost Constraint ensures that neural predictions are used to guide the

cost of traversal, integrating the neural model’s capabilities into the symbolic reasoning

process. The Source and Sink Constraints enforce boundary conditions for the paths,

ensuring paths begin and end at the correct nodes. Finally, the Path Flow Constraints

enforce the path’s validity by restricting nodes to only participate in one incoming and one

outgoing path, maintaining flow consistency.

Figure A.5: NeuPSL Citation Network Symbolic Model

L2 Loss

w1 : Neural(Paper, Label) = Category(Paper, Label)

Label Propagation

w2 : Link(Paper1, Paper2) ∧ Category(Paper1, Label) → Category(Paper2, Label)

Simplex Constraints

Category(Paper,+Label) = 1.

A.1.5 Citation Network

The NeuPSL model for the citation network experiments incorporates symbolic

constraints depicted in Figure A.5. The symbolic model includes the following predicates:

• Neural(Paper, Label) The Neural predicate contains the output class probability

for each paper as inferred by the neural network. Paper is the identifier and Label

is the category it can take.

• Category(Paper, Label) The Category predicate has the same arguments as the

Neural predicate and represents PSL’s label prediction on the paper.

208

• Link(Paper1, Paper2) The Link predicate denotes whether two papers share a cita-

tion link.

The Label Propagation rule propagates node labels to neighbors. In this sense, it

encodes the idea that papers sharing a citation link are likely to have the same underlying

label category.

Figure A.6: NeuPSL RoadR Object Detection Symbolic Model

Logical Constraints for Class Co-occurrence

1.0 : Neural(FrameID, BoundingBoxID, Class1) ∧ ¬CoOccurrence(Class1, Class2)

→ ¬Neural(FrameID, BoundingBoxID, Class2)

One Agent Constraint

1.0 : Neural(FrameID, BoundingBoxID,+Class) = 1 {Class : Agent(Class)}

At Least One Action Constraint

1.0 : Neural(FrameID, BoundingBoxID,+Class) ≥ 1 {Class : Action(Class)}

At Least One Location Constraint

1.0 : Neural(FrameID, BoundingBoxID,+Class) +Neural(FrameID, BoundingBoxID, traffic light)

+Neural(FrameID, BoundingBoxID, other traffic light) ≥ 1 {Class : Location(Class)}

A.1.6 RoadR

The NeuPSL model for the Road-R experiments incorporates symbolic constraints

depicted in Figure A.6. The symbolic model includes the following predicates:

• Neural(FrameID, BoundingBoxID, Class): This predicate represents the neural net-

work’s predicted probability that the bounding box identified by BoundingBoxID in

frame FrameID corresponds to the class Class.

• CoOccurrence(Class1, Class2): Specifies whether two object classes, Class1 and

Class2, are allowed to co-occur within a single frame. There are 861 co-occurrence

binary values.

209

• Agent(Class): Indicates whether the class Class is an agent.

• Action(Class): Indicates whether the class Class is an action.

• Location(Class): Indicates whether the class Class is a location.

The Logical Constraints for Class Co-occurrence ensure that object classes which

are mutually exclusive due to semantic or domain requirements cannot co-occur. For

example, a traffic light cannot simultaneously be classified as both green and red, so the

model must enforce that at least one of these states is false for any given detection. The

One Agent Constraint ensures that each bounding box is associated with exactly one agent.

The At Least One Action Constraint enforces that every bounding box is associated with

at least one action. The At Least One Location Constraint guarantees that every bounding

box has at least one location, unless the agent is a traffic light or other traffic light (these

do not need to have a location).

Figure A.7: NeuPSL Zero Shot Object Navigation Symbolic Model

Object Reasoning

w1 : IsCooccur(Goal, Object) ∧ IsNearObj(Frontier, Object) → ChooseFrontier(Frontier)

w2 :!IsCooccur(Goal, Object) ∧ IsNearObj(Frontier, Object) →!ChooseFrontier(Frontier)

Room Reasoning

w3 : IsCooccur(Goal, Room) ∧ IsNearObj(Frontier, Object) → ChooseFrontier(Frontier)

w4 :!IsCooccur(Goal, Room) ∧ IsNearObj(Frontier, Object) →!ChooseFrontier(Frontier)

Distant Constraint

w5 : ShortDist(Frontier) → ChooseFrontier(Frontier)

Simplex Constraints

ChooseFrontier(+Frontier) = 1.

210

A.1.7 Zero-Shot Object Navigation

The NeuPSL model for the zero-shot object navigation experiments incorporates

symbolic constraints depicted in Figure A.7. The symbolic model includes the following

predicates:

• IsCooccur(Goal, Object) The IsCooccur predicate contains the co-occurrence score

for each object and goal pair inferred by the neural network. Goal is the goal identifier

and Object is the object identifier.

• IsCooccur(Goal, Room) The IsCooccur predicate contains the co-occurrence score

for each room and goal pair inferred by the neural network. Goal is the goal identifier

and Room is the room identifier.

• ChooseFrontier(Frontier) The ChooseFrontier predicate contains the score for

each frontier that can be taken.

• ShortDist(Frontier) The ShortDist predicate contains the distance to each fron-

tier.

The Object and Room Reasoning rules assign weight to the frontier by leveraging

the LLM’s reasoning about the likelihood of specific objects and rooms being associated

with the goal. In essence, this approach guides the frontier based on the LLM’s assessment

of the relevance of each option.

A.1.8 Dialog Structure Induction

The NeuPSL model for the dialog structure induction experiments incorporates

symbolic constraints depicted in Figure A.8 for the SGD data settings and Figure A.9 for

the MultiWoZ data settings.

SGD: The SGD symbolic model includes the following predicates:

• State(Utt, Class)

The State continuous valued predicate is the probability that an utterance, identified

211

Figure A.8: NeuPSL SGD Dialog Structure Induction Symbolic Model

Token Constraint

w1 : HasWord(Utt, Class) → State(Utt, Class)

by the argument Utt, belongs to a dialog state, identified by the argument Class.

For instance, the utterance hello world ! for the greet dialog state would create a

predicate with a value between zero and one, i.e., State(hello world !greet) = 0.7.

• HasWord(Utt, Class)

The HasWord binary predicate indicates if an utterance, identified by the ar-

gument Utt, contains a known token for a particular class, identified by the ar-

gument Class. For instance if a known token associated with the greet class is

hello, then the utterance hello world ! would create a predicate with value one, i.e.

HasWord(hello world !, greet) = 1.

The Token Constraint encodes the prior knowledge that utterances’ are likely to

belong to dialog states when an utterance contains tokens representing that state. For

example, if a known token associated with the greet class is hello, then the utterance

hello world ! is likely to belong to the greet state.

MultiWoZ: The MultiWoZ symbolic model includes the following predicates:

• State(Utt, Class)

The State continuous valued predicate is the probability that an utterance, identified

by the argument Utt, belongs to a dialog state, identified by the argument Class.

For instance, the utterance hello world ! for the greet dialog state would create a

predicate with a value between zero and one, i.e., State(hello world !greet) = 0.7.

• FirstUtt(Utt)

The FirstUtt binary predicate indicates if an utterance, identified by the argument

Utt, is the first utterance in a dialog.

212

Figure A.9: NeuPSL MultiWoZ Dialog Structure Induction Symbolic Model

Dialog Start

w1 : ¬FirstUtt(Utt) → ¬State(Utt, greet)

w2 : FirstUtt(Utt) ∧HasGreetWord(Utt) → State(Utt, greet)

w3 : FirstUtt(Utt) ∧ ¬HasGreetWord(Utt) → State(Utt, init request)

Dialog Middle

w4 : PrevUtt(Utt1, Utt2) ∧ State(Utt2, greet) → State(Utt1, init request)

w5 : PrevUtt(Utt1, Utt2) ∧ ¬State(Utt2, greet) → ¬State(Utt1, init request)

w6 : PrevUtt(Utt1, Utt2) ∧ State(Utt2, init request) → State(Utt1, second request)

w7 : PrevUtt(Utt1, Utt2) ∧ State(Utt2, second request) ∧HasInfoQuestionWord(Utt1)

→ State(Utt1, info question)

w8 : PrevUtt(Utt1, Utt2) ∧ State(Utt2, second request) ∧HasSlotQuestionWord(Utt1)

→ State(Utt1, slot question)

w9 : PrevUtt(Utt1, Utt2) ∧ State(Utt2, end) ∧HasCancelWord(Utt1) → State(Utt1, cancel)

Dialog End

w10 : LastUtt(Utt) ∧HasEndWord(Utt) → State(Utt, end)

w11 : LastUtt(Utt) ∧HasAcceptWord(Utt) → State(Utt, accept)

w12 : LastUtt(Utt) ∧HasInsistWord(Utt) → State(Utt, insist)

• LastUtt(Utt)

The LastUtt binary predicate indicates if an utterance, identified by the argument

Utt, is the last utterance in a dialog.

• PrevUtt(Utt1, Utt2)

The PrevUtt binary predicate indicates if an utterance, identified by the argument

Utt2, is the previous utterance in a dialog of another utterance, identified by the

argument Utt1.

• HasGreetWord(Utt)

The HasGreetWord binary predicate indicates if an utterance, identified by the

213

argument Utt, contains a known token for the greet class. The list of known greet

words is [′hello′,′ hi′].

• HasInfoQuestionWord(Utt)

The HasInfoQuestionWord binary predicate indicates if an utterance, identified

by the argument Utt, contains a known token for the info question class. The list of

known info question words is [′address′,′ phone′].

• HasSlotQuestionWord(Utt)

The HasSlotQuestionWord binary predicate indicates if an utterance, identified

by the argument Utt, contains a known token for the slot question class. The list of

known slot question words is [′what′,′ ?′].

• HasInsistWord(Utt)

The HasInsistWord binary predicate indicates if an utterance, identified by the

argument Utt, contains a known token for the insist class. The list of known insist

words is [′sure′,′ no′].

• HasCancelWord(Utt)

The HasCancelWord binary predicate indicates if an utterance, identified by the

argument Utt, contains a known token for the cancel class. The list of known cancel

words is [′no′].

• HasAcceptWord(Utt)

The HasAcceptWord binary predicate indicates if an utterance, identified by the

argument Utt, contains a known token for the accept class. The list of known accept

words is [′yes′,′ great′].

• HasEndWord(Utt)

The HasEndWord binary predicate indicates if an utterance, identified by the ar-

gument Utt, contains a known token for the end class. The list of known end words

is [′thank′,′ thanks′].

214

The Dialog Start constraints take advantage of the inherent structure built into

the beginning of a dialog. 1) If the first turn utterance does not contain a known greet

word, then it does not belong to the greet state. 2) If the first turn utterance contains a

known greet word, then it belongs to the greet state. 3) If the first turn utterance does

not contain a known greet word, then it belongs to the initial request state.

The Dialog Middle constraints exploit the temporal dependencies within the mid-

dle of a dialog. 1) If the previous utterance belongs to the greet state, then the current

utterance belongs to the initial request state. 2) If the previous utterance does not be-

long to the greet state, then the current utterance does not belong to the initial request

state. 3) If the previous utterance belongs to the initial request state, then the current

utterance belongs to the second request state. 4) If the previous utterance belongs to

the second request state and it has a known info question token, then the current ut-

terance belongs to the info question state. 5) If the previous utterance belongs to the

second request state and it has a known slot question token, then the current utterance

belongs to the slot question state. 4) If the previous utterance belongs to the end state

and it has a known cancel token, then the current utterance belongs to the cancel state.

The Dialog End constraints take advantage of the inherent structure built into

the end of a dialog. 1) If the last turn utterance contains a known end word, then it

belongs to the end state. 2) If the last turn utterance contains a known accept word, then

it belongs to the accept state. 3) If the last turn utterance contains a known insist word,

then it belongs to the insist state.

A.1.9 Synthetic Mixture of Experts

The NeuPSL model for the synthetic mixture of experts experiments incorporates

symbolic constraints depicted in Figure A.10. The symbolic model includes the following

predicates:

• Neural(Paper, Label) The Neural predicate contains the output class probability

for each paper as inferred by a baseline neural network. Paper is the identifier and

Label is the category it can take.

215

Figure A.10: NeuPSL Synthetic Mixture of Experts Symbolic Model

L2 Loss

w1 : Neural(Paper, Label) = Category(Paper, Label)

Label Propagation

w2 : Link(Paper1, Paper2) ∧ Category(Paper1, Label) → Category(Paper2, Label)

Simplex Constraints

Category(Paper,+Label) = 1.

• Category(Paper, Label) The Category predicate has the same arguments as the

Neural predicate and represents PSL’s label prediction on the paper.

• Link(Paper1, Paper2) The Link predicate denotes whether two papers share a cita-

tion link.

The Label Propagation rule propagates node labels to neighbors. In this sense, it

encodes the idea that papers sharing a citation link are likely to have the same underlying

label category.

A.1.10 Logic Deduction

The NeuPSL model for logic deduction experiments incorporates symbolic con-

straints created using a LLM, which was prompted with context similarly depecited in

Figure A.11.

216

Figure A.11: NeuPSL Logic Deduction Prompt for Generating Symbolic Model

Task Description:

You are given a problem description. The task is to parse the problem as a logical program, defining the Domain,

Predicates, Targets, Rules, and Query. Use plain text formatting with no bullets.

Context:

The following paragraphs each describe a set of three objects arranged in a fixed order. The statements are

logically consistent within each paragraph. In an antique car show, there are three vehicles: a station wagon, a

convertible, and a minivan. The station wagon is the oldest. The minivan is newer than the convertible.

Options:

A) The station wagon is the second-newest.

B) The convertible is the second-newest.

C) The minivan is the second-newest.

Map Variables:

[oldest = x , second-oldest = x , third-oldest = x]

[newest = x, second-newest = x , third-newest = x]

Domain:

x , x , x

Predicates:

Order(Vehicle, OrderIndex)

Targets:

{
["station-wagon", "convertible", "minivan"],

["x ", " x ", " x"]

}
Rules:

// The station wagon is the oldest: x

Order("station-wagon", "x ") = 1

// The minivan is newer than the convertible: minivan > convertible

Order("convertible", OrderIndexConvertible) & Order("minivan", OrderIndexMinivan) ->

(OrderIndexConvertible < OrderIndexMinivan)

// Each vehicle has one order index.

Order(Vehicle, "x ") + Order(Vehicle, " x ") + Order(Vehicle, " x") = 1

// Each order index is assigned to one vehicle.

Order("station-wagon", OrderIndex) + Order("minivan", OrderIndex) + Order("convertible",

OrderIndex) = 1

Query:

// The station wagon is the second-newest: x

Order("station-wagon", " x ") = 1

// The convertible is the second-newest: x

Order("convertible", " x ") = 1

// The minivan is the second-newest: x

Order("minivan", " x ") = 1

217

	List of Figures
	List of Tables
	Abstract
	Dedication
	Acknowledgments
	Introduction
	Principled Foundations of Neural-Symbolic AI
	Contributions
	Organization

	I Neural-Symbolic Axioms of Integration
	Neural Symbolic Architectures with Hard and Soft Constraints
	Neural-Symbolic (NeSy) AI
	Hard and Soft Constraints
	Random Variables
	Hard Constraints
	Soft Constraints
	Constraint Optimization
	Solving Constrained Optimization Problems

	NeSy Architectures
	Symbolic as Neural Structure
	Sampling Neural for Symbolic
	Neural as Symbolic Parameter
	Neural as Symbolic Variable

	II Universal Neural-Symbolic Language
	Unifying NeSy through Energy-Based Models
	Neural Symbolic Energy-Based Models as a Unifying Mathematical Framework for NeSy
	NeSy-EBM Modeling Paradigms
	Deep Symbolic Variables
	Deep Symbolic Parameters
	Deep Symbolic Potentials

	Expressing NeSy Approaches via NeSy-EBMs
	Semantic Loss (SL)
	DeepProbLog (DPL)
	Logic Tensor Networks (LTNs)

	III Neural-Symbolic Design Principles
	Neural Symbolic Inference and Learning
	NeSy-EBM Inference
	NeSy Learning Design Principles
	Computation Graph vs. Optimization Execution
	Instance vs. Global Model Construction
	Decomposed vs. Unified Task Structure

	NeSy-EBM Learning
	Definition
	Learning Losses
	Learning Algorithms

	NeSy Learning Design Principles
	Distant Supervision Learning
	Structure-Informed Learning
	Learning with Constraint Loss
	Additional Design Guidelines

	Challenges and Pitfalls of NeSy Modeling Paradigmns, Learning, and Reasoning
	NeSy Modeling Paradigm Pitfalls
	Unfixed Deep Symbolic Variables
	Deep Symbolic Operations

	NeSy Inference Pitfalls
	Reasoning Shortcuts as Unintended Optima
	Poor Factorization/Decomposition
	Conditional Independence in NeSy Probabilistic Logics

	NeSy Learning Pitfalls
	Contextual Label Ambiguity
	Energy Loss Degenerate Solutions
	NeSy Soft Logic Pitfalls

	IV A General and Principled Neural-Symbolic Implementation
	Deep Hinge-Loss Markov Random Fields and Neural Probabilistic Soft Logic
	Deep Hinge-Loss Markov Random Fields
	Hinge-Loss Markov Random Fields
	Deep Hinge-Loss Markov Random Fields

	Inference and Learning in Deep Hinge-Loss Markov Random Fields
	MAP Inference
	Learning

	Syntax and Semantics of Neural Probabilistic Soft Logic
	Defining NeSy-EBM Modeling Paradigms using NeuPSL
	Deep Variables
	Deep Weights
	Deep Rules

	NeuPSL System
	System-Level Workflow
	Shared Memory Mechanism

	Empirical Analysis
	Datasets and Models
	NeSy Inference and Learning
	Inference
	Learning
	Zero-Shot Learning

	Comparing NeSy Approaches
	Overview of NeSy Models
	MNIST Addition
	MNIST Addion: Overlap
	Citeseer and Cora
	Synthetic Mixture of Symbolic Experts

	NeSy Pitfalls and Mitigation Strategies
	Reasoning Shortcuts
	Contextual Label Ambiguity
	Energy Loss Degenerate Solutions:
	Soft Logic Pitfalls in NeuPSL

	Related Work
	Neural-Symbolic Approaches
	Taxonomies of NeSy Approaches
	Energy-Based Models (EBMs)

	Future Work and Limitations
	Neural-Symbolic Axioms of Integration:
	Universal Neural-Symbolic Language
	Neural-Symbolic Design Principles:
	A General Neural-Symbolic Implementation

	Conclusion
	Extended Model Details
	NeuPSL Symbolic Constraints
	MNIST-Add1
	MNIST-Add2
	Visual Sudoku
	Pathfinding
	Citation Network
	RoadR
	Zero-Shot Object Navigation
	Dialog Structure Induction
	Synthetic Mixture of Experts
	Logic Deduction

