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Abstract

Knowledge graph (KG) embedding
techniques use structured relation-
ships between entities to learn low-
dimensional representations of entities
and relations. One prominent goal
of these approaches is to improve the
quality of knowledge graphs by remov-
ing errors and adding missing facts.
Surprisingly, most embedding tech-
niques have been evaluated on bench-
mark datasets consisting of dense and
reliable subsets of human-curated KGs,
which tend to be fairly complete and
have few errors. In this paper, we
consider the problem of applying em-
bedding techniques to KGs extracted
from text, which are often incomplete
and contain errors. We compare the
sparsity and unreliability of different
KGs and perform empirical experi-
ments demonstrating how embedding
approaches degrade as sparsity and un-
reliability increase.

1 Introduction

Recently knowledge graphs (KGs), structured
representations of knowledge bases, have be-
come an essential component of systems that
perform question-answering (Berant et al.,
2013), provide decision support, and enable
exploration and discovery (Dong et al., 2014).
Initial efforts to create KGs focused on struc-
tured information sources or relied extensively
on manual curation. However, the diversity
of knowledge available on resources like the
World Wide Web have spurred many projects
that tackle the more difficult task of automat-
ically constructing KGs (Nickel et al., 2016a).

Unfortunately, information extraction ap-
proaches for KG construction must overcome
complex, unreliable, and incomplete data.
Many machine learning methods have been
proposed to address the challenge of cleaning
and completing KGs. One popular class of
methods learn embeddings that translate en-
tities and relationships into a latent subspace,
then use this latent representation to derive
additional, unobserved facts and score exist-
ing facts (Bordes et al., 2013; Wang et al.,
2014; Lin et al., 2015).

Embedding methods have shown state-of-
the-art results on several benchmark datasets.
However, by construction, these benchmark
datasets differ from data in real KGs. First,
benchmark datasets have largely been re-
stricted to the most frequently occurring en-
tities in the KG. However in most KGs, en-
tities are associated with a sparse set of ob-
servations. Second, benchmark datasets con-
sist only of highly reliable facts from cu-
rated knowledge bases. In contrast, many KG
construction projects extract knowledge from
noisy data such as text or images, which in-
troduces unreliable information.

In this paper, we evaluate popular KG em-
bedding approaches on KGs that have sparse
entities and unreliable candidate facts. We ap-
ply embedding methods to an extracted KG
and modify existing benchmarks by varying
the sparsity and reliability of training data
used to learn embedding models. Using this
suite of datasets, we characterize where em-
bedding approaches are successful and the con-
ditions that result in degrading results. Based
on our insights, we provide recommendations
for improving embedding models and identify
promising areas of future exploration.



Dataset Triples ‖E‖ ‖R‖ EE RE ED RD prec

Freebase 1B 124M 15K 14 3.2 16 68K 1
WordNet 380K 116K 27 21 2.3 7 21K 1
NELL1000 92M 4.8M 435 21 4.9 19 210K 0.45

FB15K 592K 15K 1.3K 16 5.1 79 440 1
WN18 151K 40K 18 19 2.1 7 8.4K 1
NELL165 1M 820K 221 25 1.5 3 4.7K 0.35

Table 1: Statistics of knowledge graphs and extracted datasets. Triples are the number of individual facts in
the knowledge graph. ‖E‖ and ‖R‖ are unique entities and relations in the KG, respectively. EE and RE are
measures of entropy, ED and RD measures of density, and prec is the precision of triples.

2 Background and Related Work

Diverse strategies for knowledge base con-
struction include manually-crafted ontologies
for common-sense reasoning (Lenat, 1995),
community-driven collaborative efforts (Bol-
lacker et al., 2008), ontology-based extraction
from structured and textual sources (Mitchell
et al., 2015), and “open” approaches that rely
on textual information (Mausam et al., 2012).
In this paper, we contrast the properties of
two knowledge graphs that have clean, human-
vetted facts with two knowledge graphs that
are extracted from textual data.

Semantically meaningful embeddings of text
have been a longstanding topic of study in
NLP research (Turney and Pantel, 2010).
More recently, knowledge graphs, which cap-
ture structured relationships between entities,
has inspired methods such as matrix factor-
ization (Riedel et al., 2013), tensor factor-
ization (Nickel et al., 2011), and deep learn-
ing (Socher et al., 2013) that embed enti-
ties while preserving this relationship struc-
ture. We consider four state-of-the-art em-
bedding methods (Bordes et al., 2013; Wang
et al., 2014; Nickel et al., 2016b; Nguyen et al.,
2016) and assess their performance on knowl-
edge graphs with different properties.

3 Comparing Properties of KGs

In Table 1, we introduce three knowledge
graphs and a parallel set of benchmark
datasets derived from these KGs. Each KG
takes the form of triples that specify a rela-
tionship between a subject and an object. The
first two KGs, Freebase and WordNet, benefit
from human curation that results in precisely

defined entities and relationships and highly
reliable facts. The third KG, NELL, is ex-
tracted from a large Web text corpus using an
iterative co-training process and a pre-defined
set of relations and types. Due to the itera-
tive nature, NELL is a dynamic dataset and

the table reports statistics of the 1000th itera-
tion. FB15K and WN18, derived from Free-
base and WordNet, respectively, have been
used to train and evaluate many embedding
strategies. NELL165, based on an earlier iter-
ation of NELL, has been used as a benchmark
for probabilistic models. We compare the vital
statistics of these six datasets.

3.1 Size and Sampling

Despite the reliance on curation, Freebase is
the largest KG with more facts (‖T‖), unique
entities (‖E‖), and relationship types (‖R‖)
than others. NELL, is a tenth the size of Free-
base with substantially fewer entities and lim-
ited relations. WordNet, focused on NLP, is
the smallest and expresses only 27 relation-
ships between different words. The derived
benchmark datasets are substantially smaller
than the source KGs, with the largest, NELL,
containing 1M facts. FB15K is generated by
sampling a subset of the KG centered around
15K entities. WN18 is generated by restricting
to 18 relations. NELL165 performs no sam-
pling, but is limited by the comprehensiveness
of patterns learned during training.

3.2 Diversity

To understand the distribution of entities and
relationships in the KG, we introduce an
entropy-based measure using the probability
an entity or relation will occur in a randomly



selected triple. For triples T of the form
(s, p, o), relations R, entities E, We define the
entity and relation probabilities as the proba-
bility that a randomly selected triple will con-
tain a particular relation or entity. More for-
mally, we define these probabilities:

P (r) =
|t.p = r|
‖T‖

; P (e) =
|t.s = e|+ |t.o = e|

‖T‖

Using these definitions, we define:

RE =
∑
r∈R
−P (r) logP (r)

We compute entity entropy (EE) and rela-
tion entropy (RE) for each dataset. Higher
entropy values indicate more uniform distri-
butions of facts across entities and relations,
lower values signal biases in the facts. For
example, the low RE values for Freebase and
NELL165 are due to an abundance of facts
specifying entity types (such as person), rela-
tive to other relations between entities. While
Freebase has the most facts and entities, these
facts are less diverse compared to other KGs.
Through sampling, FB15K rebalances Free-
base, increasing the diversity of entities and
relations. In contrast, WordNet and WN18
have similar diversity statistics. Compared to
NELL1000, NELL165 has a more diverse set
of entities and a less diverse set of relations.
All KGs have much higher EE than RE, since
they use a manually defined set of relations
but include many diverse entities.

3.3 Sparsity

In addition to diversity, KGs have differing lev-
els of factual information for each entity or re-
lation. One sparsity metric is information den-
sity, defined as the average triples per entity
or relation. We formally define densities:

RD =
‖T‖
‖R‖

; ED =
2‖T‖
‖E‖

We compare the datasets using entity den-
sity (ED) and relational density (RD). Most
datasets have a similar ED, but the benchmark
dataset FB15K has much higher entity density
while the benchmark dataset NELL165 has a
much lower entity density. NELL1000 has the
highest RD, since extractions are focused on
a small set of relations, while FB15K has a

particularly low RD value due to the entity-
centric approach to construction. We note
that FB15K has much higher ED and much
lower RD than parent Freebase, due to the
sampling choices made during its construction.

3.4 Reliability

Embedding approaches rely on using facts that
are reliable. Human-curated KGs generally
have high precision due to strong oversight.
In contrast, extracted KGs are far noisier, in-
cluding erroneous relationships between enti-
ties. Extracted KGs are often evaluated on
small, manually-labeled evaluation sets to esti-
mate precision. In recent evaluations (Mitchell
et al., 2015) using 11K annotations, NELL
facts had a precision of ranging from 0.75-0.85
for confident extractions and 0.35-0.45 across
the broader set of extractions.

4 Empirical Evaluation

To better understand embedding performance
with sparse and unreliable data, we select four
popular embedding approaches and perform
four empirical analyses. We evaluate embed-
ding techniques TransE (Bordes et al., 2013),
TransH (Wang et al., 2014), HolE (Nickel
et al., 2016b), and STransE (Nguyen et al.,
2016), that use increasingly sophisticated
learning methods to represent entities and re-
lations. To learn embeddings, we used the
public implementations of Lin et al. (2015);
Nickel et al. (2016b); Nguyen et al. (2016).
We conduct four experiments to characterize
the performance of these embeddings meth-
ods. The first set of experiments evaluate the
performance of embeddings on the extracted
NELL165 KG. The second set of experiments
modify the existing FB15K benchmark to iso-
late the impact of sparsity on embedding qual-
ity. The third set of experiments decrease the
reliability of FB15K and determine how per-
formance degrades as a result. The final ex-
periments explore the tradeoff between spar-
sity and reliability by beginning with a sparse
trainng set and incrementally adding unreli-
able triples at differing noise levels.1

1Code for experiments is available at https://www.
github.com/linqs/pujara-emnlp17

https://www.github.com/linqs/pujara-emnlp17
https://www.github.com/linqs/pujara-emnlp17


Method AUPRC F1

Baseline 0.873 0.828
NELL 0.765 0.673
TransH 0.701 0.783
HolE 0.710 0.783
TransE 0.726 0.783
STransE 0.784 0.783
PSL-KGI 0.891 0.848

Table 2: Embedding performance on the sparse and
noisy NELL165 benchmark is poor, failing to beat a
baseline that simply selects the top extractions, and
substantially underperforming probabilistic models.

4.1 Extracted Knowledge Graphs

In Section 3, we noted that the extracted
NELL165 dataset is sparse, with fewer (can-
didate) facts per relation or entity than the
FB15K benchmarks. Moreover, the preci-
sion of these candidates can be far lower than
benchmark datasets. To evaluate whether
embeddings can succeed under such challeng-
ing conditions, we applied four state-of-the-art
embedding techniques,

We evaluated all methods on 4.5K
manually-labeled facts (Jiang et al., 2012),
reporting the area under the precision-recall
curve (AUPRC) and the F1 score, computed
with parameters that maximize performance
on the labeled training set. We compare
against a baseline that simply applies a
threshold to NELL extractor confidences (but
cannot score novel facts), the NELL promo-
tion strategy, and a probabilistic approach
PSL-KGI (Pujara et al., 2015), that reasons
collectively about KG facts using ontological
constraints and supports open-world reason-
ing. The results, in Table 2, suggest that
embedding approaches cannot cope with the
sparse and low-quality extractions, perform-
ing more poorly than the baseline approaches
and substantially trailing the probabilistic
model. In the next two experiments, we
analyze whether this failure can be attributed
to sparsity or sensitivity to noise.

4.2 Sensitivity to Sparsity

One potential explanation for the lackluster
performance of embedding approaches on ex-
tracted KGs is the sparsity of these datasets.
To assess the impact of sparsity on the qual-

Figure 1: Triples are removed from FB15K to preserve
relational density (stable, solid) or to increase spar-
sity (sparse, dotted). Sparse training sets have a pro-
nounced impact on the learned embedding, as mea-
sured by HITS@10 on the test set.

ity of learned embeddings, we remove triples
from FB15K using two different techniques.
The first technique, sparse, removes triples
uniformly at random, with a constraint that
such removal does not eliminate any entity or
relation from the dataset. The second tech-
nique, stable, removes all triples for a par-
ticular relation, leaving other relations intact.
stable is calibrated so that the training set
size does not vary more than 2% between tech-
niques.

Fig. 1 shows the filtered hits@10 metric
(proportion of correct triples in top ten triples
excluding training data) for both sparse and
stable using the TransE, TransH, HolE, and
STransE embeddings. Performance univer-
sally decreases as the training set diminishes.
However, in the sparse treatment, perfor-
mance deteriorates much more rapidly than
in stable. Our experiments show that more
complex representations such as TransH and
HolE suffer more from sparsity, while TransE
and the more sophisticated STransE have
somewhat better performance. Ultimately,
when half the triples have been randomly re-
moved, corresponding to a (relatively high)
RD value of 220, the stable outperforms
sparse by as much as 60%. The contrast be-
tween a dense set of facts for each relation
(stable) and a sparse set of relational training
data is a vivid demonstration that embedding
quality relies on dense training data.



Figure 2: Randomly corrupting triples (corrupt,
dashed) during training decreases embedding quality
relative to randomly removing triples (sparse, dotted).

4.3 Sensitivity to Unreliability

Beyond sparsity, candidate facts generated
by knowledge extraction approaches can also
be unreliable. To understand the sensitivity
of embedding techniques to noise, we modi-
fied the FB15K dataset to include unreliable
triples. Our approach to introducing noise,
corrupt involved “corrupting” triples, substi-
tuting a replacement entity or relation for the
true subject, predicate or object. The embed-
ding approach is then trained with a corrupted
version of the benchmark. Fig. 2 show how the
Hits@10 metric suffers as increasing numbers
of facts are either corrupted (corrupt) or re-
moved (sparse). We find that across all meth-
ods, removing training data is better than pro-
viding incorrect training data to the learning
algorithm, but surprisingly the deficit between
sparse and corrupt remains relatively stable
across all embeddings.

4.4 Trading off Sparsity and Noise

In many real-world scenarios, constructing a
KG requires navigating a tradeoff between
sparsity and noise. A sparse, high-quality
set of extractions may be insufficient to learn
meaningful embeddings. However, the bene-
fit of incorporating additional, unreliable facts
may also be questionable. We explore this
tradeoff by randomly removing 300K triples
from FB15K and incrementally adding unre-
liable triples at differing noise levels, where
noise measures the probability a newly-added

Figure 3: Starting with a sparse training set, adding
unreliable triples can help embedding performance re-
cover if the noise level is low.

training triple is corrupted. We generate train-
ing sets for each noise level and size, train
TransE, and compute the filtered Hits@10
metric on the test set. Fig. 2 shows all embed-
dings have an initial benefit from new training
data, but noise level dictates the improvement
as more data is introduced. For low noise
settings, performance climbs steadily, while
higher noise results in plateauing or diminish-
ing performance. Surprisingly, even with 90%
noise embeddings demonstrate a small net
improvement, suggesting that for embedding
methods a large, unreliable corpus may be bet-
ter than an extremely sparse, high-quality one.

5 Conclusion

In this paper, we analyze several knowledge
graphs and discuss key metrics for diversity,
sparsity, and unreliability in realistic KGs.
Our experimental evaluation concludes that
KG embeddings are sensitive to sparse and
unreliable data, and perform poorly on KGs
extracted from text. These findings suggest a
rich area of future research, determining new
strategies to extend embeddings to cope with
sparse and unreliable data. Three promising
approaches include revising the closed-world
assumption frequently used in training em-
beddings, combining embeddings and collec-
tive probabilistic models that perform well on
extracted KGs, and devising an optimization
approach for embeddings that exploits confi-
dence from knowledge extraction systems.
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