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ABSTRACT

Professional networks are a specialized class of social networks that

are particularly aimed at forming and strengthening professional

connections and have become a vital component of professional

success and growth. In this paper, we present a holistic model

to jointly represent di�erent heterogenous relationships between

pairs of individuals, user actions and their respective propagations

to characterize in�uence in online professional networks. Previous

work on in�uence in social networks typically only consider a

single action type in characterizing in�uence. Our model is capable

of representing and combining di�erent kinds of information users

assimilate in the network and compute pairwise values of in�uence

taking the di�erent types of actions into account. We evaluate our

models on data from the largest professional network, LinkedIn and

show the e�ectiveness of the inferred in�uence scores in predicting

user actions. We further demonstrate that modeling di�erent user

actions, node features, and edge relationships between users leads

to around 20% increase in precision at top k in predicting user

actions, when compared to the current state-of-the-art model.

1 INTRODUCTION

�e last decade has witnessed the rise of social networks and their

prevalence in our everyday lives. Users perform several actions

(e.g., browsing content, adding connections, joining groups) and

interactions (e.g., sharing/commenting on content, following peo-

ple) in a social network. Multiple factors a�ect user actions and

interactions in social networks: personal interests, popularity of an

action, or social contacts performing the action in�uencing them to

perform the same action. Several works in the past have studied the

e�ect of users’ actions on their connections in the social network,

which they refer to as in�uence [3, 6]. For example, a user witness-

ing her friends perform a certain action on a social networking

site might be in�uenced into performing the same action herself.

Detecting and quantifying in�uence is a hard but a very useful

problem having a number of applications, which include personal-

ized recommendations [13, 14], trust modeling [5, 7, 15, 16], feed

ranking [1], and viral marketing [4, 8, 11].

In this work, we focus on a particular class of social networks:

online professional networks. While in�uence has been previously

studied in the context of social networks, professional networks
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present a unique set of opportunities for modeling various user

actions that are not readily observed in a regular social network.

Professional networks are a specialized class of social networks,

which users utilize to form, strengthen, and maintain professional

relationships. With professional networks, there are a plethora of

actions that users can perform—long-term and life-changing ac-

tions such as moving jobs and acquiring new professional skills,

to daily activities and interests as observed in any social network.

�ese networks also capture other important edge relationships

such as organization hierarchy, relationship strength, and individ-

ual’s seniority in the profession and the network that could a�ect

the presence and amount of in�uence between individuals. While

most previous works only consider a single action type when mod-

eling in�uence, the presence of multiple actions, edge relationships,

and node features in social networks, particularly in professional

networks necessitates more sophisticated models that represent

and reason about heterogeneous relationships.

To this end, we develop a holistic model based on hinge-loss
Markov Random Fields (HL-MRFs) that combines di�erent heteroge-

nous relationships between individuals to learn pair-wise in�uence

probabilities. We show that measuring in�uence between two users

in a network involves meticulously taking into account all user ac-

tions and interactions. We demonstrate how to encode multiple

action propagations, edge relationships, and node features present

in professional networks and compute combined values of in�u-

ence that integrates many di�erent interactions between users. Our

framework can easily be extended to add other node features and

edge relationships.

Our contributions in this paper are as follows:

(1) We generate features that take into account the richness

of professional networks and capture di�erent kinds of

user interactions. We identify four di�erent action types

relevant to modeling in�uence in professional networks

and their respective propagations: moving jobs (job prop-

agation), adding a new skill (skill propagation), follow-

ing content (content propagation), and adding oneself to

groups (group propagation). Along with this, we also ex-

tract other edge relationships such as organizational hier-

archy, strength of relationship, and user’s seniority in the

network.

(2) We then construct a holistic framework using a recently de-

veloped statistical relational learning method, Hinge-loss

Markov random �elds (HL-MRFs) [2]. We demonstrate how

to encode di�erent edge and node relationships that exist

in graphs in our framework and combine them e�ciently

to infer in�uence values between pairs of individuals in

the network. We show that our framework is capable of

encoding the rich features in this domain as opposed to
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previous e�orts that can only encode a single action type.

We develop two models: 1) in�uence model: for predicting

in�uence between pairs of individuals, and 2) in�uential
model: for predicting in�uential users in a network. We

then develop a third richer and more powerful model by

combining the in�uence and in�uential models and jointly

predicting in�uence and in�uential users.

(3) We test our models on data from the professional network,

LinkedIn. Our dataset consists of millions of users and

millions of actions comprising of four di�erent types of

actions: moving jobs, adding skills to LinkedIn pro�le,

following content, and joining groups.

(4) We construct a predictive modeling setup to predict user

actions using the in�uence scores and compare our ap-

proach to the state-of-the-art model for inferring in�uence

values. We evaluate precision at top k for predicting user

actions and demonstrate that our models are capable of

predicting user actions be�er than the existing approaches

for inferring in�uence values.

2 RELATEDWORK

In�uence in social networks has mostly been studied in the context

of in�uence maximization. �e in�uence maximization problem is

as follows: given a social network with edge in�uence probabilities

of in�uence, how to select the k set of users that maximize the

spread of information in the network? Viral marketing is the most

prevalent application of in�uence maximization where determining

the k set of nodes is crucial to maximize marketing. Domingos and

Richardson [4], Richardson and Domingos [11] were the �rst to con-

sider the problem of �nding in�uential users in the network. �ey

follow a data mining approach to understand in�uence propagation

and use that to identify in�uential users.

Kempe et al. [8] show that the in�uence maximization prob-

lem is NP-complete and derive approximation guarantees for the

problem. �ey obtain provable approximation guarantees on two

fundamental propagation models, namely Linear �reshold Model
and Independent Cascade Model. �ey also prove the equivalence of

the Linear �reshold and Independent Cascade models, and propose

a generalized framework called the General �reshold Model (GTM).
�ey then develop a greedy approximation algorithm to calculate

the spread of in�uence spread by exploiting the monotonic and

submodular nature of in�uence maximization.

Leskovec et al. [10] study a problem very similar to viral marketing—

outbreak detection: how to select nodes in a network to detect the

spread of a virus? �ey employ the ideas in viral marketing and

the submodular nature of the in�uence spread to construct an opti-

mization framework to e�ectively select seed nodes. All the papers

discussed above assume the basic framework and propagation mod-

els of [8], where the in�uence probabilities pv,u on the edges are

given as input.

Our work is closest to Goyal et al. [6] and Saito et al. [12]’s work

on labeling pairs of users with in�uence probabilities. Goyal et

al. focus on the GTM, while Saito et al. focus on the Independent

Cascade model of propagation. Goyal et al. use the action log

and the connection graph to learn pairwise in�uence probabilities

between users. However, their model for calculating in�uence

probabilities is only capable of taking a single action type into

account. In this work, we build on Goyal et al.’s approach to design

a holistic model that takes into account various action propagations,

other edge relationships between individuals, and node features to

compute pairwise in�uence scores.

3 PROBLEM DEFINITION

Consider a graph G, of the form G = (V ,E), where nodes V are

users, with time-stamped edges E between pairs of users. e(u,v, t)
∈ E between users u and v represents the presence of a friendship

link in the network between u and v , time-stamped with time t
when the connection was made. We also construct an action log by

observing the various actions performed by users. �e action log is

represented by Action-loд(User ,Action,Action-Type,Timestamp),
each tuple in the relation representing a user action in the four

action types—1) moving jobs, 2) adding a new skill, 3) following

content, and 4) joining groups. Note that the �rst two action types

are unique to professional networks. �e last two action types are

present across the breadth of social networks, including profes-

sional networks. Using the action log and the connection graph, we

construct an action propagation graph, to capture how users’ react

to actions performed by their friends in the network. We extend

the de�nition of action propagation in Goyal et al. [6] to account

for the di�erent types of actions.

De�nition 3.1. An action a ∈ A of type γ ∈ Γ propagates from user
u to v , i�: (i) e(u, v , t ) ∈ E; (ii) ∃(u, a, γ , τ1), (v , a, γ , τ2) ∈ Action-loд
with τ1 < τ2; and (iii) t ≤ τ1. We refer to the action propagation as
prop(a, γ , u, v , 4τ ), where 4τ = τ2 - τ1.

Here, we de�ne action propagation as two users acting on the

same action displaced by time τ2 − τ1. Both users have to perform

the action a�er they connect in the network, given by t < τ1, for

it to be considered an action propagation. Note that users u and v
should be connected in the network before either of them perform

the action, for it to be considered an action propagation. For skills,

content, and groups, same action constitutes adding the same skill,

reacting to the same post/article, and joining the same LinkedIn

group, respectively. For jobs, we treat same action as joining the

same company.

De�nition 3.2. For each action type γ , we de�ne an action prop-

agation graph Gγ = (Vγ ,Eγ ) with unidirectional edges, where Vγ =

{v | ∃ (v, a, γ , τ ) ∈ Action-loд}; there is a directed edge from u to

v , eγ (u,v) in Eγ , whenever prop(a, γ , u, v , 4τ ).

Using the de�nition of action propagation (3.1), we construct ac-

tion propagation graphs where the individual edges capture action

propagations between pairs of users. Note that the action propa-

gation graphs are directed acyclic graphs (DAGs), due to the strict

time constraint in De�nition 3.1. We generate four propagation

graphs, for the four types of actions. We refer to our propaga-

tion graphs as job-prop(u,v), skill-prop(u,v), content-prop(u,
v), and group-prop(u, v) to the capture the four di�erent action

propagations, respectively.

�e problem we address in this work is—how can we combine

information from the social connection graph, action propagation

graphs, other edge relationships, and node features such as user

seniority in the network, and strength of social connection, to create
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rich models of in�uence and learn in�uence values between pairs

of users. Section 4 gives more details about our framework and

features we use in our models.

4 INFLUENCE PREDICTION MODELS

In this section, we develop rich, multi-relational models using HL-

MRFs for modeling in�uence. We �rst present an overview of

the state-of-the-art models based on GTM and then show how we

extend these models by encoding multi-relational edge relationships

including the in�uence values predicted by GTM in our HL-MRF

framework.

4.1 General �reshold Model (GTM)

�e GTM formulates any user u as either active (already has per-

formed the action), or inactive. Time unfolds in discrete steps and

when user u activates, u further can activate other connections of

u that are not active yet. Equation 1 gives probability of user u
performing an action (Pu (S)), using in�uence values Pv,u , where v
∈ S , the set of users connected to u, who have already performed

the action.

Pu (S) = 1 −
∏
v ∈S
(1 − Pv,u ) (1)

Goyal et al. compute the in�uence values, Pv,u , via the following

three approaches: 1) using maximum likelihood estimation (MLE),

2) using Jaccard index (Jaccard), and 3) using a discrete time varia-

tion model (DTM). �e MLE model estimates Pv,u by calculating

the maximum likelihood estimates: ratio of number of successful

a�empts at in�uencing over total number of trials. �e Jaccard

model takes into account users’ similarity in calculating the in�u-

ence probabilities. �e discrete time variation model assumes that

in�uence of an active user v on its neighbor remains constant at

Pv,u for time window of τ a�er thev performs the action, and drop

to 0 a�er time τ . We defer the reader to [6] for more details.

4.2 Hinge-loss Markov Random Fields

(HL-MRFs)

�e GTM-based model proposed by Goyal et al., is capable of only

examining the e�ect of a single action type on users. To represent

and combine di�erent heterogenous relationships between users,

we propose a more powerful approach using HL-MRFs. HLMRFs

are a scalable class of continuous, conditional graphical models [2].

HL-MRF models can be speci�ed using Probabilistic So� Logic (PSL)
[2], a weighted �rst order logical templating language. An example

of a PSL rule is

λ : P(a) ∧Q(a,b) → R(b),

where P, Q, and R are predicates, a and b are variables, and λ is the

weight associated with the rule. �e weight of the rule indicates

its importance in the HL-MRF probabilistic model, which de�nes a

probability density function of the form

P(Y|X) ∝ exp

(
−

M∑
r=1

λrϕr (Y,X)
)

ϕr (Y,X) = (max{lr (Y,X), 0})ρr , (2)

where ϕr (Y,X) is a hinge-loss potential corresponding to an instan-

tiation of a rule, and is speci�ed by a linear function lr and optional

exponent ρr ∈ {1, 2}.
For example, in our in�uence model, if u and v denote users,

predicate job-prop(u, v) denotes the propagation of job from user

u to user v in the action propagation graph, and the predicate

influence(u, v) denotes the target variable denoting the probability

of in�uence of u on v. A PSL rule to encode that job propagation

from u to v implies that u in�uences v is

λ : job-prop(u,v) → influence(u,v).

We can generate more complex rules connecting the di�erent fea-

tures and target variables, e.g.

λ : job-prop(u,v) ∧ manages(u,v) → influence(u,v).

�is rule encodes that if u propagates job to v and u is the manager

of v , then u in�uences v .

Inference of the most probable explanation in HL-MRFs is a

convex optimization problem, which makes working with PSL very

e�cient in comparison to many relational modeling tools that use

discrete representations.

4.3 Feature Engineering

In this section, we develop the node features and pairwise interac-

tions between users in the network.

4.3.1 Action Propagations. We derive four action propagation

graphs corresponding to the four di�erent user actions using De�-

nitions 3.1 and 3.2: job propagation (job-prop), skill propagation

(skill-prop), content propagation (content-prop), and group prop-

agation (group-prop). For content propagation, we capture if two

people act on the same article, and weight the strength of the prop-

agation according to di�erent sub-actions such as viewing, liking,

sharing, commenting on content, with commenting or sharing hav-

ing more weight than liking/viewing. Also note that job propaga-

tion and skill propagation are very unique to professional networks,

as users tend to specify details related to their professional career

on their pro�le.

4.3.2 Relationship Strength (People You May Know score). We

capture the strength of relationship between two users using the

People You May Know score [9]. �e score is part of the people rec-

ommendation framework at LinkedIn. �is score is a unidirectional

score in [0, 1]. In our models, we refer to this score by strength(u,
v).

4.3.3 Manager-managee Relationship. We capture the organi-

zation hierarchy information for users within the LinkedIn orga-

nization in manages(u, v), where user u is the manager of user

v .

4.3.4 Member Seniority score. �e predicate seniority(u) cap-

tures the reputation of user u within the social network. �is is a

continuous score in [0, 1].

4.3.5 Content Follower-Followee Score. By considering and ap-

propriately weighting all content-related interactions between pairs

of users according to their importance, we generate a score that

captures the content-following relationship between individuals.
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PSL-Influence Rules

Rules combining action propagations

job-prop(user-a,user-b) → influence(user-a,user-b)

job-prop(user-a,user-b) ∧ group-prop(user-a,user-b) → influence(user-a,user-b)

group-prop(user-a,user-b) ∧ seniority(user-a) → influence(user-a,user-b)

Rules combining seniority and action propagation

seniority(user-a) ∧ skill-prop(user-a,user-b) → influence(user-a,user-b)

Rules combining user in�uenceability and action propagation

group-prop(user-a,user-b) ∧ influenceability(user-b) → influence(user-a,user-b)

Rules combining propagation and manager-managee relationship

job-prop(user-a,user-b) ∧ manages(user-a,user-b) → influence(user-a,user-b)

Rules combining propagation and content follower-followee relationship

content-prop(user-a,user-b) ∧ content-follow(user-b,user-a) → influence(user-a,user-b)

Rules combining GTM in�uence values

GTMдroup (user-a,user-b) ∧ seniority(user-a) → influence(user-a,user-b)

GTMдroup-mle (user-a,user-b) ∧ GTMдroup-jaccard (user-a) → influence(user-a,user-b)

GTMдroup (user-a,user-b) ∧ GTMcontent (user-a,user-b) → influence(user-a,user-b)

Transitive Rules

group-prop(user-a,user-b) ∧ influence(user-b,user-c) → influence(user-a,user-c)

content-prop(user-a,user-b) ∧ influence(user-b,user-c) → influence(user-a,user-c)

Table 1: Representative rules from PSL-In�uence model

PSL-Influential Rules

Rules combining action propagations

job-prop(user-a,user-b) → influential(user-a)

job-prop(user-a,user-b) ∧ group-prop(user-a,user-b) → influential(user-a)

group-prop(user-a,user-b) ∧ seniority(user-a) → influential(user-a)

Rules combining seniority and action propagation

seniority(user-a) ∧ skill-prop(user-a,user-b) → influential(user-a)

Rules combining propagation and manager-managee relationship

job-prop(user-a,user-b) ∧ manages(user-a,user-b) → influential(user-a)

Rules combining propagation and content follower-followee relationship

content-prop(user-a,user-b) ∧ content-follow(user-b,user-a) → influential(user-a)

Rules combining GTM in�uence values

GTMдroup (user-a,user-b) ∧ seniority(user-a) → influential(user-a)

GTMдroup-mle (user-a,user-b) ∧ GTMдroup-jaccard (user-a,user-b) → influential(user-a)

GTMдroup (user-a,user-b) ∧ GTMcontent (user-a,user-b) → influential(user-a)

Rules combining propagation and manager-managee relationship

job-propagation(user-a,user-b) ∧ manages(user-a,user-b) → influential(user-a)

Table 2: Representative rules from PSL-In�uential model

Likes are weighted less than comments, which are in turn weighted

less than shares. �is score is also continuous in [0, 1].

4.3.6 User Influenceability Score. We construct user in�uence-

ability score, denoted by influenceability(u), by examining how

easily users are in�uenced by their connections. �is is calculated

by taking the ratio of number of actions that were propagated to

the user to the total number of actions performed by the user.

4.3.7 GTM Features. We use the in�uence values computed by

Goyal et al. [6] as features in our model. We refer to in�uence

scores obtained using maximum likelihood estimation as GTMmle ,

using Jaccard index asGTM J accard , and the discrete time variation

of maximum likelihood estimation as GTMDT .

4.4 PSL In�uence Models

We present three models of in�uence: 1) PSL-In�uence, that com-

bines the action propagation graphs, edge relationships and node

features to learn in�uence values, 2) PSL-In�uential, that predicts

in�uential users in a network, and 3) PSL-Combine, that jointly

predicts both in�uential users and in�uence values.
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PSL-Combine Rules

Rules combining action propagations and in�uential

job-prop(user-a,user-b) ∧ influential(user-a) → influence(user-a,user-b)

job-prop(user-a,user-b) ∧ group-prop(user-a,user-b) ∧ influential(user-a) → influence(user-a,user-b)

group-prop(user-a,user-b) ∧ seniority(user-a) ∧ influential(user-a) → influence(user-a,user-b)

Rules combining seniority, in�uential, and action propagation

seniority(user-a) ∧ skill-prop(user-a,user-b) ∧ influential(user-a) → influence(user-a,user-b)

Rules combining action propagation, user in�uenceability, and in�uential

group-prop(user-a,user-b) ∧ influenceability(user-b) ∧ influential(user-a) → influence(user-a,user-b)

Rules combining propagation, manager-managee relationship, and in�uential

job-prop(user-a,user-b) ∧ manages(user-a,user-b) ∧ influential(user-a) → influence(user-a,user-b)

Rules combining propagation and content follower-followee relationship

content-prop(user-a,user-b) ∧ content-follow(user-b,user-a) ∧ influential(user-a) → influence(user-a,user-b)

Rules combining GTM in�uence values and in�uential

GTMдroup (user-a,user-b) ∧ seniority(user-a) ∧ influential(user-a) → influence(user-a,user-c)

GTMдroup-mle (user-a,user-b) ∧ GTMдroup-jaccard (user-a,user-b) ∧ influential(user-a) → influence(user-a,user-c)

Rules combining propagation, manager-managee relationship, and in�uential

job-propagation(user-a,user-b) ∧ manages(user-a,user-b) ∧ influential(user-a) → influence(user-a,user-c)

Transitive Rules

group-prop(user-a,user-b) ∧ influential(user-a) ∧ influence(user-b,user-c) → influence(user-a,user-c)

content-prop(user-a,user-b) ∧ influential(user-a) ∧ influence(user-b,user-c) → influence(user-a,user-c)

Table 3: Representative rules from PSL-Combine model

4.4.1 PSL-Influence. We construct weighted logical rules to

combine the di�erent features and encode dependencies among

them to infer in�uence values. Table 1 gives representative rules

from six di�erent combinations of predicates in our PSL-In�uence

model. influence(u, v) captures the value of in�uence for pairs

of users. �e weights are manually encoded, taking into account

the importance of the feature or combination of features. �e rules

combine various edge relationships and node features together to

predict in�uence. �e rules fall under the six categories mentioned

below.

Combining Action Propagations. Here, we combine various action

propagations to infer in�uence values between pairs of users in the

network. We capture that each propagation signi�es the presence

of in�uence between two individuals in the network. We take

advantage of the possibility to capture complex dependencies in

HL-MRFs and encode that combination of action propagations

between the same two individuals leads to a stronger in�uence

between them. For example, the �rst rule speci�es that if user-

a propagates job to user-b, then user-a in�uences user-b. �e

second rule builds on the �rst rule by combining group propagation

and job propagation.

Combining Node Features and Action Propagations. Combining

node features such as seniority and influenceability with ac-

tion propagations provide a stronger signal for in�uence between

individuals. For example, in the second set of rules in Table 1, we

capture that a person more senior in the network has a higher

possibility of in�uence on users she has propagated action(s) to in

the network. Similarly, combining user in�uenceability score and

action propagations, we encode that in�uenceable users are more

susceptible to action propagations from their connections.

Combining Action Propagations and Edge Relationships. In the

fourth set of rules in Table 1, we capture that a user’s manager is

more likely to wield an in�uence on her reports. In the ��h set of

rules, we encode the dependence between action propagations and

content follower-followee relationship. While the content following

relationship is more relevant for content propagations, we also

capture its dependence with other propagations, as given by the

second rule in the ��h set. It is important to note that the rules are

weighted. By weighting these rules appropriately, we encode their

respective e�ects of propagation on in�uence.

Combining GTM In�uence scores. In the sixth set of rules, we

combine inferred in�uence values from GTMMLE , GTM J accard ,

and GTMDT to eliminate uncertainty and strengthen the GTM

scores. For example, in the second rule we combineGTMдroup-mle
and GTMдroup-jaccard to infer in�uence. We also combine the

GTM with other edge relationships such as manages and strength,

and node features such as seniority to infer in�uence.

Transitive Rules. In the seventh and �nal set of rules, we capture

the propagation of in�uence values using the transitive property.

�e �rst rule that if user-a propagates an action to user-b and

user-b in�uences user-c, then user-a in�uences user-c. �ese

transitive rules help predict in�uence values between pairs of users

without directly observing propagations between them.

4.4.2 PSL-Influential. �e PSL-In�uential model summarizes

the edge scores for in�uencer nodes to measure how in�uential a

person is in the network. �is is particularly useful in determin-

ing the top in�uencers in the network, which has many uses in

viral marketing and information di�usion. �e predicate to deter-

mine if a user is in�uential is given by In�uential(user). Table 2

gives the rules in the PSL-In�uential model for inferring infuential
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users. �e rules are grouped into �ve categories. �e categories

are similar to the PSL-In�uence model, except for rules involving

influenceability and transitive rules, which are not relevant for

the PSL-In�uential model. For example, consider rule 1 in Table

2. �is captures that if user A propagates job to user B, A is an

in�uential user. When this rule is grounded using data from the

network, all users whom A has propagated a job to are considered.

With the e�ect, the more number of users A propagates job to, the

more in�uential A is in the network. Similarly, if a user propagates

multiple actions to other users, then the user is more in�uential.

Also, it is important to note that apart from action propagations,

features such as hierarchical relationship between users inside an

organization, their connection strength and seniority play an im-

portant role in determining in�uential users, which are captured in

the following sets of rules in Table 2.

4.4.3 PSL-Combine. �e PSL-Combine model combines both

the PSL-In�uence models and PSL-In�uential models and uses that

to jointly infer both in�uence values and in�uential users in the

network. Table 3 gives the rules that combine in�uential and in�u-

ence variables. In addition to these rules, PSL-Combine also has

rules from PSL-In�uence and PSL-In�uential models for inferring

in�uence and in�uential values, respectively. As can be evidenced

in Table 3, the rules capture dependencies between other features

and in�uential variable to infer in�uence values. �e rules are

grouped into the same seven categories as the PSL-In�uence model.

For example, the �rst rule in Table 3 captures that if A propagates

a job to B and A is an in�uential person in the network, then A
has a higher in�uence on B. It is important to note that in�uential

scores, together with the in�uenceability scores create possibilities

for modeling characteristics of both in�uencer and the person in-

�uenced to create richer and more meaningful in�uence models, as

captured in the third set of rules in Table 3.

5 EXPERIMENTAL RESULTS

In this section, we conduct experiments to: 1) evaluate the e�ective-

ness of the computed in�uence values, and 2) interpret in�uence

values and use them to understand social interactions in the net-

work.

5.1 Dataset

We test our models on data from the professional social networking

site, LinkedIn. LinkedIn is the world’s largest professional network-

ing site, enabling users to make professional connections and search

for jobs. LinkedIn users have a pro�le page, where they can enlist

their education, professional experiences, and skills. LinkedIn also

has a feed customized for each user, which captures the highlights

of their connections’ activities. LinkedIn users can also create and

join groups.

5.2 Predicting Actions using In�uence scores

First, we evaluate the the e�ectiveness of the in�uence scores by

using them to predict user actions of joining groups and following

content. Due to the unavailability of labeled in�uence scores, we

devise a prediction task using the in�uence scores inferred by our

models. In order to compare to the GTM models, we use Equation 1

used by Goyal et al. to calculate the probability of user performing

an action. As the in�uence scores given by the PSL models are in (0,

1), they can be substituted in place of Pv,u in Equation 1 to calculate

Pu , the probability of user u performing an action. We compare our

models: PSL-In�uence and PSL-Combine to models based only on

GTM. In the sections below, we furnish results from two prediction

tasks: 1) predicting joining group action, and 2) predicting following
content action. For both these tasks, we consider the subset of users

comprising of employees at LinkedIn and their social connections.

We split the data into training and test based on actions and use

90% of data for training and 10% for testing. Table 4 gives the group

and content action prediction results. Our test dataset (10% of data)

has user-action pairs in the order of millions, around hundreds

of thousands of users and tens of thousands of actions for both

these actions. Statistically signi�cant di�erences, evaluated using a

paired t-test with a rejection threshold of 0.01, are typed in bold in

all tables.

5.2.1 Group Action Prediction. For group action prediction, we

consider users joining groups in the last �ve years. We evaluate

the models by measuring if the user performs an action in the top k
predictions generated by the model. We consider k = 15, 10, 5, and
3 respectively. Table 4a gives the precision at top k for the GTM

and PSL models. We observe that both our models: PSL-In�uence

and PSL-Combine, outperform the GTM models. PSL-Combine

achieves the best possible results, outperforming the best GTM

model by 20%, which con�rms that jointly predicting in�uential

users and in�uence and incorporating the e�ect of in�uential users

in predicting in�uence values helps in improving performance.

5.2.2 Content Action Prediction. For content action prediction,

we consider content following actions within the past 100 days. We

consider all content-related actions on a single piece of content:

like, share, and comment, and treat them equally. Table 4b gives the

content action prediction results. Similar to group action prediction,

we �nd that PSL-In�uence and PSL-Combine outperform the GTM

models in predicting content actions. Again, PSL-Combine achieves

the best results, outperforming the best GTM model by 20%.

5.2.3 Highly Influenceable and Influential Users. Our in�uence-

ability scores identify how susceptible a user is to in�uence. Simi-

larly, the in�uential scores identify how in�uential a user is in the

network. It is evident that both these scores are crucial in modeling

in�uence. In the next set of experiments, we �lter users based on

the in�uenceability and in�uential values and retain only users with

values greater than 0.5 for both these predicates. �is helps us focus

on the key players in the network: highly in�uential and highly

in�uenceable users, and model in�uence between these key players

in the network. Tables 4c and 4d give the results for predicting

group and content actions in these users. We observe that remov-

ing less in�uential and in�uenceable users from the network helps

PSL-In�uence and PSL-Combine achieve a higher precision at top k
in both prediction tasks. PSL-Combine achieves the best results for

both group and content action prediction, signi�cantly outperform-

ing the best GTM model by 33% in group action prediction and 38%

in content action prediction.
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Models top 15 top 10 top 5 top 3

GTM-MLE 14.60 14.60 14.53 14.22

GTM-Jaccard 15.30 15.10 14.49 14.10

GTM-DT 15.68 13.56 13.21 13.09

PSL-In�uence 16.76 16.67 14.96 13.32

PSL-Combine 19.01 18.89 15.83 13.33

(a) Precision at top k for predicting users joining groups

Models top 15 top 10 top 5 top 3

GTM-MLE 13.45 13.30 12.53 10.90

GTM-Jaccard 15.48 15.09 13.46 13.01

GTM-DT 16.78 15.66 13.45 12.22

PSL-In�uence 18.01 17.86 16.65 16.04

PSL-Combine 20.22 20.12 17.66 17.01

(b) Precision at top k for predicting users following content

Models top 15 top 10 top 5 top 3

GTM-MLE 30.96 26.85 18.95 16.11

GTM-Jaccard 35.97 35.78 33.47 27.15

GTM-DT 36.30 36.08 35.50 23.70

PSL-In�uence 39.34 39.21 38.72 37.65

PSL-Combine 48.45 46.24 45.51 45.28

(c) Precision at top k for predicting users joining groups for in-

fluenceability(U) > 0.5, influential(U) > 0.5

Models top 15 top 10 top 5 top 3

GTM-MLE 28.56 23.53 17.61 16.12

GTM-Jaccard 36.97 34.58 33.74 26.95

GTM-DT 35.30 33.08 32.77 31.71

PSL-In�uence 41.45 41.02 40.05 37.34

PSL-Combine 48.93 47.85 44.23 40.81

(d) Precision at top k for predicting users following content for

influenceability(U) > 0.5, influential(U) > 0.5

Table 4: Precision at top k for GTM models, PSL-In�uence, and PSL-Combine for predicting user actions

5.3 Interpreting In�uence scores

�e in�uence scores given by our models help in understanding

the in�uence a person has on others. Our experiments in Section

5.2 demonstrate that the in�uence scores can be very useful in

predicting user actions. However, the scores themselves carry

weight, as they bring out the strength of connections in the social

network and also can be helpful in a number of applications such as

personalization, recommendations, and ranking relevant content.

In this section, we present qualitative results of understanding the

scores and comparing them to other edge relationships that can

exist in the network.

Two other edge relationship scores that are worth comparing

with the in�uence scores are relationship-strength scores, and orga-
nization hierarchy. We compare the in�uence scores to both these

scores to see how the in�uence scores between the same pair of

individuals are di�erent. Around 12% of times, the in�uence �ows

in the reverse direction when compared to the manages relation-

ship, i.e., if User A is User B’s manager, then the in�uence is in the

opposite direction User B to User A. In such cases, we �nd that

the employee is o�en more active in the network, contributing to

more actions, which are reciprocated by managers. In around 20%

cases, in�uence between individuals in the same organization is

characterized by peers. �is veri�es how in�uence relationships

do not always �ow from top to bo�om in an organization.

Comparing in�uence scores to people-you-may-know scores,

we �nd that in about 10% of cases, the in�uence �ows in opposite

direction to relationship strength. For example, if User A and User B
are connected in a network and strength(A, B) > strength(B, A),

in 10% of cases, influence(A, B) < influence(B, A), and vice-versa.

6 CONCLUSION

In this paper, we presented a framework to model in�uence in rich

behavioral se�ings, such as online social networks, by examining

multiple edge and node relationships. We evaluated the model

on the LinkedIn professional network and examined the e�ect

of di�erent long-term actions (such as moving jobs) and short-

term actions (sharing content) on in�uence. Our system can be

easily extended to more edge relationships, node features and more

action types or contexts. �ere are many exciting directions to

go: can we use in�uence scores in one context to predict in�uence

in other types of actions? Our system can also be extended to

combine coarse and �ne grained interactions between users and to

infer action-speci�c top in�uencers in the network to make more

personalized recommendations.
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