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Abstract

There are currently, thousands of online social networks (OSN)
available, each of which hosts millions of users. Users make new
friendship links, join groups on diverse topics, share opinions and
thus help in building a big knowledge repository. In this paper we
study the problem of defining proximity measure between groups
(communities) of OSN. Understanding the proximity among the
groups in OSN can reveal new insights into the structure of the
network. We use this proximity measure in a novel way with other
structural features of online groups to predict the evolving state of
the network. One of the important task in the sphere of OSN is
helping users in selecting groups of their interest, by making rec-
ommendations. We utilize group proximity measure to propose a
new framework for recommending groups to users of OSN. Finally
we investigate the effectiveness of our methods in three real OSN:
Flickr, Live Journal and You Tube. Our methods give promising
results.

1. Introduction

Social networking is becoming a ubiquitous feature of our on-
line life. Social networking sites are attracting one out of every 20
Web visits [?]. In the month of September 2006, one out of every
20 U.S. Internet visits landed on one of the top 20 social network-
ing Web sites, nearly double the share of visits compared with a
year ago. A few of the most popular online social networks are
Facebook, MySpace, LinkedIn, Reunion.com, Flickr, Live Jour-
nal, Orkut, Shefali, AOL.com etc. These networks give users a
platform to link with similar minded people, join groups and share
their views on topics that compel their interest. As an example at
present Orkut has 6,7000,000 users and 4,7092,584 groups. The
size of the other networks are equally huge. This increasing gain
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Figure 1. Simple example of group proximity .
Nodes are members of an OSN. Edges repre-
sent friendship links. There are three groups
A, B,C. Members of each group are colored
differently.

in popularity of OSN has resulted in surge of interest in modeling
and understanding the social interactions and dynamics of these
networks [?, ?, ?].

One of the most important features and underlying reasons for
the popularity of OSN is that they allow users to create groups.
Users can start groups on different topics. Users can join the
groups already created by someone else. They can initiate discus-
sions, write posts to share their opinions, ideas and experiences.

While there has been a significant amount of research in de-
scribing node proximity, there has been little research in designing
measures for group proximity. This may be due to the ambiguity
of semantics of closeness between two groups. Here we character-
ize group proximity in two orthogonal ways. One is topic-based
proximity, where two groups are said to be close if they have sim-
ilar topics of discussion. The other one, which we pursue in this
paper is link-based proximity. It assigns group B as close to group



A, if a member of group A can easily reach group B using friend-
ship links. Figure ?? shows a simple example of an undirected
network. From the figure it is clear that group A(colored red) and
group B(colored blue) are much closer to each other than group
A and C(colored green). However in the example, each group
is a clique and disjoint. This does not quite reflect the structure
of groups as observed in real-world networks. In real networks
members participate in numerous groups. For example, in Orkut
the average number of groups in which a user belongs is around
50 — 100. So the groups have overlapping memberships.

In addition it is not possible for a member who belongs to many
groups to participate equally in all the group activities. Within a
group generally, there is a set of members who are closely knit and
actively guide the discussions. The other set of members are silent
observers and their participation in group activities is much less.
Thus not all the members in a group are equally important from
the perspective of the group (structurally and functionally). Orkut
is an undirected network, but most of the other real networks like
Flickr, Live Journal, You Tube are directed. Our approach can
handle both undirected and directed networks and is built upon
Tong et al’s work of [?]. The group as defined by them is any
collection of nodes and is not necessarily a community. Thus their
measure of group proximity does not consider the salient features
of groups in OSN. In Section 2, we describe how their measure
can be modified suitably for defining group proximity measure in
OSN.

While understanding the relationship between groups is itself
an important ingredient in the analysis of online social networks,
they can be used in varieties of other applications concerning OSN.
Two important tasks, where we employ the metric of group prox-
imity are predicting growth of the network and for recommending
groups in OSN.

1.1 Predicting Growth of Networks

Given the current status of a network, we are interested in an-
swering the question “which new members will join a group in
near future ?”. Most of the people are influenced by the opinions
of their friends. This is the basis for the “word of mouth” effect
and the works on information diffusion, product recommendations
all rely on it. Thus it is likely that those users who develop friend-
ships with members of a given group, are likely to join that group.
Predicting growth of a group is hence directly related to the prob-
lem of link-prediction [?]. If we can predict members of which
groups are likely to develop strong friendship among themselves
in near future, we can almost surely conclude that these groups
will share a large common membership shortly. Their discussion
themes will follow the same trend. In Section 3, we show how
group proximity measure can be utilized for this.

1.2 Recommending Groups in OSN

Voluminous number of groups in OSN makes it impossible for
a user to successfully search groups, matching his interest. Solely
searching for the groups in which his friends are members, might
require browsing hundreds of groups. A recommendation system
is useful in this scenario, for finding groups which a user will like
to join.

While recommendation systems have received ample of atten-
tion in the domains of movie recommendation, product recom-
mendation, document recommendation etc., not much work has

been put for recommending groups in OSN. As far as we know
the work of Isabelle et al [?] is the only one to consider group
recommendations in social networks. However their prediction
accuracy is never above 48% and that too using a very mild suc-
cess condition. In section 4 we propose a new approach of group
recommendations in OSN utilizing the group proximity and the
group membership history.

1.3 Contribution

We develop new link-based proximity measure for groups
in online social networks (Section 2).

e We show how to use group proximity measure along with
other structural properties of groups for predicting number
of new links that will develop between any two groups. (Sec-
tion 3)

e We propose a new recommendation system based on group
proximity and the history of user’s group membership. (Sec-
tion 4)

e We perform a detailed evaluation on a sample of Flickr, Live
Journal and You Tube datasets to investigate the effective-
ness of our methods. (Section 5)

2. Group Proximity Measure

In this section, we describe our group proximity measure and
the algorithm for computing it. We make use of the concept of es-
cape probability from [?]. The work there proposed a measure of
proximity between a collection of nodes, by first picking a random
node v from the collection, say X, and then estimating the proba-
bility that a random walk starting from v visits a node in the other
collection of vertices, say X2, before visiting any node in X .

The above approach has a number of drawbacks, if directly
applied to group proximity measure in OSN. First, in OSN as de-
scribed in the introduction, all the nodes in a group are not equally
representative of the group. The rolls each member plays in a
group are different. The members which have been in the group for
a long time and have participated in active conversations are more
reliable members of the group than those who have just joined
the group and have low level of activities. Selecting a node for
initiation of the random walk, without considering the roll the cor-
responding member plays can not distinguish between these two
categories of members in a group. It will perform much inferior
to an approach which gives due importance/weight to the actual
representatives of the group.

Secondly, in the groups of OSN, the representative members
form the core of the group, with many links among themselves. A
random walk that starts from such a node is likely to hit a member
of the same group with high probability. Thus the simple escape
probability based measure, starting from a representative member
assigns very low value of proximity to all the remaining groups
and cannot not differentiate among them. On the otherhand the
other members of a group play the roll of outliers and generally
have very few links going inside the group. Random walk that ini-
tiates from these corresponding nodes will visit other groups, but
measuring proximity between two groups based on these nonrep-
resentative members is not reliable.



2.1 Preliminaries

Before, we describe our approach, we first introduce some con-
cepts based on random walks on undirected and directed graphs.
A graph G has a set of vertices V, numbered 1 to n and a set of
edges E = {(¢,7)|i,j € V}. The adjacency matrix A of G is a
n X m matrix, where the entry in the (i, j)th cell, A; ; gives the
weight of the edge from ¢ to j. If there is no edge from i to 5 the
entry is 0. When the graph is undirected A is symmetric. D is a
diagonal matrix, where D; ; represents the degree of ith vertex in
the case the graph is undirected and the number of outgoing edges
from ¢, when the graph is directed. So D; ; = Zjev Aij.

Consider a random walk that is at node v; € G at time ¢. Then
if v+ has N (v¢) neighbors, at timestep t + 1, the random walk

.. . - A

visits the node w € N (v¢) with probability «———%+“——. The
€ ( t) p y T ren(vg) Avera

sequence of nodes v1, v2, .., v+ thus forms a Markov chain. Denote

by Pi(i) = Prob(v; = ). P = {p,;} represents the transition

matrix of the Markov chain, where p; ; = g” if (i,7) € E,
otherwise it is 0. ,

Escape Probability: The escape probability £ ; from node %
to node j is the probability that a random walk starting from node
1 will visit node j first, before visiting node 7. Recursively it can

be written as
n
Ei; =Y pisvrli, ) M
k=1

where vy, (%, j) denotes the probability a random walk starting from
node k will visit node j before visiting node 7. So we have the
following linear system:

k(i §) = Y prve(iy §) itk # 1,

t=1

vi(4,5) = 0,v;(4,j) = 1 otherwise 2)

Solving the above linear system we get, E; ; = P(i,Z)GP(Z,j),
where Z = V — {4, j}, P(4, Z) represents the ith row of P without
ith and jth element and P(Z, j) represents the jth column of P
without th and jth element. G = (I — P(Z,Z))~. Here I is the
identity matrix and P(Z,Z) represents matrix P after removing
the 4th and jth row. We know matrix inversion takes O(n?) time.
So if this method is directly applied to compute all pair escape
probabilities, the time complexity will become O(n®). Tong et al’s
[?] proposed a very efficient algorithm, which takes only O(n?)
time to compute all pair proximities in a network.

2.2 Our approach

We extend the above idea for group proximity in two ways.
First we are able to assign importance to the members in a group,
who are representatives of the group. Second our approach creates
a concise graph which is much smaller in size and thus improves
the time-complexity. Below we describe the major steps of our
algorithm and elaborate them in detail in the coming subsections.

We begin by dividing the members in each group into two par-
titions: core and outlier. Members in the core of a group are the
representatives of the group. They have many connections inside
the group and actively participate in the group activities and influ-
ence others to join the group. The members in the outliers have
very few links in the group and may have just joined the group.
Let G; and G be two groups. Let C;(C;) represents the core of

Gi(G5) and O;(Oj) represents the outliers of G;(G;). Our algo-
rithm has three main steps:

1. Find CORE: Find C; and C; of G; and G/ respectively.

2. Obtain Concise Graph: Shrink C; and C); into two vertices
Vi and Vj respectively. Remove the self loop. Replace the
parallel edges by a single edge with proper weight, taking
care of the common memberships. Denote the smaller graph
by G'.

3. Compute Escape Probability: Compute Ev;, v, in G

Note that here no random choice of node is required for escape
probability computation. Because of shrinking, the disadvantage
of a random walk starting from a representative member hitting
the core of the same group is eliminated. The shrunken graph for-
mation takes care of the different rolls of the core and the outliers.
The next two subsections describe the first two steps in details.
Once the concise graph is formed, the third step is performed us-
ing the fast algorithm of [?].

2.3 Finding CORE of a Group

We use two approaches for finding the core of a group. The first
approach uses simple degree centrality. For every node in a group,
compute its induced degree inside the group, that is the number of
members of the group the node is linked to. The algorithm returns
all the nodes whose induced degree is > é of the total size of
the group, where « is a constant. Here we rely on the assumption
that core members of a group have many friends inside the group.
Instead of degree, we can also pick the subgraph within a group,
which has maximum ratio of edges/vertices. We used this simple
measure in our experiments and got reasonable results.

The second approach uses truncated commute time [?] inside
each group. The commute time between node x and y is defined
as the total time required by a random walk starting from node x to
hit node y and then to come back to x. The core of a group forms a
closely knit component. So commute time between any two mem-
bers of the core should be smaller. We use a greedy method for
finding the core. Let C; denote the core of the group G;(V;, E;)
and M denote the all pair commute time matrix for GG;. The fol-
lowing algorithm computes the core C; of the group G. It starts
by finding the two nodes, which have minimum commute time and
includes them in the core. At every iteration, it finds the member
not included in the core so far, which has minimum average com-
mute time to the members of the core. If that time is less than
some chosen threshold, the member is inserted in the core and the
process is repeated.

Algorithm 2.1: CORECOMMUTETIME(G;)

Find (z, y) with minimum M (z, y).
Ci —A{z,y}
MIN — M(z,y)
while MIN < Threshold
do Find k with minimum >° . M(k,a)
MIN = Zeec, Mk

1C5]
output (C;)



2.4 Obtaining Concise Graph

Once the core C; of group G; has been identified for all the
groups. We shrink C; into a single vertex. The algorithm below
describes the shrinking procedure. The algorithm takes as its input
all the cores and the corresponding groups along with the social
network graph.

Algorithm 2.2: CONCISEGRAPH({G:,C;}, G)

for each (¢, j) € E(G)
ifi € Cpandj € CyVz,y
then Ag/ (V;,V;)+ =1
ifi € Crandj € Gy, — CyVz,y
then Ag/ (V;,5)+ =1
ifi € G, — Crandj € Gy, — CyVz,y
then Ag/(i,5)+ =1
for each i € V(G)
ifi € Cpandi € CyVz,y
then Ag/ (V;,V;)+ = «
ifi € Crandi € G, — CyVz,y
then AG’ (‘[L’ V7)+ = /3
ifi € G, — Crandi € CyVz,y
then AG/ (‘/“ ‘/])+ =7
REMOVE all the vertices whose degree becomes 0 in G’
output (G')

do

do

The first for loop creates the shrunken graph. The second for
loop assigns weight to the edges based on whether two groups
share a core member, whether a core member of a group is an out-
lier of a group and whether two groups have a common outlier
member. This weight assignment captures variable degree of shar-
ing among groups. For every common member x of G; and G, if
x € C; N Cj, then the weight of the edge (V;, V;) increases by a.
If x € C;NOjorz € O; N Oy, the weight of (V;, V;) increases
by [ and ~ respectively. Here « > (3 > ~. In the experiment
using Flickr, this procedure was able to reduce the number of ver-
tices to half, and edges to %th fraction of the total edges. Thus
the advantage gained in running time is quite clear, since the time
for computing escape probability dominates the time complexity
for creating the shrunken graph.

3. Predicting Future Growth of Groups

As discussed in the introduction, OSN typically grow over time.
New users join the network, new groups get created. Users make
new friends, participate in new groups. It is a challenge to ana-
lyze the huge dynamics of such networks. The foundation of such
an analysis rests on modeling the evolution of the network. If we
can predict from the current state of the network how it will grow
in near future, we can use that knowledge to build efficient algo-
rithms to handle the temporal evolution of the network.

We use our group proximity measure to predict how many new
links will develop between any pair of groups in near future. If
this can be predicted with reasonable accuracy, it will enable us to
discover members of which two groups will develop friendships.
It is likely that members of one group will also join the other group
in near time.

3.1 Link Cardinality Estimation

For every pair of groups, we use the group proximity value be-
tween these groups, the current number of links and the product
of the sizes of each group as the features, upon which to base our
predictions. Using the values of these features at time ¢, we would
like to determine how many links will there be between any two
groups in recent future at time ¢ 4+ 0. Each of these features are
normalized appropriately. We select a sample of the data for train-
ing. For them, we know the proximity values at ¢ and the number
of links at both ¢ and ¢ + 6. For the test data we do not know the
number of links at time ¢ 4+ 6. We learnt a regression tree on the
training samples. Regression tree is a variation of decision tree
where the class labels can be any real numbers. We used some
other learning techniques as well. The details of the methods are
described in the Experimental section.

It is to be noted that in a similar way, we can predict for a par-
ticular node and group, how many friends a node will develop in
the group. We can use our group proximity measure, considering
the particular node as a singleton group and then learn a regression
tree based on the proximity value and size of the said group.

4. Group Recommendation in Online Social
Networks

In this section we show how we use our proximity measure for
recommending groups in an OSN. Collaborative filtering [?] is
one of the popular techniques used in different recommendation
systems. It tries to identify members with similar taste (like same
kind of movies, same kind of pruducts) to a user and recommend
based on what those members have liked. The recommendation
system [?] uses a similar kind of collaborative filtering approach
for recommending groups where it is assumed a user likes to join
a group where his or her friends have joined. This we refer as user
level recommendation.

Our approach is also based on collaborative filtering. However
instead of considering only friendship links to identify like-minded
people, we take into account the current group membership infor-
mation of a user. Members join a group, because they share com-
mon interest. We call our recommendation system, which consid-
ers the collective behavior of both user’s friends and the members
of the groups in which the user currently belongs the group-level
recommendation. Precisely our recommendation system is based
on the following assumptions:

e A user joins a group, because s/he reaches that group through
his or her friendship links and the groups s/he is already a
member of.

e Groups which are far apart in the network from the groups
in which user is currently a member, are unlikely to match
user’s interest.

The first assumption is based on user’s browsing pattern. As
a user browses through the network, s/he is likely to visit his or
her close neighbors (friends, friends of friends etc) in the network
through friendship links and those members who belong to the
groups s/he is a member of, their friends and so on. In turn s/he
gets influenced by the groups these users belong to and select to
join one such group. The second assumption is based on the fact
that a group which is not easily reachable through friendship links
from the groups in which a user currently belongs is unlikely to



match the interest of the user. No other user with same kind of
interest has joined that far away group.

To understand better the strength of the group level recommen-
dation system and why group proximity is useful, consider two
groups, such that a large fraction of members in the first group
have many friends in the second group. Since the members of the
same group naturally have common interest, the fact that a good
fraction of like-minded people have many friends in the second
group serves as a support that the users in the first group will like
to join the second group. Thus this is not based on the friendship
links of a single user, but depends on the distribution of friendship
links of a big collection of users. Our algorithm for group prox-
imity will assign high values to these pair of groups. Group prox-
imity is also affected when two groups share common members.
Presence of a significant number of common members between
two groups is a strong evidence that users in one group joined the
other group and vice versa. Therefore any user of the first group,
who is not a member of the second group will probably like to join
the second group.

Below we describe the exact methodology for group recom-
mendation.

4.1 Group Recommendation Method 1

This is a simple deterministic method. Here for each user we
want to recommend a group. We utilize the information of the
current group membership and the group proximity. Let user A
belong to groups Ga4 = G1,Ga,...,G;. Suppose G represents
the entire collection of groups. Then for every group G € G—G 4,
we compute the total proximity of these groups from the groups in
G a. We use the computed value as the score for every group in
G —G 4 foruser A. We recommend the k groups with top scores to
user A. Below is the description of the algorithm. In the algorithm
Prox(h, g) represents the proximity value of G from H.

Algorithm 4.1: GROUP-RECOMMENDATION1(A, G4, G, Prozx)

foreachG € G — G,
score(G) — 0
do < foreach H € G4
do score(G) «— score(G) + Prox(H, Q)
Select the top-k groups by score
Return the selected groups as the recommended ones

4.2 Group Recommendation Method 2

Method 1 assigns all the current groups equal importance in
determining the next group user will join. However in many cases,
a user does not participate in all his groups equally. In method 1
there is no way of finding which groups influence a user in choos-
ing the next group. To capture this we propose the concept of
group closure and employ a new classifier over it.

Group Closure. For each group, we define its closure as all
the groups close to it by the proximity measure. In general, while
computing the closure of G;, any group, whose proximity is higher
than the average proximity of all the groups from G; is included
in the closure of GG;. Algorithm 4.2 gives the procedure for finding
the closure of Gi.

Note that these closures can overlap with each other. A dif-
ferent approach for finding closure will be to use clustering tech-
niques. We can define a complete graph where there is a node for
every group. An edge from G; to G; has weight Proxz(G;, G;).
Note that the edge weights are neither symmetric nor they follow
triangle inequality. We are currently investigating what kind of
graph clustering techniques will be useful to identify the closures.

Algorithm 4.2: GROUP-CLOSURE(G, Proz,G)

Total — 0
foreachG € G — G;
do Total <— Total + Prox(G;, G)

foreachG € G — G;
{if Prox(G;, G) > Lotal

lg]-1
then GC; — GC; U {G}
return (G)C;

Group closure helps in identifying the groups which play the most
significant roll in determining the next group for a user. The as-
sumption is that if a user belongs to many groups in the closure of
say G4, then G is one of the key groups that guides the user in his
or her next choice. We define three categories of memberships of
a user in each closure: high, medium and low. If a user belongs to
> 63 fraction of the groups in a closure, s/he is a high member of
the closure. If the user is a member of < §; but > 2 fraction of
the groups in a closure, s/he is a medium member. Otherwise s/he
is said to be a low member of the closure.

Classifier Description. We assume there exists a fraction of
users, whose group membership information is available entirely.
That is for them, we know the latest group they joined and also
the rest of the membership history. This serves as the training data
for the classifier which we will describe next. For the remaining
users we do not know the last group the user became a member of.
Rest of the membership history is available. Using this available
membership history and the learnt classifier, we want to predict
the latest group which these users joined.

From the training data available, we learn the probability distri-
bution that given the category of memberships of a user in all the
closures, the probability that s/he joins a particular closure next.
Here we assume full independence. That is

Prob( user A joins GC’Zv’m(u, GCj) =a;Vj =1to|G|)
1G]
= H Prob( user A joins GCi|m(u, GC;) = a;)

j=1

Here m(A, GC;) denotes the category of membership of user A
in closure GC);. a; for all j can take value among high, medium
and low. We also learn the probability distribution of users joining
a group, conditioned on their joining a particular closure. These
distributions are learnt from the training data sets. For every user
A for whom we want to recommend groups, we compute a score
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Figure 2. Classifier for group recommenda-
tion

for every group in G — G 4, using the above two distributions.

Score(G € G — Ga)

= Eg: Prob( user A joins G’ user A joins GC;) *
i=1
Prob( user A joins G’C’i’m(A, GCy) = arVk = 1t0|G])
= zg: Prob( user A joins G| user A joins GC;) *
\gli:1
H Prob( user A joins GCi|m(u, GCx) = ax)

k=1

The Figure ?? depicts the structure of the classifier. The first
level contains a random variable corresponding to the category of
user’s membership in each closure. The second level contains a
single variable for the new closure user joins. The third level con-
tains the variable for the new group user joins.

The assumption of full independence here is a bit over-simplified,
as the closures may have significant overlaps. However as we
show in the experimental section, even with this strong assump-
tions of independence, the method 2 performs quite well.

5. Experimental Results

In this section, we describe our experimental findings on three
different real world online social networks: Flickr, You Tube and

Live Journal. The datasets are collected from http://socialnetworks.mpi-

sws.mpg.de/data-imc2007.html. We selected a random sample from
each of these three networks for our experimental purpose. The
size of the samples are given in Table 1.

Network # of members | # of links | # of groups
Flickr 2000 1,40,7292 100
You Tube 2000 32,881 100
Live Journal 2000 48,165, 100

Table 1. Data Description

Each sampled datasets contain friendship links and group mem-
bership information. We ran several experiments on the datasets,
using different settings and classifiers. We used LIBSVM [?],
DTREG [?] and WEKA [?] for SVM classifier, regression tree
and linear regression respectively. Rest of the codes are written by
us. We first illustrate the methodology and results for predicting

Classifier Measurement Parameter Flickr
Regression Tree Mean Absolute Error 21.84%
Linear Regression Mean Absolute Error 30.8422%

SVM-Multiclass

Witihin Label+/-1

64% Success

SVM-Multiclass

Within Label+/-2

81% Success

Classifier Measurement Parameter You Tube
Regression Tree Mean Absolute Error 18.62%
Linear Regression Mean Absolute Error 28.54%

SVM-Multiclass

Witihin Label+/-1

79% Success

SVM-Multiclass

Within Label+/-2

88% Success

Classifier
Regression Tree
Linear Regression
SVM-Multiclass
SVM-Multiclass

Live Journal
22.54%
26.73%

68% Success

84% Success

Measurement Parameter
Mean Absolute Error
Mean Absolute Error

Witihin Label+/-1
Within Label+/-2

Table 2. Results of link cardinality estimation
on Flickr, You Tube and Live Journal using
regression tree, linear regression and a mul-
ticlass SVM classifier

link cardinality between groups and then show the outcomes of
our group recommendation system.

5.1 Results of Link Cardinality Estima-
tion

For link cardinality estimation, for each pair of groups we used
group proximity measure, current number of links in between and
the normalized product of the size of the two groups as features.
We sampled edges uniformly and randomly with probability 1/2.
The sampled edges form a network with the number of edges ap-
proximately half of the actual network. All the features are com-
puted based on the sampled network. Using these features, we
want to predict the link cardinality between any two groups in the
original network. We used 10 fold cross-validation and used 3
different kinds of methods. Two of these methods are based on re-
gression: linear regression and regression tree. As expected using
regression tree outperforms linear regression. Using a regression
tree we get an average absolute error around 22% for Flickr, which
indicates if the true value is X, then the predicted value is within
X (1£0.22). For using a classifier, we first discretize the number
of links for both current and previous, into nonoverlapping ranges
of 100. For example, if the number of links is between 0 to 100,
it is given a class label 1. If the number of links is between 101 to
200, it is given a class label 2 and so on. Using a SVM-multiclass
classifier, we get for 64% pairs of groups in Flickr, if the actual
number of links is X, then the predicted number is within X £100.
The entire results are tabulated in the Table ??. Note that the first
two rows tabulate the mean absolute error for Flickr, You Tube
and Live Journal. So the lower are these values, better is the result
of regression. The values in the last two rows on the other hand
indicate for what percentage of the group-pairs the classifier was
able to predict the number of links very close to the original. In
this case, the higher these values are, the better is the result.

5.2 Results of Group Recommendation
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Figure 3. Comparison of group recommen-
dation results for Flickr, You Tube and Live
Journal using random group selection, GM,
GL, method 1 (P1), method 2 (P2)

For group recommendation we show empirical results for both
method 1 and 2 as described in the previous section and compare
them with some other classifiers. For both method 1 and method
2, we return the top 5 groups based on the score they assign and
check whether the group to be predicted is one of them. For exper-
imental purpose, we first tried to learn SVM multiclassifiers using
LIBSVM [?]. Group-Only SVM-Multiclass (GM), uses the binary
vector of group membership as feature (excluding one group) and
tries to predict the left out group which may be any of the 100
groups for every user. Total-Link SVM-Multiclass (GL), learns
a SVM multiclassifier, where the feature vector consists of the
number of links each new group has to the current user’s groups.
Similar to GM, here also the classifier tries to predict the left out
group for every user. Using 10 fold cross-validation we get an ac-
curacy of around 22% for both the cases for Flickr, which is not
very good. The result using these classifiers is also not promis-
ing for Live Journal or You Tube. Using method 1, our accuracy
was raised to 46.65% for Flickr, that is for 46.65% of the users
method 1 was able to predict the latest group accurately. Method
1 performs exceptionally well for You Tube, where the accuracy
is above 60%. Method 1 does not perform as well for Live Jour-
nal, where we are able to predict successfully in around 40% of the
cases. Method 2 uses our proposed classifier and 10 fold cross val-
idation. The accuracy is above 65% for Flickr and more than 55%
for the other two. Figure ?? gives the comparison result among
the methods. The first bar in the figure ?? represents the accu-
racy when a random group is chosen for each user and matched
with the group to be predicted. As expected for random choice the
accuracy is very low.

So far, we have considered our prediction successful if the one
particular group to be predicted belongs to the 5 groups that are
returned by method 1 or 2. We now use a milder success condition
as described in the work of Isabelle et al [?]. For each user in
the test sample, which is small compared to the actual number of
users, they obtained a list of 4 groups for Live Journal and a list
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Figure 4. Change in group recommenda-
tion accuracy with increasing membership
on Flickr, You Tube and Live Journal with
milder success condition

of 20 groups for Orkut. If for a user at least one common group
exists between the entire list of groups the user is a member of and
the predicted list of groups for the user, it is counted as success.
They achieved a 48% success in both the networks using this mild
success condition. Figure ?? shows the group recommendation
accuracy, if we take a weaker success criteria. We leave aside half
the groups from each user’s membership vector. Considering only
the remaining groups and using method 1, we then find out if there
is a common group between the predicted list of 5 groups and the
groups that are left out. The accuracy is raised to above 80% for
both Flickr and You Tube, when we use this success measure for
method 1 and consider only those users who belong to at least
5 groups. The accuracy for Live Journal is still low compared to
Flickr and You Tube. But even for Live Journal it is more than 55%
when users belong to at least 5 groups and above 80% when they
belong to at least 10 groups. Figure ?? shows how the accuracy
increases as we consider only the users who belong to at least a
certain number of groups. In the figure if the accuracy is a% when
the x-coordinate is b, then for a% of those users who belong to at
least b groups, the method predicted successfully.

The results clearly show that using group membership or link
cardinality alone is not sufficient for group recommendation. But
when group proximity is coupled with group membership the rec-
ommendation system becomes very effective. Method 2 outper-
forms method 1 in both Flickr and Live Journal. In You Tube
method 1 performs better. When using a weaker condition for suc-
cess our method performs extremely well and gives result much
better than [?].

6. Related Work

In this section we briefly describe some of the works done on
social networks related to our work.

There has been large amount of research in defining proper
measure of node proximity in social networks. As we know many



of the real networks have the scale-free property and exhibit the
small world phenomenon. Any two nodes in such a network gen-
erally have a short path connecting them. Thus a short path length
does not necessarily capture the friendship bond or the closeness
(proximity) between two nodes. Faloutsos et al [?] modeled the
proximity between two nodes by introducing the notion of connec-
tion subgraphs. Connection subgraphs use the concept of current
flow in electrical network and return a small subgraph H which
demonstrates the relationship between a given set of query nodes.
The work of Ramakrisnan [?] attempted to find connection sub-
graphs from multirelational data. These works are based on the as-
sumption that the underlying network is symmetric. Tong et al [?]
proposes asymmetric proximity measures in directed graph using
the techniques of random walk and escape probability. Random
walk has been widely used for several tasks including computing
pagerank [?], finding expected node distance (random walk with
hitting and commute time)[?], in semisupervised and supervised
learning [?].

OSN grows rapidly. One of the crucial part of network analysis
in OSN is to understand the dynamics of it. Predicting whether a
link will be created between two nodes (link prediction) [?], mod-
elling how information spreads (information diffusion) [?], and
groups are formed [?] are some of the works done in this area.
Recommendation systems have received significant attention for
recommending movies, products, research papers etc [?, ?]. The
major techniques can be broadly classified into two categories con-
tent based filtering and collaborative filtering. Content based fil-
tering is developed on the premise that user will like a product, if
he has liked similar kind of products in the past. Whereas collab-
orative filtering tries to identify other users with taste similar to
the current users and recommend the products which those users
have liked. There are some approaches which try to merge both of
these. Here we are interested in recommending groups to users in
OSN.

There is a clear distinction between the recommendation sys-
tems for OSN from the rest. For example, in the case of movie
recommendation, if a user enjoys thrillers, he almost surely will
enjoy the high quality movies in that genre. However in OSN,
there are groups on varieties of topics with different flavors. It is
very unlikely that a user will join many groups on similar topic. So
content based filtering will not suit for OSN. The work of Isabelle
et al [?] is one of the first to consider group recommendation in
social networks. They consider the model of collaborative filter-
ing [?]. They explicitly discover the clusters in the network based
on friendship links and find the probability distribution of groups
in each cluster. They use this information to recommend groups
to users who has just joined the network and whose friendship
links are only known. However their recommendation is solely
for the users who are new in the network and they do not con-
sider a continuous recommendation system, which recommends
groups to both veterans and newcomers. Since their recommen-
dation system is tipped towards newcomers, they do not use the
current membership information of a user to recommend a new
group. When they predict 4 groups for LiveJournal and 20 groups
for Orkut, in 48% users they are successful in predicting atleast
one group among all the groups in which the user is a member of.
We are not sure, how their success rate will be affected if they try
to predict the last group which user joins. It is very likely that the
success rate will drop.

7. Future Work and Conclusion

We have introduced a new measure of group proximity in OSN
using friendship links across groups and common memberships.
We use group proximity along with some other structural features
of groups to estimate link cardinality between groups. Accurate
estimation of link cardinality helps in understanding the evolu-
tion of groups. We then propose two methods for recommending
groups in OSN using group proximity and membership history.
The experimental results on Flickr, Live Journal and You Tube
validate the effectiveness of our measure.

Our proximity measure does not use any attribute information
of groups. Incorporating attributes which are common among ma-
jority of members of the groups may improve the proximity mea-
sure. Our group recommendation system is based on the assump-
tion that members in a group share similar interest. But there ex-
ists some very generic large group like USA. The assumption that
members of a group is like-minded does not hold here. We are
currently developing a Bayesian network framework to model this
aspect.
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