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ABSTRACT

Causal inference is at the heart of empirical research in natu-
ral and social sciences and is critical for scientific discovery
and informed decision making. The gold standard in causal
inference is performing randomized controlled trials; unfortu-
nately these are not always feasible due to ethical, legal, or
cost constraints. As an alternative, methodologies for causal
inference from observational data have been developed in sta-
tistical studies and social sciences. However, existing meth-
ods critically rely on restrictive assumptions such as the
study population consisting of homogeneous elements that
can be represented in a single flat table, where each row
is referred to as a unit. In contrast, in many real-world set-
tings, the study domain naturally consists of heterogeneous
elements with complex relational structure, where the data
is naturally represented in multiple related tables. In this
paper, we present a formal framework for causal inference
from such relational data. We propose a declarative language
called CaRL for capturing causal background knowledge
and assumptions, and specifying causal queries using simple
Datalog-like rules. CaRL provides a foundation for infer-
ring causality and reasoning about the effect of complex
interventions in relational domains. We present an extensive
experimental evaluation on real relational data to illustrate
the applicability of CaRL in social sciences and healthcare.
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1 INTRODUCTION

The importance of causal inference for making informed pol-
icy decisions has long been recognised in health, medicine,
social sciences, and other domains. However, today’s decision-
making systems typically do not go beyond predictive ana-
lytics and thus fail to answer questions such as “What would
happen to revenue if the price of X is lowered?” While pre-
dictive analytics has achieved remarkable success in diverse
applications, it is mostly restricted to fitting a model to ob-
servational data based on associational patterns [38]. Causal
inference, on the other hand, goes beyond associational pat-
terns to the process that generates the data, thereby enabling
analysts to reason about interventions (e.g., “Would requir-
ing flu shots in schools reduce the chance of a future flu
epidemic?") and counterfactuals (e.g., “What would have hap-
pened if past flu shots were not taken?"). This adds signifi-
cantly more information in data analysis compared to simple
correlation or regression analysis; e.g., as the number of flu
cases increases, the rate of flu shots might also increase, but
that does not imply that giving flu shots increases the spread
of flu. This emphasizes the common saying that “correlation
is not causation”, which is known to all, but is easy to over-
look if one is not careful while analyzing data for insights
and possible actions.

The gold standard in causal analysis is performing random-
ized controlled trials, where the subjects or units of study are
assigned randomly to a treatment or a control (i.e., withheld
from the treatment) group. The difference between the dis-
tribution of the outcome variable of the treated and control
groups represents the causal effect of the treatment on out-
come. However, control experiments are not always feasible
due to ethical, legal, or cost constraints [2, 46]. An attractive
alternative that has been used in statistics, economics, and
social sciences simulates control experiments using available
observational data. While we can no longer assume that the
treatment has been randomly assigned, under appropriate
assumptions we can still estimate causal effects. Rubin’s Po-
tential Outcome Framework [43] and Pearl’s Causal Models
[35] (reviewed in Section 2) are two well-established frame-
works which have been extensively studied in the literature
and used in various applications for causal inference from
observational data [2, 6, 30, 34, 45].
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Figure 1: A multi-relational ReviewData instance.

Causal frameworks, however, rely on the critical assump-
tion that the units of study are sampled from a population
of homogeneous units; in other words, the data can be rep-
resented in a single flat table. This assumption is called the
unit homogeneity assumption [2, 16]. In many real-world
settings, however, the study domain consists of heteroge-
neous units that have a complex relational structure; and the
data is naturally represented as multiple related tables. For
instance, as presented later in our experiments with real
data [14, 19], hospitals can record in several tables infor-
mation about patients, medical practitioners, hospital stays,
treatments performed, insurance, bills, and so on. Standard
notions used in causal analysis — such as units or subjects
who receive a treatment in causal analysis — no longer read-
ily apply to relational data, prohibiting us from adopting
existing causal inference frameworks to relational domains.
We illustrate these challenges with the following example.

Example 1.1. Consider researchers trying to understand the
impact of single-blind and double-blind reviewing policies on
the review scores of submissions, in particular, understanding
how the prestige of authors affects the fairness of decisions. In
this setting, the outcome of interest is the review scores of a
submission, and the treatment is the prestige of the authors
(Figure 1 shows a simplified schema for the domain. See Sec-
tion 6.1 for full details about the actual ReviewData which
comes from OpenReview [33] and other datasets.)
For answering causal questions such as “Is there an effect

of the prestige of authors on the review score received by the
submission at a conference?”, we need to control for confounders
like the quality of submissions and conferences where they
are submitted. This requires not only joining across multiple
tables, but it also requires aggregating over authors since the
authors table is related to paper submissions by a many-to-
many authorship relation.

Our contributions. In this paper, we propose a declara-
tive framework for Causal Relational Learning, a foundation
for causal inference over relational domains. Our first con-
tribution is a declarative language, CaRL (Causal Relational
Language), for representing causal background knowledge
and assumptions in relational domains (Section 3). CaRL

can represent complex causal models using just a few rules.
The syntax of CaRL is designed to be intuitive for users
to represent complex causal models and ask causal queries,
while the details of their semantics and query answering are
abstracted from the users who need not be statisticians.
Our second contribution is to define semantics for com-

plex causal queries where the treatment units and outcome
units might heterogeneous and controlling for confounding
may require performing multiple joins and aggregates (Sec-
tion 4). Using CaRL, we can answer complex causal queries
such as:“what is the effect of not having an insurance on
mortality of a patient in a critical care unit?”, where we are
interested in estimating the average treatment effect (defined
later), or “what is the effect of authors’ collaborators’ pres-
tige on acceptance of a paper?”, where we are interested in
estimating the average relational effect; several other types
of queries are also supported.

Our third contribution consists of an algorithm for answer-
ing causal queries from the given relational data (Section 5).
The algorithm performs a static analysis of the causal query,
and it constructs a unit-table specific to the query and the
relational causal model by identifying a set of attributes that
are sufficient for confounding adjustment. The constructed
unit-table is amenable to sound causal inference using exist-
ing techniques.

Finally, we present an end-to-end experimental evaluation
of CaRL on both real and synthetic data (Section 6). The ex-
periments conducted on the following real-world relational
datasets: 1) ReviewData [33, 39, 40], 2) MIMIC-III (Medi-
cal Information Mart for Intensive Care Data) [19], and 3)
NIS (National Inpatient Sample Data) [14]. We examine the
following causal queries:
• ReviewData. What is the effect of authors’ prestige
on the scores given by the receivers under single-blind
and double-blind review processes?
• MIMIC-III. What is the effect of not having insurance
on patient’s mortality and length of hospital stay?
• NIS. What is the effect of hospital size on healthcare
affordability?

In each setting, we report contrasts between correlation and
causation, further highlighting the need for principled causal
analysis. Evaluation of CaRL on synthetic data showed that
causal analysis ignoring the relational structure of data failed
to recover the ground truth, but CaRL successfully recovered
accurate results.

2 BACKGROUND ON CAUSALITY

This section reviews basics of causal inference.We use capital
letters 𝑋 to denote random variables, and use lower case
letters 𝑥 to denote their values. We use boldface X, x to
denote tuples of random variables and constants respectively;
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Figure 2: A standard causal DAG for Example 3.2.

and 𝐷𝑜𝑚(𝑋 ) denotes the domain of variable 𝑋 .

Probabilistic causalmodels. Aprobabilistic causalmodel
[36] is a tuple𝑀 = ⟨U,V, PrU, F⟩, where U is a set of exoge-
nous variables that cannot be observed,V is a set of observable
or endogenous variables, and PrU is a joint probability distri-
bution on the exogenous variables U. The set F = (𝐹𝑋 )𝑋 ∈V
is a set of non-parametric structural equations of the form
𝐹𝑋 : 𝐷𝑜𝑚(PaV (𝑋 )) × 𝐷𝑜𝑚(PaU (𝑋 )) → 𝐷𝑜𝑚(𝑋 ), where
PaU (𝑋 ) ⊆ U and PaV (𝑋 ) ⊆ V− {𝑋 } are called the exogenous
parents and endogenous parents of 𝑋 respectively. Intuitively,
the exogenous variables U are not known, but we know
their probability distribution; the endogenous variables are
completely determined by their parents (exogenous and/or
endogenous).

Causal DAG. A probabilistic causal model is associated
with a causal DAG (directed acyclic graph) 𝐺 , whose nodes
are the endogenous variables V, and whose edges are all
pairs (𝑍,𝑋 ) such that 𝑍 ∈ PaV (𝑋 ). The causal DAG hides
exogenous variables (since we cannot observe them anyway)
and instead captures their effect by defining a probability
distribution PrU on the endogenous variables.1 We will only
refer to endogenous variables in the rest of the paper and
drop the subscript V from PaV. Similarly, we will drop the
subscript U from the probability distribution PrU when it is
clear from the context. Then the formula for Pr(V) is the
same as that for a Bayesian network:

Pr(V) =
∏
𝑋 ∈V

Pr(𝑋 |Pa(𝑋 )) (1)

Figure 2 shows a simple example of a causal graph based
on Example 1.1: the Score of a paper is affected by its Quality
and by the Prestige of the author (assuming the reviews are
single blind), whereas both Quality and Prestige are affected
by the author’s Qualification. Here V = {Qualification,
Quality, Prestige, Score} are endogenous variables, U en-
dogenous variables are unknown (e.g., mood of a reviewer
while reviewing the paper, the expected number of papers
to be accepted, scores of other papers the reviewer reviewed,
etc.) leading to a probability distribution on V. The depen-
dencies can be represented by three structural equations:

Quality⇐ Qualification; Prestige⇐ Qualification;
Score⇐ Quality, Prestige. (2)

Interventions and the do operator. Causal models give
semantics to interventions. An intervention represents ac-
tively setting an endogenous variable to some fixed value and
1This is possible under the causal sufficiency assumption: for any two vari-
ables 𝑋,𝑌 ∈ V, their exogenous parents are disjoint and independent
PaU (𝑋 )⊥⊥PaU (𝑌 ) . When this assumption fails, one adds more endogenous
variables to the model to expose their dependencies.

observing the effect denoted by the 𝑑𝑜-operator introduced
by Pearl [37]. Formally, an intervention do(W = w) consists
of setting variables W ⊆ V to some values W = w, and it de-
fines the probability distribution Pr(V|do(W = w)) given by
(1), where we remove all factors Pr(𝑋 |Pa(𝑋 )), where𝑋 ∈W.
In other words, we modify the causal DAG by removing
all edges entering the variables W on which we intervene;
this fundamentally differs from conditioning, Pr(V|W = w).
Pearl has an extensive discussion of the rationale for the
𝑑𝑜-operator and describes several equivalent formulas for
estimating the effect of do(W = w) from an observed distri-
bution [36].

Average treatment effect (ATE). The causal analysis
estimates the effect treatment variable 𝑇 (typically a binary
variable) on some outcome variable 𝑌 . This effect is often
measured by the following quantity known as the average
treatment effect (ATE), which is expressed as follows in our
notation:

ATE(𝑌,𝑇 ) = E[𝑌 |𝑑𝑜 (𝑇 = 1)] − E[𝑌 |𝑑𝑜 (𝑇 = 0)] (3)

Much of the literature on causal inference in statistics ad-
dresses efficient estimation of ATE from observational data.

Unit of analysis and SUTVA. Both Pearl’s [36] and Ru-
bin’s causality [44] rely on the assumption that the study
domain consists of a set of units, or physical objects (e.g.,
authors, patients, publications, etc.) that can be subject to a
treatment/intervention and exhibit a response to it. Further-
more, they rely on the assumption of no interference between
the units or Stable Unit Treatment Value Assumption (SUTVA)
[44]. Intuitively SUTVA states that intervening on or treat-
ing a unit does not have any consequences on the response
of other units. In settings where the units of analysis are
relationally connected, this assumption is typically violated.
In Example 1.1, prestige of an author (treatment) influences
the acceptance chance (response) of his or her co-author(s)
and collaborator(s) which leads to the violation of SUTVA.

Related work. Previous work has studied causal infer-
ence in the presence of interference [4, 10, 12, 13, 29–31,
51, 54, 56]. These works address applications such as the
study of infectious diseases [13, 56] or behavior and inter-
actions in social networks [10, 17, 23, 29, 51, 53, 56]. But
in these studies the units are still homogeneous (e.g., peo-
ple connected by a social network), and they are unable to
capture different entities of interests like papers, authors,
reviews and their complex many-to-many relationships that
we focus on in CaRL. There has been prior work on learning
causality from relational data [3, 21, 22, 24]; it focuses on
discovering the structure of probabilistic graphical models
for this data. These models were originally proposed for
Statistical Relational Learning, which aims to model a joint
probability distribution over relational data amenable for
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probabilistic reasoning rather than causal inference [8]. This
line of work differs from our work in that our objective is to
develop a declarative framework to answer complex causal
queries about the effect of interventions, given the existing
background knowledge. Note that causality has been used in
various contexts [27], namely, to understand responsibility
in query answering [25, 47], in database repair [26, 48], and
to motivate explanations [42]. It has also inspired different
applications such as hypothetical reasoning [5, 7, 20, 28].
These differ from our work in that they identify parts of the
input that are correlated with the output of a transformation,
which is useful but does not reflect the true causality needed
for decision making.

3 CARL: DECLARATIVE FRAMEWORK

In this section, we present our declarative language called
CaRL (Causal Relational Language) that extends causal mod-
eling to relational data by allowing the user to (1) specify
assumptions and background knowledge on the interactions
among heterogenous units (Section 3.2), and (2) pose various
causal queries (Section 3.3). We start with our data model,
which forms the basis for our language.

3.1 Data Model: Schema and Instance

Relational causal schema (schema). The input schema
for CaRL corresponds to any standard multi-relational data-
base, e.g., ReviewData in Figure 1, but we assume the data
is given in the following ‘entity-relationship-attribute’ form
for a simpler generalization of Pearl’s causal models. A rela-
tional causal schema is a tuple S = (P,A), where P = E ∪ R
represents a set of entities E and their relationships R, and A
represents a set of attribute functions (or simply attributes)
that encode the standard attributes of the entities and their
relationships, with the only difference that some of these
attributes may be ‘unobserved’ with missing values in all
instances. The entities and their relationships are denoted
by 𝑃 (.), the attribute functions are denoted by A[.], and
A𝑂𝑏𝑠 ⊆ A denotes the set of observed attribute functions.
We illustrate the mapping from standard relational model to
relational causal schema using our running example.

Example 3.1. The relational causal schema corresponding
to the relational ReviewData in Figure 1 (with renames) is:

P = Person(A),Author(𝐴, 𝑆), Submission(𝑆), Submitted(𝑆,𝐶),Conference(𝐶)
A = Prestige[𝐴],Qualification[𝐴], Score[𝑆 ], Blind[𝐶 ],Quality[𝑆 ]

Here P consists of entities in the ReviewData: E = {People,
Submission, Conference} and their relationships R = {Authors,
Submitted}; The attribute function A corresponds to the at-
tributes of these entities and relationships: Prestige[𝐴] = the
prestige of the author’s institution (e.g., rankings); Qualification[𝐴]

= the qualification of an author by h-index2); Score[𝑆] ∈ [0, 1]
= the average score reviewers gave to a submission; Blind[𝐶]
= whether a conference review policy is single or double blind;
Quality[𝑆] = the quality of a submission. Note that Quality
in A is missing in the Submissions table in Figure 1, since it is
an unobserved attribute function, and will be used in causal
analysis based on our background knowledge that quality of a
submission may have an impact on its score.

Observed instance and relational skeleton (instance).

Similar to a standard database instance given a standard rela-
tional schema (as shown in Figure 1), an observed relational
instance (or simply an instance) conforms to a given relational
causal schema S = (P,A) with specific values (i.e., constants),
however some (unobserved) attribute functions may be miss-
ing in the instance (like ‘Quality’). The set of (constant or
grounded) entities and relationships in an instance (exclud-
ing the grounded attribute functions) is referred to as the
relational skeleton of the instance and denoted by Δ.

Example 3.2. For relational causal schema given in Ex-
ample 3.1 and the instance in Figure 1, the relational skele-
ton comprises entities and relationships like Person(“Bob”),
Submission(“s1”), Author(“Bob”, “s1”), etc. The ob-
served instance comprises the relational skeleton and the at-
tribute functions like Score[“s1”], Blind[“ConfDB”], etc.,
but not unobserved attributes like Quality[“s1”]. Note that
all observed attribute functions assume a fixed value given any
instance.

3.2 Specification of Background

Knowledge by Relational Causal Rules

3.2.1 Relational causal model and rules. The first step of
using CaRL is encoding the user’s background knowledge
about potential causal dependencies among attributes in
an application. This is expressed in CaRL through a set of
relational causal rules (defined below) that capture the causal
assumptions. We refer to the set of relational causal rules
specified by the user as the relational causal model.

Definition 3.3. A relational causal rule over a relational
causal schema S = (P,A) has the following form:

A[X] ⇐ A1 [X1 ], . . . , A𝑘 [X𝑘 ] WHERE𝑄 (Y) (4)

Here, A, A1, · · · , A𝑘 ∈ A are attribute functions, 𝑄 is a (stan-
dard) conjunctive query over the schema P, and X, Xi (𝑖 =

1, · · · , 𝑘), Y are sets of variables and/or constants. All variables
in X ∪⋃

i Xi must also occur in Y. We call A[X] the head of
the rule, A1 [X1], . . . , A𝑘 [X𝑘 ] the body of the rule, and 𝑄 (Y)
the condition. We denote by 𝜙A the set of rules with head A.

2There can be other measures of qualifications as well, e.g., the number of
publications or citations, or the experience in terms of years.
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Example 3.4. Consider the following relational causal model
Φ for ReviewData in Figure 1.

Prestige[𝐴] ⇐ Qualification[𝐴] WHERE Person(𝐴) (5)
Quality[𝑆 ] ⇐ Qualification[𝐴], Prestige[𝐴] WHERE Author(𝐴, 𝑆) (6)
Score[𝑆 ] ⇐ Prestige[𝐴] WHERE Author(𝐴, 𝑆), (7)
Score[𝑆 ] ⇐ Quality[𝑆 ] WHERE Submission(𝑆) (8)

Rule (5) says that the qualification of a person causally affects
his or her institutions’ prestige; rule (6) says that the quality
of a submission is affected by its authors’ qualifications and
prestige (authors from prestigious institutions have access to
more resources); rules (7) and (8) say that reviewers’ scores are
based on the quality of a submission but may also be influenced
by the prestige of its authors.

A major advantage of specifying background knowledge
using causal rules for the users is that they simply express
intuitive potential causal dependence among attributes with-
out mentioning ‘how’ or associating any ‘weight’ to them3,
while CaRL uses them to answer different causal queries
(Section 3.3).

3.2.2 Grounded rules. A grounded rule is a rule (4) that con-
tains only constants from a given instance (no variables) and
has no condition (i.e., 𝑄 ≡ true). A relational causal rule is
a template for generating multiple grounded rules.

Definition 3.5. Let Δ be a relational skeleton. Fix a rule in
the form of (4), and let Z denote all variables occurring in
X∪X1∪ . . .∪X𝑘 . We associate to this rule the set of grounded
rules obtained by substituting Z with any set of constants z
such that ∆ |= 𝑄 ( [Y/z]). In other words, the query 𝑄 must be
true in the database Δ after substituting the variables Z with
the constants z and treating the variables Y−Z as existentially
quantified.

3.2.3 Relational causal graphs. Given a relational causal
model Φ comprising a set of relational causal rules and a
relational skeleton Δ comprising the entities and relation-
ships in an instance, Φ∆ denotes the set of all grounded rules.
From Φ∆, we construct the relational causal graph 𝐺 (Φ∆).
The vertices of 𝐺 (Φ∆) (denoted A∆) comprise all grounded
attributes A[x] in Φ∆ denoted A∆ – recall that x represents
a tuple of constants, an attribute function A corresponding
to an entity has a single constant parameter as in Exam-
ple 3.2, but A corresponding to a relationship predicate will
have multiple parameters. The edges of𝐺 (Φ∆) are all pairs
(A[x], A𝑗 [x𝑗 ]) where A[x] and A𝑗 [x𝑗 ] appear in the head and
body respectively of a grounded rule (4). We assume that
the relational causal model is non-recursive, therefore, the
causal graph is a DAG4.

3This fact, along with the declarative nature of the language, makes CaRL
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Figure 3: Relational causal graph corresponding to the

grounded rules in Example 3.4.

Example 3.6. Given the skeleton Δ in Figure 1, Φ generates
the following grounded rules:
Prestige[“𝐵𝑜𝑏”] ⇐ Qualification[“𝐵𝑜𝑏”] – (also for “Carlos”, “Eva”)

Quality[“𝑠1”] ⇐ Qualification[“𝐵𝑜𝑏”],Qualification[“𝐸𝑣𝑎”],
Prestige[“𝐵𝑜𝑏”], Prestige[“𝐸𝑣𝑎”]

Quality[“𝑠2”] ⇐ Qualification[“𝐸𝑣𝑎”], Prestige[“𝐸𝑣𝑎”]
Quality[“𝑠3”] ⇐ Qualification[“𝐶𝑎𝑟𝑙𝑜𝑠”],Qualification[“𝐸𝑣𝑎”],

Prestige[“𝐶𝑎𝑟𝑙𝑜𝑠”], Prestige[“𝐸𝑣𝑎”]
Score[“𝑠1”] ⇐ Quality[“𝑠1”], Prestige[“𝐵𝑜𝑏”], Prestige[“𝐸𝑣𝑎”]
Score[“𝑠2”] ⇐ Quality[“𝑠2”], Prestige[“𝐸𝑣𝑎”]
Score[“𝑠3”] ⇐ Quality[“𝑠3”], Prestige[“𝐶𝑎𝑟𝑙𝑜𝑠”], Prestige[“𝐸𝑣𝑎”]

(9)

These in turn lead to the causal graph shown in Figure 3.

Note that the relational causal graph in Figure 3 is an ex-
tension of the standard causal DAG (by Pearl’s model [35])
shown in Figure 2: the latter describes the potential causal
dependence of the attributes whereas the former describes
a more fine grained version based on the entities and rela-
tionships in the relational data. For example, we do not have
a single node Score, as in Figure 2, but instead have many
nodes Score[”𝑠1”], Score[”𝑠2”], etc. one for each submission
in Δ in Figure 3. As in Section 2, the causal graph 𝐺 (Φ∆)
defines a joint probability distribution

Pr
(
A[x] | Pa(A[x]

)
(10)

with one conditional probability for each grounded attribute
A[x]; we describe these conditional probabilities in Section 4.1.
3.2.4 Aggregated rules. Using CaRL, one can extend the
set of attribute functions A with new aggregated attribute
functions using one of the aggregate rules of the following
forms. For A ∈ A

AGG_A[W] ⇐ A[X] WHERE𝑄 (Z) (11)

more friendly to users who are not causal inference experts.
4While our language allows for recursive rules which capture feed-back
loops and contagion, their treatment is beyond the scope of the paper and
is an interesting future work.
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Figure 4: Extended relational causal graph from Fig-

ure 3 with aggregated attribute AVG_Score[𝐴] by (12).

The directed path from relational peer Eva’s prestige

to average score of Bob is highlighted (Section 4.3).

Here, Z ⊇ X ∪W and AGG is an aggregate function on A,
e.g., AVG (average) and VAR (variance). The new aggregated
attribute functions 𝐴𝐺𝐺_A are included in the extended at-
tribute functions A (for simplicity, we use A for both given
and extended attribute functions). Similar to relational causal
rules, aggregated rules define a set of grounded rules with
corresponding vertices and edges in the relational causal
graph𝐺 (Φ∆). However, instead of a conditional probability
distribution, a deterministic functionAGG(Pa(AGG_𝑌 [w]))
will be associated with each AGG_𝑌 [w] ∈ AGG_𝑌∆. For
example, the following aggregate rule defines the average
review score for each author.

AVG_Score[𝐴] ⇐ Score[𝑆 ] WHERE Author(𝐴, 𝑆) (12)

Figure 4 shows the extension of Figure 3 with (12).

3.3 Causal Query Language in CaRL

Once the relational causal modelΦ is specified, users can start
asking causal queries. CaRL supports three types of causal
queries of the following form (their semantics are discussed
in Section 4.4 and answering these queries is discussed in
Section 5). The ATE query extends the notion standard ATE
(discussed in Section 2) for relational data. CaRL also sup-
ports queries for aggregated response, isolated effect and
relational effect.

Average treatment effect (ATE) query. An ATE query
estimates the average treatment effect (see Section 2) of a
treatment attribute 𝑇 [X] on a response attribute 𝑌 [X′] and
has the following form: (formally defined in Section 4.4.1)

𝑌 [X′] ⇐ 𝑇 [X]? (13)

This asks “what is the effect of 𝑇 on 𝑌?”. For example,
the query Score[𝑆] ⇐ Prestige[𝐴]? computes the ATE of
Prestige of authors on Score of a paper, i.e., it compares pa-
pers’ scores in two hypothetical worlds in which all authors
are and are not affiliated with prestigious institutions (the

causal effects of ‘some’ authors being from prestigious insti-
tutions can be estimated from the relational effects queries
described below). Following the standard assumption of bi-
nary treatments in the causality literature, we require the
treatment attribute to be of binary domain, which can be
enforced by using a threshold or a predicate on a non-binary
domain.

Aggregated response query. An aggregated response
query allows causal analysis on an aggregated form of the
response variable and has the following syntax (formally
defined in Section 4.4.2):

AGG_𝑌 [X′] ⇐ 𝑇 [X]? (14)

For example, AVG_score[𝐴] ⇐ Prestige[𝐴]? computes the
treatment effect of the prestige of authors on the average
score received by an author.

Relational, isolated, and overall effects queries. In
relational domains, units that are relationally connected can
have a causal influence on each other. For example, the Pres-
tige of an author not only influences their average submis-
sion scores but also their collaborators’ average submission
scores. To measure such complex relational causal interac-
tions, CaRL supports queries of the following form that out-
put three quantities: relational, isolated, and overall causal
effects (formally defined in Section 4.4.3):

𝑌 [X′] ⇐ 𝑇 [X] ? WHEN ⟨cnd ⟩ PEERS TREATED (15)

where ⟨cnd⟩ is a condition with the following grammar:
⟨cnd ⟩ ←⟨LESS | MORE⟩ THAN 𝑘% | AT ⟨MOST | LEAST⟩ k |

EXACTLY k | ALL | NONE (16)

For example, the query Score [𝑆 ] ⇐ Prestige [𝐴]? WHEN ALL PEERS TREATED
computes three values for (i) isolated (an author’s prestige),
(ii) relational (his/her coauthor’s prestige), and (iii) overall
(all authors’ prestige) effect of prestige on a submission’s
score.

4 SEMANTICS FOR RELATIONAL

CAUSAL ANALYSIS

This section defines semantics of the causal queries described
in Section 3.3. We fix a relational causal schema S, a re-
lational skeleton ∆, and a relational causal model Φ with
a corresponding grounded causal graph 𝐺 (Φ∆). For an at-
tribute function A ∈ A, denote UA to be the set of all tuples
of grounded entities x such that A[x] ∈ A∆. For example,
UPrestige consists of all authors, e.g., {“Bob", “Eva", “Carlos"},
whereas UScore consists of all submissions, e.g., {“s1", “s2"}.
We refer to each element x ∈ UA as a unit of an attribute
function A.

4.1 Probability Distribution for CaRL

As discussed in Section 2, a causal DAG associates a con-
ditional probability distribution Pr(𝑋 |Pa(𝑋 )) to each node
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𝑋 ∈ V; these conditional probability distributions are un-
known and must be estimated from available data even for
standard causal graphs described in Section 2, while there
are additional challenges for relational causal graphs. As
described in Section 3.2, in CaRL, the relational causal graph
𝐺 (Φ∆) is obtained by grounding the rules w.r.t. the skeleton
database, Δ, and the number of nodes is not fixed ahead of
time but depends on Δ.
We introduce the following structural homogeneity as-

sumption, which is critical in CaRL to estimate the condi-
tional probability distributions from a given observed dataset,
and thereby conduct causal inference. Recall that A∆ ⊆ A∆

denotes the set of all groundings of an attribute A ∈ A in A∆:
• Structural homogeneity:All grounded attributes A[x] ∈
A∆ of the same attribute A ∈ A share the same struc-
tural equation and, hence, the same conditional proba-
bility distribution in equation (10).

For instance, in Example 3.4, we assume that all ground-
ings of type Prestige have the same structural equations.
The structural homogeneity assumption, however, is not

easily captured because different groundings of the same
attribute can have different number of parents. For instance,
consider the atoms Score[“s1"] and Score[“s2"] from equa-
tion (9). Score[“s1"] has two Prestige parents (since it has two
authors, “Eva” and “Bob” ), whereas Score[“s2"] has one Pres-
tige parent (“Eva."). We address this issue by using another
layer of aggregate functions, that we call embeddings,𝜓 , and
change Equation (10) to

Pr
(
A[x] | ΨA (Pa(A[x])) ) (17)

where ΨA is a collection of mappings that projects the par-
ents of A[x] into a low-dimensional vector with fixed dimen-
sionality for all A[x] ∈ A∆. Intuitively, we assume that the
mappings provide sufficient statistics for evaluating the un-
derling structural questions corresponding to all A[x] ∈ A∆.
More formally, we assume that ΨA is known and consists
of a set of mappings {𝜓 A

A1
,𝜓 A

A2
, . . .}, one for each type of at-

tribute A𝑗 occurring on the RHS of a rule (4), where each𝜓 A
A𝑗

is an embedding function that maps the set of values of all
parents of type A𝑗 into a low-dimensional embedding space
with fixed dimensionality. The embedding function can be a
simple aggregate like average; other types of embeddings
are discussed in Section 5.2.2.

Example 4.1. Consider the three nodes of type Score for
“s1”, “s2”, “s3” in Figure 3, and consider their parents of type
Prestige. The number of their parents is 2 (for “s1” – “Bob”
and “Eva” with vector ⟨1, 1⟩ for prestige), 1 (for “s2” – “Eva”
with vector ⟨1⟩), and 2 (for “s3” – “Eva” and “Carlos” with
vector ⟨1, 0⟩) respectively (the prestige values of the authors
are in Figure 1), but under the homogeneity assumption, the
conditional probability of scores given prestige of authors

would be computed by the same function by using a mapping
𝜓 Score
Prestige to aggregate the vectors of Prestige values; we discuss

choices for this aggregate function in Section 5.2.2.

To summarize, the grounded causal graph𝐺 (Φ∆) defined
by a relational causal model defines a joint probability distri-
bution given by:

Pr(A∆) =
∏

A[x] ∈A∆

Pr
(
A[x] | ΨA (Pa(A[x])

) )
(18)

In some scenarios, the structural homogeneity assumption
may not hold, for instance, the structural equations for single-
blind and double-blind conferences can be different. Such
situations can be expressed in CaRL by adding multiple rules
at different granularities in which the structural homogeneity
assumption is perceived to hold, e.g.,

SBlind_Score[𝑆 ] ⇐ Quality[𝑆 ] WHERE Submission(𝑆)
DBlind_Score[𝑆 ] ⇐ Quality[𝑆 ] WHERE Submission(𝑆)

4.2 Treated and Response Units

In standard causal analysis, the units can be considered tu-
ples in a single unit table, with one attribute corresponding
to the treatment and another attribute corresponding to the
response. For instance, in the schema given in Figure 1 and
relational causal graph in Figure 3, one could analyze the
causal effect of qualification of authors on their prestige,
and then the ‘authors’ form both the treated and response
units. In contrast, for multi-relational causal analysis inCaRL,
when one analyzes the causal effect of prestige of authors
on scores of submissions, then intuitively the authors form
the treated units and the submissions form the response
units. Even when authors (or submissions) form both the
treated and response units, CaRL allows inclusion of addi-
tional attributes from other relations that are covariates and
required for answering causal queries (see Section 5.1). Next
we formally define these concepts.

In relational causal analysis, we are given a treatment at-
tribute function 𝑇 [X] ∈ A and a response attribute function
𝑌 [X′] ∈ A; The set of units U𝑇 (resp. U𝑌 ) denotes the enti-
ties or relationships corresponding to the treatment (resp.
response) attribute function 𝑇 (resp. 𝑌 ). For example, to
study the effect of authors’ prestige on submission scores,
Prestige[𝐴] is the treatment attribute function and Score[𝑆]
is the response attribute function, UPrestige denotes all au-
thors as treated units and UScore denotes all submissions as
response units (we assume without loss of generality that
the attribute function names are unique and correspond to
a single entity or relationship). We assume the treatment
attribute has binary values whereas the response can be any
real number.

Given a set of treated units U𝑇 = {x1, x2, . . .} and a binary
vector ®𝑡 = (𝑡1, 𝑡2, . . .), we are interested in the effect of a set
of interventions do(𝑇 (x𝑖 ) = 𝑡𝑖 ) for all treated units 𝑥𝑖 , where
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each intervention replaces the NSE associated with 𝑇 (x𝑖 )
with a constant 𝑡𝑖 . In our example of the effect of prestige on
score, the vector ®𝑡 corresponds to a particular assignment of
prestige to all authors, e.g., the vector ®1 identifies an inter-
vention that hypothetically changes ‘all’ authors’ affiliations
to prestigious ones. By abuse of notation, we denote with
do(𝑇 [S] = ®𝑡S) a set of interventions in which an arbitrary
subset of treated units S ⊆ U𝑇 receive ®𝑡S (with an implicit
assumption on the order of elements in the set S). Having
treated/response units and the treatment vectors allows us
to have (1) non-uniform units that may be different entities
or relationships, and (2) different types of treatments, e.g.,
forcing all authors to be of prestigious institutions as ®1 vs.
one or some of the authors from prestigious institutions as
(1, 0, 0, · · · ). CaRL aims to answer causal queries that com-
pare the average response of the response units U𝑌 to two
alternative intervention strategies ®𝑡 and ®𝑡 ′ applied to the
treated units U𝑇 , which we discuss next.
4.3 Relational Paths and Peers

Before we can formalize the semantics of causal queries
described in Section 3.3, especially for the isolated and rela-
tional effects, we need to establish a one-to-one correspon-
dence between treated and response units by using aggrega-
tions carefully. To this end, we first define relational paths.

Definition 4.2. A relational path is a sequence of entities
and relationships of the following form:

P : 𝐸1 (𝑋1)
𝑅1 (𝑋1,𝑋2 )←−−−−−−−→ 𝐸1 (𝑋2) · · ·𝐸ℓ−1 (𝑋ℓ−1)

𝑅ℓ−1 (𝑋ℓ−1,𝑋ℓ )←−−−−−−−−−−−→ 𝐸ℓ (𝑋ℓ )
(19)

where 𝐸𝑖 (𝑋𝑖 ) ∈ E and 𝑅𝑖−1 (𝑋𝑖−1, 𝑋𝑖 ) ∈ R, for 𝑖 = 1, · · · , ℓ .

For instance, Conference(𝐶) Submitted(𝑆,𝐶)
←−−−−−−−−−−−→ Submission(𝑆) is

a relational path in our example. The treated and response
units corresponding to treatment and response attribute func-
tions 𝑇 and 𝑌 are said to be relationally connected if there
exists a relational path P that includes the entities or rela-
tionships for 𝑇 and 𝑌 either as the endpoints in the path or
as the labels of the edges at the ends of the path. For example,
for𝑇 [X] = Prestige[A] and 𝑌 [X′] = Score[S], the treatment
is an attribute function of the entity Author(𝐴), the response
is an attribute function of the relationship Author(A,S), and
the treated and response units are relationally connected by
the following relational path:

Author(𝐴) Author(𝐴,𝑆)
←−−−−−−−−→ Submission(𝑆) (20)

In this paper, we make the natural assumption that the
treated and response units are relationally connected by at
least one relational path as otherwise the effect of treatment
on the response is not meaningful. These units can then be
unified using the aggregated response AGG_𝑌 [X] defined
with the following aggregate rule (see Section 3.2.4) that

maps attribute 𝑌 of response units U𝑌 to treatment units U𝑇 ,
where the units can be either entities or relationships.

AGG_𝑌 [X] ⇐ 𝑌 [X′] WHERE 𝑅1 (𝑋1, 𝑋2), . . . , 𝑅ℓ−1 (𝑋ℓ−1, 𝑋ℓ ) (21)

For example, to unify the treated and response units associ-
ated to𝑇 [X] = Prestige[A] and 𝑌 [X′] = Score[S], the aggre-
gate rule5 associated with the relational path in (20) coincides
with (12): AVG_𝑆𝑐𝑜𝑟𝑒 [𝐴] ⇐ 𝑆𝑐𝑜𝑟𝑒 [𝑆]WHEREAuthor(𝐴, 𝑆).

Therefore, we assume from here on that the response
unitsU𝑌 are the same as the treated unitU𝑇 . Henceforth, we
simply refer to elements of U𝑌 and U𝑇 as units and denote
them with U(𝑇,𝑌 ) = U𝑇 = U𝑌 . In our example, after the
unification, the 𝐴𝑉𝐺_𝑆𝑐𝑜𝑟𝑒 [𝐴] can be considered as a new
attribute function of authors (as in a ‘view’ in relational
databases), and the authors form U(𝑇,𝑌 ) .

Relational peers.Next, we define the notion of relational
peers of a unit, which is central to the notion of relational
and isolated effects. Recall that the grounded causal graph
𝐺 (Φ∆) is extended with vertices and edges corresponding to
aggregated attributes as discussed in Section 3.2.4.

Definition 4.3. Given a treated attribute function𝑇 [X], and
a (possibly aggregated) response attribute function 𝑌 [X], we
define the relational peers of a unit x ∈ U(𝑇,𝑌 ) as a set of units
P(x) ⊆ U(𝑇,𝑌 ) − {x} such that for each p ∈ P(x), there exists
a directed path from 𝑇 [p] to 𝑌 [x] in 𝐺 (Φ∆).

For example, in Figure 4, treatment and aggregated re-
sponse functions Prestige[A] andAVG_𝑆𝑐𝑜𝑟𝑒 [𝐴], P(“𝐵𝑜𝑏”) =
{“𝐸𝑣𝑎”} and P(“𝐸𝑣𝑎”) = {“𝐵𝑜𝑏”, “𝐶𝑎𝑟𝑙𝑜𝑠”}. In practice, the
relational causal model is expected to form relational peers
P(x) that consist only of units that are in some relational
proximity of x, e.g., authors from the same institution, same
research interests, etc.6

The following quantity measures the expected response of
a unit x ∈ U(𝑇,𝑌 ) when it receives the treatment 𝑡 , and its re-
lational peers receive the vector of treatments ®𝑡 = (𝑡1, 𝑡2 . . .).

𝑌x (𝑡, ®𝑡 )
def
= E[𝑌 [x] | do

(
𝑇 [x] = 𝑡

)
, do

(
𝑇 [P(x) ] = ®𝑡

)
] (22)

In this paper, we assume do
(
𝑇 [P(x)] = ®𝑡

)
is a well-defined

intervention for all units x, i.e., it uniquely determines which
relational peers of a unit would receive which treatment.
For instance, this holds if P(x) is of the same size for all x,
and it either has a natural ordering or is ordering-invariant.
However, we allow several relaxations on the size and type
on ®𝑡 in our framework as discussed later.

5We aggregate the response and not the treatment since aggregating treat-
ments may lead to interventions that are not well defined.
6This assumption is far less strict than than the assumption of partial in-
terference, which is standard in statistics, to extend Rubin’s causality to
handle interference [54]. Also note that the assumption of no interference
(or SUTVA) [43] translates to the statement P(x) = ∅ for all x ∈ U(𝑇 ,𝑌 ) in
relational causal models.
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4.4 Semantics of Causal Queries

In this section, we define the semantics of causal queries
outlined in Section 3.3 in terms of intervention; how these
causal queries are answered in CaRL using unification of
treated and response units, embeddings, and selection of
covariates is discussed in Section 5.
4.4.1 Average treatment effect queries. The primary causal
query in CaRL is average treatment effect (ATE) query of the
form 𝑌 [X′] ⇐ 𝑇 [X]? as given in (13). Given treatment and
response attribute functions𝑇,𝑌 , ATE is defined as follows:

ATE(𝑇,𝑌 ) def=
∑

x′∈U𝑌

1
𝑚
(E[𝑌 [x′] | do(𝑇 [U𝑇 ] = ®0) ]−

E[𝑌 [x′] | do(𝑇 [U𝑇 ] = ®1) ]) (23)

Intuitively, ATE compares the expected response of the
response units in two regimes of intervention: one in which
all units receive treatment and another where none do. For
example, ATE(Prestige, Score) compares scores of submis-
sions under two interventions in which all authors are and
are not affiliated with prestigious institutions.

4.4.2 Aggregated response queries. Aggregate response queries
of the form AGG_𝑌 [X′] ⇐ 𝑇 [X]? as given in (14) is defined
similar to ATE above, where we replace 𝑌 with AGG_𝑌 ev-
erywhere. Note that in the extended relational causal graphs,
there are nodes corresponding to AGG_𝑌 as shown in Fig-
ure 4.
4.4.3 Relational and isolated effects queries. TheCaRL query
(15) computes the following three quantities, which compare
the average isolated ( AIE), relational ( ARE), and overall (
AOE) effects of two alternative intervention strategies (𝑡, ®𝑡)
and (𝑡 ′, ®𝑡 ′) over 𝑛 response units7.

AIE(𝑡 ; 𝑡 ′ | ®𝑡 ) def= 1
𝑛

∑
x∈U(𝑇 ,𝑌 )

𝑌x (𝑡, ®𝑡 ) −𝑌x (𝑡 ′, ®𝑡 ) (24)

ARE(®𝑡 ; ®𝑡 ′ | 𝑡 ) def= 1
𝑛

∑
x∈U(𝑇 ,𝑌 )

𝑌x (𝑡, ®𝑡 ) −𝑌x (𝑡, ®𝑡 ′) (25)

AOE(𝑡, ®𝑡 ; 𝑡 ′, ®𝑡 ′) def= 1
𝑛

∑
x∈U(𝑇 ,𝑌 )

𝑌x (𝑡, ®𝑡 ) −𝑌x (𝑡 ′, ®𝑡 ′) (26)

Intuitively, the isolated causal effect of a treatment fixes the
treatment of the relational peers of a unit and compares its
expected response under two treatment strategies assigned
to the unit. On the other hand, the relational causal effect of
a treatment fixes the treatment of a unit x and compares its
expected response under two treatment strategies assigned
7We do not need the treatment vectors ®𝑡, ®𝑡 ′ applied to the peers to have
the same size although they are applied to all units x. We also do not need
all units x to have the same number of peers in P(x) . As the grammar
defined in (16) describes, we can assign treatments to “at least/most 𝑘 or
𝑘%” neighbors, and that is well-defined for all units x even if they do not
have the exact same number of peers in P(x) . On the other hand, for such
conditions, we do need to assume that the effects of interventions to the
peers are ordering-invariant, e.g., the intervention can be applied to any of
the 𝑘 peers (with possible truncations for smaller peer sets) in P(x) .

to its relational peers. For example, the relational effect of
Prestige[A] on AVG_𝑆𝑐𝑜𝑟𝑒 [𝐴] fixes the prestige of an author
such as “𝐵𝑜𝑏” and compares the counterfactual response
AVG_𝑆𝑐𝑜𝑟𝑒 [“𝐵𝑜𝑏”] under two regimes of interventions in
which the relational peers of “𝐵𝑜𝑏”, e.g., “Eva”, receive two
different treatment strategies, e.g., all of them have presti-
gious affiliations versus none of them having such affiliations.
Note that the overall causal effect is an extension of ATE (23)
for two arbitrary treatment strategies. Indeed, ATE coincides
with AOE(1, ®1 | 0, ®0) when the treated and response units
are unified. The following proposition shows the connection
between relational, isolated and overall effects (we omit the
proof due to lack of space).

Proposition 4.4. The average overall effect can be decom-
posed into the average isolated and average relational effects,
as follows:

AOE(𝑡, ®𝑡 ; 𝑡 ′, ®𝑡 ′) = AIE(𝑡, 𝑡 ′ | ®𝑡 ) + ARE(®𝑡, ®𝑡 ′ | 𝑡 ′)
= AIE(𝑡, 𝑡 ′ | ®𝑡 ′) + ARE(®𝑡, ®𝑡 ′ | 𝑡 ) (27)

5 ANSWERING CAUSAL QUERIES

Given the syntax of different causal queries in Section 3.3
and their semantics in Section 4.4, now we describe how we
answer these queries in CaRL. The query answering compo-
nent of CaRL consists of covariate detection (Section 5.1) and
covariate adjustment (Section 5.2). The goal of covariate de-
tection is to identify a sufficient set of covariates that should
be adjusted for to remove confounding effects. Then, in the
process of covariate adjustment, the data is transformed into
a flat, single-table format so that causal inference can be
performed using standard methods.

5.1 Covariate Detection

Given treatment and response attribute functions 𝑇 [X] and
𝑌 [X′], to answer all types of causal queries defined in Section
4.4, we need to estimate the effect of interventions of the form
do

(
𝑇 [S] = ®𝑡S

)
on a set of treated units S ⊆ U𝑇 , on a response

unit x′ ∈ U𝑌 . This section proves a graphical criterion to
select a sufficient set of covariates from a relational causal
graph 𝐺 (Φ∆) that enable the estimation of quantities of the
form E

[
𝑌 [x′] | do

(
𝑇 [S] = ®𝑡S

) ]
and thereby the queries in

Section 4.4. For this purpose we use the extended relational
causal graph as shown in Figure 4 to map possibly varying
number of parent nodes to a fixed and smaller dimension
by adopting the idea of embedding functions introduced in
Section 4.1. We illustrate this with an example below.

Example 5.1. In Example 4.1,𝜓 Score
Prestige (𝑆) now corresponds

to a new attribute of a submission that maps the Prestige
attribute of Authors of that submission. Figure 5 shows the
relational causal graph with augmented attributes computed
using the mapping functions or embeddings represented by
the triangles.
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Figure 5: Final relational causal graph obtained by

(further) augmenting the graph in Figure 4 with em-

bedding functions. For clarity,𝜓
Quality

Qualifications
[𝑆] is repre-

sented as𝜓𝑄 , and𝜓
Quality

Prestige
[𝑆],𝜓 Score

Prestige
[𝑆] as𝜓𝑃 .

.

The following theorem formalizes how the do-operator
for relational causal graph can be estimated from observed
data. This theorem uses the concept of d-separation from
conditional independence in graphical models [35], denoted
by 𝑋⊥⊥𝑌 |𝐺𝑍 . The review of these concepts and the proof of
the theorem is deferred to the full version [49] of the paper
due to lack of space.

Theorem 5.2 (Relational Adjustment Formula). Given
an augmented relational causal graph 𝐺 (Φ∆), treatment and
response attribute functions 𝑇,𝑌 , and a set of treatment units
(entities or relationships) S and their treatment assignment vec-
tor ®𝑡S, we have the following relational adjustment formula:

E
[
𝑌 [x′] | do

(
𝑇 [S] = ®𝑡S

) ]
=∑

z∈𝐷𝑜𝑚 (Z)
E
[
𝑌 [x′] | Z = z,𝑇 [S′] = ®𝑡S′

]
Pr(Z = z) (28)

where S′ ⊆ S is such that, for each unit x ∈ S′, there exists a
directed path from the node 𝑇 [x] to the node 𝑌 [x′] in 𝐺 (Φ∆),
and Z is set of nodes in𝐺 (Φ∆) corresponding to the groundings
of a subset of observed attribute functions A𝑂𝑏𝑠 such that:

𝑌 [x′] ⊥⊥
(⋃

x∈S
Pa

(
𝑇 [x])

) ��
𝐺 (Φ∆ )

(⋃
x∈S

𝑇 [x], Z
)

(29)

Further, choosing 𝑍 to be the parent nodes of S′ in 𝐺 (Φ∆)
always satisfies (29) as a sufficient condition.
(Intuitively, it is always sufficient to condition for the

‘parents’ of treated units as they separate them from the rest
of the graph ensuring independence.) Here we illustrate
with an example.

Example 5.3. To compute ATE(Prestige, Score) in our example,
we need to compute expectations of the form

E
[
Score[𝑠 ] | do

(
Prestige[ {“𝐵𝑜𝑏”, “𝐸𝑣𝑎”, “𝐶𝑎𝑟𝑙𝑜𝑠”}] = ®𝑡

) ]
for ®𝑡 ∈ {®0, ®1} (30)

Algorithm 1: Constructing a unit table.
Input: An augmented relational causal graph𝐺 (Φ∆) , treated and

outcome attribute functions𝑇 [X] and 𝑌 [X′].
Output: The unit table D(𝑌,𝜓𝑇 ,𝜓Z) .

1 for x′ ∈ U𝑌 do

2 U′
𝑇
← A minimal subset of U𝑇 such that there exits a

directed path in𝐺 (Φ∆) from𝑇 [x] to 𝑌 [x′] for all x ∈ U′
𝑇

3 Z← A minimal set of vertices in𝐺 (Φ∆)
that satisfies the 𝑑-separation statement in Eq (29)

4 𝜓𝑇 ← 𝜓𝑌
𝑇
( ⟨𝑇 [x1 ], . . . ,𝑇 [x|U′

𝑇
| ] ⟩)

5 ΨZ ← ΨY
𝑍
(Z)

6 Insert the tuple (𝑌 [x],𝜓𝑇 [x],𝜓Z [x])) to unit table D

where we intervene on all three authors in the example. By
applying Theorem 5.2 for submission 𝑠 = “s1”, note that di-
rected paths to Score[“𝑠1”] exists only from Prestige[“𝐵𝑜𝑏”]
and Prestige[“𝐸𝑣𝑎”], which form the subset S′. Further, it is
sufficient to condition on the parents of these two Prestige nodes,
i.e., Z ={Qualifications[“𝐵𝑜𝑏”],Qualifications[“𝐸𝑣𝑎”]}. Therefore,
(30) reduces to:∑

z∈𝐷𝑜𝑚 (Z)
E
[
Score[“𝑠1”] | Z = z, Prestige[ {“𝐵𝑜𝑏”, “𝐸𝑣𝑎”}] = ®𝑡

) ]
Pr(Z = z) (31)

Similarly, for 𝑠 = “s2” and Z = {Qualifications[“𝐸𝑣𝑎”] }, we obtain∑
z∈𝐷𝑜𝑚 (Z)

E
[
Score[“𝑠2”] | Z = z, Prestige[ {“𝐸𝑣𝑎”}] = 𝑡

) ]
Pr(Z = z) (32)

Note that the relational adjustment formula in (28) con-
trols for an adequate set of covariates 𝑍 that confound the
causal effect of a treatment on an outcome (𝑍 is called the set of
confounding covariates or covariates). For example, the causal
effect of Prestige on Score is confounded by Qualifications. This
is because, qualified researchers are likely to belong to pres-
tigious universities and qualified researchers are more likely
to submit high quality papers. Therefore, to compute the ATE
of Prestige on Score we need to control for author’s qualifica-
tions as in (31). For estimating ATE(Quality, Score) (assuming
quality is observed) by applying (29) we find that for each
submission 𝑠 , E

[
Score[𝑠] | do

(
Prestige[U𝑇 ] = ®1

) ]
can be esti-

mated by adjusting for the embedded attribute functions Z
= {𝜓 Score

Prestige [𝑠],𝜓
Score
Qualifications [𝑠]}.

To estimate ATE(Quality,AVG_Score) (the effect on average
acceptance rate of an author), on the other hand, we need
to estimate Pr

(
AVG_Score[𝐴] = 𝑦 | do

(
Prestige[U𝑇 ] = ®1

) )
, for

each author. According to Equation (29), this can be done by
adjusting for the joint distribution of the qualifications of all
their coauthors, which is potentially very high-dimensional,
and therefore we need another round of embeddings to ag-
gregate that information as discussed next.
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Unit Outcome

(𝑌 )

Embedded

coauthors’

treatments (𝜓𝑌
𝑇
)

Embedded

Collaborators’

Covariates(Ψ𝑌
Z )

Author
ID

AVG_Score Prestige
(AVG)

Centrality
(COUNT)

H-index
(AVG)

Bob 0.75 1 1 2
Carlos 0.1 1 1 2
Eva 0.41 0.5 2 35

Table 1: The unit table for 𝑇 [X] = Prestige[𝐴] and
𝑌 [X′] = AVG_Score[𝐴] based on Figure 1.

5.2 Covariate Adjustment

There are two challenges in estimating the causal queries
in Section 4.4 using the relational adjustment formula (28):
(1) when the set of confounding covariates Z has high di-
mensionality, estimating the conditional expectation in (28)
from data is challenging, and (2) the causal queries need to
compute averages across all response units. Hence, we need
to estimate the formula (28) separately for each response
unit that is not feasible. For instance, in Example 5.3, (31)
and (32) need to be estimated separately.

To address these issues, similar to Section 4.1, we use a set
of embedding functions𝜓𝑌

𝑇
and Ψ𝑌

Z to project the treatment
and covariate vectors, respectively, into a low-dimensional
embedding space with fixed dimensionality and for all re-
sponse units. This enables us to transform a (multi-) rela-
tional instance to a single low-dimensional flat table.

5.2.1 Unit table. In the classical causal inference frame-
work model discussed in Section 2, the units of interest are
stored in a single unit table with attributes corresponding to
the treatment, response, and confounding covariates as the
columns. Here we generalize this concept to capture units
in relational causal analysis.

Given a relational causal graph 𝐺 (Φ∆) and treatment and
response attribute functions 𝑇 [X] and 𝑌 [X′], we use Algo-
rithm 1 to construct a unit table, which is a standard relation
(table) with schema D(𝑌,𝜓𝑌

𝑇
,Ψ𝑌

Z ) (note that Ψ𝑌
Z denotes a

vector of values for possible multiple covariates Z). It con-
sists of tuples (𝑌 [x′],𝜓𝑌

𝑇
[x′],Ψ𝑌

Z [x′]) for each response unit
x′ ∈ U𝑌 , where𝜓𝑌

𝑇
[X′] and Ψ𝑌

Z [X′] (with abuse of notation)
are relational embedded attribute functions that correspond
to the result of applying 𝜓𝑌

𝑇
and Ψ𝑌

Z to the treatment and
covariate vectors respectively.

Example 5.4. Table 1 shows the unit table corresponding
to 𝑇 [X] = Prestige[𝐴] and 𝑌 [X′] = AVG_Score[𝐴]. Here Au-
thors constitute the response units and the aggregated response
is an attribute of authors. In this table simple mappings such
as average and count are used for embedding. Note that Table 1
also serves as the unit table for𝑇 [X] = Prestige[𝐴] and 𝑌 [X′]
= Score[𝐴]. In this case since the treated and response units are
different CaRL uses the aggregated response AVG_Score[𝐴] for
unification (see Section 4.3).

By rewriting the RHS of the relational adjustment formula

(28) in terms of the attributes of the unit table and ®𝑡𝑒
S′ the

embedded representation of the treatment assignment ®𝑡S′ ,
(i.e., ®𝑡𝑒

S′ = 𝜓𝑌
𝑇
(®𝑡S′)), we obtain∑

z∈𝐷𝑜𝑚 (Ψ𝑌
Z )

E
[
𝑌 | Ψ𝑌

Z = z,𝜓𝑌
𝑇 = ®𝑡𝑒S′

]
Pr(Ψ𝑌

Z = z) (33)

Once we have a flat unit table with columns for treatment,
response, and covariates as in Section 2, the causal queries
in Section 4.4 can be estimated using (33) by applying the
standard approaches to causal analysis like regression [2]
(the conditional expectation in (33) is a regression function)
or matching methods [11, 15, 18] (matching treatment and
control units with the same/similar values). The validity of
treatment effect estimates is conditional on the assumption
that the background knowledge is accurate.

5.2.2 Choice of embedding functions. Embedding as a tech-
nique addresses both the issues of the high dimensionality
and the variable size of the treatments and covariates that
correspond to the response units, thereby making the es-
timation of causal queries more convenient. However, (33)
only approximates (28), hence the quality of the answers
depends on whether the embeddings preserve sufficient sta-
tistics. In this work, we use the following natural choices
of embeddings, a formal study of the choices of embedding
functions in multi-relational causal analysis is an interesting
direction of future work. (1)Mean andmedian: Uses basic ag-
gregation functions, such as mean and median, together with
the cardinality of the vectors (to account for the underlying
topology of the relational skeleton, e.g, number of authors
or collaborators). (2) Padding: Pads each variable size vector
with out-of-band “empty markers" to make create same-sized
vectors to use directly as the embedding. (3)Moments: Uses a
vector consists of 𝑘 moments (i.e., mean, variance, skewness,
etc.), where 𝑘 is chosen to minimize response prediction loss.

6 EXPERIMENTS

In this section, we conduct an experimental evaluation of
CaRL, addressing three questions.End-to-endperformance:
is CaRL effective in answering causal queries on relational
data? Can it avoid simply discovering correlations instead
of true causation? Can it distinguish isolated effects from re-
lational effects? Quality of estimates: when ground truth
is available, can CaRL recover the true treatment effects?
And is the relational structure necessary for recovering the
correct treatment effect? Sensitivity to embeddings: how
sensitive is CaRL’s performance to the choice of the type of
embedding strategy?

Experimental setup. The experiments were performed
locally on a 64-bit Linux server with 1TB RAM and 4 Intel
Xeon processors with 15 cores @ 2.8GHz each.
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Dataset Tables [#] Att. [#] Rows [#] Unit
Table
Cons.

Query
Ans.

MIMIC-III 26 324 400M 6h 4.5h
NIS 4 280 8M 4m 30s
ReviewData 3 7 6K 10.6s 1.2s
Synthetic ReviewData 3 7 300K 17.2s 1.3s

Table 2: Data description and query runtime.

6.1 Datasets

We used three real datasets, two from the medical domain,
and one about conferences, summarized in Table 2. All datasets
contain interesting relationships that inform CaRL’s causal
analysis. In addition, we generated a synthetic dataset in
order to have control over the ground truth.

MIMIC-III. The Multiparameter Intelligent Monitoring
in Intensive Care III (MIMIC-III) database is a large-volume,
multi-parameter dataset collected from the ICUs of Beth
Israel Deaconess Medical Center from 2008 to 2014 repre-
senting 38,597 adult patients, 58,976 hospital admissions [19].
There are 26 tables with 400M rows and 324 attributes (see
Table 2), which include patients’ information like demograph-
ics, length of stay, medications, laboratory test results and
health insurance data. We specified the following causal
model in CaRL, where Eth = ethnicity, Pa = patient, Diag =
diagnosis, Doc = doctor, and Len = length of stay:
SelfPay[𝑃 ] ⇐ Eth[𝑃 ], Religion[𝑃 ], Sex[𝑃 ] WHERE Pa(𝑃 )

Diag[𝑃 ] ⇐ Eth[𝑃 ], Religion[𝑃 ], Sex[𝑃 ] WHERE Pa(𝑃 )
Dose[𝐷 ] ⇐ Diag[𝑃 ], Severe[𝑃 ],Doc[𝐶 ] WHERE Drug(𝐶,𝐷),Care(𝐶, 𝑃 )
Death[𝑃 ] ⇐ Len[𝑃 ],Diag[𝑃 ],Dose[𝐷 ],Doc[𝐶 ]

WHERE Care(𝐶, 𝑃 ),Given(𝐷, 𝑃 )
Len[𝑃 ] ⇐ Dose[𝐷 ],Diag[𝑃 ] WHERE Given(𝐷, 𝑃 )

NIS. The Nationwide Inpatient Sample (NIS) [14] is a
dataset of hospital stays across the US, produced by the De-
partment of Health and Human Services once annually. We
use the sample for the year 2006, which comprises 8 million
hospital admissions across 1035 hospitals. Each admission
is associated with a hospital and the patient’s demographic
information, admission source, health history, performed
procedures, and new diagnoses. Information available about
each hospital includes size, location, and ownership.We spec-
ified a casual model in CaRL using 16 intuitive causal rules,
using attributes whether the hospital is classified as large
[1], patient’s medical bill, etc.; we mention a few below:

Bill[𝑃 ] ⇐ Illness_Severity[P]
Bill[𝑃 ] ⇐ Private_Ownership[H] WHERE Admitted(𝑃,𝐻 )
Bill[𝑃 ] ⇐ Surgery_Performed[P]

Admitted_to_large[𝑃 ] ⇐ Illness_Severity[P]

ReviewData. ReviewData consists of 2,075 papers sub-
mitted for review between 2017 and 2019 at 10 computer

science conferences and workshops, which have acceptance
rates between 40%–84%. Each submission is associated with a
number of referee reviews and an acceptance or rejection de-
cision. About half of all submissions are double-blind, while
the other half reveal author names to the reviewer. All sub-
missions were unblinded after the conferences concluded.
The dataset also contains an authors table, with the citation
count, h-index, publishing experience (in years), and univer-
sity ranking for each of the 4490 authors who contributed to
a paper in the dataset. ReviewData was built by scraping,
cleaning and normalizing data from OpenReview [33], Sco-
pus [50] and the Shanghai University Rankings [39]. Scraping
Scopus was done using the tool proposed in [40]. We plan to
make ReviewData publicly available.

SyntheticReviewData. Wegenerated Synthetic Re-
viewData mimicking the probability distributions observed
in ReviewData. The relational skeleton was generated keep-
ing in mind the correlations we observed in the real data,
e.g., authors with high productivity tend to be affiliated with
more prestigious institutions, and authors from more presti-
gious institutions tend to collaborate with each other more.
However, for each paper we let the number of authors and
each submission’s choice of venue be determined randomly.
We generated 10, 000 authors with affiliations to 200 differ-
ent institutions, along with 75, 000 papers submitted to 100
different venues. Next, we generated two datasets to explore
CaRL’s performance with and without relational effects. The
first dataset had a treatment effect of prestige on review
score of 0 for double-blind and 1 for single-blind venues, for
all submissions. In the second dataset, the isolated effects
stay the same for both double- and single-blind venues while
there is a constant effect of 1/2 on the review score of each
submission if authors’ collaborators are prestigious.

6.2 End-to-end Results

In this section we used CaRL to answer several causal queries
(including all kinds defined in Section 3.3) on the real datasets
and evaluated their quality. Since we do not have ground
truth for this data, we discuss which results aremore in agree-
ment with the intuition or the literature in the field. We also
compared CaRL’s answer with more naive, correlation-based
answers. All runtimes for these experiments are reported in
Table 2.

MIMIC-III. We asked the following causal queries: what
is the effect of not having health insurance on the mortality
rate? And what is the effect of non-insurance on the length-
of-stay (in the hospital)?

(𝑎) Death[𝑃 ] ⇐ SelfPay[𝑃 ]? (𝑏) Len[𝑃 ] ⇐ SelfPay[𝑃 ]? (34)

The treated and control groups consist of patients without
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insurance (self-payers) and with insurance respectively. Ta-
ble 3 shows the results for both the average treatment effect
(ATE) and the naive difference of averages between the two
groups. Computed naively, there is a significant difference in
both mortality rate and the length of stay between insured
and non-insured groups. However, after adjusting for con-
founders and mediators, we observe that there is almost no
effect on mortality rate; in other words, care givers do not
discriminate in treating patients with and without insurance.
The discrepancy is due to the fact that self-payers tend to
defer checking into a hospital until the problem is severe.
The treatment effect on the length of stay is also attenuated
compared to the estimated difference between the average
of the outcomes for treated and control groups.

Causal Query Avg. of

Treated

Avg. of

Control

Diff. of

Averages

ATE

MIMIC 1 (34-a) 15.5% 9.8% 5.7% 0.5%
MIMIC 2 (34-b) 154.23h 244.15h -89.92h -26.04h
NIS 1 (35) 64% 31% 33% -10%

Table 3: The Average Treatment Effect (ATE) com-

pared to naively computing the difference between

the averages of the treated and control groups.

NIS. We asked the following causal query: are patients
admitted to large hospitals chargedmore than those admitted
to small hospitals? Expressed in CaRL, the query is:

AVG_Bill[𝐻 ] ⇐ Admitted_to_Large[𝑃]? (35)

The treated and control groups are large and small hospitals
respectively. As before, we compared the ATE with the naive
difference of the average bills of the two groups, and show
the results in Table 3. The naive computation shows that the
average bill at large hospitals is 33% more likely to be larger
per patient (i.e., less affordable). However, when computing
the ATE, CaRL adjusts for the profile of the patients each
hospital receives, and we obtain a surprising reversal of the
trend. The reason for this discrepancy is that patients with
more severe (and, thus, more costly) conditions tend to go to
large hospitals, while small hospitals tend to have patients
with milder conditions. In fact, the medical literature reports
that, all else being equal, a larger hospital will provide more
affordable treatment than a small one. One meta-analysis [9]
reports that economies of scale are present in the healthcare
sector and so finds support for the policy of several national
governments to consolidate smaller hospitals to increase
productivity and efficiency.

ReviewData. We asked two casual queries: what is the
effect of an author’s prestige on the average score of his/her
submissions? And what is the effect on the submission score

Figure 6: (a) Average treatment effect estimates and

Pearson’s correlation for single-blind and double-

blind submissions, per query in (37) (b) Pearson’s cor-

relation, average isolated/relational/overall effect for

all authors on submissions in single-blind venues, per

query in (36).

when more than 1/3 of her co-authors are treated? Expressed
in CaRL, the queries are:

AVG_Score[𝐴] ⇐ Prestige[𝐴]? (36)
Score[𝑆 ] ⇐ Prestige[𝐴]? WHEN MORE THAN 1/3 PEERS TREATED (37)

We ran each query twice, once on single-blind confer-
ences, and once on double-blind; in CaRL, this is achieved by
adding a where condition to the queries (not shown here),
and computed the ATE in both cases. In addition, we also
computed the Pearson correlation between the score dis-
tributions of prestigious and non-prestigious authors. The
results are shown in Figure 6(a), and show a significant cor-
relation, both for single-blind and double-blind conferences.
However, CaRL found that the causal effect of prestige on
submission scores was significant for single-blind venues, but
not significant for double-blind venues. A naive interpreta-
tion of correlation-as-causation leads to the false conclusion
that double blinding is not effective in reducing bias. While
the validity of our these findings depend on the validity of
the underling assumptions made in this paper, we believe
they surpass naive correlation. In particular, we note that
our results are in accordance with a series of controlled ex-
periments that suggest double-blind reviewing does indeed
reduce institutional prestige bias [32, 41, 52, 55].
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AIE ARE AOE

Single-Blind

Estimated 1.138 0.434 1.573
Ground Truth 1.000 0.500 1.500

Double-Blind

Estimated 0.101 0.429 0.538
Ground Truth 0.000 0.500 0.500

Table 4: Averages for isolated, relational and overall

effects for Synthetic ReviewData by query in (36).

Method Embedding

Single-Blind Double-Blind
Estimated True Estimated True

CaRL

Mean 1.124 ± 0.43 1.00 0.192 ± 0.40 0.00
Median 1.119 ± 0.36 1.00 0.115 ± 0.37 0.00
Moment

Summary

1.020 ± 0.36 1.00 0.109 ± 0.32 0.00

Padding 1.011 ± 0.29 1.00 0.013 ± 0.30 0.00
Universal

Table

N/A 0.54 ± 0.73 1.00 0.201 ± 0.64 0.00

Table 5: Comparing the sensitivity of the quality of

query answer to different choice of embeddings on

Synthetic ReviewData, using the query in (37).

Given its primarily networked structure, ReviewData of-
fers a great opportunity to compute peer effects. (In contrast,
there are no relational peers for the causal queries onMIMIC-
III and NIS.) We computed the effect of prestige across peers
on review scores in single-blind conferences, and used CaRL
to compute the isolated, the relational, and the overall effects
as in (37). Figure 6(b) reveals that the isolated effect (AIE) is
more significant than the relational effect (ARE), meaning
that an author’s own prestige has a stronger effect on his or
her average submission score than their collaborators’ pres-
tige has, as we might expect. Furthermore, one can verify
that we obtained AOE = AIE + ARE, which independently
conforms with Proposition 4.4.

6.3 Quality of Estimates

As the ground truth is not known for the real datasets, we
use Synthetic ReviewData to evaluate the quality of the
estimates CaRL provides. We report estimated and true ATE,
ARE, AIE and AOE to scrutinize CaRL’s performance. As
seen in Table ??, CaRL is able to disentangle the isolated and
relational effects present in Synthetic ReviewData. It is
able to do so for both sub-populations, which have differ-
ent generative rules. The different estimates are correctly
recovered, and the property AOE = AIE + ARE from Propo-
sition 4.4 is again respected.
To test the ability to utilize relational structure, we com-

puted the treatment effect estimates to the causal queries
(37) using CaRL and compared to propensity score matching
on the universal table obtained by joining all base relations.
Table ?? compares the estimates by these two approaches
with the ground truth. As shown, in all tested cases CaRL
approximately recovered the ground truth within a reason-
able error bound. However, causal inference on the universal

table resulted in an incorrect ATE with a considerable variance.
This experiment reveals that ignoring the relational struc-
ture in relational domains can lead to incorrect estimates
and erroneous conclusions.

6.4 Sensitivity to Embeddings

Assessing the effect of embeddings requires access to the
ground truth, so we restrict ourselves to testing on Syn-
thetic ReviewData in this subsection. Table ?? shows that
while CaRL consistently recovers the ATE, the correct choice
of embedding can improve its performance. We observe that
simple embeddings (such as mean or median) recovered ap-
proximately the true average treatment effect. However, their
estimate was less centered around the ground truth com-
pared to embeddings like padding or moment summarization.
While padding had the tightest variance, moment summa-
rization also showed promising results. These trends apply
regardless of whether we consider single- or double-blind
venues, each of which has different generative models and
ground truths. It is important to note that moment summa-
rization is one of the simpler approaches for set embedding.
Additionally, the padding technique tends to create vectors
that grow in proportion to the size of the relational skeleton,
which limits to its applicability. In future work, we aim to
develop principled learning approach for finding efficient
embeddings using graph representation learning and graph
embedding.

7 CONCLUSIONS AND FUTUREWORK

We introduced the Causal Relational Learning framework for
performing causal inference on relational data. This frame-
work allows users to encode background knowledge using
a declarative language called CaRL (Causal Relational Lan-
guage) using simple Datalog-like rules, and ask various com-
plex causal queries on relational data. CaRL is designed
for researchers and analysts with a social science, health-
care, academic or legal background who are interested in-
ferring causality from a complex relational data. CaRL adds
on to existing causal inference literature by relaxing the
unit-homogeniety assumption and allowing the confounders,
treatment units and outcome units to be of different kinds.
We evaluated CaRL’s completeness and correctness on real-
world and synthetic data from academic and healthcare do-
mains. CaRL is successfully able to recover the treatment
effects for complex causal queries that may require multiple
joins and aggregates.
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