
Representing Tuple and Attribute Uncertainty in Probabilistic Databases

Prithviraj Sen
sen@cs.umd.edu

Amol Deshpande
amol@cs.umd.edu

Lise Getoor
getoor@cs.umd.edu

Computer Science Department, University of Maryland, College Park, MD, 20742.

Abstract

There has been a recent surge in work in probabilistic
databases, propelled in large part by the huge increase in
noisy data sources — sensor data, experimental data, data
from uncurated sources, and many others. There is a grow-
ing need to be able to flexibly represent the uncertainties
in the data, and to efficiently query the data. Building on
existing probabilistic database work, we present a unifying
framework which allows a flexible representation of corre-
lated tuple and attribute level uncertainties. An important
capability of our representation is the ability to represent
shared correlation structures in the data. We provide moti-
vating examples to illustrate when such shared correlation
structures are likely to exist. Representing shared corre-
lations structures allows the use of sophisticated inference
techniques based on lifted probabilistic inference that, in
turn, allows us to achieve significant speedups while com-
puting probabilities for results of user-submitted queries.

1 Introduction
An increasing number of real-world applications are de-

manding support for managing, storing, and querying un-
certain data in relational database systems. This has led to
a recent resurgence of research in the area of probabilis-
tic databases. This work has spanned a wide range of is-
sues such as query optimization [11], indexing uncertain
data [22], query languages [4, 2] and data models that can
represent complex correlations [13, 20, 21] naturally pro-
duced from various applications [14, 13, 3]. The underly-
ing data models for much of this work are based on proba-
bility theory coupled with possible worlds semantics where
a probabilistic database is defined as a probability distribu-
tion over numerous possible databases. Although this def-
inition results in intuitive querying semantics, probabilistic
databases are still far from being efficient and scalable, with
the query processing problems known to be #P-complete
even for very simple queries [11].

As opposed to query evaluation for traditional databases
containing exact data, query evaluation for probabilistic
databases requires that we calculate probabilities associated

with result tuples present in the answer to user-submitted
queries [11], and this, in turn, requires probabilistic infer-
ence [21]. The main reason for most of the complexity
results associated with probabilistic databases is a conse-
quence of this close connection with probabilistic inference,
which is known to be an NP-Hard problem, in general [9].
However, in many cases, it is possible to leverage special
properties of the uncertain data at hand to reduce the com-
plexity of query evaluation. One such property is the pres-
ence of shared correlation structures. Many applications
produce uncertain data with probability distributions and
correlations copied many times over; this is because the
distributions and correlations typically come from general
statistics that do not vary on a per-tuple basis. For instance,
Andritsos et al. [1] report a customer relationship manage-
ment application where the objective is to merge data from
two or more source databases and each source database is
assigned a probability value based on the quality of the in-
formation it contains. Even here, probabilities don’t change
from tuple to tuple, since tuples from the same source are
assigned the same source probability. Also, Dalvi and Su-
ciu [12] report uncertain data collected as part of the Cancer
Genome Anatomy Project that assigns tags to genes and this
information is uncertain because of the inherent uncertain-
ties in the experiments conducted to produce the tag-gene
association. Once again, the uncertainties in the experimen-
tal setup are likely to vary in systematic ways from one ex-
periment to another, and will result in repetition in probabil-
ity values. As we show in this paper, it is possible to exploit
such shared correlation structures using sophisticated infer-
ence techniques to significantly reduce the time associated
with probabilistic inference for query evaluation.

One prerequisite to being able to exploit shared correla-
tion structures is to design a probabilistic database that can
represent the shared correlation structures in the base data
in the first place. Unfortunately, most of the recent work
in probabilistic databases has been concentrated on the de-
velopment of tuple-level uncertainty probabilistic databases
[15, 11, 13, 21]. Many applications produce data that is
more naturally represented using attribute-level uncertainty
as opposed to tuple-level uncertainty, e.g., sensor network

1

?
?

?

?

?
MPG

1/1
1/1

1/15

1/10

1/1
Date

$20,000CivicHybrid202105
$20,000CivicHybrid202104

$12,000Civic??103

$4,000Civic (DX)Sedan201102

$6,000Civic (EX)Sedan201101
PriceModelTypeSellerIDAdID

?
?

?

?

?
MPG

1/1
1/1

1/15

1/10

1/1
Date

$20,000CivicHybrid202105
$20,000CivicHybrid202104

$12,000Civic??103

$4,000Civic (DX)Sedan201102

$6,000Civic (EX)Sedan201101
PriceModelTypeSellerIDAdID

Good202

Shady201

ReputationSellerID

Good202

Shady201

ReputationSellerID

0.4202

0.6201

f(t103.SellerId)t103.SellerId
0.428

CivicSedan
0.635

50

45

37

35

32

30

28

26

MPG

0.6

0.4

0.2

0.7

0.1

0.2

0.6

0.2

f(Type,Model,MPG)

CivicHybrid

Civic
(DX)

Sedan

Civic
(EX)

Sedan

ModelType

0.2105

0.2104

0.8103

0.6102

0.3101

f(t.E)AdID

0.7Hybrid

0.3Sedan

f(t103.Type)t103.Type

0.1FalseTrue

0.1TrueFalse

False

True

t101.E

0.9False

0.8True

f(t101.E, t102.E)t102.E

(a) (b)
Figure 1: (a) A simple car advertisement database (b) Factors describing the probabilities and correlations among tuples and attributes.

datasets [14], mobile object databases [8] etc. (see Bar-
bara et al [3] for more examples). Although converting
a database with attribute-level uncertainty to a database
with tuple-level uncertainty is a fairly simple operation, this
transformation usually leads to a loss of shared correlation
structures (besides resulting in a database that requires stor-
ing a significantly larger number of tuples).

In general, we may require both tuple and attribute level
uncertainty to faithfully represent the shared correlation
structures present in real-world data and, for this purpose,
in this paper, we propose a probabilistic database model
that can represent correlated attribute and tuple level un-
certainty, thus fully exploiting the representational power
of the probability theory. Our proposed model uses small
functions called parameterized factors to compactly repre-
sent the uncertainty in the data, and fundamentally supports
sharing of both the uncertainty representation and the corre-
lation structures. We also present a preliminary experimen-
tal study to demonstrate how beneficial such sharing can be
during query processing.

2 Motivating Example
Consider the small database shown in Figure 1

containing information regarding pre-owned cars
for sale. The database consists of two tables,
Ad(AdID,SellerID,Date,Type,Model,MPG,Price)
and Seller(SellerID,Reputation). Note that this is a very
simple model of a pre-owned car sales database and, for
simplicity, we have removed a number of attributes that
would otherwise be present in such a database such as
odometer readings and year of manufacture.

Probabilities factor into this domain in a variety of ways.
First off, we may have some uncertainty about the existence
of a tuple. In this domain, perhaps older ads are likely to
correspond to cars that have already been sold. We may
want to represent this explicitly by associating a probabil-
ity with each tuple. Figure 1(b) shows a probability factor

$20,000

$20,000

$20,000

$20,000

$12,000

$12,000

$12,000

$12,000

$12,000

$12,000

$12,000

$12,000

$4,000

$4,000

$4,000

$6,000

$6,000

$6,000

Price

0.12

0.08

0.12

0.08

0.1344

0.0896

0.0576

0.0384

0.2016

0.1344

0.0864

0.0576

0.0826

0.2893

0.0413

0.0693

0.208

0.0693

P(t)

45CivicHybrid1/1202105

45CivicHybrid1/1202104

28CivicSedan1/15202103

35CivicSedan1/15202103

45CivicHybrid1/15202103

50CivicHybrid1/15202103

45CivicHybrid1/15201103

35CivicSedan1/15201103

28CivicSedan1/15201103

50CivicHybrid1/15201103

35Civic (DX)Sedan1/10201102

32Civic (DX)Sedan1/10201102

28Civic (EX)Sedan1/1201101

30Civic (EX)Sedan1/1201101

50

50

37

26

MPG

1/1

1/1

1/10

1/1

Date

CivicHybrid202105

CivicHybrid202104

Civic (DX)Sedan201102

Civic (EX)Sedan201101

ModelTypeSellerIDAdID

$20,000

$20,000

$20,000

$20,000

$12,000

$12,000

$12,000

$12,000

$12,000

$12,000

$12,000

$12,000

$4,000

$4,000

$4,000

$6,000

$6,000

$6,000

Price

0.12

0.08

0.12

0.08

0.1344

0.0896

0.0576

0.0384

0.2016

0.1344

0.0864

0.0576

0.0826

0.2893

0.0413

0.0693

0.208

0.0693

P(t)

45CivicHybrid1/1202105

45CivicHybrid1/1202104

28CivicSedan1/15202103

35CivicSedan1/15202103

45CivicHybrid1/15202103

50CivicHybrid1/15202103

45CivicHybrid1/15201103

35CivicSedan1/15201103

28CivicSedan1/15201103

50CivicHybrid1/15201103

35Civic (DX)Sedan1/10201102

32Civic (DX)Sedan1/10201102

28Civic (EX)Sedan1/1201101

30Civic (EX)Sedan1/1201101

50

50

37

26

MPG

1/1

1/1

1/10

1/1

Date

CivicHybrid202105

CivicHybrid202104

Civic (DX)Sedan201102

Civic (EX)Sedan201101

ModelTypeSellerIDAdID

Figure 2: A probabilistic database for the car advertisement
database represented using tuple probabilities.

f (t.E) which describes the probability of each ad existing.
In this example, there are also several unknown attribute

values, shown as question marks. Consider the third tuple
in the Ads table, which we will denote t103. Both the Sel-
lerID and the Type of this car is unknown. We can rep-
resent this uncertainty using tuple-specific attribute factors,
which describe the likelihoods of the different possible sell-
ers and models. These are the tables f (t103.SellerID) and
f (t103.Type), shown in Figure 1(b). Finally, there is uncer-
tainty over MPG. The final factor in Figure 1(b) shows the
likelihoods for combinations of Type, Model, and MPGs.

Given these probabilities, one approach to representing
the probabilistic database is to “flatten” it out into a prob-
abilistic database which has only tuple uncertainty. Fig-
ure 2 shows an attempt to do this. This requires comput-
ing joint probability distributions by multiplying the appro-
priate numbers from the various factors. For instance, the
7th tuple in Figure 2 shows t103 in Figure 1(a) instantiated

2

with SellerID=201, Type=Sedan, MPG=28 and the proba-
bility value of 0.0576 is obtained by multiplying 0.8 (from
f (t.E)), 0.6 (from f (t103.SellerID)), 0.3 (from f (t103.Type))
and 0.4 (from f (Type,Model,MPG)). The main advantage
of this approach, as indicated in Section 1, is that there have
been several recent proposals for probabilistic database sys-
tems which handle such tuple-level uncertainty databases
involving mutually exclusive groups of tuples. However,
there are several disadvantages. First, notice that there is a
considerably larger number of tuples in Figure 2 than there
is in Figure 1. In fact, this increase in size is a known prob-
lem with computing joint probability distributions and has
been pointed out in other contexts such as selectivity esti-
mation in databases [16]. The other, more subtle but more
serious issue is the loss of shared correlation structures.
Note that the factor f (Type,Model,MPG) (Figure 1(b)) is
actually a shared factor and is associated with any tuple that
has any of its Type, Model or MPG values missing. Un-
fortunately, in Figure 2, this shared correlation is not easily
visible, especially since most of the tuples in Figure 2 are
associated with distinct tuple probabilities.

Our aim is to perform efficient query processing by uti-
lizing shared correlation structures. To this end, we propose
a probabilistic database model that not only supports corre-
lated tuple and attribute level uncertainty but also sharing
of probabilistic factors.

3 PRDB: A Generic Probabilistic DB Model
We begin with some notation. Following [11], we use

the superscript p to emphasize the fact that we are deal-
ing with a probabilistic database throughout the paper. Let
Dp denote a probabilistic database with tuple and attribute
level uncertainty. Let Dp contain a set of relations R =
{Rp

1 , . . . ,Rp
m}. Let U denote the set of all possible constants;

U contains a special unassigned constant /0. Let Attr(Rp
i)

denote the set of attributes for relation Rp
i . Let t denote a

tuple in Rp
i . For every t ∈ Rp

i and A ∈ Attr(Rp
i), we use t.A

to denote a random variable with domain Dom(t.A) such
that Dom(t.A)⊆U . Intuitively, t.A captures the uncertainty
associated with the value of attribute A of tuple t. Further,
for every t ∈ Rp

i we also have a special random variable t.E
that can take assignments from the binary domain {true,
false} to capture the uncertainty associated with t’s exis-
tence. We use X to denote the set of all random variables
in probabilistic database Dp.

To express shared correlation structures we will need to
familiarize ourselves with some concepts borrowed from
the machine learning literature [19, 6, 7]. Essentially, for
PRDB, we need to have constructs that allow us to ex-
press encapsulations of random variables associated with
the same kind of uncertainty and random variables involved
in the same kind of correlations. For this purpose we next
define the notions of tuple identifier collections, parameter-
ized random variables and parameterized factors.

A tuple identifier collection (TIC) I is a collection of tu-
ple identifiers such that corresponding to each i ∈ I there is
a tuple in Dp. Let I denote a set of TICs {I1, I2 . . . Im}. A
parameterized random variable (ParRV) V encapsulates a
collection of random variables having the same domain and
is represented by a triple < η ,I,M > where:

• η is the type of V and is of the form Rp.A or Rp.E that
indicates that each random variable mapped to by M be-
longs to the attribute A of relation Rp (in which case
A∈ Attr(Rp)) or tuple existence random variables of re-
lation Rp, as the case might be.

• M is a one-to-one mapping that maps each list of tu-
ple identifiers i = {i1, i2, . . . ik} such that i1 ∈ I1, i2 ∈
I2, . . . ik ∈ Ik to an RV r that is of type η .

A useful operation with any ParRV V =< η ,I,M > is to
extract a ground random variable given i, an element from
the cartesian product of I, and this we denote by V (i) which
simply returns the random variable that M maps to. We re-
fer to the random variables encapsulated by ParRV V as the
set of ground random variables of V . Further, we will refer
to the domain of V (which is identical for each ground ran-
dom variable) by Dom(V). We will also refer to the various
components of the ParRV V by appropriate subscripts such
that Vη , VI and VM refer to V ’s type, collection of TICs and
mapping respectively.

A factor is the basic unit of representing uncertainty and
correlations in most of the work on probabilistic graphical
models [18, 10]. Factors are simply functions over small
sets of random variables that map each joint instantiation
to real numbers between 0 and 1. A parameterized factor
(ParFactor) F encapsulates a collection of factors and is rep-
resented by a triple < I,V,φ > where:

• I is a set of TICs
• V is a set of ParRVs such that VI ⊆ I ∀V ∈ V
• φ is a function such that 0≤ φ(V = v)≤ 1 for each joint

instantiation v ∈ ×V∈VDom(V).

A ParFactor F =< I,V,φ > simply encapsulates all the fac-
tors obtained by substituting the groundings of V in φ . In
other words F represents {φ(V(i))}i∈I. This is better ex-
plained using an example. Consider the 4th tuple (t104) and
5th tuple (t105) in the Ad relation in Figure 1. Each of these
tuples has the same attribute value missing, MPG. Thus,
the uncertainty associated with these two tuples can be
expressed using the same function f (Type,Model,MPG)
shown in Figure 1(b). The naive way to do this is to repre-
sent the uncertainty using two ground factors over ground
random variables f (t104.Type, t104.Model, t104.MPG) and
f (t105.Type, t105.Model, t105.MPG) and copy the probabil-
ity values once for each factor. An alternative approach
is to represent the uncertainty using ParRVs and ParFac-
tors which represents the sharing of factors. For this we

3

first define a TIC I = {t104, t105}. We then define three Par-
RVs:

• VType =< Ad.Type,{I},MType >, where Ad.Type
is the type of VType and MType(t104) = t104.Type,
MType(t105) = t105.Type.

• VModel =< Ad.Model,{I},MModel >, where Ad.Model
is the type of VModel and MModel(t104) = t104.Model,
MModel(t105) = t105.Model.

• VMPG =< Ad.MPG,{I},MMPG >, where Ad.MPG
is the type of VMPG and MMPG(t104) = t104.MPG,
MMPG(t105) = t105.MPG.

Now we can represent the two ground factors using
a single ParFactor F =< {I},{VType,VModel ,VMPG},φ >
where φ is essentially the function shown in Figure 1(b),
for instance, φ(VType = Hybrid,VModel = Civic,VMPG =
45) = 0.4. Grounding out F we get the same two
factors over the ground random variables. For in-
stance, grounding out the ParRVs for t104 we get,
VType(t104) = t104.Type, VModel(t104) = t104.Model and
VMPG(t104) = t104.MPG, substituting the ParFactor F with
these ground random variables gives us the ground factor
φ(t104.Type, t104.Model, t104.MPG) which is exactly what
the factor f (t104.Type, t104.Model, t104.MPG) represents.
Similarly, grounding F with t105 gives us the other ground
factor. Just like ParRVs, for any ParFactor F =< I,V,φ >
we represent its components with suitable subscripts, in
other words, FI represents the TICs, FV represents the Par-
RVs and Fφ represents the factor over ParRVs. We can also
extract a ground factor from F by the operation F(i) (where
i ∈ ×I∈FI I) which simply returns the factor Fφ (FV(i)).

A Dp, besides containing a set of relations R, also
contains a set of ParFactors F . Like many previous
approaches, we define the semantics of our probabilistic
database using possible worlds semantics [17, 11]. Pos-
sible world semantics interprets a probabilistic database
as a probability distribution over a number of possible
databases. We refer to each possible database as an instance
of the probabilistic database and each instance is obtained
by choosing a (sub)set of the uncertain tuples to be present
in the instance and assigning exactly one value to each un-
certain attribute from its domain. The probability assigned
to each instance is simply the product of the relevant proba-
bilities returned by the set of ground factors represented by
F and divided by a constant such that the sum of probabil-
ities over all instances is 1.

More formally, an instantiation of Dp is an assignment x
to all the ground random variables in X from their respec-
tive domains. Not all assignments are legal; if t.E = f alse
then we require t.A = /0. In other words, if a tuple does not
exist, then its attributes should be unassigned. Any legal as-
signment x of X gives us a corresponding certain instance
of Dp. These are the possible worlds, and Dp defines a dis-

tribution over them.

Definition 3.1 A probabilistic database Dp consists of a set
of relations R and a set of ParFactors F . Let X denote
all the random variables present in Dp and let x, denoting
a legal assignment to X , represent a possible world of Dp.
The probability of the possible world x is:

Pr(X = x) =
1
Z ∏

F∈F
∏

θ∼FI

Fφ (FV(θ) = xFV(θ)) (1)

where θ ∼ FI denotes an element from the cartesian prod-
uct of all the TICs in FI, xFV(θ) denotes the assignments re-
stricted to the ground random variables FV(θ) and Z denotes
the normalization constant ∑x′ ∏F∈F ∏θ∼FI Fφ (FV(θ) =
x′FV(θ)

).

Note that we do not impose any restrictions on the types of
ParRVs involved in any ParFactors in Dp. This means that if
the user wants then s/he can define a ParFactor over ParRVs
of types Rp.A, Rp.E, R′p.A or R′p.E, where Rp and R′p are
relation names and A is an attribute name from the relation,
or any combination of these types. Thus, it should be easy
to express correlations involving just attributes or attributes
and tuple existence random variables or tuple existence cor-
relations.

4 Experiments
In this section we report some preliminary experiments

performed on synthetic data that illustrate the reduction
in times required to perform inference. We compare two
approaches. Earlier work [21] has shown that standard
probabilistic inference algorithms, such as variable elim-
ination [23] (VarElim), can be used to perform inference
for query evaluation in probabilistic databases. However,
these approaches were mainly geared towards probabilis-
tic databases with tuple-level uncertainty only. It is rela-
tively easy to extend the same approach to handle both tuple
and attribute level uncertainty. One approach we compare
against is this extension of the ideas presented in our earlier
work with VarElim for the underlying inference method. As
indicated earlier, representing shared correlation structures
using ParFactors allows us the use of more sophisticated in-
ference algorithms. These inference algorithms generally
go by the name of lifted inference algorithms and one such
inference algorithm is called parameterized variable elimi-
nation (ParVE) [19, 6]. We use ParVE to illustrate the re-
duction in runtimes achieved by utlizing the shared corre-
lation structures in the probabilistic database by comparing
against the runtimes achieved by VarElim.

As described in our earlier work [21], one approach to
query evaluation in probabilistic databases is by introduc-
ing correlations among intermediate tuples and the tuples
they are produced from. For instance, consider a join issued

4

0.0
0.1
0.2
1.0
4.0

16.0
64.0

256.0

20 22 24 25 28210211213216

Ti
m

e
(s

)

#Tuples

VarElim
ParVE

0.0
0.1
0.2
1.0
4.0

16.0
64.0

256.0

20 22 24 25 28210211213216

Ti
m

e(
s)

#Tuples

VarElim
ParVE

0.1
0.2
1.0
4.0

16.0
64.0

256.0

20 22 24 25 28 210211213

Ti
m

e(
s)

#Tuples

VarElim
ParVE

(i) (ii) (iii)

0.0
0.1
0.2
1.0
4.0

16.0
64.0

256.0

 1 2 4 8 16

Ti
m

e(
s)

#Blocks

VarElim
ParVE

0.0
0.1
0.2
1.0
4.0

16.0
64.0

 1 2 4 8 16
Ti

m
e(

s)

#Blocks

VarElim
ParVE

0.2
0.5
1.0
2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

 1 2 4 8 16

Ti
m

e(
s)

#Blocks

VarElim
ParVE

(iv) (v) (vi)

Figure 3: Experiments with selection and join queries on synthetic data. All plots are in log-log scale.

on two relations Rp
1 and Rp

2 . Let r denote the result tuple
produced by the join between tuples t1 ∈ Rp

1 and t2 ∈ Rp
2

such that t1 and t2 satisfy the join condition. Note that r
is only produced by a possible world if both t1 and t2 are
present in it, which means r.E, t1.E and t2.E are correlated.
In prior work [21], we showed how such correlations can
be produced and represented using factors automatically
at runtime while evaluating queries. Unfortunately, those
techniques are inadequate now that we would like to use
ParRVs and ParFactors to represent the same correlations
in a shared manner. To see that shared correlations are in-
troduced while evaluating queries notice that every time a
tuple t1 ∈ Rp

1 joins with another tuple t2 ∈ Rp
2 to produce a

tuple r, we need to introduce a logical-∧ factor to enforce
the correlation connecting the three tuples’ existence. More
importantly, notice that the same logical-∧ needs to be in-
troduced for any such triplet of tuples thus leading to copies
of factors and motivating the use of ParFactors while query
evaluation. Due to space constraints it is not possible to in-
clude the details regarding the introduction of ParRVs and
ParFactors while query evaluation here but we refer the in-
terested reader to the extended version of the paper (citation
omitted for blind review purposes).

All our experiments were performed on a dual-proc
Xeon 2.8GHz machine with 3GB of memory. Our code is
written in JAVA. In all these experiments we only report the
times required to run inference and do not include the times
required to perform various other operations such as times
required to read the data from disk etc.

We studied the variation in run times by varying two pa-
rameters. In every synthetic relation we generate, we in-
clude many tuples that share the same correlation structure,
we refer to a collection of such tuples with identical correla-
tions and factors as a block of tuples. Tuples from different

blocks have a different correlation structure. One of the pa-
rameters we varied in all our experiments is the number of
blocks per relation (#Blocks). The other parameter we var-
ied is the number of tuples per block (#Tuples).

In our first experiment, we considered a simple selection
query on a three attribute relation R1(A,B,C). For each tu-
ple t ∈ R1, each of t.A, t.B and t.C are uncertain attributes
with domains of size 10. Moreover, ∀t ∈ R1, t.C is corre-
lated with t.B which in turn is correlated with t.A. The query
we considered is σ

p
C=cR1, where c is a constant present in

the domain of every t.C random variable in R1. Thus in
this case, VarElim needs to compute the probabilities for
each result tuple, separately. On the other, by exploiting the
shared factors, ParVE can reduce the computation required
for inference by computing once per block of tuples. In Fig-
ure 3 (i), we generated R1 so that all tuples belonged to the
same block and varied the number of tuples from 1 to 215.
The plot shows that VarElim’s execution time increases lin-
early with #Tuples, whereas, the times for ParVE remain,
roughly, constant. In Figure 3 (iv) we kept the number of
tuples per block constant (1024) but varied the number of
blocks in R1. In this case, since ParVE needs to compute
probabilities once per block, it’s time increases linearly with
the number of blocks but there is still a considerable im-
provement in execution times compared to VarElim.

In the above experiment, we considered a relation R1
with a maximum of 215 (32,768) tuples, which may not
seem like a very big relation, but we would like to point
out that this number, in fact, compares favourably with ex-
periments performed on most probabilistic databases, es-
pecially the ones that can only represent tuple-level uncer-
tainty [15, 11, 13]. Recall that R1 contains tuples with three
attributes and each attribute has a domain of size 10. Thus
“flattening” R1 into a relation with only tuple-level uncer-

5

tainty would mean taking each tuple from R1 and repre-
senting it with 10×10×10 uncertain tuples (recall the ex-
ample in Section 2) which would result in a relation with
215×10×10×10 = 32,768,000 tuples.

In our second experiment we tried a similar selection
query on a relation R2(A,B) that contains tuple uncertainty,
tuple correlations and attribute correlations. More specif-
ically, every odd-numbered tuple to ∈ R2 has some uncer-
tainty of existence besides a correlation between to.A and
to.B both of which have domains of size 10. Every even-
numbered tuple te ∈ R2, however, has tuple uncertainty that
depends on the previous odd-numbered tuple t ′o’s t ′o.E tu-
ple existence random variable besides the correlation be-
tween te.A and te.B. Figure 3 (ii) and Figure 3 (v) show the
runtimes obtained by varying #Tuples and #Blocks, respec-
tively, for the query σ

p
B=bR2 where b is a constant.

For the third query we tried a two-relation join followed
by a projection ∏

p
D(R3(A,B) ./p R4(C,D)) where both re-

lations consist of attribute correlations such that each tuple
from R3 joined with exactly one tuple from R4 and all the
tuples produced by the join project to the same result tuple.
The reader needs to be familiar with the details of the ParVE
algorithm to fully comprehend the results of this query (Fig-
ure 3 (iii) and Figure 3 (vi)), please see the extended version
of the paper for more details. Essentially, ParVE involves
splitting and merging of ParFactors and unlike the previous
two queries, this query requires a fair number of splits and
merges. The main result is that, even though the execu-
tion times of ParVE does not remain linear with the num-
ber of blocks in the relations, it still provides significant
speedups compared to VarElim. For instance, in Figure 3
(iii), even when #Tuples is 213 ParVE requires 24.6 sec. to
run whereas VarElim requires about 224 sec.

5 Conclusion
There is a growing need to be able to flexibly repre-

sent the uncertainties in the data, and to efficiently query
the data. Building on existing work within the probabilistic
database and probabilistic knowledge representation com-
munities, we have presented PRDB, a unifying framework
which leverages on shared correlation structures to achieve
significant speedups during query processing.

PRDB allows one to faithfully represent the uncertain-
ties present in data. Such faithful representations open up
new possibilities for richer data mining tasks. Consider,
for example, the task of determining faulty sensors from
a database of sensor readings. Data collected from sen-
sor networks is usually associated with errors and cannot
be represented using traditional relational databases. More-
over, sensor network datasets also harbour strong correla-
tions [14] that can be represented using the factor-based
representation of PRDB. Note that such correlations cannot
be faithfully represented by many recently proposed proba-
bilistic database models [5, 20] which only allow us to rep-

resent mutual exclusivity dependencies. Determining the
readings corresponding to faulty sensors may be formulated
as an outlier detection problem and a data mining algorithm
that attempts to detect such outliers will need to examine
the dependency network formed by the tuple and attribute
based random variables in the database which is only possi-
ble in the case of PRDB since it stores these dependencies
in a compact and coherent fashion.

References
[1] P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers

over dirty databases. In ICDE, 2006.
[2] L. Antova, C. Koch, and D. Olteanu. From complete to in-

complete information and back. In SIGMOD, 2007.
[3] D. Barbara, H. Garcia-Molina, and D. Porter. The manage-

ment of probabilistic data. IEEE TKDE, 1992.
[4] O. Benjelloun, A. Das Sarma, C. Hayworth, and J. Widom.

An introduction to ULDBs and the Trio system. In IEEE
Data Engineering Bulletin, 2006.

[5] O. Benjelloun, A. Sarma, A. Halevy, and J. Widom. ULDBs:
Databases with uncertainty and lineage. In VLDB’06.

[6] R. d. Braz, E. Amir, and D. Roth. Lifted first-order proba-
bilistic inference. In IJCAI, 2005.

[7] R. d. Braz, E. Amir, and D. Roth. MPE and partial inversion
in lifted probabilistic variable elimination. In AAAI, 2006.

[8] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating
probabilistic queries over imprecise data. In SIGMOD’03.

[9] G. F. Cooper. The computational complexity of probabilistic
inference using bayesian belief networks. Artificial Intelli-
gence, 1990.

[10] R. G. Cowell, S. L. Lauritzen, and D. J. Spiegelhater. Prob-
abilistic Networks and Expert Systems. Springer, 1999.

[11] N. Dalvi and D. Suciu. Efficient query evaluation on proba-
bilistic databases. In VLDB, 2004.

[12] N. Dalvi and D. Suciu. Query answering using statistics and
probabilistic views. In VLDB, 2005.

[13] A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom.
Working models for uncertain data. In ICDE, 2006.

[14] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein,
and W. Hong. Model-driven data acquisition in sensor net-
works. In VLDB, 2004.

[15] N. Fuhr and T. Rolleke. A probabilistic relational algebra
for the integration of information retrieval and database sys-
tems. ACM Trans. on Info. Syst., 1997.

[16] L. Getoor, B. Taskar, and D. Koller. Selectivity estimation
using probabilistic models. In SIGMOD, 2001.

[17] J. Halpern. An analysis of first-order logics for reasoning
about probability. Artificial Intelligence, 1990.

[18] J. Pearl. Probabilistic Reasoning in Intelligent Systems.
Morgan Kaufmann, 1988.

[19] D. Poole. First-order probabilistic inference. In IJCAI, 2003.
[20] C. Re, N. Dalvi, and D. Suciu. Efficient top-k query evalua-

tion on probabilistic data. In ICDE, 2007.
[21] P. Sen and A. Deshpande. Representing and querying corre-

lated tuples in probabilistic databases. In ICDE, 2007.
[22] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and S. Ham-

brusch. Indexing uncertain categorical data. In ICDE, 2007.
[23] N. L. Zhang and D. Poole. A simple approach to bayesian

network computations. In Canadian Conf. on Artificial In-
telligence, 1994.

6

