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Abstract

There has been a longstanding interest in building systems that can handle
uncertain data. Traditional database systems inherently assume exact data
and harbour fundamental limitations when it comes to handling uncertain
data. In this dissertation, we present a probabilistic database model that
can compactly represent uncertainty models in full generality. Our repre-
sentation is associated with precise and intuitive semantics and we show
that the answer to every user-submitted query can be obtained by perform-
ing probabilistic inference. To query large-scale probabilistic databases,
we propose a number of techniques that help scale probabilistic inference.
Foremost among these techniques is a novel lifted inference algorithm that
determines and exploits symmetries in the uncertainty model to speed up
query evaluation. For cases when the uncertainty model stored in the
database does not contain symmetries, we propose a number of techniques
that perform approximate lifted inference. Our techniques for approximate
lifted inference have the added advantage of allowing the user to control
the degree of approximation through a handful of tunable parameters. Be-
sides scaling probabilistic inference, we also develop techniques that alter
the structure of inference required to evaluate a query. More specifically, we
show that for a restricted model of our probabilistic database, if each result
tuple can be represented by a boolean formula with special characteristics,
i.e., it is a read-once function, then the complexity of inference can be dras-
tically reduced. We conclude the dissertation with a listing of directions for
future work.
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Chapter 1

Introduction

Many applications produce massive amounts of data that needs to be stored
in an organized manner so that users can sift through and find information
that is of interest. Database systems have become the de facto standard for
storing such large amounts of data. At least from the end user’s perspec-
tive, one of the most important reasons for the success of database systems
is the declarative querying capabilities they offer through query languages
such as SQL. The use of a declarative query language allows the lay user to
pose complex queries against the underlying data without having to worry
about algorithmic or efficiency issues associated with evaluating the query.

Unfortunately, current database systems are not well suited to store
data with uncertainties. If we state that John’s salary is $55,000 per annum,
then John cannot have any salary other than $55,000. We cannot, for exam-
ple, state that John’s salary could lie anywhere between $55,000 to $60,000
per annum or that the temperature on the first floor measured through a
sensor at 10:28AM this morning was more likely to be 52.6◦ F than 52.8◦ F.
We refer to such data with uncertainties as uncertain data or inexact data.

A number of real world applications produce large amounts of uncer-
tain data. Examples include data collected from sensor networks [Desh-
pande et al., 2004], information extraction systems [Jayram et al., 2006] and
mobile object tracking systems [Cheng et al., 2003]. Traditional database
management systems are not suited for storing uncertain data, which means
that the declarative querying capabilities offered by database systems are
unavailable to people who need to deal with and search through such data
to find information of interest.

In this dissertation, our aim is to develop a database system that can
store and query uncertain data. To achieve our goal, we need to answer two
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fundamental questions: 1) How do we represent uncertainty in a database
and 2) How do we use the uncertainty model along with the data to pro-
duce relevant answers to a user-submitted query? In the ensuing chap-
ters, we will see how we answer the former question by combining tradi-
tional database ideas with uncertainty representation models from machine
learning. Further, we also show how efficient query evaluation can be per-
formed in such databases by developing novel algorithms based on ideas
from graph-theory. But before we go any further, let us consider a small ex-
ample that illustrates some of the differences between querying exact data
using traditional database query processing techniques and handling un-
certain data.

1.1 A Small Example

Figure 1.1(a) shows a small relation,Ads, where each row corresponds to an
advertisement (ad) that we pulled off from a pre-owned car sales website.
For simplicity, we depict only the Make and Price of the cars associated
with each ad in Figure 1.1(a); a real pre-owned car sales database will likely
contain many more attributes of interest. Ads contains four ads, the first
(depicting a Honda for sale) being an instance of certain data and the last
three (s2, s3 and s4) being uncertain. Also shown in Ads against each tuple,
are numbers depicting how certain/uncertain each tuple is. For now, we
will refrain from specifying exactly what these numbers mean other than
saying that they are a measure of how likely it is for the corresponding tu-
ple to exist in the real world or their degree of certainty. Such numbers may
be useful in capturing the fact that many ads posted on websites remain
visible even after the car in question has been sold and thus with the pas-
sage of time it is less likely for a car being advertised to be still up for sale.
For the purposes of presenting our example, a tuple with degree closer to
1 increases the chance of its being present in the real world, while a degree
closer to 0 decreases the chance of that ad still being valid. Thus, in Figure
1.1(a), s1 is an instance of exact data where we know that a car of make
Honda is definitely up for sale, while s2, s3 and s4 are uncertain, we are not
quite sure if those cars are still available but there is a good chance (since
0.7 is closer to 1 than to 0) of them being still available for sale.

Suppose a user is interested in finding out the makes of the cars that
are for sale and so wants to issue the query

∏
Make(Ads). Now, we have

a slight problem since we don’t know how to deal with the degrees of tu-
ples. We will consider two simple approaches. In the first approach, we
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Ads Make Price

s1 Honda $12,000 1.0 −→
s2 Toyota $8,000 0.7 ∏

Make(Ads)s3 Dodge $6,000 0.7
s4 Dodge $9,000 0.7 −→

(a)

Make
Honda

(b)

Make
Honda
Toyota
Dodge

(c)

Figure 1.1: (a) A small pre-owned car sales database. (b)
∏

Make(Ads) ig-
noring uncertain data. (c)

∏
Make(Ads) treating uncertain data just like ex-

act data but with an extra attribute.

will simply ignore all uncertain data (s2, s3 and s4) and not return them as
query results. The result (shown in Figure 1.1(b)) contains only one result
and is unsatisfactory because it seems to suggest that the only make avail-
able to the user is Honda and if she doesn’t want to purchase a car of this
make then s/he doesn’t have any other cars to choose from which is not en-
tirely true. There is a possibility that the other (uncertain) tuples in Ads are
still valid ads and the user should be able to find out about these through
her/his query. The main issue here is that when we throw away (uncertain)
data we actually throw away information and this leads to query results of
worse quality. In many domains, such as sensor networks, the bulk of data
collected is uncertain due to reasons ranging from uncertainty associated
with the sensing mechanism of the sensors to inadequate number of sen-
sors being placed in the environment being measured. Throwing away the
uncertain data, in such cases, leaves the database with precious little data
to work with which, albeit certain, is still unlikely to be enough to ensure
good quality query results.

A second approach is to treat the degrees of certainty of the tuples as
an extra attribute and append it to list of attributes of Ads. Executing the
same query under this paradigm returns the result shown in Figure 1.1(c)
which now indicates that there are Toyotas and Dodges up for sale besides
the Honda. Unfortunately, this result is not quite satisfactory due to two
reasons:
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• Honda vs. Toyota: Notice that the query result gives Honda and Toy-
ota equal billing. However, the Honda result is derived from a certain
tuple whereas the Toyota result is derived from an uncertain tuple
which may not correspond to a valid ad.

• Toyota vs. Dodge: The query also gives Toyota and Dodge equal
billing, even though, Toyota was derived from an uncertain tuple as-
sociated with a degree of 0.7 whereas Dodge was derived from two
uncertain tuples each associated with a degree of 0.7. This suggests
that it is more likely for the user to find a Dodge up for sale and the
query result does not reflect this.

The first discrepancy (Honda and Toyota getting equal billing in the result)
suggests that while evaluating a query we need to look at the degrees of
the tuples, the second discrepancy (Toyota and Dodge getting equal billing)
suggests that we may also need non-trivial reasoning mechanisms to com-
bine and compare degrees if we are to return useful query results.

The above example should make it clear that handling uncertain data
is quite different (and perhaps more challenging) than handling exact data.
Uncertain data is typically richer than exact data and the richness is because
of the quantitative expression of uncertainties which is something tradi-
tional database research has not considered in depth. Effectively storing
and querying uncertain data requires that we use the information present
in the uncertainties appropriately so that we can help users sift through
and arrive at answers of interest. We next describe, at a high level of ab-
straction, the basic ideas used in this dissertation to design such a database
system.

1.2 Our Approach

Any system that deals with uncertain data has to begin by describing a
representation scheme that allows users to compactly yet flexibly represent
the uncertainties present in the data. In this dissertation, we borrow exten-
sively from the machine learning literature and use probability theory cou-
pled with the language of probabilistic graphical models to augment databases
so that they can represent uncertain data. For this reason, henceforth, we
will refer to a database containing uncertain data as a probabilistic database.
Probabilistic graphical models [Cowell et al., 1999; Pearl, 1988] are compact
representations of joint probability distributions involving a large number
of random variables. By redefining a probabilistic database in terms of
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a probabilistic graphical model, we inherit all of their nice compactness
properties. Additionally, we show how to use probabilistic graphical mod-
els to represent all the different kinds of uncertainty that a user might want
to express in a probabilistic database along with correlations. Correlations
allow one to couple uncertainties among multiple random variables. For
instance, relating back to the example from the previous section, suppose
Ads contained another attribute Color. Also, suppose that for some ad we
neither knew the color nor the make but we know that if the make of the
car in the ad is Honda then its color can be one from a restricted set of
colors, say red or black. Then, this coupling between color and make at-
tributes can be represented in a probabilistic database by expressing it as a
correlation. A number of applications produce uncertain data with known
correlations, such as sensor networks for habitat monitoring where it has
been shown that utilizing spatial and temporal correlations can drastically
improve the quality of query results [Deshpande et al., 2004]. In short, our
formulation of a probabilistic database can represent:

• attribute uncertainty: tuples with uncertain attribute values,

• tuple uncertainty: tuples whose existence we are unsure of,

• intra-tuple attribute-attribute correlation: tuples whose attribute val-
ues are uncertain and correlated,

• inter-tuple attribute-attribute correlation: attribute values from dif-
ferent tuples that are both uncertain and correlated (note that these
tuples can belong to different relations),

• inter and intra attribute value-tuple existence correlations.

In the previous section, when we discussed simple ways of handling
uncertain data using traditional database systems, we showed how such
techniques led to query results that were qualitatively unsatisfactory. How-
ever, we did not discuss what the correct query result should look like.
This, in part, relates to the question of assigning semantics to a probabilis-
tic database. What does a probabilistic database actually mean? Possible
worlds semantics [Halpern, 1990] is one set of semantics that has formed the
basis of numerous probabilistic models proposed in the machine learning
literature and it is known that databases based on possible worlds seman-
tics are associated with particularly intuitive and precise query evaluation
semantics [Dalvi and Suciu, 2004; Fuhr and Rolleke, 1997]. Essentially, un-
der possible worlds semantics, a probabilistic database is simply a distribu-
tion over many traditional databases each referred to as a possible world.
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Query evaluation under possible worlds semantics means evaluating the
query against each possible world (which we know how to do since each
possible world is a database devoid of any uncertainty) and for each result
adding up the probabilities of all possible worlds that produce the result.
Fortunately, our probabilistic graphical models based formulation of prob-
abilistic databases lends itself naturally to possible worlds semantics thus
defining precise semantics for the query evaluation problem.

Of course, defining the query evaluation problem by associating it with
precise semantics is one thing and efficiently evaluating queries is another.
Even though possible worlds semantics precisely defines what the result of
posing a query to a probabilistic database should be, it does not provide
an efficient means of computing it. To this end, we develop an approach
to evaluating a user-submitted query by reformulating it as probalistic in-
ference problem in an appropriately constructed graphical model. More
precisely, given a query q (expressed in some declarative query language
such as relational algebra or SQL) to be evaluated against a probabilis-
tic database with an underlying probabilistic graphical model, we show
how to augment the probabilistic graphical model on the fly to construct
an augmented probabilistic graphical model from which we can compute
the result of q by solving a probabilistic inference problem. Exactly how
we augment the probabilistic graphical model underlying the probabilistic
database depends on q and the operators appearing in it. This reformula-
tion in terms of probabilistic inference has two clear benefits:

1. The general problem of evaluating queries on probabilistic databases
is known to be #P-complete [Dalvi and Suciu, 2004], but we also know
that for some queries this problem is solvable. By expressing a query
evaluation problem as a probabilistic inference problem to be evalu-
ated on an appropriately constructed probabilistic graphical model,
we can now identify exactly which queries lead to hard problems
since the hardness of running probabilistic inference is well under-
stood and can be determined by measuring the treewidth [Arnborg,
1985] of the probabilistic graphical model.

2. By reformulating the query evaluation problem as a probabilistic in-
ference problem, we allow access to using the host of probabilistic
inference algorithms developed in the machine learning literature,
and by appropriately choosing the inference algorithm, we can ob-
tain various time vs. space vs. accuracy trade-offs depending on the
requirements of the user.
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Besides utilizing probabilistic inference algorithms and the various op-
timizations they come with to evaluate queries on probabilistic databases,
another aspect that affects the complexity of the query evaluation problem
is the data stored in the probabilistic database. We can reduce the complex-
ity of query evaluation by exploiting special properties of the data stored
in the probabilistic database at hand. One such property is the presence
of shared correlations, where the same correlations and uncertainties repeat-
edly occur in the data many times over. For instance, in the example from
the previous section, if we had two ads concerning Honda vehicles and
we didn’t know their respective colors then it is likely that the Color at-
tribute values of the two corresponding tuples would be governed by the
same uncertainties and probability distributions. Essentially, uncertainties
and probability distributions rarely vary on a tuple-to-tuple basis and usu-
ally come from general statistics, which leads to repeated probability fac-
tors and correlations. Besides occurring naturally in the data, shared cor-
relations are also introduced when we augment the probabilistic graphi-
cal model defined on the base data to evaluate a query. In the presence
of shared correlations, any standard inference algorithm would treat each
copy of a shared correlation separately and perform the same computation
steps repeatedly. We develop an inference algorithm based on bisimulation
[Kanellakis and Smolka, 1983] that helps identify such shared correlations
and avoid repetitive computations. We validate our algorithm by showing
that even in the presence of a few shared correlations our algorithm does
significantly better than standard inference algorithms.

We further develop our approach to leveraging shared correlations while
evaluating queries by developing approximate versions of the above infer-
ence algorithm. For many applications, perfect accuracy in query results
may not be a requirement and some errors can be tolerated; our approxi-
mate inference techniques are aimed towards such applications where we
make more aggressive use of shared correlations and trade-off accuracy
to reduce time spent to run inference. More specifically, we propose two
different ways to implement approximate inference, both closely related
to bisimulation. Both of these techniques can be combined for more ag-
gressive exploitation of shared correlations. Further, our techniques can
be combined with bounded complexity inference techniques such as mini-
buckets [Dechter and Rish, 2003]. We report experiments on both syn-
thetic and real data to show that in the presence of symmetries, run-times
for inference can be improved significantly, with approximate lifted infer-
ence providing orders of magnitude speedup over standard inference algo-
rithms and the previously developed shared correlations-aware exact infer-
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ence algorithm.
In the last part of the dissertation, our focus remains on efficient query

evaluation but the questions we ask are slightly different. Recall that while
evaluating queries, we first take the (uncertain) data from the database and
the user submitted query, and generate a probabilistic graphical model on
which we need to run inference to compute the result of the query. Note
that, for the same query, many different query plans are possible. Fur-
ther, different query plans of the same query may result in different prob-
abilistic graphical models, all of which are equivalent with respect to the
results of inference. The obvious question to be asked in such a scenario
is: are all of these graphical models similar in complexity or is there a
graphical model/query plan on which it is easier to run inference, in other
words, is there a low-treewidth graphical model? Previous attempts to an-
swer this question led to the concept of hierarchical queries. Hierarchical
queries represent the class of queries for which there exists a particular
query plan that lets us generate a tree-structured probabilistic graphical
model (which is easy to run inference on) for any (tuple-independent) prob-
abilistic database. However, because of their query-centric definition that
does not involve the database, hierarchical queries represent an overly pes-
simistic way of defining the class of tractable queries. It is easy to construct
examples where a non-hierarchical query run on an appropriate database
gives rise to a tractable query evaluation problem. In the final part of the
dissertation, we go beyond the notion of hierarchical queries. Our goal is
to develop query evaluation algorithms that, given the database and the
query, generate a tree-structured graphical model (if it exists) leveraging
both the data and the query. For a tuple-level probabilistic database, it is
easy to show that every result tuple is associated with a boolean formula
and query evaluation reduces to computing the marginal probability for
the boolean formula holding true. It is also easy to see that if the result tu-
ple is such that its associated boolean formula can be factorized into a form
where every boolean variable (or tuple-existence variable, in our case) ap-
pears not more than once, then its marginal probability can be computed
efficiently. We propose novel approaches that generate such factorizations
of result tuples produced by evaluating queries. By doing so, we leverage
both data and query to solve queries on probabilistic databases in the most
efficient manner possible.

This dissertation forms the first few steps in developing a full-fledged
database system that can manage and store uncertain data. Given the level
of interest in probabilistic databases and the wide array of applications that
can benefit from developments in this area of research, it should come as no
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surprise that much work still needs to be done before we see a viable, useful
system being released and that the number of possible directions of future
work far exceeds than what can be accomodated in a few pages of this
dissertation. Still, some of these directions are more compelling and require
more urgent attention than others. We conclude the dissertation with a
summary of contributions made and a listing of these possible avenues for
future work.

1.3 Outline and Contributions

The rest of the dissertation is organized as follows:

• In the next chapter, we begin by discussing prior related work. The
work described in this dissertation contributes and is related to a
number of different fields of research, and in Chapter 2 we review
the more relevant references organized according to different areas of
research to help the reader place our contributions in context.

• Chapter 3 describes the basic representation scheme which can ex-
press all types of uncertainties that one may want to express in a rela-
tional database. This chapter is based on work that appeared in Sen
and Deshpande [2007]; Sen et al. [2007, 2009b]. More precisely, in this
chapter:

– We define probabilistic databases in terms of probabilistic graph-
ical models.

– We show how our formulation naturally lends itself to possible
worlds semantics.

– We show that the query evaluation problem can be recast as a
probabilistic inference problem in an appropriately constructed
probabilistic graphical model.

– We show how to construct the probabilistic graphical model for
a query on the fly at query time.

– We show how standard probabilistic inference algorithms, along
with various optimizations, can be used to answer queries in our
probabilistic database.

• In Chapter 4, we develop the first inference algorithm that exploits
shared correlations which is the first inference algorithm of its kind
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that can be applied to any probabilistic graphical model (even ones
that do not arise out of query evaluation for probabilistic databases).
This chapter is based on work that appeared in Sen et al. [2008a,
2009b]. More precisely, in this chapter:

– We define shared correlations and motivate their presence in un-
certain data using examples.

– We develop an inference algorithm based on bisimulation that
exploits shared correlations to avoid repetitive computation.

– We develop an effective heuristic to construct elimination orders
(a key step in most exact inference algorithms) and show that
our heuristic produces orders that work well with our inference
algorithm.

– We validate our inference algorithm by running experiments and
comparing against standard inference algorithms.

• In Chapter 5, we develop approximate versions of the previously de-
veloped shared correlation-aware inference algorithm. This chapter
is based on work that appeared in Sen et al. [2009a]. More precisely,
in this chapter:

– We devise two different ways to implement approximate infer-
ence with shared correlations: one based on approximate bisim-
ulation and another based on factor binning.

– We show that these two approaches can be combined together
for more aggressive exploitation of shared correlations.

– We also show how these techniques can be combined with bounded
complexity inference mechanisms.

– We develop a unified inference engine that, through the use of
a handful of tunable parameters, allows the user to control the
degree of approximation and to what extent we want to exploit
shared correlations, thus allowing the user to achieve a trade-off
between accuracy of inference and time spent running inference.

– We demonstrate through experiments on both synthetic and real
data how the approximate inference procedures can provide or-
ders of magnitude speedup over standard inference algorithms
and our previously developed shared correlation-aware exact
inference algorithm.
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• In Chapter 6, we develop query evaluation algorithms that generate
tree-structured graphical models (if possible) given the query and the
database. More precisely, in this chapter:

– We review the concept of hierarchical queries.

– We review the relationship between hierarchical queries, tree-
structured graphical models and read-once functions.

– We propose a very simple query evaluation algorithm that makes
use of previous work on read-once functions and generates tree-
structured graphical models whenever possible given any query
to be run on a probabilistic database.

– We consider the special case of conjunctive queries and show
that read-once functions can be generated more efficiently for
this case.

• We conclude the dissertation with Chapter 7 which contains a sum-
mary of contributions and a listing of possible avenues of future work.
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Chapter 2

Related Work

The broader field of uncertainty management in databases has seen a lot of
work in recent years. In this chapter, we attempt to list the more relevant
works and contrast them with the contributions made in this dissertation.
Moreover, the work described in the ensuing chapters relates to various dif-
ferent fields of research besides database systems such as machine learning.
In what follows, we attempt to divide the related work according to the var-
ious fields of research and within each sub-division, we mention how our
work relates to relevant prior work.

2.1 Uncertainty and Databases

The topic of representing and modeling uncertainty has been in the col-
lective conscience of the database community for a fairly long period of
time. Consequently, a wide array of approaches have been proposed. Very
early on, the subject of dealing with null values or logical uncertainty in a
principled manner received a fair amount of attention [Imielinski and Lip-
ski, Jr., 1984]. More recently, there has been more work along these lines
that attempt to concisely represent such databases by employing vertical
partitioning methods [Antova et al., 2007]. Das Sarma et al. [2006] explore
various different models of logical uncertainty with varying representation
power.

When it comes to dealing with uncertainty involving a measure of un-
certainty or beliefs, a number of different approaches have been proposed.
However, the consensus seems to be that probability theory has the right
balance of power and tractability, which is why the bulk of research in this
area falls under the sub-area known as probabilistic databases. Barbara et al.
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[1992] is one of the earliest works along these lines which explores attribute
uncertainty models focussing on intra-tuple correlations. Fuhr and Rolleke
[1997] is perhaps one of the earliest works that proposed a coherent, albeit
simplistic, model of a probabilistic database; the application in focus was
combining information retrieval and database techniques into one single
system. ProbView [Lakshmanan et al., 1997] posits that each tuple is asso-
ciated not with a point estimate of probability but a range, and goes on to
develop query evaluation techniques based on linear programming. In re-
cent developments, Dalvi and Suciu [2004] present a probabilistic database
model based on simple semantics (possible worlds) and show how query
rewriting techniques can help solve intractable queries under this model.

In Chapter 3, we develop compact yet powerful models of probabilistic
databases based on probability theory and factored representations of joint
probability distributions. Our approach is closely related to representing
uncertainty with probabilistic graphical models from the machine learning
literature. Our techniques allow the user to express all kinds of uncertainty
within a relational database, along with correlations. We also show that our
model of a probabilistic database is associated with precise and intuitive se-
mantics, possible worlds, and query evaluation can be performed by run-
ning standard probabilistic inference algorithms on an appropriately con-
structed probabilistic graphical model. The work described in Chapter 3
illustrates that it is possible to go beyond simplistic tuple-level uncertainty
models that assume complete independence and still be able to come up
with models of probabilistic databases that have desirable properties such
as simple semantics and tractable querying.

Chapter 3 is based on previously published works [Deshpande et al.,
2008; Sen and Deshpande, 2007; Sen et al., 2007, 2009b]. In Sen and Desh-
pande [2007], we introduced models of probabilistic databases that allowed
tuple-level uncertainty with correlations, of both intra-relation and inter-
relation varieties, and was perhaps one of the first works to include corre-
lations. This was a significant departure from prior work, both Fuhr and
Rolleke [1997] and Dalvi and Suciu [2004] worked with tuple-level uncer-
tainty models assuming complete independence among tuples. Since most
applications produce data which requires modeling correlations, our work
significantly broadened the applicability of probabilistic databases. Sub-
sequently, in Sen et al. [2007, 2009b], we made our model of probabilistic
databases more general by including attribute and tuple level uncertainty,
and also by including first-order graphical models based on shared cor-
relations. The concept of shared correlations is introduced in Chapter 4
wherein we represent numerous identical correlations together instead of
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representing them separately. This allows our uncertainty model to become
even more compact. Shared correlations are the basis of state-of-the-art
first-order uncertainty representation models from machine learning (e.g.,
probabilistic relational models [Friedman et al., 1999] and Markov logic
networks [Richardson and Domingos, 2006], reviewed in more detail be-
low).

There are a number of other works that also come under the umbrella
of probabilistic databases and have been tried over the years. Fuhr and
Rolleke [1996] proposed an extension based on NF2 relational algebra. Trio
[Benjelloun et al., 2006] proposes the concept of x-tuples which is basically
an uncertain tuple represented by its various alternatives. MystiQ [Re et al.,
2006] proposes the block-independent disjoint model which is similar to x-
tuples. SPROUT [Koch and Olteanu, 2008] employs a model referred to
as a world-set tree and Li and Deshpande [2009] employ a similar and/xor
tree. None of these approaches discuss concisely describing the uncertainty
model using shared correlations and first-order graphical models like we
do in Chapter 4.

Among the various models that go beyond the use of probability theory,
there are models based on fuzzy logic [Bosc and Pivert, 2005; Buckles and
Petry, 1982] and models based on Dempster-Shafer theory [Choenni et al.,
2006].

2.2 First-Order Graphical Models

On the topic of representing uncertainty, researchers in machine learning
have devoted a lot of thought and time to developing concise models that
possess the requisite representation power. The result is the development
of probabilistic graphical models (PGM), that contain as special cases Bayesian
networks [Pearl, 1988] and Markov networks [Cowell et al., 1999]. As re-
viewed in Chapter 3, a probabilistic graphical model represents a joint dis-
tribution among many random variables by representing it in little pieces
called factors. Bayesian networks include only directed dependencies and
Markov networks only allow undirected dependencies. There exist gen-
eralizations that allow a mix of directed and undirected dependencies but
disallow directed cycles such as chain graphs [Lauritzen, 1996] and factor
graphs [Frey, 2003]. Further, generalizations that allow directed cycles have
also been studied [Richardson, 1997]. Our approach outlined in Chapter 3
can make use of any of these approaches.

However, PGMs are not without limitations. These models are eas-
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ier to visualize, reason about and deal with when the number of random
variables range in a few hundreds or less. Even in a small-to-moderately
sized probabilistic database we are likely to exceed this number which
makes it unreasonable to assume that having an uncertainty model in terms
of a PGM will be easy to handle. Machine learning researchers, specifi-
cally statistical relational learning researchers (SRL), in the past decade or
so, have paid cognisance to this fact and have come up with a new class
of PGMs frequently referred to as first-order graphical models (FO-models).
FO-models are essentially PGMs with an additional layer of specification
that uses first-order rules to specify correlations among classes of random
variables. The same first-order rule applies to all random variables belong-
ing to the respective classes, and these are, essentially, shared correlations
(Chapter 4). This allows FO-models to be compact, easier to maintain,
visualize and also, statistically easier to estimate from data. Listing the
various FO-models produces a veritable alphabet soup: PRMs [Friedman
et al., 1999] (probabilistic relational models), RMNs [Taskar et al., 2002]
(relational Markov networks), MLNs [Richardson and Domingos, 2006]
(Markov logic networks), BLOGs [Milch et al., 2005] (Bayesian logic) etc.
We refer the interested reader to Getoor and Taskar [2007] for a more exten-
sive and detailed survey.

Our use of shared correlations and FO-models to specify models of un-
certainty in probabilistic databases means we have close connections to
this area of work although there are some differences. Most of the work
on FO-models has concentrated on how to specify and learn a class-level
probabilistic model for relational data; and answering queries expressed
in a standard query language (e.g., relational algebra or SQL) was not their
main focus as is the case in research on probabilistic databases. In fact, very
few FO-models proposed in the literature even consider querying with a
structured query language. ProbLog [De Raedt et al., 2007], which uses
Prolog, is perhaps the only exception. We believe that the best way to view
the work described in this dissertation is to look upon it as taking the best
of both FO-models and probabilistic databases, since the representation
schemes we develop in Chapter 3 allow us to represent shared correlations
in databases while the query evaluation algorithms we develop later (in
Chapter 4 and Chapter 5) can exploit the same shared correlations to allow
the user to efficiently and declaratively query the probabilistic database.
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2.3 Lifted Inference

Even though probabilistic inference can be used to evaluate queries in prob-
abilistic databases, there may still be cases when probabilistic inference is
inefficient. In Chapter 4 and Chapter 5, we show how to exploit special
properties of the uncertain data, i.e., shared correlations, to speed up in-
ference during query evaluation. Shared correlations occur in the data
when the same uncertainties and probability distributions occur repeat-
edly. In such a case, standard inference algorithms treat each instance of
these shared correlations separately and repeatedly perform the same com-
putation steps. We develop an approach based on the graph-theoretic con-
cept of bisimulation [Kanellakis and Smolka, 1983; Paige and Tarjan, 1987]
that avoids such repeated computation. In Chapter 4, we present an exact
inference algorithm based on these ideas and, in Chapter 5, we extend the
techniques in multiple different ways to perform approximate inference.

The inference algorithms presented in Chapter 4 and Chapter 5 are
closely related to lifted inference algorithms [de Salvo Braz et al., 2005; Poole,
2003] developed by the SRL community. Lifted inference aims to exploit
the symmetry provided by FO-models in the form of shared correlations to
achieve more efficient inference. The basic idea behind lifted inference is to
develop inference algorithms that instead of summing over random vari-
ables and multiplying factors, sum over sets of random variables and mul-
tiply sets of factors, thus reducing redundant computation. Most works in
lifted inference assume that they are provided a PGM expressed as an FO-
model and that the symmetry of shared correlations is explicitly provided
in first-order logic. In Chapter 4, we make no such assumptions. This
is mainly because to evaluate queries in probabilistic databases one first
needs to build the PGM on which we need to perform inference (described
in detail in Chapter 3) and it is not straightforward to obtain a PGM ex-
pressed as an FO-model via this approach. Instead, our bisimulation-based
approach to lifted inference discovers the symmetry due to shared correla-
tions in the constructed PGM on the fly. To the best of our knowledge, our
approach is the first general lifted inference approach that can be applied
to any PGM.

Some attempts have been made by the probabilistic database commu-
nity to make more direct use of existing lifted inference work. In Wang
et al. [2008], the authors state that among the various issues complicating
the use of Parameterized Variable Elimination [Poole, 2003] for query evalua-
tion in probabilistic databases is the presence of evidence and, presumably,
handling joins among different relations; Wang et al. only report experi-
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ments on single-relation selection queries.
Poole [2003] was one of the first to show that variable elimination [Zhang

and Poole, 1994] can be modified to directly work with FO-models to avoid
propositionalization during inference. Subsequently, de Salvo Braz et al.
[2005] further developed on Poole’s work and referred to it as inversion elim-
ination. They also introduce another technique for lifted inference known
as counting elimination which is more expensive than inversion elimination
(since it requires considering all possible combinations of assignments to a
set of random variables [de Salvo Braz et al., 2005]) but can help in certain
situations where the complexity of the ground model renders ground infer-
ence infeasible. It is straightforward to show that our bisimulation-based
approach to lifted inference subsumes inversion elimination (and partial
inversion [de Salvo Braz et al., 2006]). We provide more discussion illus-
trating this connection, along with an example, in Section 4.6.

Lifted inference is still a very young field, but there has been some work
on designing approximate lifted inference algorithms. Jaimovich et al. [2007];
Kersting et al. [2009]; Singla and Domingos [2008] all, essentially, propose
to use a bisimulation-like algorithm on the factor graph [Kschischang et al.,
2001] representing the probabilistic model to find clusters of random vari-
ables that send and receive identical messages which helps speed up infer-
ence with loopy belief propagation (LBP) [Yedidia et al., 2000], a ground ap-
proximate inference algorithm. Our work on approximate lifted inference
described in Chapter 5 differs from lifted LBP on two distinct counts. First,
except for Kersting et al., the above works depend on receiving the FO-
model as input, whereas our approximate lifted inference techniques, in
effect, determine the first-order representation on the fly. Second, as Singla
and Domingos acknowledge, LBP often has problems with convergence,
whereas the approaches we describe Chapter 5 are always guaranteed to
converge.

2.4 Query Evaluation in Probabilistic Databases

Keeping with the wide array of representation schemes proposed, a num-
ber of diverse schemes for query evaluation in probabilistic databases have
also been tried. Until the last decade, there were mainly two competing
schools of thought: Intensional and Extensional query evaluation. Inten-
sional evaluation always provides coherent results adhering to possible
worlds semantics. Extensional evaluation, however, does not always come
with guaranteed semantics, so in that sense, the results may be wrong, even
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though extensional evaluation is always cheaper than intensional evalua-
tion. Dalvi and Suciu [2004] illustrated that these two approaches were
not completely at loggerheads, and that there exists a subset of SQL whose
queries are such that when run under extensional semantics with a particu-
lar plan lead to results in accordance with possible worlds semantics. This
subset of relational algebra has since been referred to as queries with safe
plans [Dalvi and Suciu, 2004] or hierarchical queries [Dalvi and Suciu, 2007].

Interestingly, it is easy to show that safe plans always give rise to tree-
structured PGMs when expressed in our formulation. This means that our
approach to evaluating queries is also quite efficient when extensional eval-
uation provides correct query results (since tree-structured PGMs are easy
to run inference on), besides always adhering to possible world seman-
tics. In Chapter 6, we take this idea one step further. Instead of look-
ing at the query to find out if it is tractable or not, as is done in most
other works on tractable queries [Dalvi and Suciu, 2007, 2004; Olteanu and
Huang, 2009, 2008], we ask if the PGM constructed for query evaluation can
be re-ordered into a tree-structured graphical model. Essentially, the defi-
nition of hierarchical queries [Dalvi and Suciu, 2007] does not take into ac-
count the data contained in the database. One way to describe this tractable
class of queries is to say that if a query is tractable for all possible databases
then it belongs to this class. However, this represents a very pessimistic
way of defining tractable queries. Since the PGM on which we need to
run inference to compute the results is a combination of the query and the
database, we need to look at both aspects in order to determine tractability.
In Chapter 6, we explore these issues and make connections to literature in
graph theory on factorizing boolean formulas [Golumbic et al., 2006]. We
develop algorithms that take each result tuple and explore whether the cor-
responding PGM can be converted to a tree-structured one, if so then we
proceed to building this tree-structured PGM and running inference on it.
We also show that for a large class of queries, conjunctive queries without
self-joins, some of the checks that need to be performed in the most general
case can be avoided, resulting in more efficiency. By doing so, we show
that both data and query can be leveraged to the fullest to evaluate queries
over probabilistic databases.

The original work on hierarchial queries [Dalvi and Suciu, 2004] mainly
considered queries involving equality join predicates. Since then, there
have been other works along these lines extending the notion to various
other operators. In recent work, there have been attempts to show that,
at least in some cases, inequality predicates, 6= [Olteanu and Huang, 2008]
and >,< [Olteanu and Huang, 2009], also allow for tractable query evalu-
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ation. These approaches are currently out of the scope for our framework
since they may not lead to tree-structured PGMs. As regards the assump-
tion of no self-joins in the query, Dalvi and Suciu [2007] is the only work
we are aware of that attempts to remove this assumption. From the ma-
chine learning community, Darwiche [2002] proposes utilizing boolean for-
mula factorization algorithms so that a given probabilistic model can be
compiled into a more tractable form usually referred to as an arithmetic cir-
cuit. This is advantageous because performing inference using the com-
piled arithmetic circuit is more efficient than performing inference with the
original probabilistic model. More importantly, Darwiche can handle at-
tribute uncertainty (they consider general PGMs). However, Darwiche re-
lies on the use of an exponential-sized intermediate representation called
multi-linear formula. In Chapter 6, we consider the simpler case of a prob-
abilistic database with tuple-level uncertainty. Developing techniques that
can handle attribute-level uncertainty is delegated to future work.

Since our work illustrating that query evaluation requires probabilis-
tic inference (Chapter 3), a number of other works have utilized different
inference procedures. In this dissertation, we propose the use of exact infer-
ence procedures such as variable elimination [Zhang and Poole, 1994] and
the junction tree algorithm [Pearl, 1988], Benjelloun et al. [2006]; Fuhr and
Rolleke [1997] have utilized the inclusion-exclusion principle for boolean
formulas, Re et al. [2007] proposed the use of a Markov chain Monte Carlo
technique, Koch and Olteanu [2008] use ordered binary decision diagrams
and as mentioned earlier, Wang et al. [2008] makes direct use of existing
work on lifted inference [Poole, 2003] developed in the SRL community.

Other techniques to improve efficiency of evaluating queries in proba-
bilistic databases include Trio’s memoization techniques [Das Sarma et al.,
2008], index structures for uncertain data retrieval [Singh et al., 2007] and
index structures for junction trees [Kanagal and Deshpande, 2009]. These
techniques are fairly generic and can be used in conjunction with the tech-
niques proposed in this dissertation.

2.5 Conclusion

Having surveyed the relevant related work, we are now ready to proceed
with the rest of the dissertation. In the next chapter we propose models
for representing uncertainty to be used in conjunction with probabilistic
databases, develop a technique that expresses a query evaluation problem
as an inference problem on a PGM and illustrate the connection between
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query evaluation and probabilistic inference.
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Chapter 3

Representing Uncertain Data

The database community has seen a lot of work on managing uncertain
data, and the search for an ideal representation scheme has been a topic of
constant interest. In the past, a number of different approaches have been
proposed to represent uncertainty (we surveyed some of these in Chapter
2). Among these, perhaps the most frequently proposed approach has been
the use of probability theory, perhaps due to its balance between power and
simplicity; probability theory is general enough to represent most kinds
of uncertainty we encounter in various applications in practice and is still
simple enough to be amenable to algebraic manipulation so that we can
use it to perform various operations such as query evaluation.

In this chapter, we describe our approach to representing uncertainty
in databases. We use probability theory in conjunction with probabilistic
graphical models (PGMs) to develop a compact scheme to represent uncer-
tain data with correlations. In the next section, we provide background on
PGMs. In Section 3.2, we formally define a probabilistic database in terms
of PGMs and describe their semantics, in addition to providing a few ex-
amples that illustrate how correlations can be represented and affect the
distribution represented by a probabilistic database. In Section 3.3, we dis-
cuss query evaluation and optimizations that can lead to efficient query
evaluation, especially for aggregate computation. We conclude the chapter
with Section 3.5, after describing experimental results in Section 3.4.

3.1 Background: Probabilistic Graphical Models

Probabilistic graphical models (PGMs) form a powerful class of approaches
that can compactly represent and reason about complex dependency pat-
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Pr(x1, x2, x3) =
1
Z
f1(x1)f12(x1, x2)f23(x2, x3)

x1 f1
1 0.5
2 0.3
3 0.2

x1 x2 f12
1 1 0.8
1 2 0.1
1 3 0.1
2 1 0.1
2 2 0.8
2 3 0.1
3 1 0.1
3 2 0.1
3 3 0.8

x2 x3 f23
1 1 0.7
1 2 0.2
1 3 0.1
2 1 0.2
2 2 0.7
2 3 0.1
3 1 0.2
3 2 0.1
3 3 0.7

(a)

X2

X3

X1

(b)

x1 x2 x3 Pr
1 1 1 0.280
1 1 2 0.080
1 1 3 0.040
1 2 1 0.010
1 2 2 0.035
1 2 3 0.005
1 3 1 0.010
1 3 2 0.005
1 3 3 0.035

x1 x2 x3 Pr
2 1 1 0.021
2 1 2 0.006
2 1 3 0.003
2 2 1 0.048
2 2 2 0.168
2 2 3 0.024
2 3 1 0.006
2 3 2 0.003
2 3 3 0.021

x1 x2 x3 Pr
3 1 1 0.014
3 1 2 0.004
3 1 3 0.002
3 2 1 0.004
3 2 2 0.014
3 2 3 0.002
3 3 1 0.032
3 3 2 0.016
3 3 3 0.112

(c)

Figure 3.1: Example involving three dependent random variables each with
a ternary domain: (a) factored representation (b) graphical model represen-
tation (c) resulting joint probability distribution.

terns involving large numbers of correlated random variables [Cowell et al.,
1999; Pearl, 1988]. The key idea behind PGMs is exploiting conditional inde-
pendence [Pearl, 1988]. Most random variables only show local interactions
or correlations with other random variables, and in many cases there are
only a few of such correlations that need to be captured to represent the
joint probability distribution defined over the collection of random vari-
ables. PGMs allow the specification of such correlations by defining small
functions we refer to as factors∗, the joint probability distribution over the

∗Factors are a generalization of conditional probability tables in Bayesian networks [Pearl,
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collection of random variables can then be defined as a normalized product
of all factors.

Let X denote a random variable with a domain dom(X) and let Pr(X)
denote a probability distribution over it. Similarly, let X = {X1, X2, X3 . . . , Xn}
denote a set of n random variables each with its own associated domain
dom(Xi), and Pr(X) denote the joint probability distribution over them.

Definition 1. A factor f(X) is a function over a (small) set of random variables
X = {X1, . . . , Xn} such that 0 ≤ f(x), ∀x ∈ dom(X1)× . . .× dom(Xn).

Definition 2. A probabilistic graphical model (PGM) P = 〈F ,X〉 defines a
joint distribution over the set of random variables X via a set of factors F , where
∀f(X) ∈ F , X ⊆ X . Given a complete joint assignment x ∈ ×X∈Xdom(X),
the joint distribution is defined by Pr(x) = 1

Z
∏

f∈F f(xf ) where xf denotes the
assignments restricted to arguments of f and Z =

∑
x′

∏
f∈F f(x′f )†.

Figure 3.1 shows a small example of a PGM expressing a joint proba-
bility distribution over three random variables each with domain {1,2,3}.
The complete joint distribution is shown in Figure 3.1(c); note that repre-
senting this requires storing 27 real numbers (26, if you exploit the fact that
the distribution should add upto 1). However, if we are willing to exploit
conditional independence amongX1,X2 andX3, then we can represent the
joint probability distribution with far fewer numbers. For instance, the dis-
tribution is such thatX3 is conditionally independent ofX1 given the value
of X2; in terms of correlations, X1 only directly affects X2’s value and X2

only affects X3’s values. Exploiting these properties, we can represent the
same distribution using three factors (shown in Figure 3.1(a)). Note that
the factors only require storing 21 real numbers which is 5 less compared
to storing the joint distribution described earlier. The savings usually in-
crease with more random variables and larger domains. In Figure 3.1(b)
we show a “graphical” representation of the PGM where vertices represent
random variables and edges depict correlations.

1988].
†Note that since we allow factors to return 0, technically, there is a possibility of Z being

0. This only happens when we are dealing with a PGM P that encodes the trivial joint
probability distribution which maps all joint assignments to 0. As long as there exists at
least one joint assignment x such that

Q
f∈F f(xf ) > 0 this case should not arise.

23



3.2 Probabilistic Databases with Probabilistic Graph-
ical Models

We are now ready to define a probabilistic database in terms of a PGM. The
basic idea is to use random variables to depict uncertain attribute values
and factors to represent correlations. Let R denote a probabilistic relation
or simply, relation, and let attr(R) denote the set of attributes of R. A
relation R consists of a set of probabilistic tuples or simply, tuples, each of
which is a mapping from attr(R) to random variables. Let t.a denote the
random variable of tuple t ∈ R such that a ∈ attr(R). Besides mapping
each attribute to a random variable, every tuple t is also associated with a
boolean-valued random variable which captures the existence uncertainty
of t and we denote this by t.e.

Definition 3. A probabilistic database or simply, a database, D is a pair
〈R,P〉 where R is a set of relations and P denotes a PGM defined over the set
of random variables associated with the tuples inR.

3.2.1 Possible World Semantics

We now define semantics for our formulation of a probabilistic database.
Let X denote the set of random variables associated with database D =
〈R,P〉. Possible world semantics defines a database D as a probability dis-
tribution over deterministic databases or possible worlds [Dalvi and Su-
ciu, 2004] each of which is obtained by assigning X a joint assignment
x ∈ ×X∈Xdom(X)‡. The probability associated with the possible world
obtained from the joint assignment x is given by the distribution defined
by the PGM P (Definition 2).

3.2.2 Examples

We now present a few examples to further explain our notion of a prob-
abilistic database. Consider the two-relation database shown in Figure
3.2(a). In this database, every tuple has an uncertain attribute value (the

‡Note that not all joint assignments are legal, a legal joint assignment should satisfy:
t.e ⇒ (t.a = ∅), ∀t ∈ R, ∀a ∈ attr(R), ∀R ∈ R where R denotes the set of relations
in D and ∅ is a special “null” assignment, in other words a tuple’s attributes cannot be
assigned values unless it exists. It is easy to define the factors in such a way that all illegal
assignments are assigned 0 probabilities.
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S A B
s1 a1 {1: 0.6, 2: 0.4}
s2 a2 {1: 0.6, 2: 0.4}

T B C
t1 {2: 0.5, 3: 0.5} c

(a)

s1.B fs1.B

1 0.6
2 0.4

s2.B fs2.B

1 0.6
2 0.4

t1.B ft1.B

2 0.5
3 0.5

(b)

Figure 3.2: A small database with independent uncertain attribute values.

B attributes) and these are indicated in Figure 3.2(a) by specifying their re-
spective domains with each entry from the domain followed by the proba-
bility with which the attribute value can take the assignment. In a database,
we represent the uncertainty associated with each uncertain value using a
random variable and the corresponding probability distribution using a
factor (assuming complete independence). For instance, s2.B can be as-
signed the value 1 with probability 0.6 and the value 2 with probability 0.4
and we would represent this using the factor fs2.B shown in Figure 3.2(b).
We show all three required factors fs1.B(s1.B), fs2.B(s2.B) and ft1.B(t1.B)
in Figure 3.2(b). In addition to the random variables which denote un-
certain attribute values, we can introduce tuple existence random variables
s1.e, s2.e, and t1.e, which capture tuple uncertainty. These are boolean-
valued random variables and can have associated factors. In Figure 3.2,
we assume the tuples are certain, so we do not show the existence random
variables for the base tuples. We next explain semantics of our example
database in terms of possible worlds.

The database shown in Figure 3.2 represents a distribution over many
deterministic databases (possible worlds), and each possible world is ob-
tained by assigning all three random variables s1.B, s2.B and t1.B assign-
ments from their respective domains. Since the three random variables
depicted in Figure 3.2 each have domain with size 2, there are 23 = 8 possi-
ble worlds. Figure 3.3 shows all 8 possible worlds with the corresponding
probabilities listed under the column “prob.(ind.)”. The probability associ-
ated with each possible world is obtained by multiplying the appropriate
numbers returned by the factors and normalizing if necessary. For instance,
for the possible world obtained by the assignment s1.B = 1, s2.B = 2,
t1.B = 2 (D3 in Figure 3.3) the probability is 0.6× 0.4× 0.5 = 0.12.
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possible world
prob. prob. prob. prob.
(ind.) (implies) (diff.) (pos.corr.)

D1 =
S A B
s1 a1 1
s2 a2 1

T B C
t1 2 c

0.18 0.50 0.30 0.06

D2 =
S A B
s1 a1 1
s2 a2 1

T B C
t1 3 c

0.18 0.02 0.06 0.30

D3 =
S A B
s1 a1 1
s2 a2 2

T B C
t1 2 c

0.12 0 0.20 0.04

D4 =
S A B
s1 a1 1
s2 a2 2

T B C
t1 3 c

0.12 0.08 0.04 0.20

D5 =
S A B
s1 a1 2
s2 a2 1

T B C
t1 2 c

0.12 0 0 0.24

D6 =
S A B
s1 a1 2
s2 a2 1

T B C
t1 3 c

0.12 0.08 0.24 0

D7 =
S A B
s1 a1 2
s2 a2 2

T B C
t1 2 c

0.08 0 0 0.16

D8 =
S A B
s1 a1 2
s2 a2 2

T B C
t1 3 c

0.08 0.32 0.16 0

Figure 3.3: Possible worlds for example in Figure 3.2(a).



Primplies(s1.B, s2.B, t1.B) = f implies
t1.B (t1.B)f implies

t1.B,s1.B(t1.B, s1.B)f implies
t1.B,s2.B(t1.B, s2.B)

t1.B f implies
t1.B

2 0.5
3 0.5

t1.B s1.B f implies
t1.B,s1.B

2 1 1
2 2 0
3 1 0.2
3 2 0.8

t1.B s2.B f implies
t1.B,s2.B

2 1 1
2 2 0
3 1 0.2
3 2 0.8

(a)

Prdiff (s1.B, s2.B, t1.B) = fdiff
t1.B,s1.B(t1.B, s1.B)fdiff

s2.B (s2.B)

t1.B s1.B fdiff
t1.B,s1.B

2 1 0.5
2 2 0
3 1 0.1
3 2 0.4

s2.B fdiff
s2.B

1 0.6
2 0.4

(b)

Prpos.corr(s1.B, s2.B, t1.B) = fpos.corr.
t1.B,s1.B(t1.B, s1.B)fpos.corr.

s2.B (s2.B)

t1.B s1.B fpos.corr.
t1.B,s1.B

2 1 0.1
2 2 0.4
3 1 0.5
3 2 0

s2.B fpos.corr.
s2.B

1 0.6
2 0.4

(c)

Figure 3.4: Factors for the probabilistic databases with dependencies (we
have omitted the normalization constant Z because the numbers are such
that distribution is already normalized) (a) implies correlation (b) different
correlation (c) positive correlation.

Let us now try to modify our example to illustrate how to represent cor-
relations in a probabilistic database. In particular, we will try to construct
three different databases each containing the following dependencies re-

27



spectively:

• implies: t1.B = 2 implies s1.B 6= 2 and s2.B 6= 2, in other words,
(t1.B = 2) =⇒ (s1.B = 1) ∧ (s2.B = 1).

• different: t1B and s1.B cannot have the same assignment, in other
words, (t1.B = 2)⇔ (s1.B = 1) or (s1.B = 2)⇔ (t1.B = 3).

• positive correlation: High positive correlation between t1.B and s1.B,
if one is assigned 2 then the other is also assigned the same value with
high probability.

Figure 3.3 shows a distribution each over the possible worlds that satisfies
each of the above correlations (the columns are labeled with abbreviations
of the names of the correlations, e.g., the column for positive correlation is
labeled “pos. corr.”).

To represent the possible worlds of our example database with the new
correlations, we simply redefine the factors in the database. However, in
this case, since we need to represent correlations, we will need to use fac-
tors defined over multiple random variables. Figure 3.4 represents the three
sets of factors each corresponding to a database with each of the previously
defined dependencies that depict the required distribution over possible
worlds from Figure 3.3. For instance, Figure 3.4 (a) shows the factors re-
quired to define the possible worlds distribution depicted in column “im-
plies” in Figure 3.3, and this is achieved by defining factors f implies

t1.B,s1.B and

f implies
t1.B,s2.B which denote the implication dependencies defined earlier. Simi-

larly, notice how factor fdiff
t1.B,s1.B (Figure 3.4 (b)) enforces that t1.B and s1.B

be assigned different values. Lastly, fpos.corr.
t1.B,s1.B enforces the positive correla-

tion between t1.B and s1.B depicted in the third example.
Note that in Definition 3, we make no restrictions as to which random

variables appear as arguments in a factor. Thus, if the user wishes, s/he
may define a factor including random variables from the same tuple, dif-
ferent tuples, tuples from different relations or tuple existence and attribute
value random variables, which means that in our formulation we can ex-
press any kind of correlation that one might think of representing in a prob-
abilistic database.

3.3 Query Evaluation

Having defined our representation scheme, we now move our discussion
to query evaluation. The main advantage of associating possible world se-
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mantics with a probabilistic database is that it lends precise semantics to
the query evaluation problem. Given a user-submitted query q (expressed
in some standard query language such as relational algebra) and a database
D, then the result of evaluating q againstD is defined to be the set of results
obtained by evaluating q against each possible world ofD augmented with
the probabilities of the possible worlds. Relating back to our earlier exam-
ples, suppose we want to run the query q =

∏
C(S ./B T ). Figure 3.5(a)

shows the set of results obtained from each set of possible worlds aug-
mented by the corresponding probabilities depending on which database
we ran the query against.

Now, even though query evaluation under possible world semantics
is clear and intuitive, it still has some issues that prevent us from execut-
ing it directly. First and foremost among these issues, is the size of the
result. Since the number of possible worlds is exponential in the number of
random variables in the database (product of domain sizes of all random
variables to be more precise), in the case that every possible world returns
a different result, returning the result to the user or storing it is only going
to be feasible for the smallest of databases. To get around this issue, it is
traditional to compress the result before returning it to the user. One way
of doing this is to collect all tuples from the set of results returned by possi-
ble world semantics and return these along with the sum of probabilities of
the possible worlds that return the tuple as a result [Dalvi and Suciu, 2004].
In Figure 3.5(a), there is only one tuple that is returned as a result and this
tuple is returned by possible worlds D3, D5 and D7. In Figure 3.5(b), we
show the resulting probabilities obtained by summing across these three
possible worlds for each example database.

The second issue is, of course, related to the complexity of computing
the results of a query from first principles. Since the number of possible
worlds is going to be large for any non-trivial database, evaluating results
directly by enumerating all of its possible worlds is going to be infeasible.
To get around this issue we first make the connection between comput-
ing query results for a probabilistic database and the marginal probability
computation problem for probabilistic graphical models.

Definition 4. Given a PGM P = 〈F ,X〉 and a random variable X ∈ X ,
the marginal probability associated with the assignment X = x, where x ∈
dom(X), is defined as µX(x) =

∑
x∼x Pr(x), where Pr(x) denotes the distribu-

tion defined by the PGM and x ∼ x denotes a joint assignment to X where X is
assigned x.

Since each possible world is obtained by assigning all random variables
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possible query prob. prob. prob. prob.
world result (ind.) (implies) (diff.) (pos.corr.)
D1 ∅ 0.18 0.50 0.30 0.06
D2 ∅ 0.18 0.02 0.06 0.30

D3
C
c

0.12 0 0.20 0.04

D4 ∅ 0.12 0.08 0.04 0.20

D5
C
c

0.12 0 0 0.24

D6 ∅ 0.12 0.08 0.24 0

D7
C
c

0.08 0 0 0.16

D8 ∅ 0.08 0.32 0.16 0

(a)

query Pr(D3) + Pr(D5) + Pr(D7)
result ind. implies diff. pos.corr.

C
c

0.32 0 0.20 0.40

(b)

Figure 3.5: Results running the query
∏

C(S ./B T ) on the different exam-
ple databases.

in the database with a joint assignment, at least intuitively, it does seem like
we are computing marginal probabilities when we sum over all possible
worlds to evaluate a query. However, we have yet to express the result tu-
ples using random variables (the random variables in the database are the
ones associated with the base tuples). Therefore, to cast the query evalu-
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ation problem into a marginal probability computation problem, we have
to first show how to augment the PGM underlying the database such that
the augmented PGM contains random variables representing result tuples.
We can then express the probability computation associated with evalu-
ating the query as a standard marginal probability computation problem
and thus allow us to use any of the host of probabilistic inference algo-
rithms designed to perform marginal probability computations to solve the
query evaluation problem. We next present an example to illustrate the ba-
sic ideas underlying our approach to augmenting the PGM underlying the
database given a query; after that we discuss how to augment the PGM in
the general case given any relational algebra query.

3.3.1 Example

Consider running the query
∏

C(S ./B T ) on the database presented in
Figure 3.2(a). Our query evaluation approach is very similar to query eval-
uation in traditional database systems and is depicted in Figure 3.6. Just
as in traditional database query processing, in Figure 3.6, we introduce in-
termediates tuples produced by the join (i1 and i2) and produce a result
tuple (r1) produced from the projection operation. What makes query pro-
cessing for probabilistic databases different from traditional database query
processing is the fact that we need to preserve the correlations among the
random variables representing the intermediate and result tuples and the
random variables representing the tuples they were produced from. In our
example, there are three such correlations that we need to maintain:

• i1 (produced by the join between s1 and t1) exists or i1.e is true only
in those possible worlds where both s1.B and t1.B are assigned the
value 2.

• Similarly, i2.e is true only in those possible worlds where both s2.B
and t1.B are assigned the value 2.

• Finally, r1 (the result tuple produced by the projection) exists or r1.e
is true, only in those possible worlds that produce at least one of i1
or i2 or both.

To enforce these correlations, during query evaluation we introduce in-
termediate factors defined over appropriate random variables. For our ex-
ample, we introduce the following three correlations:
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S A B
s1 a1 {1:0.6, 2:0.4}
s2 a2 {1:0.6, 2:0.4}

T B C
t1 {2:0.5, 3:0.5} c

S./BT−→
A B C

i1 a1 2 c
i2 a2 2 c

fi1.e, fi2.e

Q
C(S./BT )−→ C

r1 c

fr1.e

Figure 3.6: Evaluating
∏

C(S ./B T ) on the database from Figure 3.2(a).

• For the correlation among i1.e, s1.B and t1.B we introduce the factor
fi1.e which is defined as:

fi1.e(i1.e, s1.B, t1.B) =
{

1 if i1.e⇔ ((s1.B == 2) ∧ (t1.B == 2))
0 otherwise

• Similarly, for the correlation among i2.e, s2.B and t1.B, we introduce
the factor fi2.e which is defined as:

fi2.e(i2.e, s2.B, t1.B) =
{

1 if i2.e⇔ ((s2.B == 2) ∧ (t1.B == 2))
0 otherwise

• For the correlation among r1.e, i1.e and i2.e, we introduce a factor
fr1.e capturing the or semantics. In other words, we would like to
enforce that r1.e is true when at least one of i1.e or i2.e hold true:

fr1.e(r1.e, i1.e, i2.e) =
{

1 if r1.e⇔ (i1.e ∨ i2.e)
0 otherwise

Figure 3.6 depicts the full run of the query along with the introduced fac-
tors.

Now, to compute the probability of existence of r1 (which is what we
did in Figure 3.5 by enumerating over all possible worlds), we simply
need to compute the marginal probability associated with the assignment
r1.e = true from PGM formed by the set of factors in the base data and
the factors introduced during query evaluation. For instance, for the ex-
ample where we assumed complete independence among all uncertain
attribute values (Figure 3.2(b)), our augmented PGM is given by the col-
lection fs1.B, fs2.B, ft1.B, fi1.e, fi2.e and fr1.e, and to compute the marginal
probability, we can simply use any of the exact inference algorithms avail-
able in the machine learning literature such as variable elimination [Dechter,
1996; Zhang and Poole, 1994] or the junction tree algorithm [Huang and
Darwiche, 1994].
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3.3.2 General Relational Algebra Queries

Query evaluation for general relational algebra also follows the same basic
ideas. In what follows, we modify the traditional relational algebra oper-
ators so that they not only generate intermediate tuples but also introduce
intermediate factors, which, combined with the factors on the base data,
provide a PGM that can then be used to compute marginal probabilities
of the random variables associated with result tuples of interest. We next
describe the modified σ, ×,

∏
, δ, ∪, − and γ (aggregation) operators where

we use ∅ to denote a special “null” symbol.
Select: Let σc(R) denote the query we are interested in, where c denotes the
predicate of the select operation. Every tuple t ∈ R can be jointly instan-
tiated with values from ×a∈attr(R)dom(t.a). If none of these instantiations
satisfy c, then t does not give rise to any result tuple. If even a single in-
stantiation satisfies c, then we generate an intermediate tuple r that maps
attributes from R to random variables, besides being associated with a tu-
ple existence random variable r.e. We then introduce factors encoding the
correlations among the random variables for r and the random variables
for t. The first factor we introduce is fσ

r.e, which encodes the correlations
for r.e:

fσ
r.e(r.e, t.e, {t.a}a∈attr(R)) =

{
1 if t.e ∧ c({t.a}a∈attr(R))⇔ r.e

0 otherwise

where c({t.a}a∈attrR) is true if a joint assignment to the attribute value
random variables of t satisfies the predicate c and false otherwise.

We also introduce a factor for r.a, ∀a ∈ attr(R) (where dom(r.A) =
dom(t.A)), denoted by fσ

r.a. fσ
r.a takes t.a, r.e and r.a as arguments and can

be defined as:

fσ
r.a(r.a, r.e, t.a) =


1 if r.e ∧ (t.a = r.a)
1 if r.e ∧ (r.a = ∅)
0 otherwise

Cartesian Product: Suppose R1 and R2 are the two relations involved in
the cartesian product operation. Let r denote the join result of two tuples
t1 ∈ R1 and t2 ∈ R2. Thus rmaps every attribute from attr(R1)∪attr(R2) to
a random variable, besides being associated with a tuple existence random
variable r.e. The factor for r.e, denoted by f×r.e, takes t1.e, t2.e and r.e as
arguments, and is defined as:

f×r.e(r.e, t1.e, t2.e) =
{

1 if t1.e ∧ t2.e⇔ r.e
0 otherwise
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We also introduce a factor f×r.a for each a ∈ attr(R1) ∪ attr(R2), and this
is defined exactly in the same fashion as fσ

r.a. Basically, for a ∈ attr(R1)
(a ∈ attr(R2)), it returns 1 if r.e ∧ (t1.a = r.a) (r.e ∧ (t2.a = r.a)) holds or if
r.e ∧ (r.a = ∅) holds, and 0 otherwise.
Project (without duplicate elimination): Let

∏
a(R) denote the operation

we are interested in where a ⊆ attr(R) denotes the set of attributes we
want to project onto. Let r denote the result of projecting t ∈ R. Thus r
maps each attribute a ∈ a to a random variable, besides being associated
with r.e. The factor for r.e, denoted by f

Q
r.e, takes t.e and r.e as arguments,

and is defined as follows:

f
Q
r.e(r.e, t.e) =

{
1 if t.e⇔ r.e
0 otherwise

Each factor f
Q
r.a, introduced for r.a, ∀a ∈ a, is defined exactly as fσ

r.a, in
other words, f

Q
r.a(r.a, r.e, t.a) = fσ

r.a(r.a, r.e, t.a).
Duplicate Elimination: Duplicate elimination is a slightly more complex
operation because it can give rise to multiple intermediate tuples even if
there was only one input tuple to begin with. Let R denote the relation
from which we want to eliminate duplicates, then the resulting relation af-
ter duplicate elimination will contain tuples whose existence is uncertain,
more precisely the resulting tuples’ attribute values are known. Any ele-
ment from

⋃
t∈R×a∈attr(R)dom(t.a) may correspond to the values of a pos-

sible result tuple. Let r denote any such result tuple whose attribute values
are known, only r.e is not true with certainty. Denote by ra the value of
attribute a in r. We only need to introduce the factor f δ

r.e for r.e. To do this
we compute the set of tuples from R that may give rise to r. Any tuple
t that satisfies

∧
a∈attr(R)(ra ∈ dom(t.a)) may give rise to r. Let yr

t be an
intermediate random variable with dom(yr

t ) = {true, false} such that yr
t

is true iff t gives rise to r and false otherwise. This is easily done by in-
troducing a factor f δ

yr
t

that takes {t.a}a∈attr(R), t.e and yr
t as arguments and

is defined as:

f δ
yr

t
(yr

t , {t.a}a∈attr(R), t.e) =
{

1 if t.e ∧
∧

a(t.a = ra)⇔ yr
t

0 otherwise

where {t.a}a∈attr(R) denotes all attribute value random variables of t. We
can then define f δ

r.e in terms of yr
t . f δ

r.e takes as arguments {yr
t }t∈Tr , where

Tr denotes the set of tuples that may give rise to r (contains the assignment

34



{ra}a∈attr(R) in its joint domain), and r.e, and is defined as:

f δ
r.e(r.e, {yr

t }t∈Tr) =
{

1 if
∨

t∈Tr
yr

t ⇔ r.e

0 otherwise

Union and set difference: These operators require set semantics. Let R1

and R2 denote the relations on which we want to apply one of these two
operators, eitherR1∪R2 orR1−R2. We will assume that bothR1 andR2 are
sets of tuples such that every tuple contained in them have their attribute
values fixed and the only uncertainty associated with these tuples are with
their existence (if not then we can apply a δ operation to convert them to
this form). Now, consider result tuple r and sets of tuples T 1

r , containing
all tuples from R1 that match r’s attribute values, and T 2

r , containing all
tuples from R2 that match r’s attribute values. The required factors for r.e
can now be defined as follows:

f∪r.e(r.e, {t1.e}t1∈T 1
r
, {t2.e}t2∈T 2

r
) =

{
1 if (

∨
t∈T 1

r ∪T 2
r
t.e)⇔ r.e

0 otherwise

f−r.e(r.e, {t1.e}t1∈T 1
r
, {t2.e}t2∈T 2

r
) =

{
1 if ((

∨
t∈T 1

r
t.e) ∧ ¬(

∨
t∈T 2

r
t.e))⇔ r.e

0 otherwise

Aggregation operators: Aggregation operators are also easily handled us-
ing factors. Suppose we want to compute the sum aggregate on attribute
a of relation R, then we simply define a random variable r.a for the result
and introduce a factor that takes as arguments {t.a}t∈attr(R) and r.a, and
define the factor so that it returns 1 if r.a = (

∑
t∈R t.a) and 0 otherwise.

Thus for any aggregate operator γ and result tuple random variable r.a, we
can define the following factor:

fγ
r.a(r.a, {t.a}t∈R) =


1 if r.a = γt∈Rt.a
1 if (r.a = ∅)⇔

∧
t∈R(t.a = ∅)

0 otherwise

Optimizations: For the above operator modifications, we have attempted
to be completely general and as such, the factors introduced may look
slightly more complicated than need be. For example, it is not necessary
that fσ

r.E take as arguments all random variables {t.a}a∈attr(R) (as defined
above), it only needs to take those t.a random variables as arguments which
are involved in the predicate c of the σ operation. Also, given a theta-join,
we do not need to implement this as a cartesian product followed by a se-
lect operation. It is straightforward to push the select operation into the
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cartesian product factors and implement the theta-join directly by modify-
ing f×r.E appropriately using c.

Another type of optimization that is extremely useful for aggregate
computation, duplicate elimination and the set-theoretic operations (∪ and
−) is to exploit decomposable functions. A decomposable function is one
whose result does not depend on the order in which the inputs are pre-
sented to it. For instance, ∨ is a decomposable function, and so are most of
the aggregation operators including sum, count, max and min. The prob-
lem with some of the redefined relational algebra operators is that, if imple-
mented naively, they may lead to large intermediate factors. For instance,
while running a δ operation, if Tr contains n tuples for some r then the fac-
tor f δ

r.e will be of size 2n+1 which is inefficient. By exploiting decomposabil-
ity of∨we can implement the same factor using a linear number of constant
sized (3-argument) factors which may lead to significant speedups. We re-
fer the interested reader to Rish [1999]; Zhang and Poole [1996] for more
details. The only aggregation operator that is not decomposable is avg,
but even in this case we can exploit the same ideas by implementing avg
in terms of sum and count, both of which are decomposable.

3.3.3 Complexity of probabilistic inference

The above operators will help generate the augmented PGM given any re-
lational algebra query to be executed on a database, after generating the
augmented PGM, the last step of query evaluation requires that we run
probabilistic inference. Exact probabilistic inference is known to be NP-
hard in general [Cooper, 1990]. More specifically, the complexity of exact
probabilistic inference is exponential in a quantity known as the treewidth
[Arnborg, 1985] which depends on the structure of the graph depicting the
PGM (where vertices denote random variables and edges denote correla-
tions, see Figure 3.1(b) for an example). However, many applications pro-
vide PGMs with sparse graph structures that allow efficient probabilistic
computation [Zhang and Poole, 1994]. Variable elimination, also known as
bucket elimination, [Dechter, 1996; Zhang and Poole, 1994] and the junction
tree algorithm [Huang and Darwiche, 1994] are two exact inference algo-
rithms (among others) that have the ability to exploit such structure. In
particular, the inference problem is easy if the PGM is or closely resembles
a tree and the problem becomes progressively harder as the PGM deviates
more from being a tree.
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3.4 Experiments and Discussion

We performed three sets of experiments. In the first set of experiments,
we illustrate the importance of modeling correlations. Here, we chose the
problem of querying publication datasets as a case study and show that if
we do not model natural mutual exclusivity correlations then results can
be counter-intuitive. In the second set of experiments, we experiment on
the TPC-H benchmark [TPC-H Benchmark] with slight modifications (to
add probabilities) to demonstrate the scalability of query evaluation with
probabilistic inference. In the third set of experiments, we demonstrate
the range of queries that can be evaluated with probabilistic inference by
evaluating aggregation queries.

3.4.1 Case Study: Querying Publication Datasets

Most applications produce data that requires modeling uncertainty and
usually, assuming one wants to be faithful to the underlying distribution
then, complex correlations need to be represented. However, the complex-
ity of managing uncertain databases increases with increasingly correlated
models. In this section, we present some experiments that indicate the need
for modeling correlations, that unless we do this the quality of results ob-
tained from query evaluation can be exceedingly poor.

Consider a publications database containing two relations: (1) PUBS(PID,
Title), and (2) AUTHS(PID, Name), where PID is the unique publica-
tion id, and consider the task of retrieving all publications with title y writ-
ten by an author with name x. Assuming that the user is not sure of the
spellings x and y, we might use the following query to perform the above
task: ∏

Title(σName≈x(AUTHS) ./ σTitle≈y(PUBS))

One way to handle uncertain predicates used above is to interpret them in
terms of probabilities. Given a predicate of the form R.a ≈ k, where a is a
string attribute, and k is a string constant, the system assigns a probability
to each tuple t, based on how similar t.a is to k. Following Dalvi and Suciu
[2004], we compute the 3-gram distance [Ukkonen, 1992] between t.a and k,
and convert it to a posterior probability by assuming that the distance is
normally distributed with mean 0, and variance σ (σ is a parameter fed to
the system). For the above query, the similarity predicates will cause both
the relations PUBS and AUTHS to be converted into probabilistic relations,
AUTHSp and PUBSp. However, note that AUTHSp contains natural mutual
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exclusion dependencies with respect to this query. Since the user is look-
ing for publications by a single author with name x, it is not possible for x
to match two AUTHSp tuples corresponding to the same publication in the same
possible world. Thus, any two AUTHSp tuples with the same PID exhibit
a mutual exclusion dependency, and a possible world containing both of
them should be assigned zero probability.

To illustrate the drawbacks of ignoring such mutual exclusion depen-
dencies, we ran the above query with x = “T. Michel” and y = “Reinfor-
ment Leaning hiden stat” on two probabilistic databases, one assuming
complete independence among tuples (IND DB) and another that models
the dependencies (MUTEX DB). We ran the query on an extraction of 860
publications from the real-world CiteSeer dataset [Giles et al., 1998b]. We
report results across various settings of σ. Figure 3.7 shows the top three
results obtained from the two databases at three different settings of σ (we
also list the author names to aid the reader’s understanding). MUTEX DB
returns intuitive and similar results at all three values of σ. IND DB returns
reasonable results only at σ = 10, whereas at σ = 50, 100 it returns very odd
results (“Decision making and problem solving” does not match the string
“Reinforment Leaning hiden stat” very closely and yet it is assigned the
highest rank at σ = 100). Figure 3.8 (i) shows the cumulative recall graph
for IND DB for various values of σ, where we plot the fraction of the top
N results returned by MUTEX DB that were present in the top N results
returned by IND DB. As we can see, at σ = 50 and 100, IND DB exhibits
poor recall.

Figure 3.7 shows that IND DB favors publications with long author
lists. This does not affect the results at low values of σ (=10) because, in
that case, we use a “peaked” gaussian which assigns negligible probabil-
ities to possible worlds with multiple AUTHSp from the same publication.
At larger settings of σ, however, these possible worlds are assigned larger
probabilities and IND DB returns poor results. MUTEX DB assigns these
possible worlds zero probabilities by modeling dependencies on the base
tuples. We would like to note that, although setting the value of σ carefully
may have resulted in a good answer for IND DB in this case, choosing σ
is not easy in general and depends on various factors such as user prefer-
ences, distributions of the attributes in the database, etc. Modeling mutual
exclusion dependencies explicitly using our approach naturally alleviates
this problem.
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Title
Reinforcement learning with hidden states (by L. Lin, T. Mitchell)
Feudal Reinforcement Learning (by C. Atkeson, P. Dayan, . . .)
Reasoning (by C. Bereiter, M. Scardamalia)
. . .

(i) MUTEX DB results at σ = 10, 50, 100

Title
Reinforcement learning with hidden states (by L. Lin, T. Mitchell)
Feudal Reinforcement Learning (by C. Atkeson, P. Dayan, . . .)
Reasoning (by C. Bereiter, M. Scardamalia)
. . .

(ii) IND DB results at σ = 10

Title
Feudal Reinforcement Learning (by C. Atkeson, P. Dayan, . . .)
Decision making and problem solving (G. Dantzig, R. Hogarth, . . .)
Multimodal Learning Interfaces (by U. Bub, R. Houghton, . . .)
. . .

(iii) IND DB results at σ = 50

Title
Decision making and problem solving (G. Dantzig, R. Hogarth, . . .)
HERMES: A heterogeneous reasoning and mediator system (by S. Adali,
A. Brink, . . .)
Induction and reasoning from cases (by K. Althoff, E. Auriol, . . .)
. . .

(iv) IND DB results at σ = 100

Figure 3.7: Top three results for a similarity query: (i) shows results from
MUTEX DB; (ii), (iii) and (iv) show results from IND DB.

3.4.2 Experiments with TPC-H Benchmark

We also show scalability results for our proposed query execution strate-
gies using a randomly generated TPC-H dataset of size 10MB. For simplic-
ity, we assume complete independence among the base tuples (though the
intermediate tuples may still be correlated). Figure 3.8 (iii) shows the exe-
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cution times on TPC-H queries Q2 to Q8 (modified to remove the top-level
aggregations). The first bar on each query indicates the time it took for our
implementation to run the full query including all the database operations
and the probability computations. The second bar on each query indicates
the time it took to run only the database operations using our JAVA-based
implementation. Here are the summary of the results:

• As we can see in Figure 3.8 (iii), for most queries the additional cost of
probability computations is comparable to the cost of normal query
processing.

• The two exceptions are Q3 and Q4 which severely tested our proba-
bilistic inference engine. By removing the aggregate operations, Q3
resulted in a relation of size in excess of 60,000 result tuples. Although
Q4 resulted in a very small relation, each result tuple was associated
with a probabilistic graphical model of size exceeding 15,000 random
variables. Each of these graphical models are fairly sparse but book-
keeping for such large data structures took a significant amount of
time.

• Q7 and Q8 are supposed to be intractable queries (i.e., are not hierar-
chical queries [Dalvi and Suciu, 2004]) yet their run-times are surpris-
ingly fast. By taking a closer look, we noticed that both these queries
gave rise to tree-structured graphical models for which treewidth is
low justifying our belief that there are may be databases where the
data allows query evaluation to be tractable even if query compila-
tion techniques [Dalvi and Suciu, 2004; Olteanu and Huang, 2009,
2008] suggest otherwise.

3.4.3 Aggregation Queries

Our approach also naturally supports efficient computation of a variety of
aggregate operators over probabilistic relations using the decomposition
techniques described in Section 3.3. Figure 3.8 (ii) shows the result of run-
ning an average query over a synthetically generated dataset containing 500
tuples. As we can see, the final result can be a fairly complex probability
distribution, which is quite common for aggregate operations.
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Figure 3.8: (i) Cumulative recall graph comparing results of IND DB and
MUTEX DB for σ = 10, 50, 100. (ii) AVG aggregate computed over 500 ran-
domly generated tuples with attribute values ranging from 1 to 5. (iii) Run-
times on TPC-H data.

3.5 Conclusion

In this chapter, we described an approach to represent uncertain data with
arbitrary correlations in a probabilistic database using probabilistic graph-
ical models. Probabilistic graphical models allow us exploit conditional
independence present in the data to provide a compact scheme that can
represent both attribute and tuple level uncertainty in the same database.
We showed how our representation scheme naturally lends itself to pos-
sible world semantics thus associating precise semantics with the query

41



evaluation problem. We further showed that it is possible to recast the
query evaluation problem into a marginal probability computation prob-
lem on an appropriately constructed probabilistic graphical model that can
be generated on the fly. Our approach allows us to use a host of probabilis-
tic inference algorithms (exact and approximate) developed in the machine
learning community to evaluate queries, however there are certain aspects
regarding query evaluation in probabilistic databases that make it unique
and different from the inference problems traditionally considered in ma-
chine learning research. In the next chapter we show how these aspects can
be exploited to speedup query evaluation for probabilistic databases.
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Chapter 4

Bisimulation-based Lifted
Inference for Probabilistic
Databases

In the last chapter, we described our representation scheme for uncertain
data and showed that query evaluation reduces to probabilistic inference in
such databases. In reality, most probabilistic database formulations (whether
the one described in the previous chapter or other formulations based on
tuple-level uncertainty such as Benjelloun et al. [2006] or Re and Suciu
[2007]) require general probabilistic inference at some level of abstraction.
Thus it is imperative that we design efficient inference approaches to make
probabilistic databases a feasible and viable option. Given that we already
know general inference is a #P-complete problem [Dalvi and Suciu, 2004],
the only way we can achieve this is to utilize the special properties of the
data at hand. In this chapter, we motivate the presence of one such prop-
erty that we refer to as shared correlations, and show how to exploit it to
speed up inference during query evaluation for probabilistic databases.

Consider the example database containing pre-owned car sales ads from
the last chapter which we used to contrast between tuple level uncertainty
databases and databases that can express uncertainty at both tuple and at-
tribute levels (shown again in Figure 4.1 for convenience). Recall that, the
first tuple shows an ad with the color of the car missing, the third tuple
shows one with the make missing and the second tuple represents an ad
with both attributes missing. Figure 4.1 also shows the probability distribu-
tions associated with these missing values, more specifically, fmake defines
the distribution over missing make values in the database (assuming our
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AdID Make Color Price
1 Honda ? $9,000
2 ? ? $6,000
3 ? Beige $8,000
...

...
...

...

Color fcolor
Black 0.75
Beige 0.25

Make fmake
Honda 0.55
Toyota 0.45

Figure 4.1: Pre-owned car ads with missing values.

universe can contain only two makes Honda and Toyota) and fcolor defines
the distribution over missing color values (assuming our universe contains
only black and beige cars). Note that the distributions make no reference to
any tuple specific information. In other words, no matter how many tuples
with missing color are present in the relation, their uncertainty will still
be defined by the same distribution represented by fcolor and, along with
fmake, these distributions are examples of shared correlations (more precisely
defined in Section 4.2.

In many cases, the uncertainty in the data is defined using general
statistics that do not vary on a per-tuple basis, and this, in turn, leads to
shared correlations. Various earlier works have also described applications
with shared correlations. For instance, Andritsos et al. [2006] describe a
customer relationship management application where the objective is to
merge data from two or more source databases and each source database
is assigned a probability value based on the quality of the information it
contains. Even here, probabilities do not change from tuple to tuple, since
tuples from the same source are assigned the same source probability. An-
other source of shared correlations in probabilistic databases is the query
evaluation approach itself. Recall from the previous chapter that while
evaluating queries we first build an augmented PGM by introducing small
factors that depict probability distributions and correlations on the fly. For
instance, if tuples t1 and t2 join to produce join tuple r then one needs to
introduce a factor that encodes the correlation that r exists iff both t1 and
t2 exist (f×r.e(r.e, t1.e, t2.e) defined in the last chapter). More importantly,
such a factor is introduced whenever any pair of tuples join, thus leading
to repeated copies of the same factor, thus introducing additional shared
correlations. Our aim, in this chapter, is to exploit such shared correlations
to make exact probability computation for query evaluation in probabilistic
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S A B
s1 a1 {1:0.6, 2:0.4}
s2 a2 {1:0.6, 2:0.4}

T B C
t1 {2:0.5, 3:0.5} c

S./BT−→
A B C

i1 a1 2 c
i2 a2 2 c

fi1.e, fi2.e

Figure 4.2: Running example for this chapter.

databases more efficient.
Our motivation for shared correlations and more efficient inference in

this context closely ties in with recent work done in the machine learning
community. In the past decade or so, machine learning researchers have
devised approaches to exploit shared correlations to come up with more
compact ways of describing PGMs. These models are sometimes referred
to as first-order graphical models. Lifted inference is the sub-field that aims
to devise more efficient inference techniques for first-order models that ex-
ploit such shared correlations. In fact, the inference approach we devise in
this chapter is a novel lifted inference algorithm that automatically deter-
mines symmetries in the uncertainty model denoted by shared factors. We
surveyed these related areas of research along with various works on lifted
inference in Chapter 2. The rest of this chapter is organized as follows: In
the next section, we introduce a motivating example that shows how stan-
dard inference algorithms fail to exploit shared correlations; in Section 4.2
and Section 4.3 we formally define shared correlations and describe our
approach to inference with shared correlations; in Section 4.4 we describe
our experimental results comparing our approach to standard inference al-
gorithms; and finally, we conclude with Section 4.6 after a discussion in
Section 4.5.

4.1 Motivating Example

For the purposes of this chapter, we will use a slightly simplified version
of the example from the last chapter (Figure 4.2). In this modified version,
we have the same two relations S and T , but we run a simple join query,
S ./B T , in this case. The inference task remains the same, i.e., we need to
compute the marginal probabilities of the two result tuples produced. In
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µi1.e(i1.e) =
∑

s1.B,t1.B

ft1.B(t1.B)fs1.B(s1.B)fi1.e(i1.e, s1.B, t1.B)

=
∑
t1.B

ft1.B(t1.B)
∑
s1.B

fs1.B(s1.B)fi1.e(i1.e, s1.B, t1.B)︸ ︷︷ ︸
ms1.B(i1.e,t1.B)

µi2.e(i2.e) =
∑

s2.B,t1.B

ft1.B(t1.B)fs2.B(s2.B)fi2.e(i2.e, s2.B, t1.B)

=
∑
t1.B

ft1.B(t1.B)
∑
s2.B

fs2.B(s2.B)fi2.e(i2.e, s2.B, t1.B)︸ ︷︷ ︸
ms2.B(i2.e,t1.B)

Figure 4.3: How variable elimination proceeds to solve the query evaluated
in Figure 4.2.

other words, we need to compute marginal probabilities corresponding to
the assignments i1.e = true and i2.e = true from the augmented PGM
comprising of factors fs1.B, fs2.B, ft1.B, fi1.e and fi2.e (see previous chapter
for full definitions of the factors). Now let us try to see how standard in-
ference algorithms such as variable elimination (VE) [Dechter, 1996; Zhang
and Poole, 1994] and the junction tree algorithm [Huang and Darwiche,
1994] would proceed to solve this problem. Here we take the example of
VE. Recall that marginal probability computation basically means that we
simply sum over all the other random variables from the PGM except for
the random variable whose marginal probability we need to compute (Def-
inition 4). VE runs by first choosing an elimination order which specifies
the order in which to sum over (eliminate) the random variables. It then
repeatedly picks the next random variable from the order, pushes the cor-
responding summation as far into the product of factors as possible, sums
it out and proceeds in this fashion. In Figure 4.3 we show the first few
steps of how VE would proceed when used to compute the probability of
i1.e and i2.e using the elimination order O = {s1.B, s2.B, t1.B} (variables
are eliminated left to right).
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4.1.1 Limitations of Naive Inference Algorithms

The main issue with VE (or any other standard exact probabilistic infer-
ence algorithm, for that matter) is that it does not exploit shared correla-
tions. For instance, in Figure 4.3, in the process of computing the probabil-
ities for i1.e and i2.e, we produce intermediate factors ms1.B(i1.e, t1.B) and
ms2.B(i2.e, t1.B). If we take a closer look at both of these factors then we
will notice that they both map exactly the same inputs to the same outputs:

i1.e t1.B ms1.B

True 2 0.4
True 3 0
False 2 0.6
False 3 1

i2.e t1.B ms2.B

True 2 0.4
True 3 0
False 2 0.6
False 3 1

This indicates that we went through the exact same multiplication and
summation steps to compute both ms1.B(i1.e, t1.B) and ms2.B(i2.e, t1.B).
In fact, these are shared factors and represent shared correlations (which will
be defined more precisely in the next section), and this repeated compu-
tation is what we would like to avoid. In hindsight, it is not really sur-
prising that ms1.B(i1.e, t1.B) and ms2.B(i2.e, t1.B) turned out to be virtual
copies of each other. If we look closely, ms1.B was computed by mul-
tiplying fs1.B(s1.B) with fi1.e(i1.e, s1.B, t1.B) followed by a summation
operation, whereas ms2.B was computed by multiplying fs2.B(s2.B) with
fi2.e(i2.e, s2.B, t1.B) followed by a summation operation, and fs1.B(s1.B)
and fs2.B(s2.B), and fi1.e(i1.e, s1.B, t1.B) and fi2.e(i2.e, s2.B, t1.B) were pairs
of shared factors. Often during the run of inference such intermediate
shared factors multiply with each other and give rise to more intermedi-
ate shared factors thus making it imperative that we recognize and take
advantage of such symmetry before we actually compute these shared factors.
Devloping an approach that achieves this is the topic of the next section.

4.2 Inference with Shared Factors

We begin by formally defining shared factors, and for this we need to take
a closer look at the definition of a factor (Definition 1). A factor consists
of two distinct parts: the first part is the list of random variables it takes
as arguments, and the second part is the function that maps input assign-
ments to outputs. Thus, it may be possible for two factors f1 and f2 to
have different arguments lists but use the same function to map inputs to
outputs.
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ms1.B

args.: i1.e, t1.B

func.:


True, 2→0.4
True, 3→0
False, 2→0.6
False, 3→1

ms2.B

args.: i2.e, t1.B

func.:


True, 2→0.4
True, 3→0
False, 2→0.6
False, 3→1

Figure 4.4: Pair of shared factors.

Definition 5. Let f1 and f2 denote two factors, f1.func and f2.func denote
their function components, and dom1 and dom2 denote the domains of f1.func
and f2.func, respectively. f1 and f2 are shared factors, denoted f1

∼= f2, if
dom1 = dom2 = dom and f1.func(d) = f2.func(d),∀d ∈ dom.

Figure 4.4 shows two factors from the previous section where we have
clearly separated their argument lists and function components.

We will assume that we are given a PGM P = 〈F ,X〉 (constructed by
running a query on a database and containing shared factors) and a ran-
dom variable X (associated with a result tuple) whose marginal proba-
bilities need to be computed. We will also assume that every f ∈ F is
associated with an id denoted by id(f) such that for any pair of factors
id(f1) = id(f2)⇔ f1

∼= f2.
The basic idea behind our approach to performing probabilistic infer-

ence with shared factors is to represent a run of the inference algorithm
explicitly as a labeled graph. Once we do that, we will then show that it is
possible to examine the graph and identify the shared intermediate factors
that are generated during the inference process. To explain our approach,
we will first define the semantics associated with the edges of the labeled
graph by introducing an operator that forms the basis of most exact prob-
abilistic inference algorithms (e.g., variable elimination [Zhang and Poole,
1994] and junction tree algorithm [Huang and Darwiche, 1994]).

4.2.1 The ELIMRV operator

The elimrv operator (which stands for ELIMinate a Random Variable) is the
basic operator that is used repeatedly while running inference to compute
marginal probabilities. It essentially takes a random variable Y and a col-
lection of factors F each of which involves Y as an argument and sums Y
out from the product of all factors in F to return a new factor. We denote the
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resulting (intermediate) factor produced by mY followed by its list of argu-
ments, if they are not clear from the context. For instance, when we were
computing µi1.e(i1.e) for the example in Section 4.1, to sum over s1.B we
had to first multiply the collection of factors formed by fi1.e(i1.e, s1.B, t1.B)
and fs1.B(s1.B) and then sum over s1.B from the product to produce the
new intermediate factor ms1.B(i1.e, t1.B). Note that F may contain inter-
mediate factors produced by earlier applications of the elimrv operator.

We first note a few properties about elimrv operator. The order in which
the factors appear in F is important. For instance, suppose we want to sum
over X2 from the collection formed by fa(X1, X2) and fb(X2, X3). Then
we would produce the product fc(X1, X2, X3) and perform the summation
to produce fd(X1, X3). In other words, there is an implicit assumption of
ordering the arguments in the product by scanning the arguments of the
input factors from left to right and this affects the resulting factor produced
after the summation operation. If instead, we had multiplied fb(X2, X3)
and fa(X1, X2), then we would first produce a factor f ′c(X2, X3, X1) and
then produce f ′d(X3, X1) after the summation. In addition, the way the
arguments overlap across the input factors (in the above case, the second
argument of fa overlaps with the first argument of fb) and the position of
the argument that is being summed over also matter. We would like to
make these points about the elimrv operator clear, and for this purpose,
we feed the operator an explicit label that specifies the above described
information.

Example 1. For the examples that follow we use the following simple format for
constructing labels that specify the argument order, how the arguments overlap
and which argument is being summed over. For each elimrv operation, we go
through the list of factors in F assigning each argument a unique id if it has not
been seen before. Then we construct the label by traversing the list of factors again,
writing the id of the argument that appears, enclosing the lists of arguments in
square braces and finally, appending the label by the id of the argument being
summed over. For the above example involving X2, fa(X1, X2) and fb(X2, X3),
the label turns out to be {[1, 2], [2, 3], 2} using this format.

We can now define the elimrv operator as follows:

Definition 6. The elimrv(Y,F, l) operation takes as input a random variable Y ,
an ordered list of factors F and a label l, and computes a new factor

∑
Y

∏
f∈F f

according to the label l.
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4.2.2 The RV-ELIM Graph

For the purposes of introducing our graph-based data structure, we will as-
sume that we are given, besides X and P = 〈F ,X〉, an elimination orderO
that contains all random variables involved in X except for X . In the next
section (Section 4.3), we discuss in detail how to construct such an elimina-
tion order that suits our purposes. Note that once we have an elimination
order, we have the sequence of elimrv operations defined for our inference
procedure. The inference procedure proceeds as follows: we collect all fac-
tors from F in a pool, pick the first random variable Y to be eliminated
fromO, collect all factors that include Y as an argument from the pool, per-
form the corresponding elimrv operation, add the resulting intermediate
factor mY back to the pool, and continue in the same fashion until we have
exhausted all random variables from O. The rv-elim graph (which stands
for Random Variable ELIMination graph) essentially encodes this sequence
of elimrv operations using a labeled graph.

Definition 7. The rv-elim graph G = (V,E,LV ,LE) is a directed graph with
vertex labels LV (v),∀v ∈ V , and edge labels LE(e),∀e ∈ E, that represents a run
of inference on a PGM P = 〈F ,X〉 according to elimination order O such that:

• Every v ∈ V represents a factor. If v is a root, then it represents a factor
from F and LV (v) = id(f); if v is not a root then it represents an interme-
diate factor mY =elimrv(Y,F, l) produced during the run of inference and
LV (v) = l.

• For each mY = elimrv(Y,F, l) produced during inference, for the ith factor
in F, we add an edge vf

i→ vmY , where vf denotes the vertex corresponding
to f and vmY denotes the vertex corresponding to mY , and i is the label on
the edge.

Figure 4.5 (a) shows the rv-elim graph for our running example using
the same elimination order we defined in Section 4.1. One point to note
about the rv-elim graph is that, in general, it can never contain a directed
cycle (in other words, it has to be a directed acyclic graph (DAG)). Our
example happens to be a tree; in general this is not always going to be the
case; Figure 4.6 shows an rv-elim graph that is not a tree.

4.2.3 Identifying Shared Factors

The advantage of representing a run of inference as a graph is that we can
now identify exactly when two vertices in the graph represent shared fac-
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fs1.Bfs2.B fi1.e

ms1.B

fi2.e

ms2.B ft1.B

µi2.e µi1.e

1

11

2

2

1 2

2

aab b

c

{[1],[2,1,3],1} {[1],[2,1,3],1}

{[1,2],[2],2} {[1,2],[2],2}

(a)

A

C

B

E

D

2

2

1

1

[fs1.B, fs2.B]
a

[fi1.e, fi2.e]
b

[ft1.B]
c

[ms1.B,ms2.B]

{[1],[2,1,3],1}

[µi1.e, µi2.e]
{[1,2],[2],2}

(b)

Figure 4.5: (a) rv-elim graph for the example from Figure 4.3, (b) its com-
pressed version obtained using bisimulation. The rv-elim graph shown in
(a) is a vertex-labeled, edge-labeled graph. The edges are labeled with in-
tegers (in this case, 1 or 2) and denote the order in which the parent factors
are present in the elimrv operation. The vertices are labeled with strings
and these are shown alongside the vertex, if the vertex is a source vertex
then the label is a letter (e.g., a for the first source vertex in the top left cor-
ner), or a string if it is a vertex with parents denoting how the arguments
overlap for the elimrv operation that created the intermediate factor cor-
responding to this vertex (for instance, {[1, 2], [2], 2} for the sink vertices
in the rv-elim graph). The compressed rv-elim graph shown in (b) is also
an edge-labeled, vertex-labeled graph with the extent of every vertex de-
picted next to it in square braces. Note that the compressed rv-elim graph
in this case consists of 5 vertices whereas the rv-elim graph itself contains 9
vertices, a significant reduction considering we have such a small running
example.

tors. Denote by fv the factor represented by vertex v in an rv-elim graph.

Claim 1. For rv-elim graph G = (V,E,LV ,LE), two vertices v1, v2 ∈ V are
shared factors fv1

∼= fv2 if:

• LV (v1) = LV (v2).

• ∀u1
i→ v1,∃u2

i→ v2 and fu1
∼= fu2 .

• ∀u2
i→ v2,∃u1

i→ v1 and fu1
∼= fu2 .
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S A
s1 {1:0.7, 2:0.3}

T A B
t1 1 2
t2 1 3

U B
u1 {2:0.5, 3:0.5}

S./AT−→
A B

i1 1 2
i2 1 3

fi1.e, fi2.e

./BU−→
A B

j1 1 2
j2 1 3

fj1.e, fj2.e

fi1.e(i1.e, s1.A) fj1.e(j1.e, i1.e, u1.B) fi2.e(i2.e, s1.A) fj2.e(j2.e, i2.e, u1.B)

mi1.e(s1.A, j1.e, u1.B) mi2.e(s1.A, j2.e, u1.B)fs1.A(s1.A)

m1
s1.A(j1.e, u1.B) m2

s1.A(j2.e, u1.B)

m2
u1.B(j2.e)

fu1.B(u1.B)

m1
u1.B(j1.e)

Figure 4.6: A three-relation join that produces a non-tree structured rv-elim
graph (edge and vertex labels not shown for legibility). Note that to com-
pute the marginal probabilities of j1.ewe do not need to multiply all factors
in the PGM, certain factors such as fi2.e are only required to compute the
marginal probabilities of the other result tuple’s random variables (j2.e’s)
and we do this by “tagging” factors in the PGM with the random vari-
ables whose marginal probability computations they are involved in; sub-
sequently, while performing inference we make sure that we multiply two
factors only if they have atleast one tag in common.

Essentially, what the claim says is that two intermediate factors fv1 and
fv2 generated during inference (using elimrv operations) are shared if:

• they were produced by multiplying sets of factors containing the same
function components (the parents are shared)

• the argument orders, argument alignments and the argument being
summed over, all match (the labels on v1 and v2 are the same)

Note that for a given internal vertex in the rv-elim graph, all incoming
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edges from parents are assigned distinct edge labels since we label the
edges with the index indicating the position of the factor represented by
the parent in F of the corresponding elimrv operation and two factors can-
not be at the same position (Definition 7).

We can now use Claim 1 to determine the intermediate shared factors
that get generated during the inference process. The important thing to
realize is that we can do this without actually computing these intermediate
factors. For instance, recall that in Section 4.1, we showed that during the
run of inference for our running example, ms1.B and ms2.B were interme-
diate factors that turned out to be shared (shown in dashed boxes in Figure
4.5(a)). By looking at the rv-elim graph (Figure 4.5(a)) this is now easy to
see since:

• They have the same vertex label {[1],[2,1,3],1}.

• Both ms1.B and ms2.B have parents fs1.B and fs2.B, respectively, via
edges labeled 1, and fs1.B

∼= fs2.B since they have the same vertex
label a and are roots.

• Both ms1.B and ms2.B have parents fi1.e and fi2.e, respectively, via
edges labeled 2, and fi1.e

∼= fi2.e since they have the same vertex label
b and are also roots.

Thus by Claim 1, ms1.B
∼= ms2.B.

Given a graph (like the rv-elim graph shown in Figure 4.5(a)) and a
property (such as the one specified in Claim 1), we now need an algo-
rithm for partitioning the vertices into collections of shared factors. It turns
out that there exist reasonably fast algorithms that can partition the set of
vertices into disjoint sets which, because of our construction, will satisfy
this property. These algorithms generally go by the term bisimulation (also
known as the relational coarsest partition problem [Paige and Tarjan, 1987]).
Given the special case of the graph being a DAG, there exist algorithms that
run in time linear in the size of the graph.

Dovier et al [Dovier et al., 2001] describe one such algorithm that runs
on an edge-labeled, vertex-labeled graph and not only partitions the set of
vertices but also returns another (smaller) graph where each disjoint set in
the partition is represented by a vertex and the edges between vertices p1,
representing one disjoint set in the partition, and p2, representing another
disjoint set in the partition, is the result of taking the union of all edges be-
tween all vertices from the input graph in p1 and all vertices from p2. We
will refer to each resulting disjoint set of the vertices of the rv-elim graph
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as an extent and the resulting graph returned as a result of running bisim-
ulation on the rv-elim graph as the compressed rv-elim graph. Figure 4.5(b)
shows the compressed rv-elim graph returned as a result of running bisim-
ulation on the rv-elim graph shown Figure 4.5(a). Notice how vertex A
represents both factors fs1.B and fs2.B. We show this in Figure 4.5(b) by in-
dicatingA’s extent in square braces next to it. More interestingly, the pair of
intermediate shared factors that we identified earlier (ms1.B andms2.B) has
also been collapsed into one single vertex denoted by C in the compressed
rv-elim graph.

Unfortunately, we cannot apply the bisimulation algorithm described
in Dovier et al. [2001] directly to our problem, and this is because we have
not yet addressed an important issue. Recall that we discussed how the
order in which the factors appear in the elimrv operator affects the results
of applying the operator. We have not yet discussed how to choose an
order. For traditional inference algorithms, when eliminating a random
variable, any ordering of the factors works. However, in our case, Claim
1 actually uses the order of the parents of the vertices in the rv-elim graph
to determine which ones represent shared factors. This means that for us
the order matters. If we do not choose the correct order then we might end
up with cases such the one shown in Figure 4.7, where instead of ordering
the parents of ms2.B with fs2.B as the first parent and fi2.e as the second,
we have placed fi2.e as the first parent and fs2.B as the second. A direct
consequence of this is that the labels on the vertices representingms1.B and
ms2.B in the rv-elim graph are now different, which means that using Claim
1 we cannot decree them to form a pair of shared factors.

The problem is that we do not know the order in which we should
present the factors to each elimrv operation, and some orders produce more
symmetric rv-elim graphs (with more shared factors) than others and we
need to choose these orders. One approach is to try all possible parent or-
derings but this will likely be too expensive. Instead, we introduce a novel
heuristic for choosing better orderings. Our bisimulation algorithm, based
on Dovier et al. [2001]’s, requires a different interleaving of the steps, so
for completeness we first present our bisimulation algoirthm, and then the
heuristic we developed for ordering parents.

4.2.4 Bisimulation for RV-ELIM Graphs

We will assume that we are given an rv-elim graph G = (V,E,LV ,LE)
for computing marginal probabilities of random variable X from PGM P
using the elimination order O. Each root v ∈ V is labeled by the id(fv)
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Figure 4.7: A poor ordering of parent vertices.

where fv denotes the factor from F represented by v. We will assign the
remaining vertex labels (for the internal vertices) and the the edge labels in
G dynamically through the bisimulation algorithm we present.

A partition denotes a division of the set of vertices of the rv-elim graph
into disjoint sets; each disjoint set is denoted a block. The full algorithm is
described in Algorithm 1. The bisimulation algorithm starts by comput-
ing ranks for each vertex in the rv-elim graph (a simple depth-first search
should do this). After computing ranks, the algorithm starts by assigning
the roots in the rv-elim graph to the blocks formed by their labels. After
this, it goes through the vertices at rank i, partitioning them into blocks.
Note that when we are dealing with vertices at rank i, we only need the
partitioning on the vertices at ranks i′ < i, since according to Claim 1, the
partitioning of a vertex only depends on its label and its parents’ partition-
ing and the parents of vertices at rank i can only have ranks i′ < i (the
rank computation scheme guarantees this). The nested for loops basically
achieve this. They take all vertices at rank i, choose orders for each ver-
tices’ parents (we will discuss how this is done shortly), forms the label
and the key based on this ordering and partitions these vertices based on
the constructed key. See Dovier et al. [2001] for proof of correctness when
the vertex and edge labels can be statically allocated.

Parent ordering heuristic To order the parents of each internal vertex v
in the rv-elim graph before partitioning them, we simply order the parents
based on their block-ids (assuming the block-ids can be ordered). We can
do this using Algorithm 1 since when we are about to decide in which block
to place v in, we have the blocks of its parents available. Recall that Claim
1 requires both the labels to match and the parent sets of both vertices to be
aligned before we decree vertices v and v′ to represent shared factors. This
heuristic helps align the parent vertices.

Algorithm 1, by itself, is reasonably efficient. Its time complexity, as-
suming we use the heuristic that orders based on block-ids, is O(|V |+ |E|)
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Algorithm 1: Bisimulation for RV-Elim Graphs.
input : RV-Elim graph G = (V,E,LV ,LE) with roots labeled.
output : A disjoint partition over V .

d(v) =
{

0, if v is a root
1 + max{d(v′)|v′ → v ∈ E} /* compute depths */

ρ← max{d(v)|v ∈ V }
B0,l = {v|v is root ∧ LV (v) = l} /* compute initial partition */
C = {B0,l}
Bi = {v|d(v) = i},∀i = 1 . . . ρ
for i = 1 . . . ρ do

foreach v ∈ Bi do /* construct keys to partition on */
order parents by block-ids
construct label LV (v)
construct key kv with LV (v) and parents’ blocks-ids

end
add Bi,k = {v ∈ Bi|kv = k} to C

end
return the final partition C

(to compute ranks in step 1) +
∑

v∈V dv log dv +dv (to order the parents and
form the key) where dv is the in-degree of v (ignoring the time spent to con-
struct LV (v)) + O(|V |) to partition vertices at rank i into blocks based on
their key. Adding up, this gives us O(

∑
v dv log dv + |V |) = O(|E| logD +

|V |) where D is the maximum in-degree of any vertex in the rv-elim graph.

4.2.5 Inference with the Compressed RV-ELIM Graph

Having computed the partition of the vertices using Algorithm 1, as in-
dicated earlier, we can now construct the compressed rv-elim graph by
constructing a graph where each block in the partition is represented by
a vertex, the label on the block is the label on the vertices in the block, and
two blocks have an edge labeled i between them if there exists a pair of
vertices in the two blocks that have an edge labeled i. These definitions
are consistent because the blocks of the partition correspond to particular
keys constructed by Algorithm 1 which contain the vertex labels and edge
labels, and all vertices in block have the same key.

We can now perform inference on the compressed rv-elim graph. To
seed the inference, we simply copy the function components of the factors
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corresponding to roots of the rv-elim graph to the roots in the compressed
rv-elim graph. Then we call a depth-first search procedure (dfs) from the
leaf in the compressed rv-elim graph which begins by looking at the par-
ents, the labels on the edges and the vertices and applies the elimrv opera-
tor to compute the functions on the child. If the parent’s functions have not
been computed yet then we make the dfs call on the parent before apply-
ing elimrv on the child. Finally, we will have the (unnormalized) marginal
distribution computed at the leaf of the compressed rv-elim graph. If our
inference required computing marginal probabilities of multiple random
variables then this can also be done using our approach but in this case
the compressed rv-elim graph may have multiple leaves. If the user re-
quests marginal probabilities for random variable X , then we simply need
to find the leaf in the compressed rv-elim graph that contains (unnormal-
ized) µ(X) in its extent and return that (after normalization). This last step
can be made faster if we maintain a mapping from random variables X to
the leaves of the compressed rv-elim graph that contains the corresponding
(unnormalized) marginal probability function.

4.3 Computing Elimination Orders

One of the important steps in performing probabilistic inference is to choose
a good elimination order that helps run inference without producing too
many large intermediate factors (in terms of number of arguments) during
the run of inference. This can make the difference between inference be-
ing tractable or intractable since the size of a factor is proportional to the
product of the domain sizes of its argument random variables. In our case,
since we are interested in exploiting shared factors, and since the elimina-
tion order affects the rv-elim graph constructed, we would like elimination
orders that produce smaller factors and, at the same time, produce rv-elim
graphs that can be compressed using bisimulation. Unfortunately, even
without consideration of shared factors, the problem is known to be NP-
Hard [Arnborg, 1985]. Thus, as is done in traditional inference algorithms,
we resort to heuristics. In particular, we introduce a novel version of the
popular minimum size heuristic (MSH) [Kjaerulff, 1990] that is used with
traditional exact inference algorithms to construct effective elimination or-
ders that can help exploit shared factors∗.

Our elimination order generation heuristic works in two phases:

∗For an alternate, more integrated, elimination order generation heuristic see Sen et al.
[2009b].
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Figure 4.8: (a) Example PGM graph (b) its compressed version.

• We first identify sets of “similar” random variables, as we will explain
shortly, this should help construct elimination orders that lead to rv-
elim graphs which can be compressed better.

• Traditional MSH defines a notion of neighborhood for random vari-
ables. We show below that, for our purposes, this notion is no longer
adequate and we introduce a novel version of MSH that helps avoid
large intermediate factors.

We first explain the need to look for random variables that are “simi-
larly” positioned in the PGM produced by query evaluation. Recall from
our running example that we eliminated s1.B and s2.B one after another.
If instead we had eliminated t1.B, then we risk combining shared factors
into potentially one single factor and risk loss of symmetry in the resulting
rv-elim graph. What we need to do here is find sets of random variables
that occur in shared factors. Eliminating these one after another should
help generate rv-elim graphs with better compression properties. Fortu-
nately, we can easily represent a PGM as a graph where the random vari-
ables are represented using vertices and correlations are represented using
edges (Figure 4.8(a) shows the PGM graph for our running example) and
we can use this PGM graph to find similar random variables simply by la-
beling the vertices using the ids of the factors from the PGM (if the random
variable is present in multiple factors then aggregate their ids using some
operation such as max or sum, assuming the ids are numbers). Then we
run a bisimulation on the PGM graph to compute a partition on the ran-
dom variables of the PGM and the corresponding compressed PGM graph
(Figure 4.8(b) shows the compressed PGM graph for our running example).
Each extent thus obtained after bisimulation contains similar random vari-
ables. Note that, unlike rv-elim graphs which are guaranteed to be directed
acyclic graphs, the PGM graph can be cyclic. Bisimulation algorithms for
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general graphs (with cycles) are available [Dovier et al., 2001; Paige and
Tarjan, 1987].

We now explain the second step. Having constructed the sets of simi-
lar random variables we would now like to ensure that we eliminate those
random variables one after another and that we avoid generating large fac-
tors in the process. One simple way to do this is to produce an ordering
on the vertices of the compressed PGM graph and then expand the entries
in that ordering using the extents. In addition, producing an ordering on
the vertices of the compressed PGM graph is likely to be faster since the
compressed graph is likely to contain less vertices compared to the number
of random variables in the PGM. We now proceed towards applying (some
suitable modification of) MSH on the compressed PGM graph, and for this
we need some background on MSH. The basic tenet underlying traditional
MSH is the notion of neighborhood of a random variable which is defined
as the set of distinct random variables with which it appears as arguments
to factors in the PGM. MSH works by greedily picking the random vari-
able with the smallest neighborhood to be eliminated first, updating the
neighborhoods of all random variables involved in the intermediate factor
introduced by the elimination until all random variables to be eliminated
have been picked.

However, the original MSH may not work on the compressed PGM
graph. The problem here is that the neighborhood of a vertex in the com-
pressed PGM graph is not a good indicator of the size of the intermedi-
ate factor produced by an elimination. This leads us towards defining a
new neighborhood criterion that involves not only the neighborhood in the
compressed PGM graph but also the extents of the vertices in the neighbor-

hood. Define avg. neighborhood size to be =
P

v′∈N (v) |extent(v′)|
|extent(v)| where N (v)

denotes the neighborhood of v in the compressed PGM graph. Essentially,
avg. neighborhood assumes that there are as many neighbors to vertex v
as there are random variables in all neighbors’ extents summed up. It es-
sentially tries to estimate the neighborhood of the vertex with respect to
the uncompressed PGM graph, and it compensates for the case when v it-
self has a large extent by dividing by the extent size. Thus it tries to make
MSH behave as if we are running it on the uncompressed PGM graph, but
actually runs on the compressed PGM graph thus making it more efficient.
Algorithm 2 shows the final modified minimum size heuristic algorithm.
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Algorithm 2: Modified Minimum Size Heuristic
input : Compressed PGM graph G = (V,E), and vertex vX that

contains X (whose marginals we need) in its extent.
output : Ordering over all random variables that need to be eliminated.

intialize empty list O
while ∃v ∈ V s.t. v 6= vX , v /∈ O do

pick vertex v 6= vX with the smallest avg. neighborhood
add v to O
introduce an edge between every pair of neighbors of v

end
construct O by expanding entries in O with their extents
add extent(vX )\{X} to O
return O

4.4 Experimental Evaluation

Our experimental evaluations were designed to answer the question: When
is it worthwhile to apply our bisimulation-based approach to a query eval-
uation problem? Note that standard inference algorithms take a PGM and a
random variable, and simply begin multiplying factors and summing over
random variables (after computing the elimination order). Instead, our
approach first constructs the rv-elim graph, applies bisimulation to com-
press it, and then begins multiplying function components of factors and
summing over arguments from them. So it is plausible that there may be
cases where our approach may perform poorly because it spends too much
time before actually getting to the point where it can perform (a hopefully
smaller set of) multiplications and summations. Our experimental results
suggest the following:

• In most cases, our approach is significantly faster than the standard
inference algorithm.

• In a small number of cases, our approach loses out to the baseline
inference approach we compare against; but in these cases the differ-
ence between the time it took to run our approach and the baseline
approach was not large.†

†Note that early stopping techniques are possible, such as once we run bisim-
ulation on the PGM graph and find out that the extents of the compressed PGM
graph are small then we can switch our inference engine and resort to standard
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We compare against a baseline exact inference algorithm, denoted BatchVE,
which is a modified version of variable elimination (VE) except that if the
PGM contains multiple random variables whose marginal probabilities we
are interested in, then it avoids multiple passes through the PGM like stan-
dard VE [Zhang and Poole, 1994] does. We refer to our approach, which
constructs a compressed PGM to exploit shared factors, as Lifted Inference
or LiftedInf, in short. For each experiment we report five numbers:

• Relational algebra operations (Rel. alg. ops): Reports the time taken
to perform the relational algebra operations in the query to construct
the PGM.

• BatchVE arithmatic operations (BatchVE arith. ops.): Reports the
time taken to multiply factors and sum over random variables during
inference for BatchVE.

• BatchVE remaining operations (BatchVE rem.): Reports the time re-
quired to perform the remaining BatchVE operations such as deter-
mining the elimination order.

• LiftedInf arithmatic operations (LiftedInf arith. ops.): Reports the
time spent multiplying functions of factors and summing over argu-
ments (on the compressed rv-elim graph) for our approach.

• LiftedInf remaining operations (LiftedInf rem.): Reports time taken
to perform the remaining operations for the approach we described
in this chapter, this includes the various runs of bisimulation and the
time spent to determine the elimination order from the compressed
PGM graph.

For each experiment, we report three bars (except for Figure 4.9(e)): the first
bar reporting the rel. alg. ops. time; the second, time spent by BatchVE;
and the third, time spent by LiftedInf. See the legend (shown at the top in
Figure 4.9) for more details. Note that no single bar reports the actual time
to run the query. To find out the total time taken to run the query we need
to add the rel. alg. ops. time to the second bar or the third bar, depending
on the algorithm.

All our experiments were run on a dual proc Xeon 3 GHz machine with
3GBytes of RAM. Our implementation is in JAVA and the numbers we re-
port were averaged over 10 runs.

inference, but for our experiments we did not include this approach.
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Figure 4.9: Plots for experiments on synthetic and TPC-H data. The legend
is shown at the top.



4.4.1 Car DB experiments

For our first set of experiments, we developed the pre-owned car ads exam-
ple further and randomly generated data and factors to illustrate how per-
formance of the two algorithms vary on various characteristics of the data.
In addition to the relation containing the various advertisements (Ad) de-
scribed in Figure 4.1, we added another relation which denotes the source
websites from which the ads were pulled (S). Each tuple in S is an un-
certain tuple with an associated probability of existence which depends on
how reliable the website’s information is. For these experiments, we ran the
following query:

∏
AdID((σColor=cAd) ./SID S) where c denotes a specific

color and SID is a primary key in S and acts as a foreign key inAd. Besides
the uncertain tuples in S, we set the Color attribute values to be uncertain
and these were correlated with the corresponding Make attributes. A car
of a certain Make can have one of 4 distinct Colors. The parameters that we
varied for these experiments are d (domain size of Make, default was 50),
n (the number of attribute uncertainty tuples in Ad, default value is 1000)
and fanout (the number of tuples in Ad that each tuple from S joins with,
default value is 1000).

In Figure 4.9(a), we show how LiftedInf and BatchVE perform when
we vary n from 100 to 1000. Notice that LiftedInf significantly reduces the
time spent performing arithmatic operations. Note that on the x-axis in
Figure 4.9(a), we report the size of Ad in terms of number of tuple uncer-
tainty tuples to help the reader compare with previous work on probabilis-
tic databases since our formulation can deal with both attribute uncertainty
and tuple uncertainty but most recent work can handle tuple uncertainty
only. A simple rule of thumb to compute the size of attribute uncertainty
relations in tuple uncertainty format is n× d1× d2× . . . d|attr(R)|, where n is
the number of attribute uncertainty tuples and di is the domain size of the
ith uncertain attribute in the relation (assuming all ith uncertain attribute
values in the relation have the same domain size). For our experiment, this
gives us n×d×4d. See Section 4.5 for more details on this conversion from
attribute uncertainty to tuple uncertainty.

Figure 4.9(b) shows the performance of the two inference algorithms
with varying domain sizes. Notice how at d = 10, LiftedInf performs worse
(because small domain sizes means small factors and therefore, less time
spent on arithmatic operations), but the difference between its time and
BatchVE’s time is not large.

The third experiment we ran (Figure 4.9(c)) is the most interesting ex-
periment in this subsection. Here we varied the fanout from 1 to 10 to vary
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the symmetry in the PGMs produced by the query (but kept the number
of tuples in Ad fixed). At fanout 1, we have no symmetry and no shared
factors in the base data, since every tuple from S has a unique existence
probability, but the shared factors increase as we increase fanout. Thus, at
fanout 1, LiftedInf should perform worse, and it does, but not by a huge
amount. At fanout 2, where we have a slight amount of symmetry in the
query (every tuple from S joins with exactly 2 tuples from Ad), LiftedInf is
already doing better than BatchVE. At fanout 10, it does much better than
BatchVE.

In Figure 4.9(d), instead of keeping the fanout constant for all tuples in
S, we sampled it from a Poisson distribution with parameter λ. In this case
however, we kept the number of tuples in S fixed. Note that at λ = 1, most
fanouts sampled turn out to be 1, but some samplings produce numbers
greater than 1 and LiftedInf utilizes this to do better than BatchVE, even at
λ = 1. At λ = 10, LiftedInf performs much better.

Until now, we had kept the existence probabilities of tuples in relation
S distinct. In the next experiment, we introduced some shared factors for
existence probabilities by dividing the tuples in S into buckets. Two tu-
ples in the same bucket had the same existence probability. The number of
tuples in S were fixed to 600, so at 600 buckets (right end of the plot in Fig-
ure 4.9(e)), we have exactly 1 tuple belonging to each bucket. Figure 4.9(e)
shows how LiftedInf’s performance deteriorates when the number of buck-
ets increase. Note that we do not show the time taken by BatchVE in this
case since it would obscure the trend of LiftedInf (BatchVE took around 25
seconds for this experiment).

4.4.2 Experiments with uncertain join attributes

The next two plots (Figure 4.9(f) and (g)) relate to a two relation join be-
tween S and Ad where the join attribute SID itself was uncertain. This
relates to the case of link uncertainty or structure uncertainty [Getoor et al.,
2002], where we are unsure about the primary/foreign key values in the
data. For instance, we may have another relation in our database which
stores the id of the person who posted the pre-owned car ad and we may
want to join with that relation so we can take into account the reliability of
the seller while trying to return to the user cars of her/his interest. How-
ever, we may not know the seller’s identity as this information may not
have been properly extracted or is simply unavailable (s/he used the guest
login). Joins on uncertain attributes give rise to very complicated PGMs
and we wanted to keep some control over the complexity of the PGM. We
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setup this experiment in the following fashion: first we contructed k key
values, then for each tuple in either relation, we polled from this pool m
distinct keys randomly to include in the domain of the uncertain join at-
tribute value; finally we padded each attribute value’s domain with unique
key values so that the total domain size is 50. Thus, increasing k makes it
less likely that two tuples from the two relations join, on the other hand,
increasing m increases the chance that two tuples join. Note that if two tu-
ples join then this may be due to multiple entries being common in their
domain. Figure 4.9(f) (varying m with k held constant at 100) and Figure
4.9(g) (varying k with m held constant at 2) show the results.

4.4.3 Experiments with TPC-H data

Following previous work, we also ran experiments based on the TPC-H
schema. We picked Q5 from the TPC-H specification since this involves a
join among six relations of which we made 4 relations (customer, lineitem,
supplier and order) probabilistic. The query tries to determine how much
volume of sales is being generated in various regions. Each customer makes
k1 orders, each order is broken down into k2 sub-orders each of which is a
lineitem entry, each sub-order is then diverted to a supplier. Each tuple
from customer is uncertain and these were divided into p1 buckets such
that tuples from the same bucket had the same existence probabilities, sim-
ilarly, the supplier tuples were also divided into p2 buckets. Moreover,
each customer sub-order is usually (with 95% probability) routed to one
of c suppliers, else the supplier is chosen randomly. For the lineitem and
order relations, we made the discount attribute uncertain (domain size 4d)
and correlated with part being ordered’s type (domain size d), and the or-
derdate attribute uncertain (domain size d). We set the parameters in the
following manner: k1 ∼ Poisson(2), k2 ∼ Poisson(3), p1 = p2 = 5, c = 3,
d = 50. We defined the scale factor to be the number of tuples in lineitem in
tuple-uncertainty format divided by 6× 106. The results are shown in Fig-
ure 4.9(h). The results showed similar trends when we tried other settings
of the parameter values; for instance the execution time for LiftedInf went
down when we decreased c and increased d and so on.

In almost all our experiments, we noticed significant speedups ranging
from 200% to 700%. Even in cases where there was no symmetry, LiftedInf
performed only slightly worse than BatchVE, incurring about 25% extra
time to compress rv-elim graphs. Given that the datasets we generated
were extremely simple in their correlation structure, we believe we will do
even better on real-world data with richer correlation structure containing
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AdID Make Color Price
1 Honda ? $9,000
2 ? ? $6,000
3 ? Beige $8,000
...

...
...

...

Color fcolor
Black 0.75
Beige 0.25

Make fmake
Honda 0.55
Toyota 0.45

AdID Make Color Price prob.
1 Honda Black $9,000 0.75
1 Honda Beige $9,000 0.25
2 Honda Black $6,000 0.4125
2 Honda Beige $6,000 0.1375
2 Toyota Black $6,000 0.3375
2 Toyota Beige $6,000 0.1125
3 Honda Beige $8,000 0.55
3 Toyota Beige $8,000 0.45
...

...
...

...
...

Figure 4.10: Database with pre-owned cars for sale (a) attribute-uncertainty
format (b) pure tuple-uncertainty format.

shared factors.

4.5 Discussion

Recall that, in Chapter 2 we surveyed a number of related works proposing
different ways of modeling uncertainty in probabilistic databases. Broadly
speaking, the various models can be categorized as models that associated
uncertainty at the tuple level (tuple-level uncertainty) and models that rep-
resent uncertainty at both tuple and attribute levels. Especially in recent
times, a number of tuple-level uncertainty models have been proposed
in the probabilistic database community. These include (but are not lim-
ited to) MystiQ’s block-independent disjoint formalism [Re et al., 2006] and
Trio’s x-tuples [Benjelloun et al., 2006; Das Sarma et al., 2006]. In contrast,
our approach based on PGMs and shared correlations (first-order graphical
models) allows expressing uncertainty at the tuple and/or attribute levels.
Having reviewed both of these approaches, one question that begs ask-
ing is whether we are any closer to choosing one single way of modeling
uncertainty. Both approaches have advantages and disadvantages, and to
compare them we first need to understand how to represent the same frag-
ment of uncertain data in either approach. To this end, we discuss a simple
transformation that takes a database with attribute and tuple uncertainty
and returns its representation in pure tuple uncertainty format. After that,
we discuss the pros and cons of one representation scheme over the other.

Figure 4.10 shows an example where the database contains ads for pre-
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owned vehicles up for sale. In Figure 4.10 (a), some of the attribute values
are missing; in particular, the tuple with AdID 1 has its Color attribute
missing, tuple with AdID 3 has its Make attribute missing and tuple with
AdID 2 has both attributes missing. Figure 4.10 (a) also shows the probabil-
ity distributions associated with the missing attributes (common across all
tuples) in the bottom. To represent such data with attribute uncertainty in
pure tuple uncertainty, one approach is to compute all possible joint instan-
tiations of every tuple present in the attribute-level uncertainty database.
For instance, the first tuple in Figure 4.10 (a) can be instantiated to two tu-
ples 1 Honda Black $9,000 and 1 Honda Beige $9,000 , where
the first instantiation’s probability of existence is 0.75 while the second in-
stantiation’s is 0.25 (given by the distribution on the Color attribute from
Figure 4.10 (a)). Note that these two instantiations cannot exist together
since they come from the same attribute-level uncertainty tuple, in other
words, they are correlated with a mutually exclusive dependency. In Fig-
ure 4.10 (b), we show all three tuples from Figure 4.10 (a) represented with
tuple-level uncertainty and tuples present in the same block are mutually
exclusive (note that this is the same representation used in other works on
probabilistic databases such as x-tuples [Benjelloun et al., 2006] and block-
independent disjoint formalism [Re and Suciu, 2007]).

It is difficult to see how approaches that only allow representing tuple-
level uncertainty can exploit shared correlations for efficient query evalu-
ation. As the example shows, the shared factors for Color and Make in
Figure 4.10 (a) get completely obscured once we convert to tuple-level un-
certainty, so much so that no pair of tuples in Figure 4.10 (b) have the same
probability of existence. Moreover, the tuple-level uncertainty representa-
tion (Figure 4.10 (b)) requires 8 tuples to represent the same information
that required only 3 tuples using attribute-level uncertainty (Figure 4.10
(a)) which means representing data using tuple-level uncertainty requires
more space. In the above example, if the color attribute had nc values in its
domain and the make attribute nm, then the tuple with AdID 2 in Figure
4.10 (a) would blow up into nc × nm tuples in pure tuple-level uncertainty
format. Not only does this imply that the tuple-level uncertainty format
requires more space to represent the same data, it also means that this form
of representation involves more random variables which is another reason
why query evaluation may be slower under this approach.

The problem with using tuple-level uncertainty for data that contains
attribute uncertainty is that it requires computing joint distributions and
this becomes an expensive operation in terms of size of the representation
when we have many uncertain attribute values connected via correlations.
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Figure 4.11: Inversion elimination is a special case of bisimulation-based
inference: (a) the rv-elim graph and (b) its compressed version.

This observation has been made in other contexts also, such as selectivity
estimation in databases [Getoor et al., 2001], and is one of the main reasons
why researchers in machine learning prefer working with factored repre-
sentations of joint probability distributions such as probabilistic graphical
models. Note that many domains produce uncertain data that can be natu-
rally modeled using attribute-level uncertainty rather than tuple-level un-
certainty such as mobile object databases [Cheng et al., 2003] and sensor
network data [Deshpande et al., 2004], and these can be easily read into a
database that can represent both attribute and tuple uncertainty, whereas
we need to perform some transformation before we can read them into a
database that can only represent tuple-level uncertainty which may lead to
loss of its natural structure.

On a side note, recall that while discussing related work on lifted infer-
ence in Section 2.3, we mentioned that inversion elimination [de Salvo Braz
et al., 2005; Poole, 2003] is one popular approach. We are now ready to
demonstrate that inversion elimination is a special case of our bisimulation-
based lifted inference. Given a computation of the form

∑
Y

∑
Xi

∏
i ψ(Xi, Y )

(all ψ’s are shared factors), inversion elimination avoids the complexity of
eliminating each Xi,∀i = 1, . . . n separately by pushing each summation of
Xi against the corresponding ψ, eliminating Xi once and then eliminating
Y :

∑
Y

∑
Xi

∏n
i=1 ψ(Xi, Y ) =

∑
Y

∏n
i=1

∑
Xi
ψ(Xi, Y ) =

∑
Y

∏n
i=1 ψ

′(Y )
=

∑
Y ψ

′n(Y ) = ψ′′(). Figure 4.11 shows how our approach achieves the
same.
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4.6 Conclusion

In this chapter, we showed how to exploit shared correlations to speed up
probabilistic inference during query evaluation for probabilistic databases.
Shared correlations are likely to exist in many probabilistic databases since
probabilities and correlations often come from general statistics learnt from
(large amounts of) data and rarely vary on a tuple-to-tuple basis. In addi-
tion, the query evaluation approach that builds the probabilistic graphi-
cal model on which we finally need to run inference itself tends to intro-
duce shared correlations. We introduced a new graph-based data structure
and explained how to build it from the probabilistic graphical model. We
then showed how the graph can be compressed using an algorithm based
on bisimulation. We empirically evaluated our approach and showed that
even in the presence of a few shared correlations, we do significantly better
than naive inference approaches.
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Chapter 5

Approximate Lifted Inference
For Probabilistic Databases

In the last chapter, we discussed how to implement a lifted inference algo-
rithm that leverages shared correlations to efficiently perform large-scale
probabilistic inference while evaluating queries in probabilistic databases.
We discussed how probabilistic databases are likely to contain shared corre-
lations that result in identical factors, and how these identical factors repre-
sent a kind of symmetry that lifted inference algorithms attempt to exploit
to speed up inference. Although lifted inference often works well in cases
when the PGM provides significant symmetry, sometimes such symmetry
may not exist. In such cases, and in cases when the application can toler-
ate errors in the result of inference, we may want to resort to approximate
inference to scale up to large datasets.

In this chapter, just as in the last one, we continue with our goal of
designing efficient large-scale inference procedures. However, unlike the
last chapter, where we concentrated on designing an exact lifted inference
algorithm, here our goal is to design approximate procedures. The main
question we investigate here is whether it is possible to design approximate
lifted inference techniques that allow the user to trade off accuracy of infer-
ence for computational efficiency. We answer this question in the affirma-
tive and develop two such techniques. Moreover, we show that these two
techniques can be combined for more aggressive exploiting of shared cor-
relations. Also, we show how it is possible to combine our techniques with
bounded complexity inference procedures such as the mini-bucket scheme
[Dechter and Rish, 2003], so that we do not need to incur the full treewidth
of the PGM in question to run inference. Finally, we develop a unified lifted
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S A B
s1 a1 {1:0.6, 2:0.4}
s2 a2 {1:0.6, 2:0.4}
s3 a3 {1:0.62, 2:0.38}

T B C
t1 {2:0.5, 3:0.5} c

S./BT−→
A B C

i1 a1 2 c
i2 a2 2 c
i3 a3 2 c

fi1.e, fi2.e, fi3.e

Figure 5.1: Running example for this chapter. Note that the prior on s3.B
is slightly different from the priors on s1.B and s2.B.

inference engine that, via the use of a handful of tunable parameters, allows
the user full control over what type of lifted inference algorithm s/he de-
sires. The unified lifted inference engine allows the user choice of varying
between standard or lifted inference of the exact or approximate variety,
along with the user’s specification of incurred complexity of inference.

Continuing in the vein of the work described in the last chapter, even
though our focus in this one remains that of query evaluation in probabilis-
tic databases, the techniques we develop can be applied to general PGMs
generated from any application, even when there are no shared correla-
tions. Also, like the last chapter, we will refrain from assuming that we are
given a first-order specification of the PGM (an assumption often made by
many lifted inference algorithms [de Salvo Braz et al., 2005; Milch et al.,
2008; Pfeffer et al., 1999; Poole, 2003; Singla and Domingos, 2008]). Part
of our task is to develop techniques that automatically determine the first-
order symmetry in PGMs and exploit it to speed up inference.

In the next section, we introduce a modified version of the running ex-
ample from the last chapter, which will serve as the running example for
this one. In Section 5.2 and Section 5.3, we present two techniques for ap-
proximate lifted inference. In Section 5.4, we discuss how to combine our
ideas with bounded complexity inference techniques and along with that,
present a unified lifted inference engine that combines all the techniques. In
Section 5.5, we evaluate our approaches on synthetic and real-world data
and show that our techniques can achieve orders of magnitude speedup
over standard ground inference procedures and the bisimulation-based ex-
act lifted inference procedure introduced in the last chapter. We conclude
with some pointers for future work in Section 5.6.
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s1.B s3.Bs2.Bt1.B

i3.ei2.ei1.e

∧∧∧

fs1.B ft1.B fs2.B fs3.B

fi1.e fi2.e fi3.e

Figure 5.2: PGM produced by the running example described in Figure 5.1.

5.1 Running Example

Similar to the running example introduced in Section 4.1, in Figure 5.1,
once again we have a simple 2-relation join query. In this case, S con-
tains 3 tuples with the probability distribution associated with the new
tuple, s3’s B attribute, being slightly different from s1.B and s2.B. As ex-
pected, the join produces three result tuples. Our task is now to compute
the marginal probabilities associated with the assignments i1.e = true,
i2.e = true and i3.e = true from the PGM shown in Figure 5.2. Fig-
ure 5.3 (a) shows the rv-elim graph obtained using the elimination order
O = {s1.B, s2.B, s3.B, t1.B}, and Figure 5.3 (b) shows the corresponding
compressed rv-elim graph on which we can now perform inference faster.
Notice how, µi1.e and µi2.e turn out to be identical (just like in the last chap-
ter), but µi3.e is partitioned into a different node in the compressed rv-elim
graph. This is because one of the factors that leads to the computation of
µi3.e, i.e., fs3.B, is slightly different than the corresponding factors fs1.B and
fs2.B. If our application could tolerate an adequate level of approximation
in the marginals computed, then we may want to pool µi3.e along with
the other two marginal distributions. This would result in a smaller com-
pressed rv-elim graph and could lead to significant savings in computation
time.

While the exact lifted inference approach described in the previous chap-
ter can provide significant speedups when the probabilistic model contains
moderate to large amounts of symmetry, in many cases we can do much
better if we are willing to accept approximations in the marginal probabil-
ity distributions computed. The main idea here is to explore looser versions
of Claim 1 so that we can partition the vertices of the rv-elim graph into big-
ger blocks and thus arrive at a smaller compressed rv-elim graph. In what
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{[1,2],[2],2}

2

c

[fs1.B,fs2.B]
[fi1.e,fi2.e,fi3.e] [fs3.B]

[µi1.e,µi2.e] [µi3.e]

[ms1.B,
ms2.B] [ms3.B]

(b)

Figure 5.3: (a) RV-Elim graph for the running example (vertices parti-
tioned into 8 blocks, shading indicates partitioning), (b) corresponding
compressed rv-elim graph.

follows, we describe two separate and orthogonal generalizations of Claim
1 that can be used to implement approximate lifted inference. After that,
we discuss how to combine our techniques with bounded complexity infer-
ence algorithms and finally, we discuss how to combine all of our proposed
ideas together into one single general purpose approximate lifted inference
engine.

5.2 Approximate Lifted Inference with Approximate
Bisimulation

To introduce our first technique, we require some notation. Given a ver-
tex, edge labeled graph G = (V,E,LV ,LE) such as an rv-elim graph, let
v0, . . . vn denote an n-length vertex path such that ∀i = 0, . . . n : vi ∈ V and

∀i = 0, . . . , n − 1 : ∃j s.t. vi
j→ vi+1 ∈ E. Further, we say that label path

or simply, path, l0(l′0)l1(l
′
1) . . . ln(l′n)ln+1 matches vertex path v0, . . . vn+1 (and

vice versa), if ∀i = 0, . . . , n + 1 : LV (vi) = li and ∀i = 0, . . . n : LE(vi →
vi+1) = l′i.

We will now revisit Claim 1 and try to assign it a path-based interpreta-
tion. Using a simple induction (and the fact that edges with the same head
have distinct edge labels) it is possible to show that two vertices v1 and v2 in
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Figure 5.4: Results of running approximate bisimulation on the running ex-
ample (shading indicates partitioning), (a) path-length=0 (partitioning on
labels, vertices partitioned into 6 blocks) (b) path-length=1 (vertices par-
titioned into 7 blocks). At path-length=2, we obtain the results of exact
bisimulation (see Figure 5.3 (a)).

an rv-elim graph are bisimilar iff their incoming set of paths from the roots are
identical. For instance in Figure 5.3 (a) recall thatms1.B

∼= ms2.B, which have
the same set of incoming paths from the roots {“a(1){[1], [2, 1, 3], 1}′′, “c(2){[1], [2, 1, 3], 1}′′},
the matching vertex paths for ms1.B are fs1.B,ms1.B and fi1.e,ms1.B, resp.,
and the matching vertex paths for ms2.B are fs2.B,ms2.B and fi2.e,ms2.B,
resp. Notice that this path-based interpretation of Claim 1 shows that it
is a fairly stringent criteria (albeit necessary for exact inference). For in-
stance, consider a case when two vertices deep in the rv-elim graph have
large sets of long incoming paths and both sets are almost identical except
for one incoming path to the second vertex which has that one label that
does not allow it to match any incoming path to the first vertex; based on
Claim 1 these two vertices would be placed in different blocks of the fi-
nal partition and the compressed rv-elim graph would be correspondingly
bloated. This sort of behaviour is, in fact, on display in our running exam-
ple where µi2.e � µi3.e simply because, of the three incoming paths to µi3.e,
“b(1){[1], [2, 1, 3], 1}(1){[1, 2], [2], 2}′′ (matching fs3.B,ms3.B, µi3.e) does not
match any of µi2.e’s incoming paths.

Instead of comparing sets of all incoming paths to vertices, we propose
to relax Claim 1 by comparing sets of only k-length (and less than k-length)
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Algorithm 3: Approximate Lifted Inference with Approximate Bisimula-
tion

input : RV-Elim Graph G = (V,E,LV ,LE) and path-length k.
output : A disjoint partitioning over V .

d(v) =
{

0, if v is a root
1 + max{d(v′)|v′ → v ∈ E}

ρ← max{d(v)|v ∈ V }
B0,l = {v|d(v) = 0 ∧ LV (v) = l}
Bi = {v|d(v) = i}∀i = 1 . . . ρ
C ← {B0,l}∀l ∪ {Bi}ρi=1

X ← C
for j = 1 . . . k do

for i = 1 . . . ρ do
foreach B ∈ C at depth i do

order parents by block-ids in X
construct labels LV (v)∀v ∈ B
construct key kv∀v ∈ B with LV (v), parent blocks-ids in X
partition B based on keys kv

replace B in C with new blocks
end

end
X ← C

end
return C

incoming paths, where k is a tunable parameter we refer to as the path-
length. Our compression algorithm permits high compression when the
path-length is set to a low value and approaches exact bisimulation as we
increase it. Figure 5.4 (a) shows the result of partitioning vertices in our
example rv-elim graph with k set to 0, where we simply partition vertices
based on their labels. Figure 5.4 (b) is more interesting, where we have
set k to 1 and so, compare incoming paths of length 1. Note how, in this
case, ms3.B has been differentiated from ms1.B and ms2.B since ms3.B has
an incoming path “b(1){[1], [2, 1, 3], 1}′′ (matching fs3.B,ms3.B) of length 1
which does not match any incoming 1-length path of ms1.B or ms2.B. In
contrast, ms1.B, ms2.B and ms3.B were all placed into the same block in
Figure 5.4 (a). Also notice that, in Figure 5.4 (b), µi1.e, µi2.e and µi3.e are still
partitioned into the same block (leaf vertices tiled with bricks) and this is
because the only path that differentiates µi3.e from µi1.e and µi2.e is a path
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Figure 5.5: The compressed graph obtained at path-length=1 with the dot-
ted edge being deleted since its tail has a smaller extent.

of length 2 (vertex path fs3.B,ms3.B, µi3.e) which is beyond the scope of the
current path-length setting of 1. This changes however, when we set path-
length to 2 and obtain the results of exact bisimulation shown earlier in
Figure 5.3 (a).

The partitioning based on comparing incoming k-length paths can be
obtained by computing k-bisimilarity [Kanellakis and Smolka, 1983] (for
which algorithms are available) since these two properties are equivalent
(this can be proved by induction). We formalize the k-bisimilarity property
as follows:

Property 1. Given an rv-elim graph G = (V,E,LV ,LE), ∼=k is defined induc-
tively. For vertices v1, v2 ∈ V ,

• v1 ∼=0 v2 iff LV (v1) = LV (v2).

• v1 ∼=k v2 (k > 0) iffLV (v1) = LV (v2) and ∀u1
i→ v1,∃u2

i→ v2 s.t. u1
∼=k−1

u2 and vice versa.

The algorithm for obtaining the partition based on ∼=k, Algorithm 3, be-
gins by computing the depth of each vertex d(v) and constructing an initial
partition based on labels of the roots and the depths of internal vertices.
Throughout Algorithm 3, we maintain two partitions, X and C. In the ith

iteration, X maintains ∼=i−1 and is used to update C where we construct
∼=i. Note that the inner two loops can be performed in O(|E| logD + |V |)
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time (not counting the time spent to construct the vertex labels), where D
is the maximum in-degree in the rv-elim graph. Thus, Algorithm 3 runs
in O(k(|E| logD + |V |)) time (in contrast to Algorithm 1 which runs in
O(|E| logD + |V |) time). Note that constructing the compressed rv-elim
graph corresponding to ∼=k is a bit more complicated now since we are
no longer guaranteed that, if two internal vertices fall into the same block
of the partition, then the parents will also have been placed into the same
block (which holds for Claim 1). Figure 5.5 (the compressed graph obtained
at k=1) illustrates this issue where all µ’s have been merged into one block
but their 1st parents are not, thus G has two 1st parents D and F , which
is problematic if we want to use the compressed graph to run inference.
Here, we simply get rid of the edge that corresponds to the smaller sized
block (the dotted edge F → G in Figure 5.5 since F represents a block of
size 1 versus D whose block size is 2) to maximize the number of correct
marginal probability computations.

5.3 Approximate Lifted Inference with Factor Binning

We now introduce another way of implementing approximated lifted in-
ference using an orthogonal generalization of Claim 1. We begin by asso-
ciating with Claim 1 a distance-based interpretation. Recall that, Claim 1
bins two factors into the same block of the partition when we can guaran-
tee that their input-output mappings are exactly the same without actually
computing them. Stated differently, given any user-defined distance mea-
sure that can measure the “distance” between two factors, Claim 1 deems
that these factors belong to the same block only if the distance between
them is zero. Note that the converse is not true. That is, it is possible for
two internal vertices in the rv-elim graph to actually represent factors that
comprise of identical input-output mappings but because their parents do
not belong to the same blocks or because the parents’ arguments do not
overlap in the same fashion, Claim 1 cannot bin these into the same block
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of the partition. We illustrate this with the following example:

∑
Y


X Y f1

t t 0.8
t f 0.2
f t 0.4
f f 0.6

×
Y f2

t 0.5
f 0.5

 =
X mY

t 0.5
f 0.5

∑
Y ′


X ′ Y ′ f ′1
t t 0.2
t f 0.8
f t 0.6
f f 0.4

×
Y ′ f ′2
t 0.5
f 0.5

 =
X ′ mY ′

t 0.5
f 0.5

where t and f denote true and false resp. Notice how factors f1 and
f ′1 have different input-output mappings (f1(t, t) = 0.8 6= 0.2 = f ′1(t, t))
and hence cannot be binned into the same block which means that it is
not possible to determine that the resulting factors mY and mY ′ comprise
of the same input-output mappings solely using Claim 1. This, in turn,
means that any intermediate factors derived from these two factors during
the inference process will always be binned separately, thus leading to a
bloated compressed rv-elim graph.

Such symmetries can not be captured without actually looking into the
factors and computing the distance between them (any distance measure
such as KL-divergence or root mean squared distance would do). For this
purpose, we ask the user for a separate parameter ε, that specifies an up-
per bound on the distance between two factors for them to be considered
shared. Note that, unlike the previous algorithm, we can not compute dis-
tance between two intermediate factors without computing the factors.

To determine such a distance-based partitioning of the factors, we will
need to solve the factor binning problem (FB):

Given: set of factors F = {f1, . . . fn}
threshold ε, distance function dist(·,·)

Return: argminF⊆F |F|
such that ∀fi ∈ F \ F ∃f ∈ F s.t. dist(fi, f) ≤ ε

We will shortly show that the factor binning problem is equivalent to
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the dominating set problem (DS):

Given: graph G with vertex set V and edge set E

denote by Nv neighborhood of vertex v
Return: argminD⊆V|D|

such that ∀vi ∈ V \D ∃v ∈ D s.t. v ∈ Nvi

Theorem 1. FB is equivalent to DS.

Proof. The proof is in two parts; we first show that any instance of FB can
be reduced to DS and vice versa. To show the first part, we specify the
reduction to DS. Given an instance of FB, define the corresponding DS by
setting:

DSFB : V = F , Nfi
= {fi} ∪ {f |dist(fi, f) ≤ ε}

Note that any solution to DSFB is a solution to FB. We show this by con-
tradiction. Suppose solution D to DSFB is not a solution to FB, in other
words, ∃fi ∈ F \D s.t. dist(fi, f) > ε, ∀f ∈ D. This implies Nfi

∩D = ∅
which means that D is not a solution to DSFB and thus we have a contra-
diction. Similarly, any solution to FB is a solution to DSFB . Again, assume
that solution F to FB is not a solution to DSFB . Thus, ∃fi ∈ F \ F s.t.
Nfi
∩ F = ∅. This implies dist(fi, f) > ε, ∀f ∈ F which means F is not a

solution to FB and we have a contradiction. Given that solution spaces of
FB and DSFB are same, and that the objective functions are also same, we
have shown that FB can be solved by solving DSFB .

The reduction in the other direction is also easy. Given an instance of
DS, define the corresponding FBDS by setting:

FBDS : F = V, ε = 0

dist(vi, vj) =
{

0 if (vi, vj) ∈ E
1 otherwise

Let D denote a solution to DS that is not a solution to FBDS :

⇒ ∃vi ∈ V \D s.t. dist(vi, v) > ε = 0, ∀v ∈ D

⇒ ∃vi ∈ V \D s.t. dist(vi, v) = 1, ∀v ∈ D

⇒ ∃vi ∈ V \D s.t. (vi, v) /∈ E, ∀v ∈ D

⇒ ∃vi ∈ V \D s.t. Nvi ∩D = ∅
⇒ D is not a soln. to DS and we have a contradiction
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Algorithm 4: Approximate Lifted Inference with Factor Binning
input : RV-Elim Graph G = (V,E,LV ,LE), a distance function and ε.
output : A disjoint partitioning over V .

d(v) =
{

0, if v is a root
1 + max{d(v′)|v′ → v ∈ E}

ρ← max{d(v)|v ∈ V }
B0,l = {v|v is a root ∧ LV (v) = l}
instantiate one factor per block B0,l

Bds
0 ← compute dominating set and construct new set of blocks by

merging {B0,l}
C = Bds

0

Bi = {v|d(v) = i},∀i = 1 . . . ρ
for i = 1 . . . ρ do

foreach v ∈ Bi do
order parents by block-ids
construct label LV (v)
construct key kv with LV (v) and parents’ blocks-ids

end
Bi,k = {v ∈ Bi|kv = k}
instantiate one factor per new block Bi,k

Bds
i ← compute dominating set and construct new set of blocks by

merging {Bi,k}
C ← C ∪Bds

i

end
return C

Also, trying it the other way round. Let F denote a solution to FBDS that
is not a solution to DS:

⇒ ∃vi ∈ V \ F s.t. Nvi ∩ F = ∅
⇒ ∃vi ∈ V \ F s.t. dist(vi, v) = 1 > 0 = ε, ∀v ∈ F

⇒ F is not a soln. to FBDS and we have a contradiction

DS is NP-Complete [Garey and Johnson, 1979]. Further, Feige [1998]
showed that DS is not approximable to a factor of (1 − o(1))ln(|V|) unless
NP has “slightly super-polynomial time” algorithms (orNP ⊂ DTIME(nlog(log(|V|)))).
One way to solve DS is to utilize the fact that it is a special case of set cover
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and use the obvious greedy heuristic (described below) for set cover. This
gives us an ln(|V|)-approximation algorithm [Vazirani, 2001]. Thus, for
our experiments, we use the same greedy approach to solve FB. FB is also
equivalent to the ρ-dominating set problem Bar-Ilan et al. [1993], which, in
turn, is the converse of the classic k-center problem [Kariv and Hakimi,
1979] where we are given a graph from which we need to choose a subset
of k vertices so that their distance from the other vertices is minimized.

Even though the above discussion suggests FB is hard to solve, the sit-
uation is not so dire. When the distance function satisfies special proper-
ties, better algorithms may be available but this will require us to “tweak”
the definition of FB. For instance, when dealing with euclidean spaces,
there are algorithms that can solve the minimum geometric disk cover problem
(GDC) near-optimally. GDC is posed as follows: consider a set of points
in some high-dimensional plane. Our task is to return the smallest set of
points (centers) from the plane such that each input point is within r dis-
tance of a center. Hochbaum and Maass [1985] describe approximation
algorithms with bounds on their (non-)optimality for this problem. Note
that the bounds depend on the dimensionality of the space, the algorithms
work better in low dimensional spaces. Now consider the following re-
duction of a modified version of FB to GDC. We will assume that each
input factor has d rows. We will interpret each input factor as a point in
a d-dimensional space and the coordinates of the corresponding point are
given by the output of the factor. Note that this is a one-to-one mapping
from points to factors. Once we solve GDC on these points, we can get
back factors corresponding to the returned centers. Note that this is not
the same definition of FB as before since the centers need not correspond to
any of the input factors. Also, to make this work desirably one may need
to normalize the outputs of factors in some sensible way.

The algorithm to obtain the greedy solution for FB is to first construct
each subset Nfi

(as defined above) and repeatedly pick fi corresponding
to the current largest Nfi

to include into our solution. Every time we pick
fi, we update all Nfj

’s by deleting from them all factors that are within
ε distance of fi. Another question we need to consider is whether to bin
factors based on distance once and then run approximate lifted inference
or whether to bin the intermediate factors based on distance also. For our
experiments, we also binned the intermediate factors, since this allows us
to compress the rv-elim graph more agrressively. Algorithm 4 shows the
complete algorithm to run approximate lifted inference using FB.
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5.4 Unified Lifted Inference

The approximation techniques we have introduced so far do not alleviate
the worst-case complexity of the inference procedure. In other words, these
techniques would not help if the ground inference procedure is associated
with high treewidth (common with structured probabilistic graphical mod-
els). Next we show how to incorporate the mini-bucket scheme [Dechter
and Rish, 2003], a bounded complexity approximate (ground) inference al-
gorithm, this allows us to keep a tight control over the complexity of infer-
ence incurred. Next, we discuss how to combine all the proposed ideas in
this chapter to construct one single unified lifted inference engine.

5.4.1 Bounded Complexity Lifted Inference

The mini-buckets scheme is a modification of the variable elimination al-
gorithm [Zhang and Poole, 1994] where at each step instead of eliminating
a random variable by multiplying all factors it appears as argument in, one
devises a set of mini-buckets each containing a (disjoint) subset of factors
that contains that variable as argument and then eliminates the variable
separately from each mini-bucket. More precisely, given a set of factors,
one first constructs a canonical partition such that all subsumed factors are
placed into the same bucket of the partition. A factor f is said to be sub-
sumed by factor f ′ if any argument of f is also an argument of f ′. After
constructing the canonical partition, the user has two choices:
• construct mini-buckets by restricting the total number of arguments i (a

user-defined parameter) in each mini-bucket. Since inference complex-
ity is directly affected by the size of the largest factor encountered, this
is one way to control the amount of computation incurred.

• specify how many bucketsm of the canonical partition to merge to form
a mini-bucket. Again, this (indirectly) controls the size of the largest
factor generated and keeps the complexity bounded.

Dechter and Rish [2003] show how such a modification of the variable elim-
ination algorithm provides an upper bound over the numbers produced in
the resulting factors.

It is easy to combine our approaches with the mini-bucket scheme. In-
stead of building the rv-elim graph by introducing internal vertices corre-
sponding to intermediate factors produced by multiplying all factors in-
volving a certain random variable as argument, we simply introduce ver-
tices corresponding to factors produced by the mini-bucket scheme. Since
our approaches work on any rv-elim graph, this requires no change to the
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Parameter Name Description
UB (bisimulation) compresses rv-elim graphs if true
PL (path length) approximate bisimulation parameter,

use exact bisimulation when set to∞
ε factor binning parameter, uses factor

binning if ε > 0
UMB (mini-bucket) allows using mini-buckets if true
ACR (arg. count restriction) if true then restricts based on number

of arguments in mini-buckets
MBR (mini bucket restriction) if ACR=true then this is i (the max

number of args per mini-bucket), else
it is interpreted as m (the number of
canonical partition buckets merged to
form a mini-bucket).

Table 5.1: Parameters for our unified lifted inference engine.

approaches presented earlier, while keeping the complexity of inference
bounded.

5.4.2 Unified Lifted Inference Engine

By interleaving the various steps, it is possible to combine all the ideas we
have presented in this section into one unified approximate lifted inference
engine. Our combined inference engine takes a set of eight parameters
which define the combinations of techniques we would like to invoke (see
Table 5.1). The experiments presented in the next section use this generic
inference engine.

5.5 Experimental Evaluation

Through our experiments, we want to emphasize that even though our fo-
cus is query evaluation in probabilistic databases, our techniques work for
any PGM. We conducted experiments on synthetic and real data to deter-
mine how lifted inference with approximate bisimulation and factor bin-
ning perform on their own. We also report experiments with our unified
lifted inference engine where we used both approaches in tandem. Each
number we report is an average over 3 runs, our implementation is in
JAVA, and our experiments were performed on a machine with a 3GHz

83



Xeon processor and 3GB RAM. We compare our results with two baseline
algorithms: A ground inference procedure which is basically variable elim-
ination [Zhang and Poole, 1994] modified so that we obtain all marginals in
a single pass, and the exact lifted inference procedure introduced in Chap-
ter 4. We report two metrics for each experiment: run times incurred by
the various algorithms in seconds (Time) and error measured by comput-
ing the average number of marginal probabilities which were not within
10−8 of their correct values (Avg. #Probs. Incorrect).

5.5.1 Synthetic Bayesian Network Generator

We set up a synthetic Bayesian network (BN) generator to test various as-
pects of our algorithms. The generator produces BNs where the random
variables are organized in layers and random variables from the ith layer
randomly choose parents from the i − 1th layer. For our experiments, we
generated BNs with 3 layers: the first layer contained 1000 random vari-
ables, the second 500 and the third 250. We introduced priors randomly for
each variable in the first layer, every 25th prior was identical. The random
variables in the last layer are our query variables for which we computed
marginal probabilities. All random variables had domain of size 30. To
generate factors defining the dependency between random variables from
the ith and i − 1th layers, for each variable in the ith, we randomly chose 2
parents from the previous layer. Two children can choose the same parents,
so we generated non-tree structured BNs. All factors with children from
the ith layer are identical. This closely follows many structured probabilis-
tic graphical models we have come across, where the priors usually closely
resemble each other but may not be identical; whereas the factors defining
dependencies between various random variables come from generic rules
and are thus identical. We used a parameter to control how many times a
random variable can be picked as a parent. This helps vary the complexity
of the inference problem. We also used a parameter to add random noise
after the factors are generated. We tried other parameter settings as well
and the trends were as expected. For instance, increasing domain size in-
creases the speedups obtained since with larger domains, we increase the
time spent summing over random variables and multiplying factors while
running ground inference – our lifted inference procedures are designed to
save on this assuming the symmetry among factors is kept constant. Sim-
ilarly, increasing the number of random variables with constant symmetry
also increases speedups obtained.
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Figure 5.6: Experimental results for lifted inference with approximate
bisimulation, (a) and (b) report time and error with varying path-length,
respectively. Variable elimination took 25.95 sec and exact lifted inference
took 8.2 sec.

5.5.2 Lifted Inference with Approximate Bisimulation

Our first set of experiments tests our algorithm for lifted inference with
approximate bisimulation. The results are reported in Figure 5.6 (a) and
Figure 5.6 (b). The plots show that as we increase path-length (x-axis in
these plots), the time for inference (Figure 5.6 (a)) slowly increases, but er-
ror decreases (Figure 5.6 (b)). The solid line with triangles depict the results
of running lifted inference with approximate bisimulation without mini-
buckets, and with path-length set to 3, we see that the error stands around
18%; the inference procedure took about 3 seconds to run, which is almost
a 3 times speedup over exact lifted inference (which took 8.2 seconds) and
almost a 9 times speedup over ground inference (which took 25.95 sec).
All the other lines in the plots correspond to lifted inference with approx-
imate bisimulation run with various mini-bucket schemes. Among these,
the mini-bucket scheme with mini-buckets restricted by argument count at
i = 3 seems to be a promising setting (dotted line with triangles), since it
runs faster than lifted inference with approximate bisimulation, but does
not incur significantly higher error. Another interesting point that shows
up in these plots is that with mini-buckets with i = 4 or m = 2 at path-
length set to 3, the time taken to run inference goes up noticeably. This
shows that at very low path-lengths, using mini-buckets could actually
lead to loss of symmetry in the rv-elim graph.
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Figure 5.7: Experimental results for lifted inference with factor binning, (a)
and (b) report time and error with varying path-length, respectively. Vari-
able elimination took 33.12 seconds and exact lifted inference took 25.24
seconds.

5.5.3 Approximate Lifted Inference with Factor Binning

Our second set of experiments tests our factor binning approach. The re-
sults are shown in Figure 5.7 (a) and Figure 5.7 (b). For these experiments,
we used root mean squared distance to compare two factors. More pre-
cisely, given two factors f1 and f2 with a common joint domainD, dist(f1, f2) =√

1
|D|

∑
x∈D(f1(x)− f2(x))2. The plots show that as we increase ε (on the

x-axis), the times for inference go down (Figure 5.7 (a)), and the error goes
up (Figure 5.7 (b)). On these experiments, ground inference took about 33
seconds and exact lifted inference took 25.24 seconds, which means factor
binning without mini-buckets (solid line with triangles) achieves a speedup
of about 3.5 times over exact lifted inference, and a speedup of almost 5
times over ground inference. Among the various mini-bucket schemes,
once again i = 3 (dotted line with triangles) seems to be the best setting; it
gives small but noticeable reductions in run-times at almost no cost to ac-
curacy. Notice that mini-buckets with small settings of either m or i tends
to perform very poorly, neither giving good accuracies nor providing good
run-times, and this is likely due to the sheer number of factors with which
we are dealing. At such small settings, the mini-bucket scheme produces
a lot of factors and computing the dominating set (which has a quadratic
time complexity) becomes too expensive.
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Figure 5.8: Experimental results for unified lifted inference engine. (a) de-
picts how variable elimination and exact lifted inference compare with re-
spect to time with varying size of PGMs. (b) shows how unified lifted in-
ference does not require that factors be exactly identical.

5.5.4 Unified Lifted Inference Engine

In our last set of experiments, we used both approximate bisimulation
(path-length=3) and factor binning (ε = 0.01) with mini-buckets (restricted
by argument count i = 3). Here we report run-times for probabilistic mod-
els with varying number of random variables. The results are reported in
Figure 5.8 (a) and Figure 5.8 (b). As should be clear from Figure 5.8 (a),
with increasing size of the probabilistic model, all three inference proce-
dures, ground inference, exact lifted inference and approximate lifted in-
ference, show an increase in run-time but there is an order of magnitude
difference in times between ground inference and exact lifted inference
(which partitions identical factors together) and another order of magni-
tude speedup over exact lifted inference for approximate lifted inference
(which also bins nearly identical factors together) while keeping the accu-
racy within bounds. Thus approximate lifted inference is more than two
orders of magnitude faster than ground inference. The accuracies for ap-
proximate lifted inference for these experiments varied between 65-95%.
For these complex networks, we could not run ground inference on models
with more than 256 random variables due to memory limitations. Figure
5.8 (b) makes it clear how the run-time between exact lifted inference and
approximate lifted inference varies. Here we set all priors in our probabilis-
tic model similar to each other but varied the probability of two factors be-
ing identical to each other. The plot shows that as this probability increases,
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Dataset Inf. Alg. Time (s) Arith. Ops. Rem. Ops. Acc.

Cora
Ground Inf. 163.5 163 0.5 77.8
Lifted Inf. 60.6 59.9 0.7 73

CiteSeer
Ground Inf. 101.0 100.8 0.2 68.7
Lifted Inf. 65.0 63.9 1.1 66.8
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Figure 5.9: (a) Times for Cora and CiteSeer. (b) Precision-Recall curve for
Cora-ER and (c) number of factors generated.

exact lifted inference captures the symmetry and does better, whereas ap-
proximate lifted inference keeps run-times low throughout.

5.5.5 Experiments on Real-World Data

We experimented with a number of real world datasets. We first report re-
sults on the Cora [McCallum et al., 2000] and CiteSeer [Giles et al., 1998a]
datasets. The Cora dataset contains 2708 machine learning papers with
5429 citations; each paper is labeled from one of seven topics. The Cite-
Seer dataset consists of 3316 publications with 4591 citations; each paper is
labeled with one of 6 topics. The task is to predict the correct topic label
of the papers. We divided each dataset into three roughly equal splits and
performed three-fold cross valiation. For each experiment, we train on two
splits and test on the third, randomly choosing 10% of the papers’ class la-
bels to be our query nodes. Each number we report is an average across
all splits. For these experiments, we produce Markov networks using the
citations in the datasets as dependencies among the topic labels and then
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perform collective classification [Sen et al., 2008b]. Note that, the treewidth
of the Markov networks thus produced can be unbounded, so we com-
pare against ground inference with mini-buckets restricted to 6 arguments.
Also, while testing on the third split, we include as evidence topic labels of
the papers belonging to the training set linked to from the test set. We tried
various parameter settings with our approximate lifted inference engine
and report the best results. As Table 5.9 (a) shows, we obtained a 2.7 times
speedup for Cora and 1.55 times speedup for CiteSeer with our approxi-
mate lifted inference engine over ground inference. The loss in accuracy
was 4.8% for Cora and 1.9% for CiteSeer. These results were obtained with
path length = 2, ε = 0.01, and using mini-buckets restricted to 6 argu-
ments. We also show how much time was spent by each inference scheme
to multiply factors and sum over random variables (arithmetic operations
or “Arith. Ops.” in Table 5.9 (a)) and the remaining operations (or “Rem.
Ops.” in Table 5.9 (a)). As should be clear from Table 5.9 (a), the various
operations required to implement lifted inference (bisimulation algorithms
and dominating set computations) do not really add much overhead; we
spend about 0.7 − 0.5 = 0.2 seconds for Cora and 1.1 − 0.2 = 0.9 seconds
for CiteSeer (column “Rem. Ops.” in Table 5.9 (a)).

We also experimented with the Cora dataset for entity resolution (Cora-
ER) [Cora Entity Resolution Dataset]. For this experiment, we used a Markov
logic network with 46 distinct rules. Unfortunately, we could not get any
noticeable speedup for this dataset. This dataset consists solely of random
variables with domain size 2 (match/non-match). As a result, all the fac-
tors produced are extremely small in size (size of a factor is determined
by the number of rows in it) which implies that the time spent performing
arithmetic operations (multiplying factors and eliminating random vari-
ables) is not the bottleneck during inference. The techniques proposed in
this paper are mainly directed towards reducing the time spent to perform
arithmetic operations. However, we do present the precision-recall curve
we obtained for Cora-ER (Figure 5.9 (b), increasing argument count restric-
tion for the mini-buckets scheme reduces precision but increases recall) and
we also counted the number of intermediate factors computed by ground
and lifted inference for various samplings of the dataset consisting of 50-
250 bibliographic citations to be deduplicated. Figure 5.9 (c) shows that
lifted inference produces far fewer intermediate factors during inference
than ground inference; recall that ground inference produces an interme-
diate factor everytime a random variable is eliminated but lifted inference
saves on this computation by computing one factor for each block in the
final partitioning. This, in turn, indicates that the dataset possesses sym-
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metry which could lead to speedups if the domain sizes of the random
variables and factors were large. Note that Figure 5.9 (c) also gives an idea
of the reduced memory consumption for lifted inference.

5.6 Conclusion and Future Work

In this chapter, we described light-weight, generally applicable approxi-
mate algorithms for lifted inference based on the graph theoretic concept
of bisimulation. Essentially, our techniques are wrap-arounds for variable
elimination [Zhang and Poole, 1994], and can be used whenever variable
elimination is applicable, even though our focus in this thesis happens
to be probabilistic databases. Besides being able to compute single node
marginal probabilities, the techniques we propose here can also be used
to perform other kinds of inference, including computing joint conditional
probabilities and MAP assignments (by switching from the sum-product
operator to max-product). One interesting avenue of future work is to look
for other bounded complexity inference algorithms (besides mini-buckets)
that can be combined with the techniques introduced in this chapter. Other
avenues of future work are determining the optimal values of the various
parameters (path-length and ε) automatically, and building the compressed
rv-elim graph directly from the first-order description of the probabilistic
model.
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Chapter 6

Read-Once Functions and
Probabilistic Databases

Until now, we have discussed a general representation for probabilistic
databases (Chapter 3) and efficient large-scale query processing (Chapter
4 and Chapter 5). In this chapter, we take a closer look at the query eval-
uation problem itself. How hard is it to evaluate a single query, or, more
specifically, to compute the marginal probability of a single result tuple and
what can we do to do this efficiently? Recall that, for probabilistic databases
based on possible world semantics, query evaluation is #P-Complete. Most
of the probabilistic databases proposed in prior literature use one of two
approaches to circumvent this issue: they either resort to approximate re-
sults using approximate inference ([Jampani et al., 2008; Re et al., 2007]) or
they restrict their attention to a smaller class of tractable queries for which
efficient evaluation is possible (hierarchical queries or safe plans [Dalvi and
Suciu, 2007, 2004]).

In this chapter, we take a closer look at the latter approach. Hierar-
chical queries Dalvi and Suciu [2007], are a purely query-centric way of
determining whether a query posed on a tuple-independent probabilistic
database can be solved efficiently or not. More precisely, if the query q
satisfies a certain criteria (defined in [Dalvi and Suciu, 2007] and reviewed
in the next section) then it can be evaluated in PTIME. Since the criteria
only looks at the query and does not involve the database, it stands to rea-
son that if the query is hierarchical then it can be evaluated efficiently for
any tuple-independent probabilistic database. As the reader may have al-
ready guessed, this is quite a pessimistic way of determining solvability of
queries. Usually, the user is more interested in evaluating her/his query on
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the database at hand and not for all possible databases; in other words, the
final evaluation problem is a result of the combination of the query and the
database, not just the query alone and we need to leverage both query and
data, if we are to evaluate queries in the most efficiently possible way.

In this chapter, we view the problem of evaluating queries on tuple-
level uncertainty probabilistic databases at a different level of abstraction.
It is straightforward to show that in such databases, the PGM correspond-
ing to the query evaluation problem can also be represented using result tu-
ple specific-boolean formulas, and the query evaluation problem reduces to
computing the marginal probability for the boolean formulas holding true.
Prior research performed by the graph theory community has shown that
if the boolean formula can be factorized into a form where every boolean
variable (a tuple-level existence variable, in our case) appears not more
than once, then one can compute the marginal probability for the formula
extremely efficiently. Boolean formulas that have such a factorization are
known as read-once functions (Golumbic et al. [2006]; Hayes [1975]). It is
also possible to show that hierarchical queries only produce result tuples
with read-once functions, thus providing a connection to efficient query
evaluation in probabilistic databases. In this chapter, we propose to turn
the previous approach to efficient query evaluation on its head. Instead of
adopting a query-centric approach, we evaluate the user-submitted query
and propose algorithms that generate for each result tuple, its factorized
form (if it exists), so that we can compute the required marginal probabil-
ities efficiently. With this approach, not only do we allow efficient com-
putation of hierarchical queries, but also for non-hierarchical queries that
produce result tuples with read-once functions on the given database.

Another issue with hierarchical queries is that their definition involves
the specific operators used in the query. As reviewed in Chapter 2, most
of the work on hierarchical queries (Dalvi and Suciu [2007, 2004]) almost
exclusively deals with equality joins∗. Presumably, extending the approach
to deal with other operators requires effort and dealing with queries com-
posed of different operators is even more cumbersome. On the contrary,
our approach of treating result tuples as boolean formulas allows us to re-
strict our attention to only two operators, ∧ (and) and ∨ (or). We do not
care what kind of join operator (equality or inequality or anything else)
gave rise to the boolean formula associated with the result tuple. Thus,
our techniques are likely to be wider in range than earlier work on efficient
query evaluation.

∗Olteanu and Huang [2009, 2008] are notable exceptions.
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Here we restrict ourselves to the simpler case of probabilistic databases
with tuple-level uncertainty only. The more difficult case of databases with
attribute and tuple uncertainty will be left open, although some proposals
in the machine learning community [Darwiche, 2002] may help in this re-
gard (see Chapter 2 for more discussion). In the next section, we review
tuple-level uncertainty probabilistic databases and discuss how to gener-
ate boolean formulas for result tuples while evaluating queries. In Sec-
tion ??, we discuss read-once functions. In Section ??, we discuss hierar-
chical queries and show how they always generate read-once functions.
In Section 6.2, we propose our approach to solving queries by generating
read-once functions in probabilistic databases. In Section 6.3, we consider
the special case of conjunctive queries without self-joins allowing for non-
equality predicates. We conclude the chapter with Section 6.5, after a dis-
cussion in Section ??.

6.1 Preliminaries

Most of the notation remains the same, but since we are dealing with a
simpler model of a probabilistic database some changes/simplifications are
in order. As before, let R denote a relation defined over a set of attributes
attr(R) = {A1, A2 . . . A|attr(R)|} and each tuple t ∈ R is a mapping from
attributes to values from some pre-defined domain. We associate a unique
(boolean-valued) random variable with t denoted by xt and a probability of
existence of pt. Often, if it is clear from the context, we will abuse notation
and refer to the tuple’s random variable by the tuple itself. Possible worlds
semantics remains the same, a (probabilistic) database D = {R1, . . . Rm} is
a set of relations and represents a distribution over many possible worlds,
each obtained by choosing a (sub)set of tuples in each relation Ri to be
present. If a tuple t is present, we say xt is assigned the value true or
t and false or f, otherwise. Each possible world w is associated with a
probability:

Pr(w) =
m∏

i=1

∏
t∈Ri

xt=t

pt

∏
t∈Ri

xt=f

(1− pt)

Given a query q to be evaluated against database D, the result of the
query is defined to be the union of results returned by each possible world
along with the marginal probabilities of each result tuple. Since we are
dealing exclusively with uncertain tuples, one way to compute the marginal
probability of a result tuple t produced by (relational algebra) query q is to
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f(t ∈ R) = xt

f(σc(t)) = if c(t) then f(t) else f
f(

∏
(t1, . . . tk)) =

∨k
i=1 f(ti)

f(t× t′) = f(t) ∧ f(t′)

Figure 6.1: Extended definitions for σc, ×,
∏

where c denotes a selection
predicate. t denotes true and f denotes false.

L: X
x1 x1

x2 x2

x3 x3

J: X Y
z1 x1 y1

z2 x1 y2

z3 x2 y3

z4 x3 y3

R: Y
y1 y1

y2 y2

y3 y3

q() :−L(X), J(X,Y), R(Y)

r = x1z1y1 + x1z2y2

+ x2z3y3 + x3z4y3

Figure 6.2: A query q, its singleton result r and the corresponding boolean
formula.

extend each (relational algebra) operator in q so that it builds a boolean
formula for each (intermediate) tuple generated during query evaluation.
We refer to the boolean formula for t by f(t). Figure 6.1 provides these
extended definitions for operators σ, × and

∏
. The marginal probabil-

ity of the result tuple can then be obtained by computing the probability
of the corresponding boolean formula holding true. Figure 6.2 shows a
three-relation join query which produces a singleton result tuple r and the
corresponding result tuple’s boolean formula.

6.2 Read-Once Functions: Unateness, P4-Free and Nor-
mality

Even though computing marginal probabilities of a result tuple’s boolean
formula holding true is #P-Complete in general [Dalvi and Suciu, 2004],
special classes of boolean formulas allow tractable computations. Read-once
functions are one such class of formulas:

Definition 8 (Read-Once Function [Hayes, 1975]). A boolean formula φ is
said to be read-once if there exists a factorization such that each variable appears
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Figure 6.3: (i) φ = ab+bc+cd, co-occurrence graph is a P4 and φ is not read-
once. (ii) φ = c(ab + d), co-occurrence graph is P4-free and φ is read-once.
(iii) shows the co-occurrence graph for r from Figure 6.2.

not more than once.

Further, the read-once factorized form of the boolean formula is known
as its read-once expression. For instance, r in Figure 6.2 is a read-once
function with the read-once expression x1(z1y1 + z2y2) + y3(x2z3 + x3z4).
Prior work [Golumbic et al., 2006] has identified properties that a formula
should satisfy for it to be read-once:

Theorem 2 ([Golumbic et al., 2006]). A boolean formula is read-once iff it is
unate, P4-free and normal.

We describe each property in turn.
A boolean formula φ is said to be unate (or monotone) [Golumbic et al.,

2006] if every variable either appears in its positive or negated form through-
out. Thus, ab and āb+ āc are unate but āb+ ac is not.

For any boolean formula φ, the co-occurrence graph Gφ is formed by rep-
resenting every variable in φ using a vertex and introducing an undirected
edge between variables xi and xj if they appear together in some clause
when φ is expressed in disjunctive normal form (dnf). Let X denote a sub-
set of vertices, then the subgraph ofG induced byX is the subgraph formed
by restrcting edges of G to edges with end points in X . The graph P4 de-
notes a chordless path with 4 vertices and 3 edges (see Figure 6.3 (i)). φ is
P4-free if no induced subgraph ofGφ forms a P4. Figure 6.3 (i) and (ii) show
two formulas one of which is not read-once because it contains a P4, Figure
6.3 (iii) shows the co-occurrence graph for the result tuple r from Figure
6.2. Notice that in Figure 6.3 (ii), even though a, b, c and d do form a path
of length 3, they do not form a P4 because a and c have an edge between
them that provides a shorting.

A formula φ is said to be normal (or clique-maximal) if every clique in its
co-occurrence graph is contained in some clause in its dnf form [Golumbic
et al., 2006]. For instance, even though the two formulas φ1 = abc and
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Figure 6.4: Co-tree of result tuple r from Figure 6.2.

φ2 = ab+ bc+ ca both have the same co-occurrence graph (the triangle), φ1

is normal (and read-once) whereas φ2 is not.
Traditionally, co-trees [Corneil et al., 1981] have been used to concisely

represent read-once expressions of read-once functions. Co-trees are trees
where leaves correspond to boolean variables while internal node 1© rep-
resents ∧ and 0© represents ∨. A given read-once expression can be repre-
sented by many co-trees but there exists a canonical co-tree, where 1© and
0© alternate on every path. Given the co-tree for a read-once result tuple,

the probability can be computed using a simple, bottom-up procedure:

Pr(v) =


∏

c∈ch(v) Pr(c) if v is 1©
1−

∏
c∈ch(v)(1− Pr(c)) if v is 0©

pt if v = xt

where ch(v) denotes children of v. The marginal probability of the result
tuple can then be retrieved from the root of the co-tree. Figure 6.4 shows
the co-tree for the result tuple from Figure 6.2.

6.3 Hierarchical Queries and Read-Once Functions

Earlier work on query evaluation in probabilistic databases has identified
tractable queries for which probability computation is efficient and this set
of queries is referred to as hierarchical queries [Dalvi and Suciu, 2007]. We
next illustrate the close connection between hierarchical queries and read-
once functions. For the ensuing discussion, we will assume that all queries
are projected onto the empty set of attributes. Queries projected onto a
non-empty set of attributes can be handled by replacing these attributes
with constants. Let q denote a query in datalog notation. Let A denote an
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attribute in q and sg(A) denote the set of relations a is mentioned in. In
other words, sg(A) denotes the set of relations or subgoals of A. For the
example in Figure 6.2, sg(X) = {L, J} and sg(Y) = {J,R}.

Definition 9 (Hierarchical Query [Dalvi and Suciu, 2007]). A (conjunctive)
query q is a hierarchical if for any two attributes A and B either sg(A) ⊆ sg(B),
sg(A) ⊇ sg(B) or sg(A) ∩ sg(B) = ∅.

For instance, the query q in Figure 6.2 is not hierarchical (sg(X)∩sg(Y) =
{J} 6= ∅, sg(X) * sg(Y), sg(Y) * sg(X)) but q′() :−S(X,Y), T (Y) is.
Further, an attribute A is said to be maximal, if ∀B, sg(B) ∩ sg(A) 6= ∅ ⇒
sg(B) ⊆ sg(A). Note that, using the notion of maximality it is possi-
ble to divide the attributes in any hierarchical query q into disjoint sets
A1 ∪ . . . ∪Ak such that:

• subgoals of attributes across the sets are disjoint: sg(A) ∩ sg(B) =
∅, ∀A ∈ Ai,∀B ∈ Aj , i 6= j

• there is a maximal attribute A in each set Ai: ∃A ∈ Ai s.t. sg(Am) ⊆
sg(A) ∀Am ∈ Ai ∀i = 1, . . . k.

Dalvi and Suciu [2007] showed that hierarchical queries always give
rise to result tuples with read-once functions. Here, we express the same
proof for the simple case of queries without self-joins in our notation:

Proposition 6.3.1. Hierarchical queries always produce result tuples with read-
once expressions.

Proof. Assume q is hierarchical. By induction on the number of attributes
in q, we can show that the result tuple is read-once. The base case is when
q has only one attribute A which is maximal and whose set of subgoals
contains all the relations in q. The boolean formula for the result tuple
produced by q can be expressed as

∨
c∈UA

q[A/c], where q[A/c] denotes the
query obtained with A set to constant c and UA denotes the domain of A.
Note that q[A/c] indexes into a different set of variables for different c’s,
thus variables appearing in q[A/ci] and q[A/cj ] for i 6= j are distinct. Also,
within q[A/c], we essentially have a cartesian product among tuples from
different relations satisfying A = c (if |sg(A)| > 1), which is clearly read-
once. Thus, q produces a read-once result tuple. For the inductive case, let
us assume that all sub-queries of q with at least one less attribute produces
read-once result tuples. Given that we can divide the attributes in q into
disjoint sets A1 ∪ . . . ∪ Am such that each set has a distinct maximal at-
tribute and subgoals for attributes across sets are disjoint; let qi denote the
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part of q restricted to subgoals of Ai (the maximal attribute in Ai). Then,
we can express the result tuple’s boolean formula as

∧
i

∨
c∈UAi

qi[Ai/c]. No
two variables in

∨
c∈UAi

qi[Ai/c] and
∨

c∈UAj
qj [Aj/c] for i 6= j can be iden-

tical since the relations are distinct. Also, qi[Ai/c] is read-once by our in-
ductive hypothesis since it contains at least one less attribute than q, and
qi[Ai/c] and qi[Ai/c

′] for c 6= c′ do not share variables since Ai is maximal
and they index into different sets of tuples thus implying

∨
c∈UAi

qi[Ai/c] is
read-once. These two observations put together imply

∧
i

∨
c∈UAi

qi[Ai/c] is
read-once, hence q produces a read-once result tuple.

Since read-once functions form the basis of tractability of hierarchical
queries and we have already seen how hierarchical queries guarantee read-
once result tuples, a natural question to ask is whether the converse is true?
That is, if we have a read-once result tuple is it necessary for the query
that produced it to be hierarchical? If the answer is yes then that would
imply that by equipping our query engine with techniques to deal with
hierarchical queries, introduced in Dalvi and Suciu [2007, 2004], we have
done all we can to deal with tractable cases. The answer, however, is no,
as should be clear from our running example. In Figure 6.2, we showed
a query that is not hierarchical, however, the result tuple it produced has
a read-once expression for which probability computation is easy. In this
chapter, we would like to develop techniques that helps us evaluate such
cases efficiently.

6.4 Read-Once Expressions for Probabilistic Databases

We now concentrate our efforts on devising a query evaluation engine that
efficiently evaluates read-once result tuples without restricting itself to hi-
erarchical queries. We first describe a simple query evaluator that works
for all result tuples without making any assumptions about the query. We
then discuss the complexity of our proposed engine. After that we con-
centrate on a subset of relational algebra queries for which we attempt to
devise a faster approach.

One viable approach to evaluating queries is to generate boolean for-
mulas for result tuples (using the extended operators in Figure 6.1) and
then determine whether it is a read-once function. If the result tuple is
read-once, then we compute its probability from its read-once expression’s
co-tree, else we resort to a general-purpose inference engine. Checking for
read-once result tuples is possible in polynomial time. We briefly discuss
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the algorithms that have been proposed previously in the literature to check
the three properties that determine whether a formula is read-once.

In what follows, let φ denote a result tuple’s boolean formula, |φ| the
length of its dnf form (with different occurrences of the same variable counted
multiple times) and V ars(φ) the distinct variables in it. To check for unate-
ness, a linear scan of the formula is sufficient which requires O(|φ|) time.
To check for P4’s in φ’s co-occurrence graph Gφ, there have been a hand-
ful of algorithms proposed in the literature [Bretscher et al., 2008; Corneil
et al., 1985; Habib and Paul, 2005]†. The common aspects of all of these
algorithms is that all of them require Gφ to be provided as input and they
run in time linear in size of Gφ (O(|V ars(φ)| + |E|), where |E| is the num-
ber of edges in Gφ). Gφ can be obtained easily from the formula’s dnf form.
For instance, Corneil et al. [1985] takes the co-occurrence graph and picks
each variable from the graph along with its neighbours and incrementally
builds the co-tree which depicts the read-once function. If the algorithm
returns a co-tree successfully then the co-occurrence graph did not contain
any P4; if there is a P4 then the algorithm stops and provides the P4. Thus,
the good thing about this algorithm is that not only does it check for the
absence of P4’s, it also returns the read-once expression as a co-tree which
we can subsequently use for probability computation. Figure ?? shows a
run of Corneil et al.’s approach to build the co-tree for the result tuple in
Figure 6.2. Bretscher et al. [2008]; Habib and Paul [2005] have a slightly
different approach, they first build an ordering on the variables using the
co-occurrence graph (Habib and Paul [2005] uses vertex partitioning tech-
niques, while Bretscher et al. [2008] uses LexBFS techniques) and then sub-
sequently use the ordering to build the co-tree. Checking for normality is
also possible in polynomial time, but is more expensive than checking for
unateness or P4-freeness. Golumbic et al. [2006] describes a way to check
for normality in O(|V ars(φ)||φ|) time using the co-tree obtained from the
previous step of checking for P4’s.

6.5 Read-Once Functions and Conjunctive Queries with-
out Self-Joins

Recall that the most expensive step while generating read-once functions
is the step that checks for normality. In this section, we specifically look

†Note that P4-free graphs are also referred to as Cographs. Thus, some of the algorithms
that test for the absence of P4’s also go by the name of “Cograph recognition algorithms”.
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Figure 6.5: Run of Corneil et al. [1985]’s algorithm to generate the co-tree for
result tuple r in Figure 6.2. In each iteration, an ellipse depicts the variable
being added and the asterisks denote its neighbors already present in the
tree.



at the case of generating read-once functions for result tuples produced
by conjunctive queries without self-joins, also known as select(distinct)-
project-join or SPJ queries. Essentially, we show that for conjunctive queries
without self-joins, the normality check at the end is not required. Conjunc-
tive queries form a large fragment of relational algebra (or SQL) and other
works have also concentrated their efforts on this subclass of queries [Dalvi
and Suciu, 2004; Olteanu and Huang, 2008]. We first define our notion of
conjunctive queries.

Let A denote an attribute. An atomic formula is a predicate of the form
A op B where B is either an attribute or a constant conforming to the type
of A and op is any binary operator conforming to the same type such as
=, >,<, 6= etc. A conjunctive query q without self-joins is a relational algebra
query that involves the three operators σ, ./ and

∏
, where the joins are

among distinct relationsR1, . . . Rk. We refer to the relations in q byRels(q).
We allow join and selection predicates of the form c1 ∧ c2 . . . ∧ cn, where
each ci is an atomic formula. Note that if the final set of projected attributes
in q is empty then we refer to it as a boolean conjunctive query. Also note
that we allow operators besides equality in our selection and join predicates
which makes our definition of conjunctive queries more general than what
is usually considered.

As earlier, we will denote by r the input result tuple (whose marginal
probability we would like to compute), by φ its boolean formula (which
we would like to factorize) and by Gφ its co-occurrence graph. We may
also abuse notation and refer to the result tuple by its formula φ whenever
it is clear from the context. A clause C = x1x2 . . . xn is a conjunction of
multiple boolean variables. A monotone clause is one where all variables
appear in their positive form, no negations. We will often refer to a clause
as a set of variables. Further, since the variables in φ come from tuple-
existence random variables, we will denote the relation of variable x by
Rel(x). We will also frequently refer to φ’s dnf form by φdnf . Since we
consider conjunctive queries without self-joins, φdnf has a very uniform
structure:

Definition 10 (k-monotone dnf). Given conjunctive query q without self-joins
and any result tuple φ produced by it, φdnf is a k-monotone dnf where every clause
is monotone (or unate), contains exactly one variable from each relation inRels(q)
and is of size k where k = |Rels(q)|‡.

Given that conjunctive queries do not allow negations, it follows that

‡These observations have been made in prior work [Re and Suciu, 2008].
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the result tuples we will be dealing with are automatically unate (variables
appear only in their positive form). We next show that P4-free result tuples
produced by conjunctive queries without self-joins are guaranteed to be
normal. This implies that when we are generating read-once functions for
such result tuples, the only operation we need to do is check for P4’s and
generate the co-tree corresponding to its read-once expression. The other
steps for generating read-once functions are not required and this should
help make our approach much more efficient. We next make an observa-
tion about result tuples produced by conjunctive queries and then prove a
lemma which will allow us to prove our main result.

Property 2 (Conjunctive Query Clique Structure). Given a result tuple r pro-
duced by a conjunctive query q without self-joins along with its formula φ, the set
of variables C = {x1, . . . x|Rels(q)|} represents a clause in φdnf iff C is a clique in
Gφ.

Proof. Note that if C is a clause in φdnf then it has to be a clique in Gφ by
construction. The other way is also easy. An edge between two variables
a, b inGφ implies that the corresponding tuples satisfy all join and selection
predicates in q, and agree with r on all of the final projected attributes (if a
or b have any of those). Thus, a |Rels(q)|-sized clique in Gφ implies that all
member variables’ tuples satisfy all predicates associated with the query
and agree with r’s values, and should produce an intermediate join tuple
and thus should appear as a clause in φdnf .

Lemma 6.5.1. Let φ denote a result tuple produced by a conjunctive query q with-
out self-joins. Let Rels(q) = {R1, . . . R|Rels(q)|}, and a ∈ R1 and b ∈ R2 de-
note two variables in φ. Let C1, C2, C3 denote three clauses in φdnf such that
a ∈ C1 63 b, a /∈ C2 3 b and a, b ∈ C3. If φ is P4-free then ∃ clause C4 in
φdnf that contains both a, b and w3, . . . w|Rels(q)| such that either wi ∈ C1 or
wi ∈ C2,∀i = 3, . . . |Rels(q)|.

Proof. Let us begin by completing clauses C1, C2:

• C1 = {a, b′, x3, . . . xn, zn+1, . . . z|Rels(q)|}, b′ 6= b

• C2 = {a′, b, y3, . . . yn, zn+1, . . . z|Rels(q)|}, a′ 6= a

where a, a′ ∈ R1, b, b′ ∈ R2, xi, yi ∈ Ri, xi 6= yi,∀i = 3, . . . n and zi ∈
Ri,∀i = n + 1, . . . |Rels(q)|. The x’s and y’s denote the variables in which
C1 and C2 differ, besides a and b. z’s denote the variables they share in
common. Further note that n can be either 2 or |Rels(q)|.
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First note that if neither edge xi − b nor yi − a exists, then Gφ has a P4:

xi /−yi ∵ Rel(xi) = Rel(yi), no self joins
xi − a ∵ {xi, a} ⊂ C1

yi − b ∵ {yi, b} ⊂ C2

a− b ∵ {a, b} ⊂ C3

xi

a b

yi

Now consider the following selection procedure that picks variables
from {x3, . . . xn} and {y3, . . . yn}:

if edge xi − b exists in Gφ then pick xi, else pick yi

Note that, once we have picked a set of x’s and y’s, we will have picked
a variable from each relation Ri, i = 3, . . . n. Also, note that, if among the
chosen variables there exists a pair of xi ∈ Ri and yj ∈ Rj (i 6= j) such that
xi /−yj in Gφ, then we have a P4:

xj /−yj ∵ Rel(xj) = Rel(yj)
xj − xi ∵ {xi, xj} ⊂ C1

xj /−b ∵ otherwise we would pick xj , not yj

xi − b ∵ otherwise we would not pick xi

yj − b ∵ {b, yj} ⊂ C2

xj

xi b

yj

Thus, if φ isP4-free, then the chosen x’s and y’s, along with a, b, zn+1, . . . z|Rels(q)|
form a |Rels(q)|-sized clique in Gφ, and by Property 2 that means this set
of variables forms the clause C4 we need.

Proposition 6.5.1. Let φ be a k-monotone dnf produced by some conjunctive
query q without self-joins. If φ is P4-free then φ is normal.

Proof. Assume the contrary, i.e., let φ be P4-free but not normal. This means
that φ should have a distributed 3-clique, in other words, φ has at least three
clauses C1, C2, C3 such that a, b ∈ C1, c /∈ C1; b, c ∈ C2, a /∈ C2; c, a ∈ C3, b /∈
C3 but no clause C such that a, b, c ∈ C. However, by Lemma 6.3.1, since φ
is P4-free there should be another clause C ′ that contains a, b and variables
exclusively from C2 and C3. This means C ′ also contains c and hence we
have a contradiction.
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X: A1 B1

x1 3 4
x2 1 2

Y: A2

y1 1
y2 3

Z: B2

z1 2
z2 4

q() :− X(A1,B1), Y (A2), Z(B2),
A1 = A2 ∨B1 = B2

r = x1y1z2 + x1y2z1

+x1y2z2 + x2y1z1

+x2y1z2 + x2y2z1

z1

z2y2

y1

x2x1

Figure 6.6: A disjunctive query where Proposition 6.3.1 does not hold.

6.6 Discussion

Having considered the case for conjunctive queries, the next obvious ques-
tion is whether we can do something similar for queries with disjunctions.
Some disjunctions can be allowed in the queries we considered in this chap-
ter without breaking any of our results. For instance, if the cumulative
join predicate in the query is such that it can be partitioned into a conjunc-
tions of smaller formulas c1 ∧ c2 . . . cm such that each formula ci involves
attributes from only two relations then allowing disjunctions inside each
ci still allows us to use our efficient read-once function building approach.
However, if a disjunction appears between any of the ci’s, then seemingly
innocuous queries produce cases where our results do not hold. Figure 6.12
shows one such case, where we have a three relation join boolean query and
the join predicate involves a disjunction among attributes from three sepa-
rate relations A1 = A2 ∨B1 = B2. The result tuple φ’s co-occurrence graph
turns out to be the complete graph minus the edges connecting tuples from
the same relation (x1 /−x2, y1 /−y2, z1 /−z2), which means it is P4-free. But
there are clauses which are not present in φdnf , x1y1z1 and x2y2z2, imply-
ing φdnf is not normal which means that Proposition 6.3.1 does not hold.

Even though our discussion throughout the chapter mainly involved
tuple-independent probabilistic databases, the techniques we proposed are
likely to be useful for databases with correlated tuples also. In this case, our
techniques can be used to convert the part of the graphical model generated
during query evaluation into a tree. It is easy to show that the combined
treewidth of the complete probabilistic graphical model thus produced (in-
cluding the probabilistic graphical model among the base tuples and the
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part constructed during query evaluation) is not larger than the treewidth
of the graphical model that would have otherwise been produced.

6.7 Conclusion

In summary, we considered the problem of efficiently evaluating queries
over tuple-level uncertainty probabilistic databases. For such databases,
every result tuple is associated with a boolean formula and the problem re-
duces to computing the marginal probabilities of the result tuples returned
by the query. Previously proposed approaches to this problem have either
resorted to the use of expensive (exact/approximate) inference algorithms
or concentrated on a subset of the query language that allows efficient eval-
uation. In this chapter, we build on the latter approach by going beyond
just looking at the query to decide whether it is PTIME-solvable or not. In-
ference problems arising out of query evaluation on probabilistic databases
are a combination of both the query and the database. If the result tuple’s
formula can be factored into a tree-structured form, then computing its
marginal probability is in PTIME. We proposed efficient algorithms that
return such a factorization if it exists.
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Chapter 7

Conclusion

In this dissertation, we presented (a few of) the nuts and bolts that may one
day form part of a system that can manage uncertain data. Here, we briefly
summarize the main contributions made and list a few or the broader, more
compelling, possible avenues for future work.

7.1 Summary of Contributions

Here is a brief listing of the major contributions made in this dissertation:

• We began by showing how the concept of probabilistic graphical mod-
els from the machine learning literature, can be utilized in proba-
bilistic databases as a means of modeling uncertainty associated with
data. We showed that probabilistic databases based on probabilis-
tic graphical models have precise and intuitive semantics in terms of
possible worlds, that every query posed on such a database has pre-
cisely defined answers.

• We showed how queries can be evaluated under such a setting by
first generating an augmented probabilistic graphical model and then
running probabilistic inference on it. We illustrated the generality of
our approach: for any query a PGM can be generated on which we
simply need to run inference to obtain the desired results. This also
allowed us to utilize any inference algorithm (exact or approximate)
developed previously to build our query evaluation engine.

• We then proceeded to generalizing our representation for modeling
uncertainty. Instead of using standard graphical models (such as
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Bayesian networks and Markov networks), we motivated the use of
first-order probabilistic graphical models (such as probabilistic re-
lational models and Markov logic networks). First-order graphical
models represent one of the more popular approaches to modeling
uncertainty not only due to their compactness and ease of mainte-
nance, but also because they are easier to estimate statistically.

• First-order graphical models provide symmetry in the form of shared
correlations. We designed a inference procedure that exploits shared
correlations to perform large-scale inference efficiently for evaluating
queries in probabilistic databases. Not only that, our inference proce-
dure is general enough so that it can be applied to any probabilistic
graphical model. It also subsumes inversion elimination, a popular
lifted inference procedure developed in the machine learning com-
munity.

• We generalized our lifted inference scheme to be able to perform
faster, approximate lifted inference. We introduced two different tech-
niques to do this. Moreover, both techniques can be combined, and
along with bounded complexity inference techniques, they form the
core of a unified lifted inference scheme that lets the user specify
her/his desired level of lifting, approximation and complexity of in-
ference through the use of a handful of tunable parameters.

• Finally, we designed a novel query evaluation scheme where we first
attempt to reorder the probabilistic graphical model produced during
query evaluation so that we get an optimal, tree-structured graphical
model (if one exists) on which we can efficiently run inference. This
has the potential to reduce an intractable query evaluation problem
to a tractable one.

7.2 Avenues for Future Work

Due to the almost ubiquitous need to model uncertainty for large scale
data, we believe, probabilistic databases are going to be an overwhelming
driving force behind database and machine learning research in the near
future. Besides the aspects of user interfacing and query languages that
require our immediate attention, we list below some of the main research
areas that, we think, are of specific interest.
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Information Integration and Information Extraction Two of the main
applications that can immediately benefit from the application of proba-
bilistic databases are information extraction and information integration.
These two areas have been of interest to researchers for a long period of
time, however, neither is close to being solved. Most machine learning ap-
proaches to solving these problems face issues when scaling to large data
sets and most solutions proposed by the database community tend to ig-
nore the rich correlations that can help achieve good quality solutions. By
looking at these problems from the point of view of probabilistic databases,
perhaps for the first time, we can deal with these issues in uniform and
principled manner to achieve practical solutions that can immediately ben-
efit many applications.

Efficient Algorithms for Lifted Inference Our original work on lifted in-
ference just scratches the surface of this very exciting field. Recall that, the
techniques introduced in Chapter 4 subsume inversion elimination, and in
Chapter 5 we proposed algorithms for approximate lifted inference. In fu-
ture, we would like to explore whether other kinds of lifted inference can
be included into our general framework. Foremost on this list would be ex-
tending our approach to include counting elimination [de Salvo Braz et al.,
2005] and counting formulas [Milch et al., 2008], which are techniques that
may, in some cases, lead to exponential speedups during inference, if im-
plemented properly.

Unifying Uncertainty Model Description and Query Evaluation Most
probabilistic databases allow the user to express queries in a high-level
logic-based language (usually SQL, barring a few exceptions), but do not
allow declarative specification of the uncertainty model. Machine learning
researchers, on the other hand, regularly use first-order logic to describe
the uncertainty models but rarely allow the use of a high-level declarative
language for querying purposes. We would like to explore the interplay
between these two aspects in the context of use in probabilistic databases
since we believe both are essential for a system to be usable. To the best of
our knowledge, there is no work to date that has systematically explored
the expressiveness of the various languages used to describe uncertainty
models, and we would also like to explore if such high level model de-
scriptions can be exploited to make query processing more efficient.
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Approximate Inference Algorithms based on Generalizations of Read-
Once Functions Following our work described in Chapter 6, where we
showed how to generate a tree-structured PGM given a query, the next ob-
vious question to follow would be: What if a tree-structured PGM does not
exist? In such cases, it may be possible to construct a PGM that is “close”
to being tree-structured which may help run inference fast with reasonably
accurate query results. There is ample work in the graph theory community
on generalizations of P4-free graphs (such as P4-tidy graphs [Giakoumakis
et al., 1997]) that may lead us to novel approximate query evaluation algo-
rithms which have not been seen before in the database or machine learning
communities.

7.3 Conclusion

One of the over-arching themes underlying this dissertation has been to ex-
plore the synergy between related fields of research. Probabilistic databases
is a topic that lies at the intersection of database research, machine learning
and graph theory. Even though the challenges in working under such a
setting are obvious, one needs to have expertise on not one but each of the
related fields to be able to produce original, useful research, the rewards
are also plentiful. Among the various pieces of work that form parts of this
dissertation, perhaps the most rewarding are the ones that find use beyond
just that of probabilistic databases. For instance, our work on lifted infer-
ence (Chapter 4 and Chapter 5) are of obvious interest to the machine learn-
ing community, our work on altering the structure of the PGMs to produce
read-once functions may find use in the statistical relational learning com-
munity where people have recently begun to investigate the use of declara-
tive querying (e.g., the ProbLog system [De Raedt et al., 2007]). This seems
to be true for most work done in the context of probabilistic databases, and
that, we believe, is what makes it worthwhile working in such an multi-
disciplinary environment. We hope that further research with the canvas of
probabilistic databases as the background will lead to more synergy among
related research communities and will eventually lead to a system that can
efficiently handle large-scale uncertain data.
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