
Link-based Classification

Prithviraj Sen ∗

sen@cs.umd.edu

Lise Getoor ∗

getoor@cs.umd.edu

Abstract

Over the past few years, a number of approximate inference algorithms

for networked data have been put forth. We empirically compare the

performance of three of the popular algorithms: loopy belief propagation,

mean field relaxation labeling and iterative classification. We rate each

algorithm in terms of its robustness to noise, both in attribute values and

correlations across links. We also compare them across varying types of

correlations across links.

1 Introduction

Traditional machine learning classification algorithms attempt to classify data
organized as a collection of independent and identically distributed samples.
Most real world data, on the other hand, is relational where different samples
are related to each other. Classification in the presence of such relationships
requires that we exploit correlations present in them. Link-based classification
is the task of classifying samples using the relations or links present amongst
them.
In link-based classification, more often that not, the hypothesis is that the

classifications of linked entities are correlated. This creates a problem since
when classifying entity 1 we need the classification of entity 2 and when classi-
fying entity 2 we need the classification of entity 1, where entities 1 and 2 are
two linked entities. Such interactions render most traditional classification al-
gorithms ineffective. A prime objective of link-based classification has been the
development of novel inference methods or collective classification algorithms
that allow us to classify multiple entities in a joint fashion.
In many cases, link-based classification needs to be applied to data where

the link structure harbours cycles. For example, it is commonly believed that
webpages hyperlink to other webpages with similiar topics. Quite often webpage
A hyperlinks to webpage B which hyperlinks to webpage C and C hyperlinks
back to webpage A producing a cycle in the link structure. If we are to use
the hyperlink structure to classify webpages with their topic labels we need to
deal with cycles of this kind. Moreover, such link-based classification problems
usually needs to be applied to data which consists of tens of thousands of in-
terconnected samples forming an irregular graph. With graphs of such size,
consisting of cycles and no apparent structure, it becomes infeasible to apply
exact inference and one usually resorts to approximate inference. Even though

∗Department of Computer Science, University of Maryland, College Park, MD 20742.

1

approximate inference does not promise exactness, it helps keep the compu-
tation and time requirements tractable. A number of approximate collective
classification algorithms (ACCA) have been proposed. In this report, we aim
to study and compare these inference algorithms on the task of classification in
irregular graphs.
Studies comparing CCAs have been performed before but in different con-

texts. Murphy et al. [15] studies the performance of loopy belief propagation
on various networks with loops. Their aim was to find out if loopy belief prop-
agation can indeed approximate the posterior marginal probabilities in graphs
with loops. Murphy et al. does not compare loopy belief propagation to other
approximate CCA. Similarly, Jensen et al. [11] attempts to compare various
classifiers for relational data where each classifier has a different set of features.
Our aim is to compare the CCAs in a fair setting where each CCA is used to
learn a classifier with the same number of parameters and features.
In this report, we aim to empirically study three of the most popular AC-

CAs available, viz. loopy belief propagation (LBP), mean field relaxation label-
ing (MF) and iterative classification algorithm (ICA). All three ACCAs can be
viewed as message passing algorithms that proceed in rounds where each round
consists of a set of messages being passed around. In ICA, each message is a
class label and in each round of message passing each node asks for its neigh-
bours current best guess of classification. After attaining the class labels in
its neighbourhood the node refines its guess for its own class label. Mean field
also proceeds in rounds of message passing where each node asks its neighbours
for their probability distribution over class labels instead of just a class label.
Having obtained the probability distribution of each and every neighbour the
node recomputes the probability distribution over its own set of labels. LBP
also proceeds in rounds of message passing like the previous two but is more
sophisticated compared to ICA and MF on two counts. First, in each round
of message passing each node asks its neighbour for a probability distribution
over the set of class labels but this distribution consists of the beliefs for the
node itself. More specifically, in a particular round of messages, node i would
ask its neighbour node j for the set of probabilities of node i being labeled with
label c for each c in the set of labels. Further, the neighbour would compute
the probability distribution without taking into account the message it received
from the node its going to send its messages to. Neither ICA nor MF makes
this distinction and all computations are done based on all messages received
till that point. It remains to be seen whether such sophistications in the case
of LBP (that add considerable complexity both in time and space) allow it to
perform better than its competitors.
We make minimal assumptions about the background of the reader and

describe each ACCA before describing our experiments. Note that even though
the developers of these algorithms suggest using them for inference in irregular
graphs, usually the experiments they report are on regular graphs like 2-D grids
([29]). Our aim is to compare the performance of the ACCAs on the task of
link-based classification in irregular graphs possibly consisting of cycles.
All three algorithms we compare here began as heuristics. Two of these have

subsequently been justified by theory (MF and LBP) and there is some under-
standing as to what they are trying to do. We would like to investigate if this
justification in theory translates to better performance in practice. Moreover,
none of the algorithms we discuss in this report have a proof of convergence, in

2

reality they do not converge on many occassions. One of the goals of this report
is to identify the accuracy and convergence properties of the various algorithms
with changing graph characteristics.
Contributions of this report:

• A description of the link-based classification problem with various exam-
ples explaining its different applications.

• A description of three of the most popular and simple CCAs available.

• Experiments on synthethic datasets consisting of irregular graphs compar-
ing the various ACCAs’ accuracies on the task of classification and their
convergence properties. We compare the effects of changing various graph
characteristics (like link density) on the different ACCAs.

• Experiments comparing the performance of various ACCAs on synthetic
datasets with different link patterns.

• Experiments on classification with real-world datasets composed of irreg-
ular graphs.

• Identification of the strengths and weaknesses of the various ACCAs com-
pared and directions for future work.

In the next section we begin by introducing some notation and discussing
the basic link-based classification problem. In Section 3 we introduce two of the
common forms of input used to invoke various CCA. In Section 4, we discuss,
in depth, four of the commonly used ACCAs. In Section 5, we discuss the
classifiers and learning algorithms we used to test the ACCAs we discussed.
In Section 6, we provide our experimental results. Section 7 provides a brief
summary of the related work in link-based classification.

2 Problem Formulation

In the link-based classification problem, we have a data graph Gd = (Od,Rd)
composed of a set objects Od connected to each other via a set of relationships
Rd. The task is to label the members of Od from a finite set of categorical
values.
To define a probabilistic model for classifying such relational data Gd we

will define a graph G = (V,E) composed of a set of random variables V and a
set of links E. Each random variable v ∈ V corresponds to an object od ∈ Od

and v can be assigned values from the set of labels that od can be labeled with.
Let v denote an assignment to V. The set of links E which interconnect V is
derived from the set of relationships Rd amongst Od and we will assume that
we know the mapping to derive the set of links E from Rd, Od and V. One
common approach is to take the set of relationships Rd to be the set of links
E, in other words, we define a link e ∈ E between random variables vi, vj ∈ V
for every relationship rd ∈ Rd which exists between the corresponding objects
odi , o

d
j ∈ O

d. For each edge e ∈ E we denote its head by e.head and its tail by
e.tail.
For the purposes of classification we are usually interested in conditional

probability models. LetX be the set of observed random variables or “evidence”

3

random variables whose assignments can be obtained by simply observing the
data Gd. Let x denote an assignment to X. Let Y be the set of target random
variables whose assignments are not present in the data Gd and need to be
determined. Let y denote an assignment to Y. Note that X and Y are such
that X ∪Y = V and X ∩Y = ∅.

Let L denote the set of categorical values we can label V with. Each v ∈ V
is typed and v.T denotes the type of v. We are given the possible types Tv.
Each type v.T is observed and is derived from the corresponding object in Od.
Each l ∈ L is also typed with l.T ∈ Tv. Any y ∈ Y can be labeled with l ∈ L if
and only if l.T = y.T . Further, each e ∈ E is typed and e.T denotes the type of
e. We are given the possible types Te and each type e.T is observed. Note that
Te can be different from Tv.

In this report, we consider the problem of supervised classification which can
be formulated in the following two distinct ways:

• Training with fully labeled dataset: We are given two disjoint instances
of relational data from which we derive two graphs composed of random
variables interconnected by links Gtrain = (Vtrain,Etrain) and Gtest =
(Vtest,Etest). Gtrain is a fully labeled dataset where we are given the cor-
rect labeling assignment ytrain whereas, the correct labels for Gtest are
unknown and need to be determined. Our task is to learn a probability
distribution which assigns the maximum probability to the correct label-
ing assignment from the fully labeled training data Gtrain and then apply
this learned probability distribution to determine the most likely label-
ing assignment for Gtest. In this case there are two separate steps, one
where we learn the distribution and two, where we apply it. Also note
that Gtrain and Gtest are distinct graphs which don’t share anything in
common, in particular they have distinct link structures which slightly
complicates the issue since we now need to decide what we need to learn
from (Gtrain,ytrain) so that the learned distribution can be applied to the
completely different graph Gtest.

• Using a partially labeled dataset: We are given an instance of relational
data from which we derive a graph G = (V,E) composed of random
variables interconnected by links. We are also given the correct labels
ytrain for a subset of the target random variables Ytrain ⊆ Y ⊆ V.
We need to determine the correct labels for the remaining target ran-
dom variables Ytest = Y − Ytrain. Note that in this formulation, un-
like the former, we do not have two distinct steps, instead we have only
one fully integrated step where we determine the most probable label-
ing assignment to Ytest. Also note that we can, if we want, convert
this problem into an instance of the former formulation. One could ex-
tract the part of the graph composed entirely of Ytrain and the edges
Etrain = {e|((e.head ∈ Ytrain)∧(e.tail ∈ X))∨((e.tail ∈ Ytrain)∧(e.head ∈
X)) ∨ ((e.tail ∈ Ytrain) ∧ (e.head ∈ Ytrain))} to form Gtrain which is now
fully labeled. Similarly we can form Gtest which contains all the target
random variables that require labeling. But, as should be apparent, this
results in the loss of certain edges, viz. those which connect members
of Ytrain to members of Ytest, which might be invaluable for the task of
classification.

4

To ground the above discussion we now present a few examples.

Example [Hypertext Classification]. Consider the webpage classification
problem where Gd is composed of webpages, the words in the webpages and the
hyperlinks amongst webpages. If we use the bag of words model, every webpage
would have a set of boolean valued word attributes where the ith attribute is an
indicator variable indicating the presence or absence of the ith word in the dic-
tionary. To define G, we begin by defining V. We introduce a random variable
for every webpage which can take values from the set of class labels defined by
the user. Each word attribute is represented by a binary valued random vari-
able in G. The set of all random variables corresponding to the webpages and
their word attributes constitute V. It is common practice to introduce an edge
in G between two document random variables if there exists a hyperlink be-
tween the corresponding webpages. E also contains edges connecting document
random variables to its binary valued word random variables. This forms the
edge set E. Thus G, in this case, is made of two types of random variables and
Tv = {’word’, ’document’}. Given a collection of interlinked webpages, our aim
is to classify them with their correct class labels. Suppose we want to classify
the webpages either as a student homepage or a faculty homepage, then, in this
case L = {’student’, ’faculty’, ’present’, ’not present’} where ’student’.T = ’fac-
ulty’.T = ’document’ and ’present’.T = ’not present’.T = ’word’. We assume
that the content of each webpage is observed and so, all v ∈ V such that v.T =
’word’ are included in the set of observed random variables X. The unobserved
random variables which we want to label are the ’document’ random variables
with unobserved topic labels and these form the set Y. In this case, we have two
types of edges with Te = {’content’, ’hyperlink’}. Every e ∈ E which connects
a ’document’ node to a ’word’ node is of type e.T = ’content’ and every e ∈ E
which is a consequence of a hyperlink is of type e.T = ’hyperlink’.

Example [Hypertext Classification contd.]. Besides the inclusion of hy-
perlinks one might also want to add ’co citation’ links to the above example.
Here we need to augment Te with the type ’co citation’. A ’co-citation’ link con-
nects two random variables vi, vj ∈ V if vi.T = vj .T = ’document’ and ∃vk ∈ V
along with er, es ∈ E such that vk.T = ’document’, er.head = vi, er.tail = vk
and es.head = vj , es.tail = vk. Note that two nodes of type ’document’ can
have both an ’hyperlink’ and a ’co-citation’ between them.

Example [Bibliographic Classification]. The previous examples dealt with
“homogeneous” target random variables, in other words, we needed to deal with
only one type of target random variable. Consider the problem of classifying
scientific publications or bibliographic datasets. In this domain, Gd consists of
a set of scientific publications, the words in the publications and the authors
who wrote the publications. Each publication is related to other publications
via citations or references. A publication is also related to the authors who
wrote the document. The set V consists of the random variables corresponding
to each publication and each author in the corpus. As before, we also have in
V observed random variables denoting the set of words in the corpus. Thus
Tv = {’word’, ’publication’, ’author’}. In this problem not only do we want to
classify each document by assigning it a topic label but we also want to label
each author with the topic s/he publishes most often about. So Y consists of
the set of random variables corresponding to each author and each publication

5

in the corpus. Suppose we consider classifying authors with one of two topic
labels ’rule-based AI author’ and ’probabilistic author’ besides having two topic
labels to label the publications with. Thus the label set is L = {’rule-based AI
author’, ’probabilistic author’, ’rule-based AI publication’, ’probabilistic publi-
cation’ ,’present’, ’not present’} with ’rule-based AI author’.T = ’probabilistic
author.T’ = ’author’, ’rule-based AI publication’.T = ’probabilistic publica-
tion.T’ = ’publication’ and ’present’.T = ’not present’.T = ’word’. E is also
considerably richer with atleast three different types of edges Te = {’content’,
’citation’, ’authorship’} where the ’authorship’ links connect the authors to their
publications, ’citation’ links connect publications which cite one another and the
’content’ links connect publications to their word attributes. As before we can
make E even richer by adding more types of links to it.

Example [Social Networks]. All the above examples considered relations
which do not have features. Here we describe an example where the relations
have descriptive attributes. This particular example (Taskar et al. [24]) also
shows how a link-prediction problem can be posed as link-based classification
problem. Consider the problem of predicting friendship-bonds. In this problem
we introduce a random variable for every potential friendship-bond in the data
graph Gd. Thus if there are N friends then we have N 2 random variables. One
could imagine using a host of descriptive attributes to predict the existence of
friendship-bonds. Just as we used binary valued random variables to represent
words in documents in the above examples, one could use binary valued random
variables which denote the mis/match of hobbies for each friendship-bond ran-
dom variable. For example, suppose we want to consider using soccer as a hobby.
So if both the people at either ends of the friendship-bond variable in question
play soccer then we will denote this by using an observed random variable which
stands for soccer and assign it the value of ’present’. We could use many such
hobbies and use them as descriptive attributes for the friendship-bond random
variables. For two friendship-bond random variables which emanate from the
same person we place a link in G. As stated earlier, the links in this example
have descriptive attributes. Any useful attribute of the person which might help
in predicting her/his friendship-bonds might be used as descriptive attributes
for the links in this example. For example, suppose the people on whom this
data is based on are mainly composed of students then the student’s major
might provide important evidence. It is conceivable that students majoring
in a certain subject (say Humanities) might have more friends on an average
than students majoring in a different subject (say Computer Science). Such
attributes are, in fact, attributes of the links.
Thus, if we have N students in Gd then we have N2 binary valued ran-

dom variables for the potential friendship-bonds which form Y. X is com-
posed of each of the random variables which record hobby-matches between
two people and the random variables which denote the subjects the students
major in. Thus Tv = {’hobby’, ’major’, ’friendship-bond’}. The label set is
L = {’major-present’, ’major-absent’, ’hobby-match’, ’hobby-mismatch’, ’bond-
present’, ’bond-absent’} with ’major-present’.T = ’major-absent’.T = ’major’,
’hobby-match’.T = ’hobby-mismatch’.T = ’hobby’ and ’bond-present’.T = ’bond-
absent’.T = ’friendship-bond’. We have a link between every pair of friendship-
bond random variables which emanate from the same person, thus we have
N(N − 1)(N − 2)/2 edges in E besides the edges connecting the random vari-

6

ables in Y to random variables in X. Thus, in this case, Te = {’person’,
’hobby’, ’major’} where ’person’ links connect ’friendship-bond’ random vari-
ables to other ’friendship-bond’ random variables, ’hobby’ links connect ’hobby’
random variables to ’friendship-bond’ random variables and ’major’ links con-
nect ’major’ random variables to the ’friendship-bond’ random variables at the
ends of the ’person’ links which they describe.

For the purposes of comparing various approximate collective classification
algorithms (ACCA) we test each algorithm on a simplified version of the link-
based classification problem:

• We will address the problem for homogeneous data where we have only
one type of target random variables. In other words, |Tv| = 2, containing
a type for the target random variables and another type for the observed
random variables.

• We will restrict ourselves to two types of links, or |Te| = 2, containing a
type for the edges which connect the target random variables to observed
random variables and another which connects the target random variables
to other target random variables.

• In quite a few cases, due to various reasons, it becomes necessary to con-
sider interactions amongst three or more random variables. For brevity,
we will not consider correlations beyond labels of two random variables
and will restrict ourselves to pairwise interactions.

Moreover, we will only consider the supervised classification scenario where
we treat training and testing as two separate steps (training with fully labeled
dataset). Using a partially labeled dataset is an interesting and, computation-
ally, harder problem but we do not present experiments for it in this report.
Throughout the report, we will use the notation introduced in this section.

Table 1 lists the important symbols for quick reference.

3 Input to Collective Classification Algorithms

Every collective classification algorithm (CCA) assumes some organization of
the input. The input to a CCA can roughly be divided into a qualitative part
and a quantitative part. The qualitative part consists of the graph of random
variables G = (V,E). The quantitative part consists of a set of parameters.
All three approximate collective classification algorithms (ACCAs) we discuss
share the property of being iterative. In each iteration, the ACCA goes through
G performing computations involving the G and the set of parameters. Each
ACCA assumes a different set of parameters with various assumptions and se-
mantics. Here we discuss the forms of input assumed by the ACCAs discussed
in Section 4. Note that there are many other forms of input specific to CCAs
not discussed here. We do not discuss those forms in this report.

3.1 Conditional Markov Networks

Markov Networks are undirected graphical models and have been used as input
to CCAs. We review the basic definitions from Taskar et al. [19]. For a graph

7

Symbol used Definition

G the graph formed by random variables
V set of random variables in G
E set of edges in G
Y the set of target random variables which

require labeling
X the set of observed random variables

whose values are known
v a complete assignment to V
y a complete assignment to Y
x a complete assignment to X
Vi the ith member of V
Yi the ith member of Y
Xi the ith member of X
yi the label assigned to Yi
C the set of labels we can label each Yi ∈

Y with

Table 1: Notation used throughout this report

G = (V,E), a Markov Network defines a joint distribution over V. It consists of
the qualitative component G, which is assumed to be an undirected dependency
graph, and a quantitative component, a set of parameters associated with the
graph. Central to a Markov Network is the concept of a clique. A clique is
a set of nodes denoted by Vc ⊆ V, not necessarily maximal, such that each
Vi, Vj ∈ Vc are connected by an edge in E. Note that a single node can also be
considered a clique.

Definition [Markov Networks]. Let G = (V,E) be an undirected graph with
a set of cliques C(G). Each c ∈ C(G) is associated with a set of nodes Vc and
a clique potential ψc(Vc), which is a non-negative function defined on the joint
domain of Vc. Let Ψ = {ψc(Vc)}c∈C(G). The Markov network (G,Ψ) defines

the distribution P (v) = 1
Z

∏

c∈C(G) ψc(vc), where v denotes an assignment
to V, vc denotes an assignment to Vc and Z is the partition function Z =
∑

v′

∏

c∈C(G) ψc(v
′
c).

For link-based classification, we will primarily be interested in conditional
markov networks which are simply markov networks renormalized given X, the
set of observed random variables, to produce a conditional distribution.

Definition [Conditional Markov Networks]. A conditional markov net-
work is a markov network (G,Ψ) which defines the distribution P (y|x) =

1
Z(x)

∏

c∈C(G) ψc(x,yc) where Z(x) is the partition function now dependent on

x: Z(x) =
∑

y′

∏

c∈C(G) ψc(x,y
′
c).

For simplicity we will only use pairwise interactions which can be represented
by Pairwise Markov Networks. Pairwise Markov Networks are markov networks
whose set of cliques is composed of the target random variables and the set of
edges in the graph, C(G) = Y∪E. We use (Yi, Yj) ∈ E to denote a clique formed
by Yi, Yj ∈ Y and ψi,j(yi, yj) to denote the corresponding clique potential.

8

In a Pairwise Markov Network, for each node clique potential, it is possible to
absorb the evidence for Yi to form a new clique potential denoted by φi(Yi = yi):

φ(Yi = yi) = ψi(yi)
∏

e=(Yi,Xj)∧e∈C(G)

ψe(yi, xj)

This will help simplify notation when we discuss the various ACCAs.

3.2 Neighbourhood based formulations

Another common way to present input to a CCA is to describe each random
variable in terms of its neighbours in G. Let N (Yi) = {V |V ∈ V, (Yi, V) ∈ E}
denote the set of neighbours of Yi in G. The qualitative part of the input
is represented by the collection of target random variables which need to be
classified Y and for each Yi ∈ Y, N (Yi) its set of neighbours in G.
The quantitative part of the input consists of a function g(y|vN (Yi);w) which

can compute the probability of an assignment to Yi given the assignments to its
neighbourhood pr(Yi = y|vN (Yi)). w is the set of parameters to the function g
which we refer to as the ”local classifier”.
A major difference between the previous input formulation in terms of markov

networks and this one is that, a neighbourhood based formulation does not as-
sume a form of the distribution for the local classifier whereas a markov network
imposes an exponential distribution. Thus, if in some domain there is reason
to believe that a particular classifier might perform well, a CCA which assumes
input organized according to the neighbourhood based formulation has a bet-
ter chance to incorporate the classifier than a CCA which assumes a markov
network.

4 Collective Classification Methods

The most important step in link-based classification is to determine the set of
labels y to the target random variables Y which minimizes the zero-one loss or
error-rate, in other words, the number of incorrect classifications. Any algorithm
which does this using the links E in G is called a collective classification algo-
rithm (CCA). Link-based classification usually involves data with large graphs
and exact inference is seldom tractable. Any algorithm which finds the opti-
mal set of labels approximately is called an approximate collective classification
algorithm (ACCA).
In this section we discuss three of the most popular ACCAs used to determine

the most probable assignment to each target random variable inG. Each of these
algorithms assume a slightly different input. For each algorithm we will first
describe the input, then the algorithm and finally, the algorithm’s justification
if there exist any.

4.1 Loopy Belief Propagation (LBP)

LBP assumes that (G,Ψ) is a pairwise Markov Network [19] with C(G) denoting
its set of cliques where Ψ = {ψc(vc)}c∈C(G) is the set of non-negative clique
potentials. We use φi(yi) to denote the modified node clique potentials.

9

4.1.1 The algorithm (Yedidia et al. [30])

LBP is a message passing algorithm and can be expressed as follows:

mi→j(yj) = α
∑

yi∈C

ψi,j(yi, yj)φi(yi)
∏

Yk∈N (Yi)\Yj

mk→i(yi), ∀yj ∈ C

bi(yi) = αφi(yi)
∏

Yj∈N (Yi)

mj→i(yi), ∀yi ∈ C

where mi→j is a message sent by Yi to Yj , α is a generic normalization constant
and N (Y) denotes the set of target random variables in the neighborhood of Y .
The algorithm proceeds by making all the target random variables communicate
messages until the messages stabilize. When the messages stabilize we compute
bi(yi) (approximate marginal probability) for every target random variable Yi
for every label yi and assign Yi the label yi with highest marginal probability.
Algorithm 1 describes the pseudocode.

Algorithm 1 Loopy Belief Propagation

1: for each Yi ∈ Y do {initialize all messages}
2: for each Yj ∈ Y s.t. (Yi, Yj) ∈ C(G) do
3: for each yj ∈ C do
4: mi→j(yj)← 1
5: end for
6: end for
7: end for
8: repeat {perform message passing}
9: for each Yi ∈ Y do

10: for each Yj ∈ Y s.t. (Yi, Yj) ∈ C(G) do
11: for each yj ∈ C do
12: mi→j(yj)← α

∑

yi
ψi,j(yi, yj)φi(yi)

∏

Yk∈N (Yi)\Yj
mk→i(yi)

13: end for
14: end for
15: end for
16: until all mi→j(yj) stop showing any change
17: for each Yi ∈ Y do {compute beliefs}
18: for each yi ∈ C do
19: bi(yi) = αφi(yi)

∏

Yj∈N (Yi)
mj→i(yi)

20: end for
21: end for

4.1.2 Justification for LBP (Yedidia et al. [29])

Yedidia et al. justifies LBP as a variational method and here we review their
justification.
The joint probability distribution defined by a pairwise markov network

([19]) is:

p(y|x) =
1

Z

∏

(Yi,Yj)∈C(G)

ψi,j(yi, yj)
∏

Yi∈C(G)

φi(yi)

10

Energy of a configuration: E(y) = −
∑

(Yi,Yj)∈C(G) logψi,j(yi, yj)

−
∑

Yi∈C(G) log φi(yi)

Helmholtz free energy: FH = − logZ
variational average energy: U(b) =

∑

y b(y)E(y)

variational entropy: H(b) = −
∑

y b(y) ln b(y)

variational free energy: F (b) = U(b)−H(b)

Table 2: Definitions from Yedidia et al. [29]

where Z is a normalization constant known as the partition function:

Z =
∑

y

∏

(Yi,Yj)∈C(G)

ψi,j(yi, yj)
∏

Yi∈C(G)

φi(yi)

To compute the optimal labels ∀Y ∈ Y we need to compute p(y|x) (the
probability of a complete assignment y) and choose the y with the maximum
p(y|x). One way to compute p(y|x) is to use a variational approach by intro-
ducing a trial probability distribution b(y).

In Table 2, we reproduce some of the definitions introduced in Yedidia et al.
[29]. From these definitions it follows that:

F (b) = FH +KL(b||p)

where KL(b||p) is the Kullback-Leibler divergence between b(y) and p(y|x).
Since KL divergence is non-negative, minimizing F (b) with respect to b(y) is an
exact procedure to compute FH and recover p(y|x). But this is too difficult. A
more practical approach is to minimize F (b) over a restricted class of probability
distributions b(y).

Yedidia et al. [30] justifies LBP as a variational method by choosing the
following form for b(Y):

b(Y) =

∏

(Yi,Yj)∈C(G) bi,j(yi, yj)
∏

Yi∈Y bi(yi)|N (Yi)|−1

where bc(yc) denotes the marginal probability of assigning clique c ∈ C(G) labels
yc.

The above distribution is equal to the probability distribution defined by a
pairwise markov network only when G is singly connected or tree structured
([29]). In all other cases it is, at best, an approximation. With this form in

11

mind, we can define the following two quantities:

UBethe = +
∑

(Yi,Yj)∈C(G)

∑

yi,yj∈C

bi,j(yi, yj)[logψ(i,j)(yi, yj)

+ log φi(yi) + log φj(yj)]

−
∑

Yi∈Y

(|N (Yi)| − 1)
∑

yi∈C

bi(yi) log φi(yi)

HBethe = +
∑

(Yi,Yj)∈C(G)

∑

yi,yj∈C

bi,j(yi, yj) log bi,j(yi, yj)

−
∑

Yi∈Y

(|N (Yi)| − 1)
∑

yi∈C

bi(yi) log bi(yi)

Note thatHBethe is quite different fromH(b) we defined earlier (or as Yedidia
et al. puts it, “...the entropy term is incorrect...”). It is another approximation
introduced to provide computational feasibility. Thus the Bethe Free Energy
(FBethe) is defined to be:

FBethe = UBethe −HBethe

The constrained Bethe free energy is defined by enforcing that the trial dis-
tribution obeys the normalization constraints:

∑

yi∈C

bi(yi) = 1, ∀Yi ∈ Y

the marginalization constraints:

∑

yi∈C

bi,j(yi, yj) = bj(yj), ∀yj ∈ C,∀(Yi, Yj) ∈ C(G)

and the inequality constraints:

0 ≤ bi(yi) ≤ 1, ∀yi ∈ C,∀Yi ∈ Y

Yedidia et al. prove that the stationary points of the constrained Bethe
free energy correspond to the fixed points of the LBP algorithm described in
Section 4.1.1.

4.2 Relaxation Labeling

Here we describe two relaxation labeling algorithms. The first algorithm Rosen-
feld et al. [17] was proposed in the vision community and is considered to be one
of the first relaxation labeling algorithms. The second algorithm is also referred
to as Mean Field and has close connections to LBP.

4.2.1 The algorithm (Rosenfeld et al. [17])

This version of relaxation labeling assumes a pairwise markov network as in-
put. Let N (Y) denote set of target random variables in the neighbourhood of
Y , in other words, N (Y) = {Yj |(Y, Yj) ∈ C(G)}. Instead of assuming clique

12

potentials, this version of relaxation labeling assumes a slightly different set of
parameters. We assume that di,j denotes the “importance” of target random
variable Yj ∈ N (Yi) to Yi ∈ Y and that

∑

Yj∈N (Yi)
di,j = 1. di,j may be such

that di,j = di,k ∀Yj , Yk ∈ N (Yi). We also assume that we are given ri,j(yi, yj)
which denotes the “compatibility” of labels yi and yj ∀Yj ∈ N (Yi), ∀Yi ∈ Y.
Further, we assume that ∀Yi, Yj ∈ Y |ri,j(yi, yj)| ≤ 1 ∀yi, yj ∈ C. For the time
being we will ignore X. We will have something to say about it later.

Let bi(yi) denote the marginal probability of label yi being assigned to target
random variable Yi. bi(yi) is of course a normalized probability distribution
obeying

∑

yi
bi(yi) = 1, ∀Yi ∈ Y. Rosenfeld et al. suggest the following

relaxation labeling iteration:

qj(yj) =
∑

Yi∈N (Yj)

dj,i

∑

yi∈C

rj,i(yj , yi)bi(yi)

bj(yj) = αbj(yj) [1 + qj(yj)]

where α is a normalization constant. Rosenfeld et al.’s relaxation labeling it-
eration does not take the “local” evidence into consideration. It is conceivable
that we can initialize bi(yi) to probabilities depending on the “local” evidence
and then continue with the above relaxation labeling iterations. Algorithm 2 de-
scribes the pseudocode where we initialize bi(yi) with the local evidence. Rosen-
feld et al. suggest setting ri,j(yi, yj) to the correlation of the labels yi and yj
which would satisfy |ri,j(yi, yj)| ≤ 1.

Algorithm 2 Relaxation Labeling

1: for each Yi ∈ Y do {initialize messages with local evidence}
2: for each yi ∈ C do
3: bi(yi)← αφi(yi)
4: end for
5: end for
6: repeat {perform message passing}
7: for each Yj ∈ Y do
8: for each yj ∈ C do

9: qj(yj) =
∑

Yi∈N (Yj)
dj,i

[

∑

yi
rj,i(yj , yi)bi(yi)

]

10: bj(yj) = αbj(yj) [1 + qj(yj)]
11: end for
12: end for
13: until all bj(yj) stop changing

This form of relaxation labeling was proposed as a heuristic. There have
been many attempts to justify and modify Rosenfeld et al.’s relaxation labeling
iteration. We refer the reader to Li et al. [13] for a comparison of various
relaxation labeling iterators. One particular iteration has very close connections
to LBP since it can be justified in almost the same way and we derive it next.

13

4.2.2 Relaxation Labeling via Mean-Field Approach (MF)(Yedidia
et al. [29], Li et al. [13])

Mean-Field Relaxation Labeling assumes that (G,Ψ) is a pairwise Markov Net-
work [19] with C(G) denoting its set of cliques where Ψ = {ψc(vc)}c∈C(G) is the
set of non-negative clique potentials. We use φi(yi) to denote the modified node
clique potentials.
Recall that if we define the variational free energy to be:

F (b) = U(b)−H(b)

then it can be shown using the definitions in Table 2 that:

F (b) = FH +KL(b||p)

A very simple trial distribution is the factorized form:

b(Y) =
∏

Yi∈Y

bi(yi)

We also define:

UMF = +
∑

(Yi,Yj)∈C(G)

∑

yi,yj∈C

bi(yi)bj(yj) logψi,j(yi, yj)

+
∑

Yi∈Y

∑

yi∈C

bi(yi) log φi(yi)

HMF =
∑

Yi∈Y

∑

yi∈C

bi(yi) log bi(yi)

Note the two approximations made, first in choosing the trial distribution and
second, while defining HMF. We define the MF variational free energy to be:

FMF = UMF −HMF

Now we define the constrained variational free energy optimization to be:

minimize FMF

with respect to
∑

yi∈C
bi(yi) = 1,∀Yi ∈ Y

The lagrangian formulation is thus:

L = +
∑

(Yi,Yj)∈C(G)

∑

yi,yj∈C

bi(yi)bj(yj) logψi,j(yi, yj)

+
∑

Yi∈Y

∑

yi∈C

bi(yi) log φi(yi)−
∑

Yi∈Y

∑

yi∈C

bi(yi) log bi(yi)

−
∑

Yi

λi(
∑

yi∈C

bi(yi)− 1)

14

∂L

∂bj(yj)
= +

∑

Yi∈N (Yj)

∑

yi∈C

bi(yi) logψi,j(yi, yj)

+ log φj(yj)− log bj(yj)− 1− λi

To minimize we set the partial derivative to zero:

bj(yj) = αφj(yj)
∏

Yi∈N (Yj)

∏

yi∈C

ψ
bi(yi)
i,j (yi, yj)

where α is a normalization constant. Algorithm 3 describes the pseudocode for
this fixed point iteration.

Algorithm 3 Mean Field

1: for each Yi ∈ Y do {initialize message}
2: for each yi ∈ C do
3: bi(yi)← 1
4: end for
5: end for
6: repeat {perform message passing}
7: for each Yj ∈ Y do
8: for each yj ∈ C do

9: bj(yj) = αφj(yj)
∏

Yi∈N (Yj)

∏

yi∈C
ψ
bi(yi)
i,j (yi, yj)

10: end for
11: end for
12: until all bj(yj) stop changing

Notably, one of the earliest papers on link-based classification, Chakrabarti
et al. [6], used relaxation labeling although their formulation of UMF was based
on the Naive Bayes classifier.
In our experiments, MF always produced better results than the Rosenfeld

et al. [17]’s version of relaxation labeling. Hence we report results for MF only.

4.3 Iterative Classification

Iterative Classification Algorithm assumes a neighbourhood based formulation
of the input. Let N (Y) denote the neighbourhood relation. Let g(y|vN (Y);w)
denote the ”local classifier” which returns the class conditional probability of as-
signing label y to Y conditioned on the assignments to its neighbourhood. Usu-
ally, computing the ”local” class conditional probability involves computing two
multi-sets: OA(Yi|xN (Yi)) and LD(Yi|yN (Yi)). For every Yi ∈ Y, OA(Yi|xN (Yi))
denotes the set of values of the observed random variables in N (Yi). OA stands
for object attributes. LD(Yi|yN (Yi)) is a multi-set formed by the labels of the
target random variables in N (Yi). Both OA(Yi|xN (Yi)) and LD(Yi|yN (Yi)) are
usually represented as fixed length vectors. In the case of LD(Yi|yN (Yi)) this
might require the use of an aggregation function ([10]).
Neville and Jensen proposed one of the earliest iterative classification algo-

rithms. Neville and Jensen refer to LD(Yi|yN (Yi)) as dynamic attributes which
change after every iteration of relabeling thus necessitating recomputation to

15

decide on the current label. OA(Yi|xN (Yi)) is referred to as static attributes and
don’t change throughout the run of the classification algorithm. Algorithm 4
describes the iterative classification algorithm proposed in Neville and Jensen.

Algorithm 4 Iterative Classification Algorithm(M) [16]

1: for each Yi ∈ Y do
2: Compute g(yi|vN (Yi);w) only using OA(Yi|xN (Yi)) ∀yi ∈ C.
3: Set yi ← argmaxy g(y|vN (Yi))
4: end for
5: for i=1 to M do
6: for each Yi ∈ Y do
7: Compute g(yi|vN (Yi);w)∀yi ∈ C.
8: Store pi ← maxy g(y|vN (Yi))
9: Store yi ← argmaxy g(y|vN (Yi))

10: end for
11: k ← |Y| i

M

12: Choose the top-k pi and assign the corresponding Yi their new labels.
13: end for

Algorithm 4 begins by classifying each node using its content. Each iter-
ation consists of recomputing each node’s class label given its neighbourhood
classifications. At the end of each iteration, Algorithm 4 chooses the top-k re-
computed class labels corresponding to the highest posterior probabilities and
discards the others. The number of iterations is fixed to M . In each subse-
quent iteration a greater number of relabelings are accepted. The final iteration
accepts relabelings for all target random variables.

Subsequent researchers ([14]) have added an extra functionality to the basic
ICA. Lu and Getoor [14] propose adding an order computation step at the be-
ginning of the iterative step in ICA. This computes the order in which the nodes
in the graph will be visited for recomputation of class labels. One can choose
from a variety of different ordering strategies. For example, Lu and Getoor
describes an ordering strategy based on the diversity of LD(Yi|yN (Yi)). For
example, given two target random variables Yi, Yj ∈ Y, Lu and Getoor describe
an ordering strategy where Yi will be relabeled after Yj in the current iteration
if LD(Yi|yN (Yi)) has higher diversity than LD(Yj |yN (Yj)), the hypothesis be-
ing that target random variables with less diversity in their dynamic attributes
will be easy to label. Lu and Getoor observed no visible effect of the ordering
strategy on the final accuracy attained. The speed of convergence, on the other
hand, did depend on the ordering strategy used. We refer the reader to Getoor
[9] for a comparison of various ordering strategies.

Due to its simplicity and speed, many different researchers have used ICA in
one form or the other for different applications but it isn’t clear what iterative
classification is trying to achieve. More precisely, when ICA relabels a target
random variable Y ∈ Y it does not care to see how this relabeling is going to
affect the class conditional probabilities of the target random variables in N (Y).
This is in contrast to the other two ACCAs which we discussed. Both LBP and
relaxation labeling involve some sort of a gradient term which tries to take into
account the effect of changing marginal probabilities of the neighborhood while
recomputing messages. ICA seems to be the most “myopic” of the four ACCAs

16

we discussed.

5 Learning Algorithm and Classifier Used

To compare the three ACCAs we trained three different maximum entropy clas-
sifiers, one for each ACCA. In this section we describe the learning algorithms
used to learn the quantitative parts of the input to each ACCA.

5.1 Learning for LBP and MF

Both LBP and MF accept a pairwise markov network as input. The quantitative
part of the input to a pairwise markov network is the set of clique potentials
{ψc(vc)}c∈C(G) where C(G) is the set of cliques in the pairwise markov network.
Notice that the parameters are clique-specific since ψc(vc) is the clique potential
for clique c. This creates a problem for us. Recall that our aim is to learn
a classifier from fully labeled training data and apply the classifier to classify
unseen test data (training with fully labeled data). There is no guarantee that the
training data and test data will share the same set of cliques, in fact, usually they
are not the same. The common approach to get around this problem is to learn
a different set of parameters instead of learning the set of clique potentials. We
employ a set of features which can be used to describe any clique. Usually, each
feature is a simple indicator function. One defines a parameter for each feature
employed and the parameters of the classifier are thus the set of parameters w
for all the features f . Finally, one defines the clique potential in log-space:

ψc(yc,x) = exp(w · f(yc,x))

The maximum entropy approach to learn the parameters of a classifier is to
maximize entropy while constraining the expected feature counts to be equal to
the empirical feature counts. The dual of this problem is known to be the max-
imum likelihood estimation problem where one attempts to find the parameter
values which maximize the probability of the labeled training set:

max
1

Z(x)
exp

w ·
∑

c∈C(G)

f(yc,x)

where Z(x) is the partition function.
Usually, one also employs a prior over the parameters to avoid overfitting.

One popular choice of prior is the “shrinkage prior” which is a set of independent
zero-mean gaussians one for each parameter p(wi) = exp(−λw2

i) where λ is
the regularization constant. Subsequently one learns the parameter values by
maximum a posteriori (MAP) estimation.

l = w ·
∑

c∈C(G)

f(yc,x)− logZ(x)− λw ·w

To maximize l we can employ a host of gradient-based optimization algorithms
(eg: conjugate gradient descent) which move in a direction computed from the
gradient of the function to be optimized. The gradient of l with respect to w is:

17

∑

c∈C(G)

f(yc,x)−
∑

y

pw(y)
∑

c∈C(G)

f(yc,x)− 2λw

which can be rewritten as:
∑

c∈C(G)

f(yc,x)−
∑

c∈C(G)

∑

yc

µw
c (yc)f(yc,x)− 2λw

To compute the the gradient we need to compute the marginals under the cur-
rent parameter settings (viz. µw

c (yc)) hence the need to perform inference. For
pairwise markov networks we need to compute the marginals for each Yi ∈ Y
and (Yi, Yj) ∈ E. For LBP, these marginals can be computed once the message
passing has converged by the following equations:

bi,j(yi, yj) = αγi,j(yi, yj)
∏

Yk∈N (Yi)\Yj

mk→i(yi)
∏

Yk∈N (Yj)\Yi

mk→j(yj) ∀yi, yj ∈ C

bi(yi) = αφi(yi)
∏

Yj∈N (Yi)

mj→i(yi), ∀yi ∈ C

where γ(yi, yj) = φi(yi)φj(yj)ψi,j(yi, yj).
For MF, we obtain the node marginals once the fixed point has been achieved.

The edge marginals for MF are defined to be:

bi,j(yi, yj) = bi(yi)bj(yj)

where bi(yi) is the node marginal for Yi being labeled with yi.

5.2 Learning for ICA

In the case of ICA, we need to learn the parameters of the ”local classifier”
function g(y|vN (Y);w). We partitioned w into wy, one for each label y ∈ C.
For our experiments, we used the following form for the ”local classifier”:

g(y|vN (Y);w) =
exp(wy · (OA(Y |xN (Y)), LD(Y |yN (Y))))

∑

y′ exp(wy′ · (OA(Y |xN (Y)), LD(Y |yN (Y))))
(1)

We concatenated the two fixed length vectors OA(Y |xN (Y)) and LD(Y |yN (Y))
to form one fixed length vector. To learn the parameters we performed the
following optimization:

w = argmaxw
∏

Yi∈Y

g(t(i)|vtN (Yi)
;w)

∏

y∈C

exp(−λ||wy||
2)

where t(i) denotes the label of Yi in the training set and v
t
N (Yi)

denotes the
labels of the neighbours in the training set. We used gradient based optimization
methods (like conjugate gradient descent) to perform this optimization. We also
included a ”shrinkage” prior over the parameters.

L =
∏

Yi∈Y

exp(wt(i) · (OA
t(Yi|xN (Yi)), LD

t(Yi|yN (Yi))))
∑

y′ exp(wy′ · (OAt(Yi|xN (Yi)), LD
t(Yi|yN (Yi))))

∏

y∈C

exp(−λ||wy||
2)

18

Note that OAt(Yi|xN (Yi)) and LD
t(Yi|yN (Yi)) can be computed by looking at

the training set and its labels.

l =
∑

Yi∈Y

wt(i) · (OA
t(Yi|xN (Yi)), LD

t(Yi|yN (Yi)))−

∑

Yi∈Y

log

∑

y′

exp(wy′ · (OA
t(Yi|xN (Yi)), LD

t(Yi|yN (Yi))))

−

∑

y∈C

λ||wy||
2

∂l

wy

=
∑

Yi∈Y∧t(i)=y

(OAt(Yi|xN (Yi)), LD
t(Yi|yN (Yi)))−

∑

Yi∈Y

pw(y|OAt(Yi|xN (Yi)), LD
t(Yi|yN (Yi)))(OA

t(Yi|xN (Yi)), LD
t(Yi|yN (Yi)))−

2λwy

where pw(y| . . .) is the conditional probability of labeling Yi with y given its
neighbourhood labels vN (Yi) under the current w. We computed pw(y| . . .)
using Eq. (1).

6 Experiments

We tested the performance of the three ACCAs on the task of link-based doc-
ument classification by using both synthetic datasets and real world datasets.
Besides the three classifiers learnt using the various inference methods we also
use, as a baseline, a maximum entropy classifier which only looks at the content
of each node in the graph. This content-only classifier does not take the links
into account and has less parameters. In all our experiments (barring one) we
initialized all our parameters using random numbers.
For the document classification task we have two types of random variables

Tv = {
′document′,′ word′}. A ’document’ random variable can be connected

to an observed ’word’ random variable (which can be either ’present’ or ’not
present’) via a ’content’ link. Two ’document’ random variables can be con-
nected via links of type ’hyperlinks’ or ’citations’ depending on the dataset used
for the experiments. For all our experiments we dropped all the directions of
the edges and experimented with undirected graphs. For training, we used fully
labeled datasets where we were given the correct class labels of each document
in the training corpus. For testing we used datasets where the class labels of a
subset of the document random variables were unknown and required prediction
(the target random variables). Note that during testing any document random
variables with a known class label was treated as evidence.

6.1 Features used

For LBP and MF we used a small set of indicator functions for features. For
example, we used an indicator function which indicated the presence or absence
of class label c given a ’document’ random variable. A different type of feature
indicated the presence or absence of a class label c and a word i from the

19

vocabulary given a pair of random variables connected by a link of type ’content’
(we also experimented with features that counted the number of occurrences
of word i from the vocabulary in the document but this did not provide any
significant improvement). The third set of features we used were indicator
functions which indicated the presence or absence of a pair of class labels given
a pair of connected document random variables.

For ICA, we used a set of features to capture dependencies between neigh-
bouring class labels and dependencies between class labels and attribute values.
Recall that we use a “local classifier” g(y|vN (Y);w) which returns the returns
conditional probability of labeling Y ∈ Y with label y given a fully labeled neigh-
bourhood. Also recall that we modeled this local classifier as a selector function.
We divided the set of parameters w into |C| equal parts wy y ∈ C, one for each
label. To compute pr(y|vN (Y)) we first select wy, then compute OA(Y |xN (Y))
and LD(Y |yN (Y)) and finally, take the dot product of wy with the concatena-
tion of OA(Y |xN (Y)) and LD(Y |yN (Y)). To compute OA(Y |xN (Y)) we used
a set of indicator functions which detected the presence/absence of words from
the vocabulary. For LD(Y |yN (Y)), we used the count aggregate function to
count the number of each label instance in the neighbourhood.

6.2 Synthetic Data Generator

Our algorithm for generating synthetic datasets closely follows the algorithm
described in Bollobas et al. [4]. The algorithm is outlined in Algorithm 5.

Algorithm 5 Synthetic data generator(numNodes, alpha, numLabels,
attrNoise, numObs, vocabSize)

1: Set i=0
2: G = ∅
3: while i < numNodes do
4: Sample r ∈ [0, 1] uniformly at random
5: if r <= α then
6: connectNode(G, numLabels)
7: else
8: addNode(G, numLabels)
9: i← i+ 1

10: end if
11: end while
12: for i = 1 to numNodes do
13: v ← ith node in G
14: genAttributes(v, numLabels, vocabSize, numObs, attrNoise)
15: end for
16: return G

The algorithm “grows” a graph from an empty set of nodes. The user is ex-
pected to supply the number of nodes the final generated graph should contain.
α is a parameter which controls the number of links in the graph. Roughly,
the final graph should contain 1

1−αnumNodes number of links. The function
chooseNewNodeClass() can be used to implement a set of class priors. In all
our experiments with synthetic data we used a set of uniform class priors.

20

Algorithm 6 addNode(G, numLabels)

1: add a new node v to G
2: c← chooseNewNodeClass()
3: Set v.label← c
4: cn ← chooseClass(c, numLabels)
5: w ← select a node from G with w.label = cn and probability of selection
proportional to its out-degree

6: introduce an edge from v to w

Algorithm 7 connectNode(G, numLabels)

1: v ← select any node at random from G
2: c← v.label
3: cn ← chooseClass(c, numLabels)
4: w ← select a node from G with w.label = cn and probability of selection
proportional to its out-degree

5: introduce an edge from v to w

Algorithm 8 genAttributes(v, numLabels, vocabSize, numObs, attrNoise)

1: for i=1 to numObs do
2: sample r uniformly at random
3: if r ≤ attrNoise then
4: sample a word uniformly at random from the vocabulary and add it to

v
5: else
6: sample a word-ID from the binomial distribution with p = (1 +

v.label)/(1 + numLabels) and n = vocabSize
7: end if
8: end for

21

0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

word ID

pr
ob

ab
ili

ty

words generated for class 1

0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

word ID

pr
ob

ab
ili

ty

words generated for class 3

(a) Word-ids sampled for class 1 (b) Word-ids samples for class 3

Figure 1: Different binomial distributions used to sample words from for each
class label by the data generator with vocabSize = 10 and numLabels = 5.

name value

numNodes for training set 3000
numNodes for test set 1000
numLabels 5
vocabSize 10
numObs (maximum number of
words in a node)

5

Table 3: Parameter settings for our synthetic data generator

The algorithm implements a rudimentary form of preferential attachment
where a node can choose the label of the node it wants to link to and nodes with
higher out-degrees have better chance of being linked to. One could easily extend
the data-generator to implement more complex types of preferential attachment.
This sort of preferential attachment can be used to control the size of closed loops
in the generated graph as we will describe later. We implemented preferential
attachment using the function chooseClass(c, numLabels) which returns a class
label given a label c and the set of labels {0, . . . numLabels − 1}, the returned
class label is the label which the input label c prefers. This function is called
whenever we have a node v and want to find another node w to link v to.

After generating the graph, we assign attribute values to each node as de-
scribed in Algorithm 8. Figure 1 shows how different class labels sample dif-
ferent word-ids according to the binomial distribution in Algorithm 8 if we set
vocabSize = 10 and numLabels = 5. Simply sampling words from the binomial
distributions has a considerable amount of discriminative power. The then con-
dition in the if statement in Algorithm 8 introduces some random noise to this
attribute sampling procedure and the degree of randomness can be controlled
by changing the parameter attrNoise. In some of our experiments we exam-
ine the effect of attribute noise in the word attributes on the various collective
classification algorithms.

Table 3 describes our parameter settings. For each of our experiments we
produced disjoint pairs of training and testing datasets.

22

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.2 0.4 0.6 0.8 1

Varying Attribute noise for homophilic arbitrary graphs

LBP
ICA
MF

content only

Figure 2: Classification accuracies obtained by varying attrNoise for homophilic
synthetic data (α = 0.2)

6.3 Experiments with synthetic datasets

6.4 Initial experiments

Our first experiments were on synthetic datasets where nodes with label c link
to other nodes with label c. Datasets with such link patterns are said to exhibit
homophily or encyclopedia regularity ([28]). For our first experiment we tried
to find the degree of dependance of each ACCA on the noise in the attribute
values of the documents in the datasets. In this experiment, we generated
synthetic datasets by varying the attrNoise parameter but kept the number of
links (controlled by the parameter α) constant. Intuitively, when the noise in
the attribute values is low, all ACCAs should be able to classify the documents
in the test set simply by looking at the attribute values. As we increase the noise
in the attribute values the ACCAs should begin to exploit the link patterns in
the dataset and produce results better than what the content only classifier
returns.

For our experimental setup, we produced training datasets with attrNoise =
0.0, 0.2, 0.4, 0.6, 0.8, 1.0 and keeping α constant at 0.2. For each setting of
attrNoise we also generated a test dataset. We trained the four classifiers
on each of the training dataset and tested them on the corresponding test set.
The classification accuracies are shown in Figure 2.

Note that in the case of the synthetic datasets produced for this experiment
all runs of LBP and MF converged in a very small number of iterations (≤ 10).
ICA also converged in a very small number of iterations (≤ 5). The results in

23

Figure 3: Degree-specific classification accuracies for the homophilic dataset
generated with attrNoise = 0.4 and α = 0.2. The last column in each block
shows the number of nodes with a specific degree.

Figure 2 show that the three ACCAs return better results than the content only
classifier when attrNoise is increased from 0 to 0.4 by exploiting the correlations
in the links. Even beyond attrNoise = 0.4, ICA and LBP manage to stay above
the content only classifier. The most surprising observation for this experiment
was the poor performance of MF which not only returns the lowest classification
accuracies amongst the three ACCAs but returns lower classification accuracies
than the content only classifier for attrNoise = 0.6, 0.8, 1.0. To investigate the
poor performance of MF we decided to take a closer look at the classification
accuracies. We divided all the nodes in the graph into sets containing nodes
of equal degrees (number of neighbouring documents). Figure 3 shows one
such degree-specific classification accuracy graph for the synthetic test dataset
generated with attrNoise = 0.4 and α = 0.2.

The last column in each block of Figure 3 shows the number of document
nodes in each set of nodes. Figure 3 shows that although MF misclassifies more
documents (compared to ICA and LBP) irrespective of its degrees, the most
important contributor, by far, to the overall classification accuracy is the num-
ber of document nodes with one neighbouring document node. Recall that MF
is a variational method which approximately minimizes the Mean Field Energy.
A different variational method, LBP, does way better in terms of classification
accuracy than MF, in fact, LBP, performs the best amongst all the classifiers.
The main difference between LBP’s objective function and MF’s objective func-
tion is the presence of higher order terms to estimate the marginal probabilities
of edges in the graph (bi,j(yi, yj)). Somehow, this difference in the way the two

24

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

attrNoise

Fraction of misclassified 1-degree with misclassified neighbours

MF
ICA
LBP

Figure 4: Fraction of misclassified 1-degree nodes with misclassified neighbours
at α = 0.2.

ACCAs handle links between two documents helps LBP achieve far more accu-
rate results than MF. To investigate if this was indeed the case we computed
the fraction of 1-degree documents with misclassified neighbours in Figure 4.

of mislcassified degree 1 nodes with a misclassified neighbour

of mislcassified degree 1 nodes

Note the wide gap between LBP’s plot and MF’s plot in Figure 4. Figure 4
suggests that LBP handles links (atleast in the case of documents with one
document neighbour) far better than MF.

6.4.1 Cause for poor performance of MF

Previous comparisons between MF and LBP ([26]) has shown that even when
the graph is singly connected and devoid of loops MF tends to gets stuck in local
minima. Moreover, beliefs returned by MF tend to be “overconfident” or more
extreme than the true beliefs. Our experiments also point to the fact that MF
tends to get stuck in local minima and return suboptimal results than ICA and
LBP. Moreover, MF’s tendency to produce overconfident probabilities seems to
make it more likely to propagate mistakes through neighbouring documents (as
shown by the evidence in Figure 4).

25

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.1 0.2 0.3 0.4 0.5

Varying link density for homophilic arbitrary graphs

LBP
ICA
MF

content only

Figure 5: Varying link density for homophilic graphs (attrNoise = 0.3)

6.4.2 Effect of varying graph characteristics

When dealing with irregular graphs, one can expect to see a wide variety of
graphs with different characteristics. We tried to find out if MF’s poor per-
formance is affected by varying these characteristics. One such characteristic is
varying the link density of the graph. Increasing link density will introduce more
closed loops in the graph making it more difficult for message-passing ACCAs
like LBP and MF to converge. However, we were more interested in determin-
ing that even in the cases that MF and LBP do converge, does increasing link
density increase their chances of getting stuck in a local minima?

We produced training datasets with α = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and keeping
attrNoise constant at 0.3. For each setting of α we also generated a test dataset.
We trained the four classifiers on each of the training dataset and tested them on
the corresponding test set. The classification accuracies are shown in Figure 5.

Note that in the case of the synthetic datasets produced for this experiment
all runs of LBP and MF converged in a very small number of iterations (≤
10). ICA also converged in a very small number of iterations (≤ 5). Figure 5
shows that MF tends to produce deteriorating results as α increases showing an
increasing tendency to get stuck in a local minima. Even LBP shows signs of
getting stuck in a local minima once α increases beyond α = 0.2. ICA seems to
be quite robust in this respect showing improving results throughout, especially
beyond α = 0.3.

Figure 5 shows that in the case of LBP, convergence does not guarantee
good results. Previous investigations ([15]) reported that, usually, when LBP

26

converges it converges to very good approximations of the marginal probabilities.
In our experiment, for the test dataset generated with α = 0.5, LBP converged in
5 iterations but produced far worse results than ICA. Recent research ([29]) has
thrown more light on the case when LBP converges but to wrong approximations
of the marginal probabilities. Yedidia et al. [29] lists some desirable qualities of
the Bethe Free Energy (maxent-normal) which increase chances of convergence
to good approximations. When the Bethe Free Energy does not possess these
qualities it is likely that even when the message passing converges it will converge
to wrong values of the marginal probabilities.

6.4.3 Effect of different link patterns

In the last set of experiments we generated synthetic datasets with homophily. It
is conceivable that homophily is not the only link pattern that we will encounter
while applying link-based classification. In the next set of experiments we try
to find out if the different ACCAs are affected by the type of link patterns.
Message-passing algorithms like LBP and MF are affected by the number

of loops in the graph. When the graph is singly-connected, Bethe Free Energy
is an exact formulation and so LBP will return exact values of the marginals.
Intuitively, when the number of loops in the graph is small then LBP should
perform well. Homophily tends to give rise to graphs with very short loops. For
example, imagine a document node A of class label l with degree 2, this node
is likely to be linked to another document node B of the same class l. A is also
likely to be labeled to another node C of the same class label l. Now, since B
and C are of the same class label there is a good chance that B is linked to C
(homophily) introducing a closed-loop of size 3.
Consider a different link pattern where a document node of label l links to

nodes with label l− 1 and nodes with label l+1 (chosen uniformly at random).
Imagine a node A of class label 2 with degree 2, this node is likely to be linked
to two nodes B and C such that one of the following holds true:

• B belongs to class 1 and C belongs to class 1.

• B belongs to class 3 and C belongs to class 3.

• B belongs to class 1 and C belongs to class 3.

Notice that in none of the cases do B and C have labels which make it probable
for them to link up. This link pattern discourages short closed loops like ho-
mophily does. In this set of experiments we experiment with synthetic datasets
with such a link pattern.
Our first experiment we observed the effect of varying attrNoise. We pro-

duced training datasets with attrNoise = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 and keeping α
constant at 0.2. For each setting of attrNoise we also generated a test dataset.
We trained the four classifiers on each of the training dataset and tested them
on the corresponding test set. The classification accuracies are shown in Fig-
ure 6. Figure 7 shows the degrees-pecific classification accuracies for the test
dataset generated with attrNoise = 0.4 and α = 0.2. Note the improvement in
performance of MF for nodes of almost all degrees returning accuracies equal
to, if not better than, ICA.
Figure 6 shows an improvement in the performance of MF. MF returns

results comparable to ICA’s in almost all the settings.

27

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.2 0.4 0.6 0.8 1

Varying Attribute noise for non-homophilic arbitrary graphs

LBP
ICA
MF

content only

Figure 6: Varying attrNoise for synthetic data (α = 0.2) where nodes with
label l link to nodes with label l − 1 and l + 1

Figure 7: Degree-specific classification accuracies for the dataset with the new
link pattern generated with attrNoise = 0.4 and α = 0.2. The last column in
each block shows the number of nodes with a specific degree.

28

 50

 55

 60

 65

 70

 75

 80

 85

 0 0.1 0.2 0.3 0.4 0.5

Varying link density for non-homophilic arbitrary graphs

LBP
ICA
MF

content only

Figure 8: Varying link density for cyclic graphs (attrNoise = 0.3)

We also varied the link density in the synthetic datasets with the new link
pattern. We produced training datasets with α = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and
keeping attrNoise constant at 0.3. For each setting of α we also generated
a test dataset. We trained the four classifiers on each of the training dataset
and tested them on the corresponding test set. The classification accuracies are
shown in Figure 8.
These results show that the link patterns present in the dataset to be clas-

sified has an effect in determining the size and number of loops in the graph.
The choice of ACCA should be made depending on the type of link pattern
exhibited.

6.5 Experiments with real-world datasets

We tested the different ACCAs on three real-world datasets.
The WebKB dataset is a hypertext dataset collected from various universi-

ties. There are four splits (after removing the “other” split), each corresponding
to webpages from a university: wisconsin, washington, texas or cornell. There
are 5 class labels: Course, Student, Faculty, Project and Staff. From the “uni-
versity” splits we selected only those documents which either link to or are
linked by atleast one other document in the dataset and extracted a corpus of
877 documents. After stemming and stop word removal we collected a vocab-
ulary of 1703 distinct words. There are 1608 links in our corpus. We did four
fold cross validation using the “university” splits training on 3 and testing on
the 4th.Note that documents belonging to one university do not link to another
university’s documents. Thus documents belonging to one university form one

29

content only ICA MF LBP

Accuracy (micro averaged) 81.69 84.39 84.40 84.42
Precision (macro averaged) 78.07 79.65 78.63 78.71
Recall (macro averaged) 60.73 64.71 64.45 64.11

F1-measure (macro averaged) 62.49 65.99 65.65 65.13

Table 4: WebKB results averaged across 4 university splits

document graph completely disconnected from other university graphs. This
has an effect while testing because we can only depend on the words of the
documents for evidence since there are no documents with known class labels
in the test set.

The other two real-world datasets we experimented on were both biblio-
graphic datasets. The Cora dataset contains a number of Machine Learning
papers. The papers are labeled from one of Case Based, Genetic Algorithms,
Neural Networks, Probabilistic Methods, Reinforcement Learning, Rule Learn-
ing and Theory. We chose documents so that each document is either cited or
cites one of the other documents in our corpus. Finally, we divided our corpus
into 3 splits. To create the splits we chose documents at random to make the
split. This has the effect of creating many “across-split” links which turn out
to be extremely useful while testing. Stop words were removed and words with
document frequency of less than 10 were also removed. Finally, there were 2708
documents in our corpus with a vocabulary of 1433 words and 5429 links.

The CiteSeer dataset was extracted from the CiteSeer database. We ex-
tracted our splits from the CiteSeer corpus in exactly the same way as we did
with Cora. Each document in our corpus either cites or gets cited from another
document in the corpus. We divided the dataset into three splits by choosing
documents randomly from the corpus. Stop words were removed and words
with document frequency of less than 10 were also removed. Our final corpus
contains 3312 documents with a vocabulary of 3703 distinct words and 4732
links. The documents are labeled with one of the following class labels Agents,
AI, DB, IR, ML and HCI.

The results for the WebKB dataset are shown in Table 4. The numbers
indicate that using the link structure helps achieve improvements in classifica-
tion accuracy. We also provide the degree-specific accuracy distribution results
in Appendix A. The degree distribution much more skewed in WebKB than
any of the synthetic datasets we generated. In fact, there is a document in the
washington split which links to 122 other documents. For WebKB, the content
only classifier works reasonably well. We also performed a paired t-test to test
the significance of the results. These results are shown in Appendix A.

The results for the experiments on the bibliographic datasets are shown in
Table 5 and Table 6. In the case of Cora, LBP does much better than the other
inference procedures. Even though LBP shows improvements over ICA and MF
for Cora, the results are not significant. The results for the significance tests
are shown in Appendix A. The degree-specific classification accuracies for the
Cora splits are shown in Appendix A.

On CiteSeer, all three ACCAs show almost equal behaviour improving on the
content only classification accuracy. The results of the paired t-test are shown
in Appendix A and the degree-spevific classification accuracies are shown in

30

content only ICA MF LBP

Accuracy (micro averaged) 70.71 78.35 82.61 84.49
Precision (macro averaged) 73.84 84.06 82.27 84.82
Recall (macro averaged) 63.88 71.14 78.52 80.87

F1-measure (macro averaged) 66.51 74.99 79.70 82.48

Table 5: Cora results averaged across 3 splits

content only ICA MF LBP

Accuracy (micro averaged) 68.56 72.71 72.67 72.94
Precision (macro averaged) 61.93 67.88 68.09 67.98
Recall (macro averaged) 61.72 62.46 61.92 62.18

F1-measure (macro averaged) 59.77 62.46 62.91 62.64

Table 6: CiteSeer results averaged across 3 splits

Appendix A.
In both WebKB and CiteSeer, the difference between the average classifica-

tion accuracies returned by content-only and LBP is around 3 − 4.5% whereas
in the case of Cora it is an order of magnitude higher, around 13.5% which
seems to suggest that the link structure provides most information in the case
of Cora. Only in the case of Cora does LBP show any consistent improvement
over the other collective classification methods. Even then the results are not
significant which is very disappointing. This hints to the fact that LBP is not
sufficient for dealing with the sort of irregular graphs one encounters for link-
based classification. One reason for this could be the skewed degree distribution
in real world datasets. With such skewed degree distributions, one is likely to
find a lot of short closed loops than one would expect. Given its simplicity, ICA
performs very well producing results very close to LBP in the case of WebKB
and CiteSeer.
Table 7 compares the times required by our implementations of the various

ACCAs. Training with LBP requires much larger durations than training with
MF or ICA. Training times with MF and ICA are comparable. Testing with all
three ACCAs is very fast.

6.5.1 Problems encountered while training

For both the bibliographic datasets, we faced a lot of problems training the clas-
sifiers using LBP and MF. This is slightly disconcerting because, for Maximum-
Entropy models, given fully labeled training data, learning is supposed to be a
concave function and one should be able to get to the global optimum given any

content only ICA MF LBP

Training 53.03 62.43 79.59 588.49
Testing 0.08 0.17 0.20 0.23

Table 7: Run times measured in seconds on a Xeon 2.8 GHz dual processor on
a 3000 node dataset generated with α = 0.2 and attrNoise = 0.2

31

starting point. An essential step in the learning procedure we used is to com-
pute the gradient of the objective function. As we discussed in Section 5, the
gradient is computed using the marginals under the current parameter settings.
If we could perform exact inference then we wouldn’t have faced problems in
computing the gradient but the datasets we encountered have tens of thousands
of nodes and exact inference is not possible. Instead we employ approximate
inference mechanisms like LBP and MF. These approximate inference mecha-
nisms seem to return very poor estimates of the marginals when learning for
datasets like Cora and CiteSeer and thus the computed gradient is wrong which
causes problems while learning. A good set of initial parameters which are close
to the optimum values goes a long way to alleviate this problem. In atleast one
case, we had to use the parameters learned by ICA to initialize the learning
procedure for LBP. That means that the oft repeated fact that parameter esti-
mation for Maximum Entropy models is a concave function is of little practical
importance when dealing with arbitrary graphs for link-based classification us-
ing approximate inference mechanisms like LBP and MF and there will be cases
when we might need to initialize our parameter values carefully.

7 Related Work

7.1 Prior work on performance comparisons

A number of different ACCAs have been proposed but, to the best of our knowl-
edge, there hasn’t been too many head-to-head performance comparisons espe-
cially comparing their performance on classification with arbitrary graphs. In
contrast there has been a number of performance studies describing the per-
formance of various classifiers ([8, 28]) and usefulness of various features ([11]).
Most papers proposing new classifiers for link-based classification also provide
a brief comparison with existing methods ([18, 19, 23]).

Murphy et al. [15] provided a study describing the performance of LBP on a
few well known networks (eg: QMR-DT). Murphy et al. do not compare LBP
against other ACCAs. They found that LBP converged to good approxima-
tions of the marginals in all but the most complicated graph they considered.
On the QMR-DT network LBP failed to converge. Most of the graphs they
experimented on were very small graphs which could be solved for exactly by
using the Junction Tree algorithm. They attributed the poor performance of
LBP on the QMR-DT network to small priors. They also found that when LBP
converged it did so to very good approximations. This finding led Murphy et al.
to suggest that convergence of LBP could be used as a test to judge whether
LBP is the appropriate choice for a problem.

Weiss [26] provides a comparison between MF and LBP on some regular
graphs most of which were singly connected. Weiss found that MF is very
prone to get stuck at a local minima. Weiss does not provide a study to judge
the efficacy of LBP, LBP’s performance is used as a benchmark to compare
results returned by MF.

None of the above work compare ACCAs on the task of classification with
irregular graphs. Our aim was to provide a study which could be used to
judge which ACCA is appropriate for the various applications of link-based
classification. Moreover, recent research has found that many of the above

32

findings are not true. For example, it is now known that LBP can converge but
to very poor approximations ([29]) thus using convergence as a test to judge the
efficacy of LBP is not a good idea.

7.2 Applications of link-based classification

Link-based classification is a very general formulation and has been successfully
applied to many application domains. In this section we briefly list the various
domains link-based classification has been applied to. A domain which has seen
a lot of activity is document classification. Chakrabarti et al. [6] was one of the
first to apply link-based classification to a corpora of patents linked via hyper-
links and reported that considering attributes of neighbouring documents actu-
ally hurts classification performance. Slattery and Craven [18] also considered
the problem of document classification by constructing features from neighbour-
ing documents using an Inductive Logic Programming rule learner. Yang et al.
[28] conducted an in-depth investigation over mutliple datasets commonly used
for document classification experiments and identified different patterns.
Document classification is by no means the only domain for applying the

link-based classification formulation. Taskar et al. [24] applies this formulation
to classify hyperlinks between hypertext documents. One of the ideas used
here was that, if two hyperlinks emanate from the same section in a webpage,
they are likely to be classified with the same label. Taskar et al. also applies
link-based classification to the problem of predicting friendship links between
people. One of the interesting ideas investigated in this problem is whether a
person’s friendship link with one person affects the presence/absence of a friend-
ship link with another person. Lafferty et al. [12] apply link-based classification
to the Natural Language Processing task of part-of-speech tagging and pro-
posed Conditional Random Fields, a novel classifier for sequence data which is
based on maximum entropy principles. Taskar et al. [22] proposed Maximum
Margin Markov Networks for link-based classification, which is an extension of
Support Vector Machines and provided a generalization bound relating the error
rate on the training set to the error-rate on the test set. Taskar et al. showed
experiments on the task of optical character recognition and hypertext classifica-
tion. Optical Character Recognition can be posed as a sequence modeling task
where the image of each character can be used as features, the true character
is the label and the word is the labeling for the complete sequence. In other
words, we can use the correlation between various characters occurring next to
each other to improve classification. Taskar et al. [20] applied a specific form of
link-based classification, a generalized version of the Potts model, to the problem
of document classification and hypertext classification which allowed them to
model the problem as a Integer Linear Program which is guaranteed to return in-
tegral solutions. Taskar et al. [21] used the link-based classification formulation
for link prediction to predict disulphide bonds in proteins. Anguelov et al. [3]
applies link-based classification to segmentation of 3D scan data. Carvalho and
Cohen [5] classifies email “speech acts” (eg: request for something, commitment
by sender to perform some task etc.) by exploiting the sequential correlation
information that exists in emails belonging to the same thread. Chen et al. [7]
uses collective classification techniques to resolve entities detected by a sensor
network. On a slightly different note, LBP has been used extensively in Digital
Communication tasks like iterative decoding of Turbo codes and Low-Density

33

Parity-Check codes.

7.3 Extensions to LBP

In this report, we compared three approximate collective classification algo-
rithms. All three algorithms began as heuristics but encouraging empirical
results directed reasearchers to search for theoretical justifications. Both LBP
and Relaxation Labeling have a large body of work devoted to their justifi-
cation, modifications and extensions. Because of its ability to handle higher
order interactions (eg: edge marginals) and as shown by our experiments, LBP
is preferable to relaxation labeling and here we will briefly describe the recent
work done to extend the basic LBP algorithm.

Yedidia et al. [30] justified LBP as a message passing algorithm whose fixed
points are stationary points of the Bethe Free Energy. Since Yedidia et al.’s
original result, a considerable amount of research has been devoted to improv-
ing LBP’s convergence and accuracy. A natural way to improve the accuracy of
basic LBP is to go beyond the pairwise interactions and define larger regions of
interactions because this will make the entropy term in Bethe Free energy closer
to the correct term. In basic LBP, one needs to consider edges and nodes involv-
ing the target random variables. Aji and McEliece [1] extend this idea to regions
larger than edges and nodes by proposing the use of Junction Graphs. Yedidia
et al. also described the Cluster Variational method which is another way to
include larger regions and proposed the Generalized Belief Propagation (GBP)
by extending the basic LBP. In the cluster variational method, one introduces
intersections of regions as new regions with the hope that this will improve ac-
curacy of the estimated marginal probabilities. Yedidia et al. [29] illustrated the
connection between Aji and McEliece and Yedidia et al. by proposing Region
Graph method which subsumes both Junction Graph and cluster variational
methods. Note that given a collection of random variables and a set of inter-
actions amongst different subsets of random variables, we could apply any of
the above approaches to create a different graph composed of regions. Given
so many approaches to generate different region graphs it would be desirable to
devise an algorithm which, given an original set of interactions amongst random
variables, computes the optimal set of regions. Welling [27] proposes such an
algorithm involving splitting, merging and “dying” of regions.

In this report, we discussed three of the simplest and most popular collective
classification methods which are, by no means, the only collective classification
algorithms available. One problem with all three methods discussed here is that
none of them have any proof of convergence. Recent research has developed
provably convergent methods for collective classification. A.L.Yuille [2] describes
an iterative method which is a provably convergent alternative LBP. Wainwright
et al. [25] develops methods where the graph with cycles is reduced to a number
of trees (graphs without cycles). Performing inference in trees is easy because
they are devoid of cycles and convergence to optimal solutions is guaranteed.
Wainwright et al. develops methods which have good convergence properties
by approximating the distribution on the original graph by distributions on
trees and performing inference on trees which is guaranteed to converge to the
optimal solution if there exists one.

34

8 Discussion and Future Work

Our experiments showed that the choice of the ACCA used for link-based clas-
sification can make a difference in the results obtained and this choice needs to
made on the basis of various critera.
Of the three ACCAs we compared, LBP uses higher order edge marginals

to approximate the multivariate probability distribution. Of the other two AC-
CAs we considered, MF uses only node marginals whereas there isn’t a clear
understanding of what ICA is doing. Even then it is conceivable that ICA does
not use edge marginals judging by its simplicity. Thus one might think that
LBP’s higher order variables will help it achive the best results in all cases. Our
experiments showed that this was not the case. LBP, like its simpler cousin MF,
has a tendency to get stuck in local minima. This problem of getting stuck in
local minima is aggravated by two factors:

• Increasing link density in the graph.

• Decreasing the size of closed loops and increasing the number of short
loops.

Moreover, the type of link patterns exhibited by the graph can affect the
size and number of closed loops thus affecting the performance of LBP.
MF shows the tendency of getting stuck in a local minima to a higher de-

gree. Moreover, MF shows a tendency to propagate misclassifications through
documents which are neighbours which brings down the classification accuracy
drastically.
In contrast, ICA can be a good choice when LBP and MF fail. ICA seems to

be much more robust that LBP or MF to increasing link density. ICA actually
improved classification accuracies with increasing link density. ICA even shows
consistently good results with varying link patterns showing robustness towards
loops of varying sizes.
Judging by the results of our experiments, it seems a good idea to run LBP

when the graph is sparsely linked and shows large loops. If the graph is highly
linked then one should adopt ICA as the ACCA of choice. ICA has received
very little attention in terms of justifying it theoretically, given the results of
our experiments it seems worthwhile to search for justifications of ICA and
extending the basic algorithm to use edge marginals and compare its results
with LBP.

References

[1] S. M. Aji and R. J. McEliece. The generalized distributive law and free
energy minimization. In Proceedings of the 39th Allerton Conference on
Communication, Control and Computing, 2001.

[2] A.L.Yuille. CCCP algorithms to minimize the bethe and kikuchi free ener-
gies: Convergent alternatives to belief propagation. In Neural Information
Processing Systems., 2002.

[3] D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta, G. Heitz,
and A. Ng. Discriminative learning of markov random fields for segmenta-

35

tion of 3d scan data. In International Conference on Computer Vision and
Pattern Recognition, 2005.

[4] B. Bollobas, C. Borgs, J. Chayes, and O. Riordan. Directed scale-free
graphs. In Proceedings of the ACM-SIAM Symposium on Discrete Algo-
rithms., 2003.

[5] V. Carvalho and W. W. Cohen. On the collective classification of email
speech acts. In Special Interest Group on Information Retrieval., 2005.

[6] S. Chakrabarti, B. Dom, and P. Indyk. Enhanced hypertext categorization
using hyperlinks. In International Conference on Management of Data.,
pages 307 – 318, 1998.

[7] L. Chen, M. Wainwright, M. Cetin, and A. Willsky. Multitarget-
multisensor data association using the tree-reweighted max-product algo-
rithm. In SPIE Aerosense conference, 2003.

[8] M. Fisher and R. M. Everson. When are links useful? experiments in text
classification. In Proceedings of the European Conference on IR Research.,
pages 41–56, 2003.

[9] L. Getoor. Advanced Methods for Knowledge Discovery from Complex Data,
chapter Link-based classification. Springer, 2005.

[10] L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic
models of link structure. Journal of Machine Learning Research., 2002.

[11] D. Jensen, J. Neville, and B. Gallagher. Why collective inference improves
relational classification. In Proceedings of the 10th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, 2004.

[12] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. In
Proceedings of the International Conference on Machine Learning., pages
282 – 289, 2001.

[13] S. Li, H. Wang, and M. Petrou. Relaxation labeling of markov random
fields. In In Proceedings of International Conference Pattern Recognition,
volume 94, pages 488–492, 1994.

[14] Q. Lu and L. Getoor. Link based classification. In Proceedings of the
International Conference on Machine Learning., 2003.

[15] K. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for
approximate inference: An empirical study. In Proceedings of the Annual
Conference on Uncertainty in Artificial Intelligence., pages 467–475, 1999.

[16] J. Neville and D. Jensen. Iterative classification in relational data. In
Proceedings of AAAI., 2000.

[17] A. Rosenfeld, R. Hummel, and S. Zucker. Scene labeling by relaxation
operations. In IEEE Transactions on Systems, Man and Cybernetics, 1976.

36

[18] S. Slattery and M. Craven. Combining statistical and relational methods
for learning in hypertext domains. In International Conference on Inductive
Logic Programming., 1998.

[19] B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models
for relational data. In Proceedings of the Annual Conference on Uncertainty
in Artificial Intelligence., 2002.

[20] B. Taskar, V. Chatalbashev, and D. Koller. Learning associative markov
networks. In Proceedings of the International Conference on Machine
Learning., 2004.

[21] B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin. Learning struc-
tured prediction models: A large margin approach. In Proceedings of the
International Conference on Machine Learning., 2005.

[22] B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. In
Neural Information Processing Systems., 2003.

[23] B. Taskar, E. Segal, and D. Koller. Probabilistic clustering in relational
data. In International Joint Conference on Artificial Intelligence., 2001.

[24] B. Taskar, M. F. Wong, P. Abbeel, and D. Koller. Link prediction in
relational data. In Neural Information Processing Systems., 2003.

[25] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. Map estimation
via agreement on (hyper)trees: Message-passing and linear-programming
approaches. In IEEE Transactions on Information Theory, 2005.

[26] Y. Weiss. Comparing the mean field method and belief propagation for
approximate inference in mrfs. In Advanced Mean Field Methods, Saad
and Opper (ed), MIT Press, 2001.

[27] M. Welling. On the choice of regions for generalized belief propagation. In
Proceedings of the Annual Conference on Uncertainty in Artificial Intelli-
gence., 2004.

[28] Y. Yang, S. Slattery, and R. Ghani. A study of approaches to hypertext
categorization. Journal of Intelligent Information Systems., 18, 2002.

[29] J. Yedidia, W. Freeman, and Y. Weiss. Constructing free-energy approxi-
mations and generalized belief propagation algorithms. In IEEE Transac-
tions on Information Theory, pages 2282–2312, 2005.

[30] J. Yedidia, W.T.Freeman, and Y. Weiss. Generalized belief propagation. In
Neural Information Processing Systems., volume 13, pages 689–695, 2000.

37

Appendix

A Results of the paired t-tests and Degree spe-
cific classification accuracies for real world
data

LBP vs.
MF

LBP vs.
ICA

MF vs.
ICA

LBP vs.
content
only

MF vs.
content
only

ICA vs.
content
only

Accuracy 0.047 0.0644 0.086 1.55 1.70 1.71
Precision 0.083 -1.10 -1.53 0.70 0.43 1.10
Recall -0.25 -0.65 -0.35 1.42 1.55 1.65

F1-measure -0.30 -0.75 -0.454 1.42 1.60 1.71

Table 8: Result of paired t-tests on WebKB, numbers in bold font indicate
comparisons which are above 90% significance level.

LBP vs.
MF

LBP vs.
ICA

MF vs.
ICA

LBP vs.
content
only

MF vs.
content
only

ICA vs.
content
only

Accuracy 1.03 1.28 1.19 1.39 1.41 1.28
Precision 1.192 0.82 -1.14 1.39 1.40 1.40
Recall 0.861 1.30 1.36 1.38 1.40 1.25

F1-measure 1.044 1.29 1.30 1.38 1.40 1.31

Table 9: Result of paired t-tests on Cora

LBP vs.
MF

LBP vs.
ICA

MF vs.
ICA

LBP vs.
content
only

MF vs.
content
only

ICA vs.
content
only

Accuracy 1.29 0.49 -0.09 1.32 1.30 1.36
Precision -0.07 0.07 0.12 1.24 1.14 1.32
Recall 0.83 -0.28 -0.43 0.33 0.12 0.64

F1-measure -1.17 0.17 0.46 1.32 1.35 1.39

Table 10: Result of paired t-tests on CiteSeer

38

39

40

41

42

