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ABSTRACT

Most networks contain embedded communities or
groups that impact the overall gathering and dis-
semination of ideas and information. These groups
consist of important or prominent individuals who
actively participate in network activities over time.
In this paper, we introduce a new method for iden-
tifying actors with prominent group memberships
in time-varying affiliation networks. We define a
prominent actor to be one who participates in the
same group regularly (stable participation) and par-
ticipates across different groups consistently (diverse
participation), thereby having a position of struc-
tural influence in the network. Our proposed meth-
ods for quantifying stable and diverse participation
takes into consideration the underlying semantics for
group participation as well as the level of impact
of an actor’s history on his or her current behavior.
We illustrate the semantics of our measures on both
synthetic and real-world data sets with varying tem-
poral connectivity structures. We also illustrate their
utility by demonstrating their complementary nature
when compared to existing centrality measures.

I MOTIVATION

Much research has focused on identifying influential
individuals and opinion leaders in a social network;
that is, those who have high social capital, or who
help maximize the spread of information and ideas
[1]. While identifying these individuals is useful for
macro-level diffusion analysis, it is less useful for un-
derstanding the structural influence of individuals in
embedded communities or groups in the network. In
this context, we introduce the concept of prominent
individuals. Based on their position in the network,
they can have the greatest influence on their under-
lying groups. More specifically, a prominent individ-
ual is one who participates regularly within a group
(stable participation) and consistently across many

groups (diverse participation) compared to others in
the network. These individuals are important to the
network because they have access to more informa-
tion than those that participate in only one or two
groups and they have the potential to disseminate
information since they participate consistently across
many groups.

Our new method for identifying actors with promi-
nent group membership incorporates measures that
quantify two specific types of actor behavior across
different groups: stable actors, those who partici-
pate in the same groups regularly, and diverse actors,
those who participate across different groups consis-
tently. Together, these measures are used to identify
and rank actors with prominent group memberships
in any time-varying network, particularly affiliation
networks. An affiliation network contains two differ-
ent types of nodes, one for actors and one for events,
and edges between actors and the events in which
actors participate [2]. In time-varying affiliation net-
works, an actor’s participation in a particular event
is associated with a specific time, indicating when
the participation occurred. Many interesting social
networks can be captured as affiliation networks, in-
cluding organizational data describing peoples’ roles
on teams or in companies; and social media data de-
scribing users participation in blogs.

As an example, consider an epidemiological network
where groups are based on exposure to different dis-
ease strains. Stable actors represent vulnerable indi-
viduals who are consistently and recently exposed to
a certain disease. Diverse actors represent those that
have repeatedly had exposure to a large number of
disease groups. While each of these measures provide
meaningful insight into the implications of different
types of disease exposures, studying the behavior of
individuals who have elongated exposure to different
types of diseases is meaningful for understanding the
vulnerability of the network as a whole, and the dy-
namics of the spread of different disease strains.
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In this paper, we extend the work we proposed in [3]
for quantifying user loyalty to a social group into a
more general formulation for identifying prominent
users based on both their stability in their corre-
sponding groups, as well their diversity across differ-
ent groups in networks. The contributions of this pa-
per are as follows. First, we propose a new method for
identifying individuals who have both stable and ex-
tended reach in a network that is tunable for networks
with varying characteristics, including different se-
mantics for network group participation and for past
participation. Second, we show how our method can
be used in time-varying affiliation networks; specifi-
cally, how we can use the affiliation events to define
the groups that actors belong to. Third, we demon-
strate the utility of the measures on both synthetic
and real world data sets and compare them to exist-
ing centrality measures of influence.

This paper is organized as follows. Section II presents
the related work. Section III formally defines affili-
ation networks and our grouping semantics. Section
IV describes our stability, diversity, and prominence
measures and ranking. We evaluate our methods on
both real-world and synthetic data sets, and compare
them to existing centrality measures in Section V. Fi-
nally, conclusions are presented in Section VI.

II RELATED WORK

Analyzing the dynamics of social group formation
and user behavior within these groups is a growing
area of interdisciplinary research. The community
detection literature has focused on using measures of
cohesion and clustering to identify subsets of users in
the network that are densely connected to each other,
but less densely connected to users in other clusters.
However, the majority of research conducted on com-
munity detection focuses on static networks and con-
sider only the case when an actor can be a member
of a single community [4–8].

Recently, researchers have begun to analyze the dy-
namics of communities over time [9–16]. Much of
this research focuses on two questions: what are the
communities that exist in a particular data set, and
how do they change or evolve over time. The work
by Tant et al. [16] is concerned with identifying a
core set of communities of actors over time. Asur
et al. [9] focused more on developing methods for
identifying significant changes to groups over time.
Their proposed approach relies on partitioning tem-
poral snapshots into groups and analyzing the cor-

responding group popularity and influence indices.
In addition, Sun et al. [15] introduced a parameter-
free approach for discovering communities and change
points in community structure without relying on
temporal snapshots. Berger-Wolf and Saia [12] used
social groups to partition the data, and developed al-
gorithms for generating meta-group statistics to find
a “critical group set”, one whose removal leaves no
visible meta-groups. Friedland and Jensen [13] intro-
duced a method for detecting small groups of indi-
viduals sharing unusual affiliations over time.

The above methods for modeling and understanding
the dynamics of the community formation and group
structure can be categorized as a macro-level analysis
on the underlying social network. In contrast, the ap-
proach we propose in this paper is a micro-level analy-
sis technique that focuses on the dynamics of specific
actors or individuals within different groups in the
network. Our analysis of actors can be conducted us-
ing the groups identified by any of the aforementioned
dynamic community detection algorithms on a single
mode social network. Once the social groups or com-
munities are established, our goal is to understand
the dynamics of actors and their social relationships
in the context of these predefined groups.

Backstrom et al. [11] discussed the notion of engaged
users in “thriving” social groups, and discovered that
the core users of the group tend to receive preferential
treatment from other members. This work empha-
sizes the role and importance of these types of users
in online social groups. Another approach by Habiba
et al. [17] proposed a set of methods for identifying
important actors in dynamic networks. The authors
identified nodes in single mode networks that are
likely to be good “spread blockers”. To accomplish
this, they introduced dynamic measures for density,
diameter, degree, betweenness, closeness and cluster-
ing coefficient. Their measure of dynamic average
degree is semantically meaningful in the context of
time-varying affiliation networks. We show that it is a
special case of our diversity measure when there is no
discount function. While all of these approaches are
important for micro-level analysis of dynamic social
networks, none of them identify individuals that are
structurally well positioned in the network to gather
and disseminate information within different groups
or communities.
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III DEFINITIONS AND BACKGROUND

In this section, we define the notions of dynamic
groups and affiliation networks. We then explain a
novel approach for defining groups from affiliation
networks.

1 TEMPORAL SOCIAL GROUPS

The groups that we focus on are temporal, so an ac-
tor’s participation varies with time. In addition, we
allow actors to be members of multiple groups at each
time step since this property is more typical in real-
world networks. More formally, given a single mode
graph G(A, E) containing a set of actor nodes A =
{a1, a2, a3, . . . , an} and edges that connect actors,
E = {(ai, aj)|ai and aj ∈ A}, we define a collection
of groups, G = {g1, g2, g3, . . . , gl}, and a boolean rela-
tionship that describes temporal group memberships
of an actor, GroupMember(ai, gj , t). We also define a
temporal social group as a subset of actors having the
same group value gj at time t: SocialGroup(gj , t) =
{ai|ai ∈ A, GroupMember(ai, gj , t)}.

The above construct is general and can be applied in
a variety of settings depending on the semantics of
the underlying analysis task. One could group actors
based on the output of the dynamic community de-
tection algorithm discussed in the previous section.
Another method would be to group actors based on
common attribute values or common event participa-
tion. We now describe this method in the context of
affiliation networks.

2 EVENT-BASED GROUPING FROM AF-
FILIATION NETWORKS

An affiliation network is represented as a graph
G(A, E ,P) containing a set of actor nodes A =
{a1, a2, a3, . . . , an}, a set of event nodes E =
{e1, e2, e3, . . . , em}, and a set of participation edges
P that connect actors in A to events in E . Here,
P = {(ai, ej)|ai ∈ A, ej ∈ E , and ai participates in
ej}. In addition, we assume that actors and events
have attributes or features associated with them. In
order to emphasize the event relation’s temporal com-
ponent, it explicitly contains a time attribute, Etime,
that can be used to associate specific time points to
abstract groups of actors. An example of an affili-
ation network is an author publication network. In
such a network, the actors are the authors, the events
are the publications, and the participation relation-
ship indicates the authors of a publication. This affil-

iation network is temporal because each publication
event has a date of publication. We will use this au-
thor publication network as our running example.

Figure 1: Grouping abstractions based on publication
event attributes at time t

The grouping construct we propose for affiliation net-
works incorporates the semantics of events into the
grouping definition. Specifically, we propose defin-
ing a group based on shared event attribute values.
We consider any attribute (or combination of at-
tributes) of the event relation to be a grouping ab-
straction that can be used to define a set of groups.
Assume each attribute Ek of Event has a domain
of values, Domain(Ek) = {g1, g2, . . . .gp}. In or-
der to construct an event-based grouping abstrac-
tion, we define the temporal group membership as
follows: GroupMember(ai, gj , Etime) where gj is in
Domain(Ek), and Etime is the time point when the
group membership is valid. For simplicity, our defi-
nition focuses on the case where groups are based on
a single attribute Ek. It is straightforward to extend
this definition to consider multiple attributes.

Returning to our publication network with authors
as actors and publications as events, we focus on
the three attributes associated with the publication
event - publication topic, publication venue, and pub-
lication authors. Each attribute is an abstraction
through which actors can be grouped. Using this for-
mulation, we have multiple ways an actor relates to
other actors through a particular event. An exam-
ple social group belonging to the topic grouping ab-
straction is data mining, e.g., actors who have pub-
lished on the topic data mining. Figure 1 shows a
partial lattice structure for the publication network
at a particular time point t. We see that authors are
connected to publications through similar values of
three different grouping abstractions: topic, author-
ship and venue. This lattice structure emphasizes the

Page 3 of 14
c©ASE 2012



connectivity between the temporal social groups and
the actors and events in the network.

There are several advantages to our group formula-
tion. First, our approach, while very simple, is sur-
prisingly flexible. Second, actors can belong to mul-
tiple affiliation-based groups at a particular time. In
other words, membership in different groups can be
overlapping. Third, actors are not required to be part
of an event (or group) at every time t.

IV QUANTIFYING ACTOR PARTICIPA-
TION

Formally, we are interested in the following problem:
Given a dynamic affiliation network G, identify the
top-k prominent actors P in the network. Intuitively,
an actor that is prominent has two characteristics.
First, the actor participates within a dynamic social
group consistently over time and hence, is consid-
ered a stable actor. Second, the actor participates
across many different groups consistently over time
and therefore, is considered a diverse actor. We now
define actor stability, diversity, and prominence in the
remainder of this section.

1 ACTOR STABILITY

Different static and temporal definitions can exist for
stability. We consider two in this paper: frequency-
based stability and consistency-based stability.

1.1 FREQUENCY-BASED STABILITY

One possible definition for stability considers the
number of times an actor participates in a group. Let
ns(ai, gj) be the number of time points that actor ai
participates in group gj . Let Tmax be the maximum
number of time points that any of the actors in the
network participated in any group in G. Then the
stability of actor ai in a group gj is defined as the ra-
tio between the number of time points ai participates
in a particular group gj and the maximum number of
time points Tmax:

S(ai, gj) =
ns(ai, gj)

Tmax

While this definition takes into consideration the dy-
namics between actors and groups, it does not cap-
ture the temporal component of the actor participa-
tion.

1.2 CONSISTENCY-BASED STABILITY

In some domains, it is important to favor consistent
and recent actor participation over irregular and out-
dated participations. This is especially relevant in
data sets containing a large number of time periods,
in which it is valuable to highlight the duration(s)
for which a stable member possesses this property.
For this reason, we introduce a discount function that
serves as the mechanism for taking the temporal com-
ponent of the actor’s participation into account. As
a result, instead of using the total number of a given
actor’s participations in a corresponding group when
calculating stability, we can alter the effect over time
depending on the discount function.

The main inputs to the discount function are the pre-
vious value of the actor’s participation in group gj
and the difference in time between the current time
point and the previous time point where the actor’s
last activity was monitored, t − tprev. The output
of the function is the discounted value of the actor’s
participation at the current time step t. Examples of
common discount functions are linear (F(x, y) = x

α.y )

and exponential decay (F(x, y) = x
eα.y ). We place no

constraint on the type of discount function used in
the model. Any model of decay that suits the do-
main being studied is reasonable.

We calculate the discounted sum of the actor partic-
ipation at each time point as follows:

Ns(ai, gj , t) = δ(ai, gj , t) t = t0
= δ(ai, gj , t)

+(F(Ns(ai, gj , tprev), t− tprev))
t > t0

whereNs(ai, gj , t) is the discounted value of actor ai’s
participation in group gj up to time point t, F is the
user-defined discount function, t0 is the initial time
point where actor ai participated in group gj , tprev is
the last time point the actor participated in before t,
and δ(ai, gj , t) is a participation function that eval-
uates to one when actor ai participates in group gj
at time t or zero when actor ai does not. We then
evaluate stability at the time point of interest, tf , us-
ing the discounted value of the actor participation up
until that point by augmenting the original stability
measure as follows:

S(ai, gj , tf ) =
Ns(ai, gj , tf )

Tmax
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where Tmax is the maximum number of time points
from t0 until time point tf that any actor in A par-
ticipated in any group in G. Here, we use Tmax to
normalize the scores. We could simply use the to-
tal number of time points; however, if most actors
participate in a small fraction of time steps, using
the maximum participation of any actor results in a
wider distribution of stability values.

2 ACTOR DIVERSITY

Similar to stability, different static and temporal def-
initions can exist for diversity. Two that we con-
sider in this paper are frequency-based diversity and
consistency-based diversity.

2.1 FREQUENCY-BASED DIVERSITY

One possible definition for actor diversity considers
the number of groups in which an actor participates.
Let nd(ai) represent the number of groups that actor
ai participates in over all time points and let Gmax
be the total number of groups with at least one ac-
tor participation in the network, where Gmax ≤ |G|.
Then the diversity of actor ai is defined as the number
of groups ai actually participates in over the number
of groups ai can participate in:

D(ai) =
nd(ai)

Gmax

2.2 CONSISTENCY-BASED DIVERSITY

Similar to stability, we are interested in favoring re-
cent and consistent diversity. Therefore, we will also
use a discount function for the actor’s diversity. We
first calculate the discounted sum of actor participa-
tions at each time point:

Nd(ai, t) = nd(ai, t) t = t0
= nd(ai, t)

+(F(Nd(ai, tprev), t− tprev))
t > t0

where Nd(ai, t) is the discounted value of actor ai’s
number of group participations up to time point t,
F is the user-defined discount function, and tprev is
the last time point the actor participated in prior to
t. Then, the diversity at the time point of interest,
tf , is calculated using the discounted value of the ac-
tor’s number of group participations up to tf divided

by the number of groups in the network times the
number of time points the actor participated in.

D(ai, tf ) =
Nd(ai, tf )

Gmax × Tmax
where Tmax is the maximum number of time points
that any of the actors in Actor participated in any
group in G until time point tf .

3 ACTOR PROMINENCE

Once we have the stability for all actors in their cor-
responding groups, as well as their overall diversity,
we can use these measures to determine the set of
prominent actors in the affiliation network.

DEFINITION 1. A prominent actor P has both a
high stability S within groups in G and a high diver-
sity D across groups in G over time.

We define SAk(gj , t) to be the top-k stable ac-
tors for group gj at time point t and SAk(G, t) =⋃
gj∈G SAk(gj , t). Similarly, we define DAk(t) to be

the top-k diverse actors at time point t. Then promi-
nence P (t) is calculated as follows:

1. Calculate D(ai, t) and S(ai, gj , t) for all ai and
gj .

2. Determine SAk(G, t) and DAk(t).

3. Intersect top-k stability and diversity sets to
find
prominent actors Pk(t) = SAk(G, t))∩DAk(t)).

This final set will contain the actors who possess both
high stability and high diversity measures. Notice
that it is possible for a particular data set to contain
no prominent actors. For example, there may be af-
filiation networks that contain stable members that
are not diverse. In such cases, the intersection will
yield an empty set of prominent actors. To avoid el-
evating non-prominent actors in data sets containing
low diversity and stability values for all the actors,
we can include a minimum threshold so that only ac-
tors above the minimum thresholds for stability and
diversity are candidates for prominence.

4 EXAMPLE CALCULATIONS

In order to further illustrate these measures, consider
the simple example in Figure 2 containing 5 actors
participating in 3 groups over 6 time points, with a
linear discount function. First, we consider stability.
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Figure 2: Example for calculating actor stability and diversity.

We assign a color to each group in the figure. Group
g1 is (orange), g2 is (yellow), and g3 is (blue). The
most stable actor in each group at every time point
is assigned the same color of the group. For example,
at time point 1, actors a1 and a5 are the most stable
actors in group g1. Actors a2 and a3 are most stable
in group g2. Actor a5 is also most stable in group g3.
Notice that actor a5 is stable in two groups at time
point 1 and therefore, is two colors. The first three
rows under each time period show each actor’s dis-
counted sum for stability and the stability for groups
g1, g2, and g3, respectively. The last row shows each
actor’s discounted sum for diversity and the diversity
for each actor.

Let’s first consider the stability of the actors. By ex-
amining the evolution of actor stability, we see that
until the third time point, the stable members of
each group do not change because of the persistent
participation of those actors in their corresponding
groups. At the third time point, the stability of actor
a2 drops. By the fourth time point, the stability score
of actor a2 in group g2 is lower than that of actor a4
since actor a2 has not participated in group g2 for
two time points and actor a4, a previous participant
of group g2, begins participating in group g2 again.

At the fifth time point, the stable members of both
groups g1 and g2 change. Actor a3, who consistently

participated in group g1 during the last 3 time points,
has a higher stability score than both actor a1, who
has stopped participating in the group since the third
time point, and actor a5, who did not participate in
the group in the previous time point. Thus, actor a3
becomes the most stable actor in group g1. As for
group g2, since actor a2 returns, a2’s stability score
increases over that of actor a4 who missed the partic-
ipation at this step. Finally, at the final time point,
actor a4 participates in group g2 and becomes more
stable than actor a2.

At the final time point, we can see how the temporal
aspect of our proposed measures impacts the results.
For group g1, the most stable member is actor a3 who
participated in the group consistently and recently
over the last 4 time points. The second most stable
member is actor a5 who also participated in the group
at 4 time points, but in earlier time points than that
of a3. The least stable member of the group is ac-
tor a1 who participated in only 3 earlier time points.
As for group g2, we find that the scores of both ac-
tors a2 and a4 are very close. Actor a4 is considered
more stable because he or she participates more re-
cently and more consistently than actor a2. Finally,
for group g3, actor a5 is the most stable actor. Since
he or she participated in group g3 at every time point,
his or her stability score is 1.

Page 6 of 14
c©ASE 2012



As for diversity, we can see that actor a5 is also the
most consistently diverse actor over time, having the
highest diversity score at the final time point. Ac-
tor a5 regularly appears in two of the three groups.
In contrast, actors a1 and a2 have the lowest diver-
sity scores since they appear in only a single group
throughout the example. In order to realize the im-
portance of including the temporal discount factor,
we notice that if the discount factor is not included,
the diversity of both actors a3 and a5 would be the
same even though actor a5 is consistently diverse for
4 time points and actor a3 participated in two groups
only once.

Suppose we set k = 2 to determine the k prominent
actors. The two most stable actors are a5 and a3.
These two actors also have the highest diversity scores
and are therefore, both prominent actors.

V EXPERIMENTAL RESULTS

We begin by analyzing our proposed measures, sta-
bility, diversity, and prominence, on three affiliation
networks: a scientific publication network, a senate
bill sponsorship network, and a dolphin social net-
work. We analyze the distribution of values for each
data set and illustrate meaningful characteristics of
the actors in the networks. We then compare stabil-
ity and diversity to well known centrality measures
and show that these measures capture a different dy-
namic than existing measures. To show how our mea-
sures perform on a broader range of actor behaviors,
we generate a set of synthetic data sets that contain
varying probabilities for generating different types of
actors and use our measures to see if they adequately
identify stable and diverse actors. Finally, we show
how the different temporal discount functions can be
used, illustrating the value of using dynamic measures
rather than static ones.

1 DATA SETS

Scientific publication network: This network is
based on publications in the ACM Computer-Human
Interaction (ACMCHI) conference from 1982 until
2004. Similar to our running example, this data
set describes an author/publication affiliation net-
work. It was extracted from the ACM Digital Library
and contains 4,073 publications and 6,358 authors.
There are 12,727 participation relationships (edges)
between authors and publications. Since we are inter-
ested in the temporal dynamics of the actors, single
actor participations are removed as a preprocessing

step for all the data sets. We grouped publications
using the topic attribute. There are 15 values for this
attribute.

Senate bill sponsorship network: This network
is based on data collected about senators and the bills
they sponsor [18]. The data contains each senator’s
demographic information and the bills each senator
sponsored or co-sponsored from 1993 through Febru-
ary 2008. Each bill has a date and topics associ-
ated with it. We group the bills using their general
topic. After removing the senators that do not spon-
sor a bill, the bills that do not have a topic, and pre-
processing the data, our analysis uses 181 senators,
28,372 bills, and 188,040 participation relationships
spanning 100 general topics. While we used all the
groups for our analysis, due to space limitations we
illustrate the results using only a subset of the 100
topics.

Dolphin behavioral network: This network is
based on a data set accumulated over the last 25
years on a population of wild bottle-nose dolphins
in Shark Bay, Australia. The dolphin population
has been monitored annually since 1984 by members
of the Shark Bay Dolphin Research Project. They
have collected 13,400 observation surveys of dolphin
groups. Each observation of a group of dolphins rep-
resents a ’snapshot’ of associations and behaviors. In
this affiliation network, dolphins are defined as actors
and surveys as events. Dolphins observed in a sur-
vey constitutes the participation relationship. Our
analysis includes 560 dolphins, 10,731 surveys, and
36,404 relationships between dolphins and surveys.
We group survey observations together by the loca-
tion (latitude-longitude) of the survey. Seven differ-
ent predetermined areas of approximately equal size
(75 sq km.) were used as groups for this data set.

2 MEASURING STABILITY

The results of measuring the stability of actors to
different groups in each network are summarized in
Figures 3(a) - 3(c). Here the x-axis represents the sta-
bility value and the y-axis contains the group names.
Except where otherwise noted, we use a linear dis-
count function with α = 1 for all the results reported.
As can be seen from the figures, because the seman-
tics and evolution of each network are different, the
overall actor stability varies across the data sets with
the average stability being lowest for the publication
data set and highest for the senate data set. The low
average stability of the authors to publication topics
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(a) Publication network group stability

(b) Senate network group stability

(c) Dolphin network group stability

Figure 3: Stability of actors across various groups

in the scientific publication data set results because
most of the authors do not publish in this venue ev-
ery year on the same topic. This may lead one to
believe that these authors are diverse. As we will see
later, while there are some diverse authors, the ma-
jority are not. In fact, the majority of authors do not
consistently stay a member of a single group and do

Figure 4: Group stability changes in senate network

not consistently publish across groups. In this data
set, the low stability scores is an indication that very
few people in the network are well positioned to have
a strong, continual impact on authors in these differ-
ent groups.

Figure 3(b) shows the results on the senate bill spon-
sorship network. Here we notice that the average sta-
bility of senators in different groups is much higher
than that of the publication network with some hav-
ing a score above 0.8. This means that senators are
regularly sponsoring bills of a certain type. This is
particularly true for bills sponsored within certain
topics, e.g., commemorations, foreign policy, taxa-
tion. However, other topics, including environmental
policy and women, have significantly less stable mem-
bership (average stability less than 0.1). A more de-
tailed temporal comparison is illustrated in Figure 4.
It shows the changing dynamics of the average ac-
tor stability in different groups over time. Initially,
they are relatively similar and relatively low. How-
ever, since the late 1990’s, the average stability val-
ues have increased rapidly for six groups including
defense, commemorations, business, and criminal jus-
tice, while the remaining average stability values have
been relatively consistent, with only a slight increase
or decrease, each year. The increase in stability of
senators in these areas is consistent with historical
events, e.g. wars in Afghanistan and Iraq.

Figure 3(c) shows the results on the dolphin network.
Here we see that dolphin stability is more variable
than the previous data sets. There are three loca-
tions with more stable membership than the others.
The average stability is highest for the ’East’ loca-
tion, but the most stable dolphins in the data set are
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Figure 5: Actor diversity

in ’Red Cliff Bay’ and ’Whale Bight’. While some
of this may be explained by heavier sampling in cer-
tain regions, biologists believe this is likely to be a
result of habitat structure in the region [19, 20]. For
example, ’East’, which has the highest average sta-
bility, is mostly deep channels bisected by shallow
sea grass banks. Dolphins with high stability in the
’East’ have certain foraging specializations (channel
foragers or sea grass bed foragers). Since many dol-
phins spend a large amount of time foraging, a high
stability in regions where specialized foraging is nec-
essary is consistent with biologists’ interpretation of
dolphin behavior. Dynamic measures like stability
provide observational scientists with a tool for mea-
suring and comparing social variability throughout
an animal’s life history.

3 MEASURING DIVERSITY

In Figure 5, we compute the diversity distribution
among the actors of each network. To make the fig-
ure easier to read, we sorted the diversity values for
each data set from highest to lowest along the x-axis.
The figure shows that the average diversity is high-
est for senators, while the range of diversity values
is widest for the dolphins. The diversity of actors in
the scientific publication network is very low (aver-
age < 0.05). This is an indication that authors are
not publishing consistently across topics. The diver-
sity values for the senator sponsorship network may
seem low since they are all below 0.5 and intuitively,
we expect senators to sponsor bills across a range of
topics. However, this is not surprising because there
are 100 different bill topics, and the number of topics
is part of the denominator of the diversity equation.
Finally, the range in dolphin diversity is much higher
than the other two data sets. Again, this is consis-
tent with biologists’ interpretation of dolphin behav-
ior. While many dolphins settle in some areas (bights
or bays), others spend more time in adjacent bays at
specific stages in their life history (e.g., juvenile pe-

riod or adulthood), thereby increasing their diversity
score with respect to location.

4 PROMINENT ACTORS

Recall that prominent actors are structurally well po-
sitioned in the network to both gather new informa-
tion and ideas from different groups (diversity), as
well as disseminate them to members of groups they
actively participate in (stability). In order to find the
prominent actors, we apply the method discussed in
Section IV using (k=10). We highlight some inter-
esting findings. First, none of the data sets have 10
prominent actors. In other words, few actors in the
data sets are both stable and diverse. The dolphin
data set, which has the highest stability and diversity
scores, returns the fewest prominent actors (4). The
senator network has the largest number of prominent
actors (8), and the publication data set is in the mid-
dle (6).

Focusing on the senator data set, the following ac-
tors are considered prominent: Sen. Jeff Bingaman,
Sen. Barbara Boxer, Sen. Diane Fienstein, Sen. Ed-
ward Kennedy, Sen. John Kerry, Sen. Patrick Leahy,
Sen. Joseph Lieberman, and Sen. Patricia Murray -
all well-known Democratic senators. To gain further
insight we determined whether or not the prominent
actors are stable in the same groups. Figure 6 shows

Figure 6: Stable group membership of prominent sen-
ators
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(a) Authors

(b) Senators

(c) Dolphins

Figure 7: Stability vs Diversity

the groups in which these senators are considered sta-
ble. The size of each pie slice represents the number
of prominent actors in the topic group. While there
is definite overlap (5 out of 8 are stable in defense),
there are clear differences as well (Sen. Patty Murray
from Washington is stable in Agriculture).

We have similar findings for the publication data set.
We also further analyze the prominent actors in the
publication network by checking the DBLP listing of
publications for each prominent author. We find that
for all the authors, 31% to 53% of their total publica-
tions are in ACM CHI. Thus, this conference repre-
sents a very important venue in their research portfo-
lio. Finally, prominent actors in the dolphin network

all have high stability and diversity in the same lo-
cation groups. Scientists who monitor the dolphins
know these dolphins to be highly sociable, i.e. since
the 1980s, their rate of contact with other dolphins is
high. These dolphins are sighted regularly in many
different locations and are rarely sighted alone. This
is consistent with the definition of prominence.

In order to better understand the relationships be-
tween stability and diversity of all the actors in the
data sets, we plotted stability vs. diversity in Fig-
ure 7. The variations across data sets is evident.
For the publication network, high stability gener-
ally correlates with low diversity. The senator net-
work is much more varied, while in the dolphin net-
work highly stable actors also tend to be more di-
verse. These figures reconfirm that prominence is not
a common characteristic for individuals in different
networks and prominent individuals hold a unique
position in the network that provides them an op-
portunity to be very influential in groups within the
network.

5 COMPARISON WITH CENTRALITY
MEASURES

A natural direction is to understand how stability
and diversity compare to existing centrality measures.
Do they capture the same information, or do they
provide additional insight? We begin by compar-
ing stability to the most common centrality mea-
sures. In order to do this, we generated the under-
lying single-mode, co-membership network for actors
participating in a certain affiliation group, and com-
puted various centrality measures on the generated
networks. We show the results for the publication
data in Table 1 using the ‘Information Visualization’
topic as a sample affiliation group. The table shows
the measure values, followed by the ranking of the
actor for each measure. For example, Benjamin Bed-
erson ranked as the author with highest betweenness
and eigenvector centrality. However, by examining
the publications pattern we note that they are nei-
ther consistent across time nor numerous, and the
same is true for Robert Spence who was ranked first
according to the closeness centrality. On the other
hand, the time-consistent, recent and numerous pub-
lications of the most stable author, namely Stuart
Card, illustrates exactly what our proposed stabil-
ity measure captures that the other centrality mea-
sures missed. A similar experiment was performed
using the original affiliation network to compare our
proposed diversity measure with the same centrality
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Actor Stability Closeness Betweenness Eigenvector

Raw Value(Rank)

Participation [Publication Year ]

Stuart K. Card 0.255(1) 0.305(85) 0.445(6) 0.003(9)
1987, 1991, 1993, 1994, 1995, 1996,

1998, 2000, 2001, 2003, 2004
Robert Spence 0.038(49) 1(1) 0.006(50) 0(88)

1993, 1996, 1999, 2001
Benjamin B. Bederson 0.117(18) 0.321(82) 1(1) 0.276(1)

1995, 1999, 2000, 2003

Table 1: Stability vs. Centrality

Actor Diversity Closeness Betweenness Eigenvector

Raw Value(Rank)

Participation [Year(Group Count)]

Allison Druin 0.209(1) 0.395(10) 0.013() 0.002()
1994(2), 1995(1), 1996(2), 1997(1), 1998(2), 1999(4),

2000(2), 2001(2), 2002(4), 2003(1), 2004(1)
Ben Shneiderman 0.127(6) 0.446(1) 0.3(2) 0.0027(1)

1982(1), 1987(1), 1991(2), 1992(3), 1993(1), 1994(3),
1995(2), 1996(1), 1998(5), 1999(2), 2001(1), 2002(4)

Brad A. Myers 0.106(9) 0.428(3) 0.306(1) 0.0025(6)
1985(1), 1987(1), 1990(1), 1991(3), 1992(1), 1993(4),
1994(3), 1995(3), 1996(3), 1998(1), 2000(2), 2002(3)

Table 2: Diversity vs. Centrality

measures. Although the results reported in Table 2
have more similarity, the effects of recency and con-
sistency over time capture a dynamic that the other
centrality measures miss.

6 EVALUATION ON SYNTHETIC DATA

To illustrate that our measure effectively captures the
semantics we expect, we developed a synthetic data
generator that allows us control the behavior of actors
within and across affiliation groups. Our data gen-
erator uses an evolutionary approach to emulate the
dynamics of a time-varying affiliation network. We
allow the actors in the network to exhibit 4 different
behaviors: normal, stable, diverse and persistent.

The generator starts by creating an initial network
containing ng affiliation groups and na actors using
a predefined percentage of each type of actor. When
an actor is created, it samples its lifetime from the
distribution DL, and picks its type according to the
input probabilities. Then, the network is allowed to
evolve through the simulation time T , with specific

evolution rules according to each actor’s type. A nor-
mal actor samples the number of affiliation links to
be created at this time from the distribution DN ,
then picks a random set of groups corresponding to
this number. The other types of actors sample their
number of participations from the (higher) distribu-
tion DF , where a stable actor creates its participation
in the one group it was affiliated with in a prior time
point, a diverse actor chooses a random set of groups
to participate in, and a prominent actor establishes
a set of groups that it continues participating in over
time. Actors are generated throughout the simula-
tion according to the same probabilities to keep the
average number of active nodes and the distribution
of the actor types fixed over time.

The data generator is very flexible, allowing users to
specify the following parameters: the total period of
simulation T , the average number of active actors at
any time point na, the number of affiliation groups
ng, the probability of generating a stable actor ps, a
diverse actor pd, or a prominent actor pp, a distribu-
tion of the actors’ lifetime DL, and two distributions
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ps pd pp F1(diversity) F1(stability) F1(prominence)
0.2 0.2 0.04 0.992 0.976 0.931
0.1 0.1 0.01 0.99 0.974 0.985
0.01 0.01 0.0001 0.945 0.989 1

Table 3: F1 measures on synthetic data

of actors’ participations per time step DN and DF ,
where the first is used for normal actors (with rela-
tively lower participation) and the second is used for
the other types of actors (with higher participation).

To better understand how well our measures capture
the different actor behaviors, we generated a number
of synthetic networks with different distributions of
actor types. The synthetic networks used for these
experiments were obtained by setting the parameters
of the generator as follows: (T = 25 time points,
na = 1000 actors, ng = 25 groups, DL N(12, 3),
DN N(0, 1), and DF N(3, 1)). It is important to
note that the distributions for the user participations
should follow the same distribution, but with a lower
mean for the ‘normal’ actors. Doing so is necessary to
generate the required behavior for diverse and promi-
nent actors. We carried out the experiments by vary-
ing the probabilities for generating different types of
actors, and then using our measures on the differ-
ent networks to see if we could correctly identify the
stable, diverse and prominent actors at the different
time points.

For calculating stability, diversity and prominence,
we used a linear discount function with a value of
(α = 1), and a threshold equal to the corresponding
percentage of active actors that should be present at
the network at the end of the simulation. Each exper-
iment for a certain set of parameters was carried out
100 times and the average F-1 measure for stability
(as a group average), diversity, and prominence are
reported in Table 3. The table shows that for net-
works with different distributions of actor behaviors,
our measures accurately identify stable, diverse and
prominent actors, with an F-1 measure of over 0.9 in
all cases.

7 COMPARISON OF DISCOUNT FUNC-
TIONS

In order to demonstrate the flexibility introduced in
our model through the discount function, we illus-
trate the results of using different temporal discount
functions to calculate the diversity of authors in the
publication data set. We consider three different

Figure 8: Exponential discount (F(x, y) = x
ey )

Figure 9: Identity discount (F(x, y) = x)

Figure 10: Linear discount (F(x, y) = x
y )

models for decay - an exponential, the identity (i.e.,
none) and a linear model. The results are illustrated
in Figures 8, 9 and 10 respectively. The left part of
the figures shows the authors participation over time.
The right side shows the average degree of those ac-
tors. The actors in both graphs are sorted by increas-
ing diversity.

The exponential decay discount function favors re-
cency, as illustrated Figure 8. Actors that partici-
pate through the entire time period, including most
recently, have the highest diversity. The diversity
of those actors that appear in the same number of
time periods differs, depending upon recency. The
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top diverse actors are determined based on the re-
cency of their last group participation since the effect
of their older participations is diminished exponen-
tially. This model is useful when we need to capture
the recent behavior of actors with only up-to-date
participations, with limited influence from their past
behavior.

At the other extreme, the model could use the iden-
tify function and effectively do no temporal discount-
ing. In this case, the order of occurrence of actor
participations in different groups is ignored, and the
top actors are determined only by the number of par-
ticipations in their corresponding groups. Using this
model is equivalent to using the dynamic average de-
gree proposed by Habiba et al. [17]. Analyzing Fig-
ure 9, we see that actors having the same number of
participations at different time periods have the same
diversity value. This model is appropriate when those
analyzing the network are more concerned with the
magnitude of the actors’ group participations over
time.

Finally, the linear model attempts to account for both
recency and frequency in determining top actors. As
we can see in Figure 10, the time graph shows that
the model does still favor recency, but it also captures
the magnitude of group participations (as shown in
the right-hand graph). Such a model can be used
when we need to account for recent actor behavior,
older behavior, and consistent behavior.

VI CONCLUSIONS AND FUTURE
WORK

In this paper, we introduce the concepts of stable, di-
verse and prominent actors in a network and exhibit
methods for identifying them in the case of dynamic
affiliation networks. Because these networks are more
nuanced than traditional static social networks, the
measures are more complex, and capture both the
temporal aspects of the networks and the variety of
ways of defining groups within an affiliation network.
We illustrate the utility of our measures of stability
and diversity on several real-world networks, compare
them to other well known measures of centrality, and
show how they highlight important subtleties that
are not captured traditionally. We also show how our
proposed measures can be used to accurately capture
prominent actors that are persistent within groups
and diverse across groups on different synthetic data
sets. Finally, we analyze prominent actors in different
domains and highlight the importance of capturing

both stability and diversity.

One direction for future work is to adapt the pro-
posed method for characterizing the dynamic evolu-
tion of different ties between actors. Another inter-
esting direction is to investigate the exact role that
these prominent actors play in the dissemination of
information across a network, as well as the general
dynamic underlying network formation in the pres-
ence of such actors. It would also be interesting to
integrate these measures into a learning algorithm
that predicts future network dynamic. Last but not
least, analyzing the variations in the proposed mea-
sures could lead to valuable insights about the specific
nature of different network types.
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